Electronic device with a reduced friction surface

Information

  • Patent Grant
  • 10556408
  • Patent Number
    10,556,408
  • Date Filed
    Wednesday, October 4, 2017
    7 years ago
  • Date Issued
    Tuesday, February 11, 2020
    5 years ago
Abstract
A surface of an electronic device includes a reduced friction surface that comprises a glass beaded film. The glass beaded film includes glass beads disposed in a polymer layer or in an adhesive layer, where a portion of the glass beads protrude from a surface of the polymer or adhesive layer. The reduced friction surface is disposed over at least a portion of the surface of the electronic device.
Description
TECHNICAL FIELD

The present invention relates to electronic devices, and more particularly to an electronic device with one or more reduced friction surfaces.


BACKGROUND

Users interact with electronic devices, such as laptops, tablet computing devices, and smart telephones in a variety of ways. A user can view images on a display or input information using a touchscreen, keyboard, or buttons. The surfaces of the components in an electronic device, as well as the surface of the electronic device itself, can enhance the user experience by providing a tactile reduced friction surface that has a desired look or feel. However, mass manufacturing of the components that include the reduced friction surface can be difficult due to the presence of a cosmetic surface and/or display elements, such as symbols or glyphs. For example, machining around the full perimeter of a component may not be feasible when performed at mass manufacturing quantities. Additionally, positioning the transition between the surface of the component and the edges of the reduced friction surface in a non-visible location can be challenging depending on the design of the component. The transition can produce a noticeable and undesirable color change. The transition may also be detected by a user when the user touches or slides a finger over the surface.


SUMMARY

In one aspect, a surface of an electronic device includes a reduced friction surface comprising a glass beaded film. The reduced friction surface is disposed over at least one surface of the electronic device or of a component. The reduced friction surface includes glass beads embedded or bonded in a polymer layer. A thermoplastic elastomer layer can be under the polymer layer. A portion of the glass beads protrude from the surface of the polymer layer and provide a hardness to the glass beaded film. The polymer layer provides a flexibility or elasticity to the glass beaded film.


In another aspect, a method for producing the reduced friction surface over one or more surfaces of an electronic device includes providing a conformal glass beaded film and pressing the at least one surface into the conformal glass beaded film to dispose the glass beaded film over the at least one surface. In one embodiment, the glass beaded film is heated to a temperature that is greater than its forming temperature, which causes the glass beaded film to be pliable and conformal when formed over the at least one surface.


In another aspect, a method for producing the reduced friction surface on one or more surfaces of an electronic device includes providing a mold of the at least one surface, where the mold is made of the glass beaded film, and filling the mold with a material that becomes the at least one surface. For example, an insert molding process can be performed to inject the surface material into the glass beaded film mold.


In yet another aspect, a method for producing the reduced friction surface on one or more surfaces of an electronic device includes positioning the electronic device in a lower mold, positioning a glass beaded film over the lower mold, and heating the glass beaded film, the component and the glass beaded film, or the electronic device and the glass beaded film. An upper mold is then positioned over the lower mold and a pressure difference is created between the upper and lower molds to overlay the glass beaded film on the at least one surface of the electronic device.


In another aspect, a method for producing the reduced friction surface on one or more surfaces of an electronic device includes adhering the glass beaded film to the at least one surface and removing the polymer layer. The glass beaded film can be affixed to the at least one surface with an adhesive layer that is disposed over the portions of the glass beads protruding from the polymer layer. The glass beaded film can be heated prior to removing the polymer layer.


And in yet another aspect, a keyboard includes at least one key mechanism having a keycap and a glass beaded film disposed over the top surface of the keycap. The glass beaded film may also be disposed over at least a portion of the sides of the keycap. The glass beaded film includes glass beads disposed in a layer such that a portion of the glass beads protrude from a surface of the layer. The layer can be a polymer layer or an adhesive layer.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are better understood with reference to the following drawings. The elements of the drawings are not necessarily to scale relative to each other. Identical reference numerals have been used, where possible, to designate identical features that are common to the figures.



FIGS. 1 and 2 illustrate example electronic devices that can include one or more reduced friction surfaces;



FIG. 3 depicts one example of a key mechanism of a keyboard;



FIG. 4 illustrates one example of a keycap that includes a reduced friction surface;



FIGS. 5-7 depict cross-section views of example reduced friction surface materials taken along line 5,6,7-5,6,7 in FIG. 4;



FIGS. 8-10 illustrate one method for producing a reduced friction surface over at least one surface of a keycap;



FIG. 11 is a flowchart of another method for producing a reduced friction surface over at least one surface of a keycap;



FIG. 12 depicts block 1100 in FIG. 11;



FIG. 13 illustrates block 1102 in FIG. 11;



FIGS. 14-15 depict block 1104 in FIG. 11;



FIG. 16 illustrates block 1106 in FIG. 11;



FIG. 17 depicts a keycap after performing block 1106 in FIG. 11;



FIG. 18 is a flowchart of another method for producing a reduced friction surface on one or more surfaces of a keycap;



FIG. 19 illustrates block 1800 in FIG. 18;



FIG. 20 depicts block 1802 in FIG. 18;



FIGS. 21-22 illustrate another method for producing a reduced friction surface on one or more surfaces of a keycap; and



FIGS. 23-24 illustrate example keycap shapes.





DETAILED DESCRIPTION

Embodiments described herein can provide a reduced friction surface for one or more surfaces of an electronic device or for one or more components in an electronic device. The surface can include the enclosure of an electronic device, a button, one or more keycaps in a keyboard, and other types of input devices. The reduced friction surface includes a glass beaded film that positions or affixes glass or glass-like beads in a polymer or resin layer. The glass or glass-like beads can protrude from the surface of the polymer layer. The glass or glass-like beads provide a hardness to the reduced friction surface while the polymer layer provides a flexibility or elasticity to the reduced friction surface. The reduced friction surface may have an increased abrasion resistance as compared to other surfaces. Additionally, the reduced friction surface may provide an improved user experienced with the electronic device as the tactile feel of the reduced friction surface may be preferred as compared to other surfaces. Moreover, the reduced friction surface may also provide an improved cosmetic appearance for the electronic device.


In some embodiments, the reduced friction surface is applied to one or more surfaces to avoid the need to position a transition between the reduced friction surface and the surface of the electronic device in a blind or non-visible area. For example, the reduced friction surface overlies a top surface and all four sides of a keycap when the reduced friction surface is applied to one or more keycaps of a keyboard. Various methods are described herein that can be used to dispose the glass beaded film to one or more surfaces of an electronic device.


Referring now to FIG. 1, there is shown a front perspective view of an example electronic device that can include one or more reduced friction surfaces. As shown in FIG. 1, the electronic device 102 can be a laptop or netbook computer that includes a display 104, a keyboard 106, and an input device 108, shown in the illustrated embodiment as a trackpad. An enclosure 110 can form an outer surface or partial outer surface and protective case for the internal components of the electronic device 102, and may at least partially surround the display 104, the keyboard 106, and the trackpad 108. The enclosure 110 can be formed of one or more components operably connected together, such as a front piece and a back piece.


The display is configured to display a visual output for the electronic device 102. The display 104 can be implemented with any suitable display, including, but not limited to, a liquid crystal display (LCD), an organic light-emitting display (OLED), or organic electro-luminescence (OEL) display.


The keyboard 106 includes multiple keys or key mechanisms that a user can use to interact with an application running on the electronic device 102. Example applications include a game, a word processing application, and a spreadsheet application. The key mechanisms can be configured in any arrangement, such as a QWERTY keyboard, and can include additional key mechanisms that provide control or operational inputs such as home, ESC, ALT, page up, page down, and function keys.


The trackpad 108 can be used to interact with one or more viewable objects on the display 104. For example, the trackpad 108 can be used to move a cursor or to select a file or program (represented by an icon) shown on the display. The trackpad 108 can use any known touch sensing technologies, including capacitive, resistive, ultrasonic, and piezoelectric touch sensing technologies.


In some embodiments, one or more surfaces of some or all of the keys in the keyboard can include a reduced friction surface. Additionally or alternatively, at least a portion of the exterior surface of the enclosure can include a reduced friction surface. The reduced friction surface will be described in more detail in conjunction with FIG. 5.



FIG. 2 is a front view of another example electronic device that can include one or more reduced friction surfaces. In the illustrated embodiment, the electronic device 200 is a smart telephone that includes an enclosure 202 surrounding a display 204 and one or more buttons 206 or input devices. The enclosure 202 can be similar to the enclosure described in conjunction with FIG. 1, but may vary in form factor and function.


The display 204 can be implemented with any suitable display, including, but not limited to, a multi-touch capacitive sensing touchscreen that uses liquid crystal display (LCD) technology, organic light-emitting display (OLED) technology, or organic electro luminescence (OEL) technology. Touch sensing technologies other than capacitive can be used in other embodiments.


The button 206 can take the form of a home button, which may be a mechanical button, a soft button (e.g., a button that does not physically move but still accepts inputs), an icon or image on a display, and so on. Further, in some embodiments, the button 206 can be integrated as part of a cover glass of the electronic device.


Like the embodiment shown in FIG. 1, at least a portion of the exterior surface of the enclosure 202 can include a reduced friction surface. Additionally or alternatively, the surface of one or more buttons, such as button 206, can include a reduced friction surface.


A keycap is the component of a key or key mechanism in a keyboard that a user touches or presses when interacting with the keyboard. Example keycaps are used to describe the reduced friction surface and techniques for producing the reduced friction surface on the keycap. However, as described earlier, the reduced friction surface and fabrication techniques can be used on other types of electronic devices or components of an electronic device. As one example, the reduced friction surface can be included on at least a portion of an enclosure or on a button. The term “electronic device” as used herein is meant to be generic and encompass an electronic device and components in, connected to (wirelessly or wired), or operable with an electronic device.


Referring now to FIG. 3, there is shown one example of a key mechanism of a keyboard. The key mechanism 300 includes a keycap 302 that is attached to a base plate 304 via a scissor mechanism 306. The base plate 304 can be a printed circuit board, a flexible circuit, or a structural member of a keyboard. The scissor mechanism 306 includes two pieces that interlock in a “scissor”-like manner, as shown in FIG. 3. The scissor mechanism 306 is typically formed out of a rigid material, such as a plastic, metal, or composite material, and provides mechanical stability to the key mechanism 300.


A deformable structure 308 along with the scissor mechanism 306 support the keycap 302. In the illustrated embodiment, the deformable structure 308 is an elastomeric dome, such as a rubber dome. When the keycap 302 is pressed down by a user in the direction of arrow 310, the keycap contacts the deformable structure 308, which in turn causes the deformable structure 308 to compress or collapse. When the deformable structure 308 compresses or collapses, the deformable structure 308 contacts a membrane 312, which activates a switch and provides an input to the electronic device.


Other embodiments can construct a key mechanism differently. By way of example only, a key mechanism can include a stacked metal and elastomeric dome, with a keycap positioned over the stacked elastomeric and metal dome. When a user depresses the keycap, the elastomeric dome depresses the metal dome to activate the switch. One example of this type of key mechanism is disclosed in U.S. Patent Application Publication 2011/0203912.


At least one surface of the keycap can include a reduced friction surface. For example, the reduced friction surface can be disposed over the top surface of the keycap. Alternatively, the reduced friction surface can be formed over the top and at least a portion of the four sides of the keycap. FIG. 4 illustrates one example of a keycap that includes a reduced friction surface. For clarity, the reduced friction surface 400 is shown detached from the keycap 402. The reduced friction surface 400 is disposed over and affixed to the top surface 404 of the keycap 402 and some or all of the sides 406 of the keycap 402. The amount of reduced friction surface 400 used over the sides 406 can depend on how much of the sides is visible to a user. In some embodiments, the reduced friction surface 400 completely covers all four sides of the keycap.



FIGS. 5-7 depict cross-section views of example reduced friction surface materials taken along line 5,6,7-5,6,7 in FIG. 4. In the embodiment shown in FIG. 5, the reduced friction surface includes a glass beaded film 500. As used herein, the phrases “glass beads” and “glass beaded” are meant to be generic and encompass glass and glass-like beads. The glass beaded film 500 can be a clear or light transmissive film. The glass beaded film 500 includes glass beads 502 disposed in a resin or polymer layer 504. In one embodiment, the polymer is polyurethane or PU composite and the glass beads are borosilicate beads. The glass beads 502 provide a surface that a user touches with one or more fingers when touching or interacting with a key mechanism of a keyboard.


The polymer layer 504 can be formed over a thermoplastic elastomer (TPE) layer 506. Any suitable thermoplastic elastomer material can be used, including, but not limited to a polycarbonate (PC), a PET or PETG, and an amorphous PA. An adhesive layer 508 can be disposed under the elastomeric layer 506. The adhesive layer 508 can be used to attach or affix the glass beaded film 500 to a surface.


The glass beads 502 in the glass beaded film 500 can be embedded or bonded at any depth within the polymer layer 504. For example, the glass beads 502 in FIG. 5 have a low bead sink, meaning the glass beads 502 are positioned at a lower depth in the polymer layer 504 so that a greater portion of the glass beads 502 protrude from the polymer layer 504. In the illustrated embodiment, the glass beads 502 project out a distance dl from the surface of the polymer layer 504. When positioned at a lower depth within the polymer layer 504, the glass beads 502 can provide a greater tactile feedback to a user when a user touches or moves a finger, fingers, palm, or hand on or over the surface of the glass beaded film 500.


In one embodiment, the glass beads 502 are contiguous within the polymer layer 504 and the exposed top surfaces of the glass beads 502 line up to form a common plane on the surface of the glass beaded film 500. The surfaces of the glass beads can feel to a user like a single continuous surface. When the top surfaces of glass beads form a common plane, the glass beaded film 500 can have a low coefficient of friction that allows a user's finger to move or slide more easily on or over the surface. A user may not feel the individual glass beads when the glass beads 502 are arranged in this manner. In other embodiments, the glass beads 502 are not contiguous and can be in a spaced-apart configuration. Additionally or alternatively, the glass beads 502 may not line up to form a common plane but instead can produce a varied surface on the glass beaded film 500.


In FIG. 6, the glass beads 502 have a high bead sink, meaning the glass beads 502 are positioned at a greater depth in the polymer layer 504 so that a smaller portion of the glass beads 502 protrude from the polymer layer 504. As shown in FIG. 6, the glass beads 502 project out a distance d2 from the surface of the polymer layer 504. The distance d2 is less than the distance d1 in FIG. 5. At a higher bead sink, the glass beads 502 may provide a user with a reduced tactile experience compared to a lower bead sink.


Glass beads having varying diameters are included in the glass beaded film 700 shown in FIG. 7. One size of glass beads 702 having a larger diameter is intermingled with another size of glass beads 704 having a smaller diameter than the diameter of glass beads 702. The different sized glass beads 702, 704 can allow the density of the glass beads in the polymer layer 504 to be greater than when only one size of glass beads are used. The larger and smaller sized glass beads can alternate with respect to each other in the polymer layer 504 in some embodiments. In other embodiments, the glass beads 702, 704 can have any given distribution within the polymer layer 504. Additionally, both sizes of glass beads can be embedded or bonded at appropriate depths so that the top surfaces of the glass beads line up to form a common plane. Alternatively, one size of glass beads can be fixed at a first depth within the polymer layer 504 while the other size of glass beads are fixed at a different second depth, or the glass beads can be fixed at varying depths within the polymer layer 504.


The glass beads can have any suitable diameter or diameters. By way of example only, the glass beads can have a diameter of 5 microns to 100 microns. In some embodiments, the glass beads have a diameter of 50 microns.


Referring now to FIGS. 8-10, there is shown one example method for forming a reduced friction surface over one or more surfaces of a keycap. The illustrated method is a thermoforming method. Although only one keycap and mold is shown, those skilled in the art will recognize that the method can be performed on multiple keycaps at one time.


The keycap 800 is disposed in a lower mold 802 with the glass beaded film 804 overlying the lower mold (FIG. 8). Heat is then applied to the glass beaded film 804 to produce a pliable and conformal glass beaded film. In one embodiment, the glass beaded film is heated to a temperature that is over the film's forming temperature. Next, the upper mold 900 is joined to the lower mold 802 to seal the mold 902 and the air extracted from the upper and lower areas 904, 906 of the mold 902 (FIG. 9). For example, in the illustrated embodiment, the glass beaded film 804 defines upper and lower areas 904, 906 of the mold 902, and the pressure in both the upper and lower areas 904, 906 is zero.


The pressure in the upper area 904 is then increased compared to the lower area 906, which causes the glass beaded film 804 to attach and conform to the keycap 800 (FIG. 10). In the illustrated embodiment, the pressure in the upper area 904 is 60 to 70 kg and the pressure in the lower area 906 is 0 kg. Other embodiments can set the different pressure levels to different values.


The keycap 800 can now be removed from the mold. The glass beaded film 804 attaches to the top surface and all four sides of the keycap in some embodiments, which reduces or eliminates the need to position the transition between the reduced friction surface and the surface of the keycap in a blind or non-visible area.



FIG. 11 is a flowchart of another method for producing a reduced friction surface over at least one surface of a keycap. Initially, one or more glyphs can be formed on a surface of the glass beaded film (block 1100). A glyph can be any character, number, symbol, phrase, or combinations of such elements. By way of example only, a glyph can include a letter or number of a standard QWERTY keyboard. In one embodiment, the glyph is formed on a backside surface of the glass beaded film with a suitable dye or ink. Other embodiments can form the glyph or glyphs on the keycap or on a different surface or location of the glass beaded film.



FIG. 12 depicts block 1100 in FIG. 11. As described earlier, the backside surface 1202 of the glass beaded film 1200 is the side that contacts the surface of the keycap. Example glyphs 1204, 1206, 1208 for three keycaps are shown in the figure. The glyphs can be positioned at any location on the surface. In the illustrated embodiment, the example glyphs 1204, 1206, 1208 are arranged to appear on the top surface of each keycap.


Next, as shown in block 1102, the glass beaded film is heated to produce a pliable and conformal glass beaded film. As described earlier, the glass beaded film can be heated to a temperature that is greater than the forming temperature. The glass beaded film 1202 can be placed on a fixture 1300 that includes openings 1302 (see FIG. 13). The keycaps 1400 are then pressed or pushed downward (as indicated by arrow 1402) into the pliable and conformal glass beaded film 1202, as shown in block 1104 and in FIGS. 14 and 15.


The keycaps 1400 can be mounted on a key fixture 1404 for proper orientation. The pliable and conformal glass beaded film 1200 wraps around and attaches to the top surface of the keycaps all four sides in the illustrated embodiment. The glass beaded film and the keycap form an integrated or consolidated component. FIG. 16 illustrates the keycaps within the glass beaded film 1200. The bottom surface of the keycap may or may not be covered by the glass beaded film.


The key fixture 1404 is then removed and the keycaps 1500 are singulated or separated into individual keycaps (block 1106). For example, a cutting tool can be used to separate the keycaps 1500 along lines 1600 in FIG. 16. FIG. 17 illustrates an individual keycap 1500 after separation. The glyph 1204 (FIG. 12) is visible on the top surface of the keycap 1500.


Referring now to FIG. 18, there is shown a flowchart of another method for producing a reduced friction surface on one or more surfaces of a keycap. Initially, the glass beaded film is formed into a mold having the shape of the surface or surfaces of the keycap the film will overlie (block 1800). FIG. 19 depicts one example of a keycap mold 1900 formed by the glass beaded film. The glass beaded film molds can be produced, for example, using a method similar to the process shown in FIG. 14. In this process, the keycaps are removed from the glass beaded film after the keycaps have been pressed into the glass beaded film.


One or more glyphs can be formed on at least one surface of the glass beaded film mold at block 1802. By way of example only, the one or more glyphs can be provided on the inside surface 1902 (FIG. 19) of the mold. In other embodiments, the glyph or glyphs can be formed on at least one surface of the keycap.


Next, as shown in block 1804, the keycaps can be singulated or separated into individual keycaps. Insert molding is then performed at block 1806 to inject the keycap material into the glass beaded film mold. FIG. 20 illustrates the glass beaded film mold 1900 filled with keycap material 2000.



FIGS. 21-22 illustrate another method for producing a reduced friction surface on one or more surfaces of a keycap. As shown in FIG. 21, a glass beaded film 2100 can include glass beads 2102 embedded or bonded in a polymer layer 2104. An adhesive layer 2106 can be formed over the exposed surfaces of the glass beads 2102. The glass beaded film 2100 can be heated and then pressed down onto at least one surface of a keycap 2108 and the polymer layer 2104 removed (FIG. 22). For example, the polymer layer 2104 can be pulled off when the glass beaded film 2100 is still pliable and conformal, leaving the glass beads 2102 affixed to one or more surfaces of the keycap 2108. Alternatively, the polymer layer 2104 can be peeled off once the glass beads 2102 are affixed to the keycap 2108, regardless of the pliability of the glass beaded film 2100.



FIGS. 23-24 illustrate example keycap shapes. The keycaps can have any given shape, geometry, and/or dimensions. For example, in a QWERTY keyboard the alphanumeric keys typically have one shape and dimensions while other keys, such as the shift and spacebar keys, have different dimensions. The function keys in a computer keyboard can have yet another size and dimensions.


Additionally, one or more surfaces of keycaps can be formed to have varied shapes. For example, the keycap 2300 in FIG. 23 includes a concave top surface 2302 while the keycap 2400 in FIG. 24 has a convex top surface 2204. Other examples of surface features can include beveled, chamfer, rounded, and recessed. One or more techniques described herein can be used to overlay the keycaps with the glass beaded film, despite the shapes, geometries, and/or dimensions of the keycaps.


In some embodiments, the glass beaded film can be a light transmissive film, such as a high transmissive film. The exposed surfaces of the glass beads can be coated with any suitable material to repel contaminants such as dirt, oil, and water. The refractive index of the glass beads can match or substantially match the refractive index of the polymer layer to produce a transparent look. The number of glass beads, the material of the glass beads, and/or the bead sink can be determined based on the surface type, the desired look and feel, the intended use of the electronic device or component in the electronic device, and/or the desired durability of the reduced friction surface.


Various embodiments have been described in detail with particular reference to certain features thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the disclosure. For example, block 1100 or block 1802 are optional and can be omitted in other embodiments. Additionally, as described earlier, the reduced friction surface can be disposed over one or more surfaces of other electronic devices. By way of example only, the surface can be all or some of the enclosure of a tablet computing device, a laptop, and a smart telephone, a button, or another type of input device.


Even though specific embodiments have been described herein, it should be noted that the application is not limited to these embodiments. In particular, any features described with respect to one embodiment may also be used in other embodiments, where compatible. Likewise, the features of the different embodiments may be exchanged, where compatible.

Claims
  • 1. A keycap for a key mechanism, comprising: a keycap body defining a top surface and at least four side surfaces;a substrate attached to the top surface and the at least four side surfaces of the keycap body; anda plurality of glass beads at least partially embedded in the substrate and distributed over at least the top surface of the keycap body, the plurality of glass beads having a same index of refraction as the substrate.
  • 2. The keycap of claim 1, further comprising a glyph positioned on the top surface of the keycap body and visible through at least a portion of the plurality of glass beads and the substrate.
  • 3. The keycap of claim 1, wherein the plurality of glass beads comprises: a first group of beads having a first average diameter; anda second group of beads having a second average diameter less than the first.
  • 4. The keycap of claim 3, wherein the first group of beads is embedded further into the substrate than the second group of beads.
  • 5. The keycap of claim 1, wherein: the plurality of glass beads are formed of borosilicate glass; andthe substrate is a polymer film.
  • 6. The keycap of claim 1, wherein the keycap body and the substrate define a cut edge resulting from separation of the keycap body from an additional keycap body after application of the substrate to the keycap body and the additional keycap body.
  • 7. The keycap of claim 1, wherein the plurality of glass beads comprises: a first group of glass beads of a first diameter and having a highest point at a distance above the substrate; anda second group of glass beads, of a second diameter different from the first diameter, having a highest point at a same distance above the substrate as the first group of glass beads.
  • 8. A keycap for a key mechanism, comprising: a keycap body defining a top surface; anda glass beaded film disposed on at least the top surface of the keycap body and comprising: a substrate;a first plurality of glass beads of a first diameter embedded in the substrate and having a highest point at a distance above the substrate; anda second plurality of glass beads, of a second diameter different from the first diameter, embedded in the substrate and having a highest point at a same distance above the substrate as the first plurality of glass beads.
  • 9. The keycap of claim 8, wherein: the keycap body further defines four side surfaces; andthe glass beaded film is further disposed on the four side surfaces of the keycap body.
  • 10. The keycap of claim 8, wherein each glass bead of the first and second pluralities of glass beads contacts an adjacent glass bead.
  • 11. The keycap of claim 8, further comprising a glyph formed on the substrate and visible through the substrate and the first and second pluralities of glass beads.
  • 12. The keycap of claim 8, wherein the top surface of the keycap body is concave.
  • 13. The keycap of claim 8, wherein the glass beaded film comprises substantially a same amount of glass beads of the first diameter and glass beads of the second diameter.
  • 14. The keycap of claim 8, wherein the substrate and the first and second pluralities of glass beads have substantially a same index of refraction.
  • 15. An electronic device, comprising: an enclosure;a first glass beaded film comprising first glass beads and disposed over at least a portion of the enclosure; andan input device at least partially within the enclosure and comprising: an actuation member defining a top surface and a side surface; anda second glass beaded film disposed over at least the top surface of the actuation member, the second glass beaded film comprising second glass beads having a same size as the first glass beads.
  • 16. The electronic device of claim 15, wherein: the side surface is a first side surface;the actuation member further defines three additional side surfaces; andthe second glass beaded film is disposed over the first side surface and the three additional side surfaces of the actuation member.
  • 17. The electronic device of claim 15, wherein: the electronic device is a laptop computer; andthe actuation member is a keycap of the laptop computer.
  • 18. The electronic device of claim 15, wherein: the electronic device is a handheld electronic device; andthe actuation member is a button.
  • 19. The electronic device of claim 15, wherein: the first glass beaded film comprises: a first substrate comprising polyurethane; anda first plurality of borosilicate glass beads at least partially embedded in the first substrate; andthe second glass beaded film comprises: a second substrate comprising polyurethane; anda second plurality of borosilicate glass beads at least partially embedded in the second substrate.
  • 20. The electronic device of claim 15, wherein: the second glass beaded film comprises a substrate; andthe second glass beads and the substrate have a same index of refraction.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation patent application of U.S. patent application Ser. No. 14/326,858, filed Jul. 9, 2014, and titled “Electronic Device with a Reduced Friction Surface,” which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/844,833, filed Jul. 10, 2013 and titled “Electronic Device with a Reduced Friction Surface,” the disclosures of which are hereby incorporated by reference herein their entireties.

US Referenced Citations (328)
Number Name Date Kind
3657492 Arndt et al. Apr 1972 A
3917917 Murata Nov 1975 A
3978297 Lynn et al. Aug 1976 A
4095066 Harris Jun 1978 A
4319099 Asher Mar 1982 A
4349712 Michalski Sep 1982 A
4484042 Matsui Nov 1984 A
4596905 Fowler Jun 1986 A
4598181 Selby Jul 1986 A
4670084 Durand et al. Jun 1987 A
4755645 Naoki et al. Jul 1988 A
4937408 Hattori et al. Jun 1990 A
4987275 Miller et al. Jan 1991 A
5021638 Nopper et al. Jun 1991 A
5092459 Uljanic et al. Mar 1992 A
5136131 Komaki Aug 1992 A
5278372 Takagi et al. Jan 1994 A
5280146 Inagaki et al. Jan 1994 A
5340955 Calvillo et al. Aug 1994 A
5382762 Mochizuki Jan 1995 A
5397867 Demeo Mar 1995 A
5408060 Muurinen Apr 1995 A
5421659 Liang Jun 1995 A
5422447 Spence Jun 1995 A
5457297 Chen Oct 1995 A
5477430 LaRose et al. Dec 1995 A
5481074 English Jan 1996 A
5504283 Kako et al. Apr 1996 A
5512719 Okada et al. Apr 1996 A
5625532 Sellers Apr 1997 A
5804780 Bartha Sep 1998 A
5828015 Coulon Oct 1998 A
5847337 Chen Dec 1998 A
5874700 Hochgesang Feb 1999 A
5875013 Takahara Feb 1999 A
5876106 Kordecki et al. Mar 1999 A
5878872 Tsai Mar 1999 A
5881866 Miyajima et al. Mar 1999 A
5898147 Domzaiski et al. Apr 1999 A
5924555 Sadamori et al. Jul 1999 A
5935691 Tsai Aug 1999 A
5960942 Thornton Oct 1999 A
5986227 Hon Nov 1999 A
6020565 Pan Feb 2000 A
6068416 Kumamoto et al. May 2000 A
6215420 Harrison et al. Apr 2001 B1
6257782 Maruyama et al. Jul 2001 B1
6259046 Iwama et al. Jul 2001 B1
6377685 Krishnan Apr 2002 B1
6388219 Hsu et al. May 2002 B2
6423918 King et al. Jul 2002 B1
6482032 Szu et al. Nov 2002 B1
6530283 Okada et al. Mar 2003 B2
6538801 Jacobson et al. Mar 2003 B2
6542355 Huang Apr 2003 B1
6552287 Janniere Apr 2003 B2
6556112 Van Zeeland et al. Apr 2003 B1
6559399 Hsu et al. May 2003 B2
6560612 Yamada et al. May 2003 B1
6572289 Lo et al. Jun 2003 B2
6573463 Ono Jun 2003 B2
6585435 Fang Jul 2003 B2
6624369 Ito et al. Sep 2003 B2
6706986 Hsu Mar 2004 B2
6738050 Comiskey May 2004 B2
6750414 Sullivan Jun 2004 B2
6759614 Yoneyama Jul 2004 B2
6762381 Kunthady et al. Jul 2004 B2
6765503 Chan et al. Jul 2004 B1
6788450 Kawai et al. Sep 2004 B2
6797906 Ohashi Sep 2004 B2
6850227 Takahashi et al. Feb 2005 B2
6860660 Hochgesang et al. Mar 2005 B2
6911608 Levy Jun 2005 B2
6926418 Ostergård et al. Aug 2005 B2
6940030 Takeda et al. Sep 2005 B2
6977352 Oosawa Dec 2005 B2
6979792 Lai Dec 2005 B1
6987466 Welch et al. Jan 2006 B1
6987503 Inoue Jan 2006 B2
7012206 Oikawa Mar 2006 B2
7030330 Suda Apr 2006 B2
7038832 Kanbe May 2006 B2
7126499 Lin et al. Oct 2006 B2
7129930 Cathey et al. Oct 2006 B1
7134205 Bruennel Nov 2006 B2
7146701 Mahoney et al. Dec 2006 B2
7151236 Ducruet et al. Dec 2006 B2
7151237 Mahoney et al. Dec 2006 B2
7154059 Chou Dec 2006 B2
7161084 Sandbach Jan 2007 B2
7166813 Soma Jan 2007 B2
7172303 Shipman et al. Feb 2007 B2
7189932 Kim Mar 2007 B2
7256766 Albert et al. Aug 2007 B2
7283119 Kishi Oct 2007 B2
7301113 Nishimura et al. Nov 2007 B2
7312790 Sato et al. Dec 2007 B2
7378607 Koyano et al. May 2008 B2
7385806 Liao Jun 2008 B2
7391555 Albert et al. Jun 2008 B2
7414213 Hwang Aug 2008 B2
7429707 Yanai et al. Sep 2008 B2
7432460 Clegg Oct 2008 B2
7510342 Lane et al. Mar 2009 B2
7531764 Lev et al. May 2009 B1
7541554 Hou Jun 2009 B2
7589292 Jung et al. Sep 2009 B2
7639187 Caballero et al. Dec 2009 B2
7639571 Ishii et al. Dec 2009 B2
7651231 Chou et al. Jan 2010 B2
7679010 Wingett Mar 2010 B2
7724415 Yamaguchi May 2010 B2
7781690 Ishii Aug 2010 B2
7813774 Perez-Noguera Oct 2010 B2
7842895 Lee Nov 2010 B2
7847204 Tsai Dec 2010 B2
7851819 Shi Dec 2010 B2
7866866 Wahlstrom Jan 2011 B2
7893376 Chen Feb 2011 B2
7923653 Ohsumi Apr 2011 B2
7947915 Lee et al. May 2011 B2
7999748 Ligtenberg et al. Aug 2011 B2
8063325 Sung et al. Nov 2011 B2
8077096 Chiang et al. Dec 2011 B2
8080744 Yeh et al. Dec 2011 B2
8098228 Shimodaira et al. Jan 2012 B2
8109650 Chang et al. Feb 2012 B2
8119945 Lin Feb 2012 B2
8124903 Tatehata et al. Feb 2012 B2
8134094 Tsao et al. Mar 2012 B2
8143982 Lauder et al. Mar 2012 B1
8156172 Muehl et al. Apr 2012 B2
8178808 Strittmatter et al. May 2012 B2
8184021 Chou May 2012 B2
8212160 Tsao Jul 2012 B2
8212162 Zhou Jul 2012 B2
8218301 Lee Jul 2012 B2
8232958 Tolbert Jul 2012 B2
8246228 Ko et al. Aug 2012 B2
8253048 Ozias et al. Aug 2012 B2
8253052 Chen Sep 2012 B2
8263887 Chen et al. Sep 2012 B2
8289280 Travis Oct 2012 B2
8299382 Takemae et al. Oct 2012 B2
8317384 Chung et al. Nov 2012 B2
8319298 Hsu Nov 2012 B2
8325141 Marsden Dec 2012 B2
8330725 Mahowald et al. Dec 2012 B2
8354629 Lin Jan 2013 B2
8378857 Pance Feb 2013 B2
8383972 Liu Feb 2013 B2
8384566 Bocirnea Feb 2013 B2
8404990 Lutgring et al. Mar 2013 B2
8451146 Mahowald et al. Mar 2013 B2
8431849 Chen Apr 2013 B2
8436265 Koike et al. May 2013 B2
8462514 Myers et al. Jun 2013 B2
8500348 Dumont et al. Aug 2013 B2
8502094 Chen Aug 2013 B2
8542194 Akens et al. Sep 2013 B2
8548528 Kim et al. Oct 2013 B2
8564544 Jobs et al. Oct 2013 B2
8569639 Strittmatter Oct 2013 B2
8575632 Kuramoto et al. Nov 2013 B2
8581127 Jhuang et al. Nov 2013 B2
8592699 Kessler et al. Nov 2013 B2
8592702 Tsai Nov 2013 B2
8592703 Johnson et al. Nov 2013 B2
8604370 Chao Dec 2013 B2
8629362 Knighton et al. Jan 2014 B1
8642904 Chiba et al. Feb 2014 B2
8651720 Sherman et al. Feb 2014 B2
8659882 Liang et al. Feb 2014 B2
8731618 Jarvis et al. May 2014 B2
8748767 Ozias et al. Jun 2014 B2
8759705 Funakoshi et al. Jun 2014 B2
8760405 Nam Jun 2014 B2
8786548 Oh et al. Jul 2014 B2
8791378 Lan Jul 2014 B2
8835784 Hirota Sep 2014 B2
8847090 Ozaki Sep 2014 B2
8847711 Yang et al. Sep 2014 B2
8853580 Chen Oct 2014 B2
8854312 Meierling Oct 2014 B2
8870477 Merminod et al. Oct 2014 B2
8884174 Chou et al. Nov 2014 B2
8921473 Hyman Dec 2014 B1
8922476 Stewart et al. Dec 2014 B2
8943427 Heo et al. Jan 2015 B2
8976117 Krahenbuhl et al. Mar 2015 B2
8994641 Stewart et al. Mar 2015 B2
9007297 Stewart et al. Apr 2015 B2
9012795 Niu et al. Apr 2015 B2
9024214 Niu et al. May 2015 B2
9029723 Pegg May 2015 B2
9063627 Yairi et al. Jun 2015 B2
9064642 Welch et al. Jun 2015 B2
9086733 Pance Jul 2015 B2
9087663 Los Jul 2015 B2
9093229 Leong et al. Jul 2015 B2
9213416 Chen Dec 2015 B2
9223352 Smith et al. Dec 2015 B2
9234486 Das et al. Jan 2016 B2
9235236 Nam Jan 2016 B2
9274654 Slobodin et al. Mar 2016 B2
9275810 Pance et al. Mar 2016 B2
9300033 Han et al. Mar 2016 B2
9305496 Kimura Apr 2016 B2
9348425 Chi et al. May 2016 B2
9405369 Modarres et al. Aug 2016 B2
9412533 Hendren et al. Aug 2016 B2
9443672 Martisauskas Sep 2016 B2
9448628 Tan et al. Sep 2016 B2
9448631 Winter et al. Sep 2016 B2
9449772 Leong et al. Sep 2016 B2
9471185 Guard Oct 2016 B2
9477382 Hicks et al. Oct 2016 B2
9502193 Niu et al. Nov 2016 B2
9612674 Degner et al. Apr 2017 B2
9640347 Kwan et al. May 2017 B2
9704665 Brock et al. Jul 2017 B2
9704670 Leong et al. Jul 2017 B2
9710069 Leong et al. Jul 2017 B2
9715978 Hendren Jul 2017 B2
9734965 Martinez et al. Aug 2017 B2
9761389 Leong et al. Sep 2017 B2
9793066 Brock et al. Oct 2017 B1
9910211 Kloeppel et al. Mar 2018 B2
10001812 Andre et al. Jun 2018 B2
20020079211 Katayama et al. Jun 2002 A1
20020093436 Lien Jul 2002 A1
20020113770 Jacobson et al. Aug 2002 A1
20020149835 Kanbe Oct 2002 A1
20030169232 Ito Sep 2003 A1
20040004559 Rast Jan 2004 A1
20040225965 Garside et al. Nov 2004 A1
20050035950 Daniels Feb 2005 A1
20050253801 Kobayashi Nov 2005 A1
20060011458 Purcocks Jan 2006 A1
20060020469 Rast Jan 2006 A1
20060120790 Chang Jun 2006 A1
20060181511 Woolley Aug 2006 A1
20060243987 Lai Nov 2006 A1
20070200823 Bytheway et al. Aug 2007 A1
20070285393 Ishakov Dec 2007 A1
20080131184 Brown et al. Jun 2008 A1
20080136782 Mundt et al. Jun 2008 A1
20080251370 Aoki Oct 2008 A1
20090046053 Shigehiro et al. Feb 2009 A1
20090103964 Takagi et al. Apr 2009 A1
20090128496 Huang May 2009 A1
20090262085 Wassingbo et al. Oct 2009 A1
20090267892 Faubert Oct 2009 A1
20100045705 Vertegaal et al. Feb 2010 A1
20100066568 Lee Mar 2010 A1
20100109921 Annerfors May 2010 A1
20100156796 Kim et al. Jun 2010 A1
20100253630 Homma et al. Oct 2010 A1
20110032127 Roush Feb 2011 A1
20110056817 Wu Mar 2011 A1
20110056836 Tatebe et al. Mar 2011 A1
20110205179 Braun Aug 2011 A1
20110261031 Muto Oct 2011 A1
20110267272 Meyer et al. Nov 2011 A1
20110284355 Yang Nov 2011 A1
20120012446 Hwa Jan 2012 A1
20120032972 Hwang Feb 2012 A1
20120090973 Liu Apr 2012 A1
20120098751 Liu Apr 2012 A1
20120154289 Mahowald Jun 2012 A1
20120286701 Yang et al. Nov 2012 A1
20120298496 Zhang Nov 2012 A1
20120313856 Hsieh Dec 2012 A1
20130043115 Yang et al. Feb 2013 A1
20130093500 Bruwer Apr 2013 A1
20130093733 Yoshida Apr 2013 A1
20130100030 Los et al. Apr 2013 A1
20130120265 Horii et al. May 2013 A1
20130161170 Fan et al. Jun 2013 A1
20130215079 Johnson et al. Aug 2013 A1
20130270090 Lee Oct 2013 A1
20140015777 Park et al. Jan 2014 A1
20140027259 Kawana et al. Jan 2014 A1
20140071654 Chien Mar 2014 A1
20140082490 Jung et al. Mar 2014 A1
20140090967 Inagaki Apr 2014 A1
20140098042 Kuo et al. Apr 2014 A1
20140151211 Zhang Jun 2014 A1
20140184496 Gribetz et al. Jul 2014 A1
20140191973 Zellers et al. Jul 2014 A1
20140218851 Klein et al. Aug 2014 A1
20140252881 Dinh et al. Sep 2014 A1
20140291133 Fu et al. Oct 2014 A1
20140375141 Nakajima Dec 2014 A1
20150010723 Krishnan Jan 2015 A1
20150016038 Niu et al. Jan 2015 A1
20150083561 Han et al. Mar 2015 A1
20150270073 Yarak, III et al. Sep 2015 A1
20150277559 Vescovi et al. Oct 2015 A1
20150287553 Welch et al. Oct 2015 A1
20150309538 Zhang Oct 2015 A1
20150370339 Ligtenberg et al. Dec 2015 A1
20150378391 Huitema et al. Dec 2015 A1
20160049266 Stringer et al. Feb 2016 A1
20160093452 Zercoe et al. Mar 2016 A1
20160096195 Barnes Apr 2016 A1
20160172129 Zercoe et al. Jun 2016 A1
20160189890 Leong et al. Jun 2016 A1
20160189891 Zercoe et al. Jun 2016 A1
20160329166 Hou et al. Nov 2016 A1
20160336124 Leong et al. Nov 2016 A1
20160336127 Leong et al. Nov 2016 A1
20160336128 Leong et al. Nov 2016 A1
20160343523 Hendren et al. Nov 2016 A1
20160351360 Knopf et al. Dec 2016 A1
20160365204 Cao et al. Dec 2016 A1
20160378234 Ligtenberg et al. Dec 2016 A1
20160379775 Leong et al. Dec 2016 A1
20170004939 Kwan et al. Jan 2017 A1
20170011869 Knopf et al. Jan 2017 A1
20170090104 Cao et al. Mar 2017 A1
20170090106 Cao et al. Mar 2017 A1
20170301487 Leong et al. Oct 2017 A1
20170315624 Leong et al. Nov 2017 A1
20170315628 Yao Nov 2017 A1
20180040441 Wu et al. Feb 2018 A1
20180074694 Lehmann et al. Mar 2018 A1
Foreign Referenced Citations (188)
Number Date Country
2155620 Feb 1994 CN
2394309 Aug 2000 CN
1533128 Sep 2004 CN
1542497 Nov 2004 CN
2672832 Jan 2005 CN
1624842 Jun 2005 CN
1812030 Aug 2006 CN
1838036 Sep 2006 CN
1855332 Nov 2006 CN
101051569 Oct 2007 CN
200961844 Oct 2007 CN
200986871 Dec 2007 CN
101146137 Mar 2008 CN
201054315 Apr 2008 CN
201084602 Jul 2008 CN
201123174 Sep 2008 CN
201149829 Nov 2008 CN
101315841 Dec 2008 CN
201210457 Mar 2009 CN
101438228 May 2009 CN
101465226 Jun 2009 CN
101494130 Jul 2009 CN
101502082 Aug 2009 CN
201298481 Aug 2009 CN
101546667 Sep 2009 CN
101572195 Nov 2009 CN
101800281 Aug 2010 CN
101807482 Aug 2010 CN
101868773 Oct 2010 CN
201655616 Nov 2010 CN
102110542 Jun 2011 CN
102119430 Jul 2011 CN
201904256 Jul 2011 CN
102163084 Aug 2011 CN
201927524 Aug 2011 CN
201945951 Aug 2011 CN
201945952 Aug 2011 CN
201956238 Aug 2011 CN
102197452 Sep 2011 CN
202008941 Oct 2011 CN
202040690 Nov 2011 CN
102280292 Dec 2011 CN
102338348 Feb 2012 CN
102375550 Mar 2012 CN
202205161 Apr 2012 CN
102496509 Jun 2012 CN
10269527 Aug 2012 CN
102622089 Aug 2012 CN
102629526 Aug 2012 CN
202372927 Aug 2012 CN
102679239 Sep 2012 CN
102683072 Sep 2012 CN
202434387 Sep 2012 CN
202523007 Nov 2012 CN
102832068 Dec 2012 CN
102955573 Mar 2013 CN
102956386 Mar 2013 CN
102969183 Mar 2013 CN
103000417 Mar 2013 CN
103165327 Jun 2013 CN
103180979 Jun 2013 CN
203012648 Jun 2013 CN
203135988 Aug 2013 CN
103377841 Oct 2013 CN
103489986 Jan 2014 CN
203414880 Jan 2014 CN
103681056 Mar 2014 CN
103699181 Apr 2014 CN
203520312 Apr 2014 CN
203588895 May 2014 CN
103839715 Jun 2014 CN
103839720 Jun 2014 CN
103839722 Jun 2014 CN
203630729 Jun 2014 CN
103903891 Jul 2014 CN
103956290 Jul 2014 CN
203733685 Jul 2014 CN
104021968 Sep 2014 CN
204102769 Jan 2015 CN
204117915 Jan 2015 CN
104517769 Apr 2015 CN
204632641 Sep 2015 CN
105097341 Nov 2015 CN
2530176 Jan 1977 DE
3002772 Jul 1981 DE
29704100 Apr 1997 DE
202008001970 Aug 2008 DE
0441993 Aug 1991 EP
1835272 Sep 2007 EP
1928008 Jun 2008 EP
2202606 Jun 2010 EP
2426688 Mar 2012 EP
2439760 Apr 2012 EP
2463798 Jun 2012 EP
2664979 Nov 2013 EP
2147420 Mar 1973 FR
2911000 Jul 2008 FR
2950193 Mar 2011 FR
1361459 Jul 1974 GB
S50115562 Sep 1975 JP
59171414 Sep 1984 JP
S60055477 Mar 1985 JP
S61172422 Oct 1986 JP
S62072429 Apr 1987 JP
62237618 Oct 1987 JP
S63182024 Nov 1988 JP
H0422024 Apr 1992 JP
H0520963 Jan 1993 JP
H0524512 Aug 1993 JP
05225850 Sep 1993 JP
H05342944 Dec 1993 JP
H09204148 Aug 1997 JP
H10312726 Nov 1998 JP
H11194882 Jul 1999 JP
2000010709 Jan 2000 JP
2000057871 Feb 2000 JP
2000339097 Dec 2000 JP
2001100889 Apr 2001 JP
2003114751 Sep 2001 JP
2002260478 Sep 2002 JP
2002298689 Oct 2002 JP
2003522998 Jul 2003 JP
2005108041 Apr 2005 JP
2006164929 Jun 2006 JP
2006185906 Jul 2006 JP
2006521664 Sep 2006 JP
2006269439 Oct 2006 JP
2006277013 Oct 2006 JP
2006344609 Dec 2006 JP
2007115633 May 2007 JP
2007514247 May 2007 JP
2007156983 Jun 2007 JP
2008021428 Jan 2008 JP
2008041431 Feb 2008 JP
2008100129 May 2008 JP
2008191850 Aug 2008 JP
2008533559 Aug 2008 JP
2008293922 Dec 2008 JP
2009099503 May 2009 JP
2009181894 Aug 2009 JP
2010061956 Mar 2010 JP
2010244088 Oct 2010 JP
2010244302 Oct 2010 JP
2011018484 Jan 2011 JP
2011065126 Mar 2011 JP
2011150804 Aug 2011 JP
2011165630 Aug 2011 JP
2011524066 Aug 2011 JP
2011187297 Sep 2011 JP
2012022473 Feb 2012 JP
2012043705 Mar 2012 JP
2012063630 Mar 2012 JP
2012098873 May 2012 JP
2012134064 Jul 2012 JP
2012186067 Sep 2012 JP
2012230256 Nov 2012 JP
2014017179 Jan 2014 JP
2014026807 Feb 2014 JP
2014216190 Nov 2014 JP
2014220039 Nov 2014 JP
2016053778 Apr 2016 JP
1019990007394 Jan 1999 KR
1020020001668 Jan 2002 KR
100454203 Oct 2004 KR
1020060083032 Jul 2006 KR
1020080064116 Jul 2008 KR
1020080066164 Jul 2008 KR
2020110006385 Jun 2011 KR
1020120062797 Jun 2012 KR
1020130040131 Apr 2013 KR
20150024201 Mar 2015 KR
200703396 Jan 2007 TW
M334397 Jun 2008 TW
201108284 Mar 2011 TW
201108286 Mar 2011 TW
M407429 Jul 2011 TW
201246251 Nov 2012 TW
201403646 Jan 2014 TW
WO9744946 Nov 1997 WO
WO2005057320 Jun 2005 WO
WO2006022313 Mar 2006 WO
WO2007049253 May 2007 WO
WO2008045833 Apr 2008 WO
WO2009005026 Jan 2009 WO
WO2012011282 Jan 2012 WO
WO2012027978 Mar 2012 WO
WO2013096478 Jun 2013 WO
WO2014175446 Oct 2014 WO
Non-Patent Literature Citations (1)
Entry
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions,” http://www.wearable.technology/our-technologies, 3 pages, at least as early as Jan. 6, 2016.
Related Publications (1)
Number Date Country
20180029339 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
61844833 Jul 2013 US
Continuations (1)
Number Date Country
Parent 14326858 Jul 2014 US
Child 15725125 US