The present invention relates to electronic devices, and more particularly to an electronic device with one or more reduced friction surfaces.
Users interact with electronic devices, such as laptops, tablet computing devices, and smart telephones in a variety of ways. A user can view images on a display or input information using a touchscreen, keyboard, or buttons. The surfaces of the components in an electronic device, as well as the surface of the electronic device itself, can enhance the user experience by providing a tactile reduced friction surface that has a desired look or feel. However, mass manufacturing of the components that include the reduced friction surface can be difficult due to the presence of a cosmetic surface and/or display elements, such as symbols or glyphs. For example, machining around the full perimeter of a component may not be feasible when performed at mass manufacturing quantities. Additionally, positioning the transition between the surface of the component and the edges of the reduced friction surface in a non-visible location can be challenging depending on the design of the component. The transition can produce a noticeable and undesirable color change. The transition may also be detected by a user when the user touches or slides a finger over the surface.
In one aspect, a surface of an electronic device includes a reduced friction surface comprising a glass beaded film. The reduced friction surface is disposed over at least one surface of the electronic device or of a component. The reduced friction surface includes glass beads embedded or bonded in a polymer layer. A thermoplastic elastomer layer can be under the polymer layer. A portion of the glass beads protrude from the surface of the polymer layer and provide a hardness to the glass beaded film. The polymer layer provides a flexibility or elasticity to the glass beaded film.
In another aspect, a method for producing the reduced friction surface over one or more surfaces of an electronic device includes providing a conformal glass beaded film and pressing the at least one surface into the conformal glass beaded film to dispose the glass beaded film over the at least one surface. In one embodiment, the glass beaded film is heated to a temperature that is greater than its forming temperature, which causes the glass beaded film to be pliable and conformal when formed over the at least one surface.
In another aspect, a method for producing the reduced friction surface on one or more surfaces of an electronic device includes providing a mold of the at least one surface, where the mold is made of the glass beaded film, and filling the mold with a material that becomes the at least one surface. For example, an insert molding process can be performed to inject the surface material into the glass beaded film mold.
In yet another aspect, a method for producing the reduced friction surface on one or more surfaces of an electronic device includes positioning the electronic device in a lower mold, positioning a glass beaded film over the lower mold, and heating the glass beaded film, the component and the glass beaded film, or the electronic device and the glass beaded film. An upper mold is then positioned over the lower mold and a pressure difference is created between the upper and lower molds to overlay the glass beaded film on the at least one surface of the electronic device.
In another aspect, a method for producing the reduced friction surface on one or more surfaces of an electronic device includes adhering the glass beaded film to the at least one surface and removing the polymer layer. The glass beaded film can be affixed to the at least one surface with an adhesive layer that is disposed over the portions of the glass beads protruding from the polymer layer. The glass beaded film can be heated prior to removing the polymer layer.
And in yet another aspect, a keyboard includes at least one key mechanism having a keycap and a glass beaded film disposed over the top surface of the keycap. The glass beaded film may also be disposed over at least a portion of the sides of the keycap. The glass beaded film includes glass beads disposed in a layer such that a portion of the glass beads protrude from a surface of the layer. The layer can be a polymer layer or an adhesive layer.
Embodiments are better understood with reference to the following drawings. The elements of the drawings are not necessarily to scale relative to each other. Identical reference numerals have been used, where possible, to designate identical features that are common to the figures.
Embodiments described herein can provide a reduced friction surface for one or more surfaces of an electronic device or for one or more components in an electronic device. The surface can include the enclosure of an electronic device, a button, one or more keycaps in a keyboard, and other types of input devices. The reduced friction surface includes a glass beaded film that positions or affixes glass or glass-like beads in a polymer or resin layer. The glass or glass-like beads can protrude from the surface of the polymer layer. The glass or glass-like beads provide a hardness to the reduced friction surface while the polymer layer provides a flexibility or elasticity to the reduced friction surface. The reduced friction surface may have an increased abrasion resistance as compared to other surfaces. Additionally, the reduced friction surface may provide an improved user experienced with the electronic device as the tactile feel of the reduced friction surface may be preferred as compared to other surfaces. Moreover, the reduced friction surface may also provide an improved cosmetic appearance for the electronic device.
In some embodiments, the reduced friction surface is applied to one or more surfaces to avoid the need to position a transition between the reduced friction surface and the surface of the electronic device in a blind or non-visible area. For example, the reduced friction surface overlies a top surface and all four sides of a keycap when the reduced friction surface is applied to one or more keycaps of a keyboard. Various methods are described herein that can be used to dispose the glass beaded film to one or more surfaces of an electronic device.
Referring now to
The display is configured to display a visual output for the electronic device 102. The display 104 can be implemented with any suitable display, including, but not limited to, a liquid crystal display (LCD), an organic light-emitting display (OLED), or organic electro-luminescence (OEL) display.
The keyboard 106 includes multiple keys or key mechanisms that a user can use to interact with an application running on the electronic device 102. Example applications include a game, a word processing application, and a spreadsheet application. The key mechanisms can be configured in any arrangement, such as a QWERTY keyboard, and can include additional key mechanisms that provide control or operational inputs such as home, ESC, ALT, page up, page down, and function keys.
The trackpad 108 can be used to interact with one or more viewable objects on the display 104. For example, the trackpad 108 can be used to move a cursor or to select a file or program (represented by an icon) shown on the display. The trackpad 108 can use any known touch sensing technologies, including capacitive, resistive, ultrasonic, and piezoelectric touch sensing technologies.
In some embodiments, one or more surfaces of some or all of the keys in the keyboard can include a reduced friction surface. Additionally or alternatively, at least a portion of the exterior surface of the enclosure can include a reduced friction surface. The reduced friction surface will be described in more detail in conjunction with
The display 204 can be implemented with any suitable display, including, but not limited to, a multi-touch capacitive sensing touchscreen that uses liquid crystal display (LCD) technology, organic light-emitting display (OLED) technology, or organic electro luminescence (OEL) technology. Touch sensing technologies other than capacitive can be used in other embodiments.
The button 206 can take the form of a home button, which may be a mechanical button, a soft button (e.g., a button that does not physically move but still accepts inputs), an icon or image on a display, and so on. Further, in some embodiments, the button 206 can be integrated as part of a cover glass of the electronic device.
Like the embodiment shown in
A keycap is the component of a key or key mechanism in a keyboard that a user touches or presses when interacting with the keyboard. Example keycaps are used to describe the reduced friction surface and techniques for producing the reduced friction surface on the keycap. However, as described earlier, the reduced friction surface and fabrication techniques can be used on other types of electronic devices or components of an electronic device. As one example, the reduced friction surface can be included on at least a portion of an enclosure or on a button. The term “electronic device” as used herein is meant to be generic and encompass an electronic device and components in, connected to (wirelessly or wired), or operable with an electronic device.
Referring now to
A deformable structure 308 along with the scissor mechanism 306 support the keycap 302. In the illustrated embodiment, the deformable structure 308 is an elastomeric dome, such as a rubber dome. When the keycap 302 is pressed down by a user in the direction of arrow 310, the keycap contacts the deformable structure 308, which in turn causes the deformable structure 308 to compress or collapse. When the deformable structure 308 compresses or collapses, the deformable structure 308 contacts a membrane 312, which activates a switch and provides an input to the electronic device.
Other embodiments can construct a key mechanism differently. By way of example only, a key mechanism can include a stacked metal and elastomeric dome, with a keycap positioned over the stacked elastomeric and metal dome. When a user depresses the keycap, the elastomeric dome depresses the metal dome to activate the switch. One example of this type of key mechanism is disclosed in U.S. Patent Application Publication 2011/0203912.
At least one surface of the keycap can include a reduced friction surface. For example, the reduced friction surface can be disposed over the top surface of the keycap. Alternatively, the reduced friction surface can be formed over the top and at least a portion of the four sides of the keycap.
The polymer layer 504 can be formed over a thermoplastic elastomer (TPE) layer 506. Any suitable thermoplastic elastomer material can be used, including, but not limited to a polycarbonate (PC), a PET or PETG, and an amorphous PA. An adhesive layer 508 can be disposed under the elastomeric layer 506. The adhesive layer 508 can be used to attach or affix the glass beaded film 500 to a surface.
The glass beads 502 in the glass beaded film 500 can be embedded or bonded at any depth within the polymer layer 504. For example, the glass beads 502 in
In one embodiment, the glass beads 502 are contiguous within the polymer layer 504 and the exposed top surfaces of the glass beads 502 line up to form a common plane on the surface of the glass beaded film 500. The surfaces of the glass beads can feel to a user like a single continuous surface. When the top surfaces of glass beads form a common plane, the glass beaded film 500 can have a low coefficient of friction that allows a user's finger to move or slide more easily on or over the surface. A user may not feel the individual glass beads when the glass beads 502 are arranged in this manner. In other embodiments, the glass beads 502 are not contiguous and can be in a spaced-apart configuration. Additionally or alternatively, the glass beads 502 may not line up to form a common plane but instead can produce a varied surface on the glass beaded film 500.
In
Glass beads having varying diameters are included in the glass beaded film 700 shown in
The glass beads can have any suitable diameter or diameters. By way of example only, the glass beads can have a diameter of 5 microns to 100 microns. In some embodiments, the glass beads have a diameter of 50 microns.
Referring now to
The keycap 800 is disposed in a lower mold 802 with the glass beaded film 804 overlying the lower mold (
The pressure in the upper area 904 is then increased compared to the lower area 906, which causes the glass beaded film 804 to attach and conform to the keycap 800 (
The keycap 800 can now be removed from the mold. The glass beaded film 804 attaches to the top surface and all four sides of the keycap in some embodiments, which reduces or eliminates the need to position the transition between the reduced friction surface and the surface of the keycap in a blind or non-visible area.
Next, as shown in block 1102, the glass beaded film is heated to produce a pliable and conformal glass beaded film. As described earlier, the glass beaded film can be heated to a temperature that is greater than the forming temperature. The glass beaded film 1202 can be placed on a fixture 1300 that includes openings 1302 (see
The keycaps 1400 can be mounted on a key fixture 1404 for proper orientation. The pliable and conformal glass beaded film 1200 wraps around and attaches to the top surface of the keycaps all four sides in the illustrated embodiment. The glass beaded film and the keycap form an integrated or consolidated component.
The key fixture 1404 is then removed and the keycaps 1500 are singulated or separated into individual keycaps (block 1106). For example, a cutting tool can be used to separate the keycaps 1500 along lines 1600 in
Referring now to
One or more glyphs can be formed on at least one surface of the glass beaded film mold at block 1802. By way of example only, the one or more glyphs can be provided on the inside surface 1902 (
Next, as shown in block 1804, the keycaps can be singulated or separated into individual keycaps. Insert molding is then performed at block 1806 to inject the keycap material into the glass beaded film mold.
Additionally, one or more surfaces of keycaps can be formed to have varied shapes. For example, the keycap 2300 in
In some embodiments, the glass beaded film can be a light transmissive film, such as a high transmissive film. The exposed surfaces of the glass beads can be coated with any suitable material to repel contaminants such as dirt, oil, and water. The refractive index of the glass beads can match or substantially match the refractive index of the polymer layer to produce a transparent look. The number of glass beads, the material of the glass beads, and/or the bead sink can be determined based on the surface type, the desired look and feel, the intended use of the electronic device or component in the electronic device, and/or the desired durability of the reduced friction surface.
Various embodiments have been described in detail with particular reference to certain features thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the disclosure. For example, block 1100 or block 1802 are optional and can be omitted in other embodiments. Additionally, as described earlier, the reduced friction surface can be disposed over one or more surfaces of other electronic devices. By way of example only, the surface can be all or some of the enclosure of a tablet computing device, a laptop, and a smart telephone, a button, or another type of input device.
Even though specific embodiments have been described herein, it should be noted that the application is not limited to these embodiments. In particular, any features described with respect to one embodiment may also be used in other embodiments, where compatible. Likewise, the features of the different embodiments may be exchanged, where compatible.
This application is a continuation patent application of U.S. patent application Ser. No. 14/326,858, filed Jul. 9, 2014, and titled “Electronic Device with a Reduced Friction Surface,” which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/844,833, filed Jul. 10, 2013 and titled “Electronic Device with a Reduced Friction Surface,” the disclosures of which are hereby incorporated by reference herein their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3657492 | Arndt et al. | Apr 1972 | A |
3917917 | Murata | Nov 1975 | A |
3978297 | Lynn et al. | Aug 1976 | A |
4095066 | Harris | Jun 1978 | A |
4319099 | Asher | Mar 1982 | A |
4349712 | Michalski | Sep 1982 | A |
4484042 | Matsui | Nov 1984 | A |
4596905 | Fowler | Jun 1986 | A |
4598181 | Selby | Jul 1986 | A |
4670084 | Durand et al. | Jun 1987 | A |
4755645 | Naoki et al. | Jul 1988 | A |
4937408 | Hattori et al. | Jun 1990 | A |
4987275 | Miller et al. | Jan 1991 | A |
5021638 | Nopper et al. | Jun 1991 | A |
5092459 | Uljanic et al. | Mar 1992 | A |
5136131 | Komaki | Aug 1992 | A |
5278372 | Takagi et al. | Jan 1994 | A |
5280146 | Inagaki et al. | Jan 1994 | A |
5340955 | Calvillo et al. | Aug 1994 | A |
5382762 | Mochizuki | Jan 1995 | A |
5397867 | Demeo | Mar 1995 | A |
5408060 | Muurinen | Apr 1995 | A |
5421659 | Liang | Jun 1995 | A |
5422447 | Spence | Jun 1995 | A |
5457297 | Chen | Oct 1995 | A |
5477430 | LaRose et al. | Dec 1995 | A |
5481074 | English | Jan 1996 | A |
5504283 | Kako et al. | Apr 1996 | A |
5512719 | Okada et al. | Apr 1996 | A |
5625532 | Sellers | Apr 1997 | A |
5804780 | Bartha | Sep 1998 | A |
5828015 | Coulon | Oct 1998 | A |
5847337 | Chen | Dec 1998 | A |
5874700 | Hochgesang | Feb 1999 | A |
5875013 | Takahara | Feb 1999 | A |
5876106 | Kordecki et al. | Mar 1999 | A |
5878872 | Tsai | Mar 1999 | A |
5881866 | Miyajima et al. | Mar 1999 | A |
5898147 | Domzaiski et al. | Apr 1999 | A |
5924555 | Sadamori et al. | Jul 1999 | A |
5935691 | Tsai | Aug 1999 | A |
5960942 | Thornton | Oct 1999 | A |
5986227 | Hon | Nov 1999 | A |
6020565 | Pan | Feb 2000 | A |
6068416 | Kumamoto et al. | May 2000 | A |
6215420 | Harrison et al. | Apr 2001 | B1 |
6257782 | Maruyama et al. | Jul 2001 | B1 |
6259046 | Iwama et al. | Jul 2001 | B1 |
6377685 | Krishnan | Apr 2002 | B1 |
6388219 | Hsu et al. | May 2002 | B2 |
6423918 | King et al. | Jul 2002 | B1 |
6482032 | Szu et al. | Nov 2002 | B1 |
6530283 | Okada et al. | Mar 2003 | B2 |
6538801 | Jacobson et al. | Mar 2003 | B2 |
6542355 | Huang | Apr 2003 | B1 |
6552287 | Janniere | Apr 2003 | B2 |
6556112 | Van Zeeland et al. | Apr 2003 | B1 |
6559399 | Hsu et al. | May 2003 | B2 |
6560612 | Yamada et al. | May 2003 | B1 |
6572289 | Lo et al. | Jun 2003 | B2 |
6573463 | Ono | Jun 2003 | B2 |
6585435 | Fang | Jul 2003 | B2 |
6624369 | Ito et al. | Sep 2003 | B2 |
6706986 | Hsu | Mar 2004 | B2 |
6738050 | Comiskey | May 2004 | B2 |
6750414 | Sullivan | Jun 2004 | B2 |
6759614 | Yoneyama | Jul 2004 | B2 |
6762381 | Kunthady et al. | Jul 2004 | B2 |
6765503 | Chan et al. | Jul 2004 | B1 |
6788450 | Kawai et al. | Sep 2004 | B2 |
6797906 | Ohashi | Sep 2004 | B2 |
6850227 | Takahashi et al. | Feb 2005 | B2 |
6860660 | Hochgesang et al. | Mar 2005 | B2 |
6911608 | Levy | Jun 2005 | B2 |
6926418 | Ostergård et al. | Aug 2005 | B2 |
6940030 | Takeda et al. | Sep 2005 | B2 |
6977352 | Oosawa | Dec 2005 | B2 |
6979792 | Lai | Dec 2005 | B1 |
6987466 | Welch et al. | Jan 2006 | B1 |
6987503 | Inoue | Jan 2006 | B2 |
7012206 | Oikawa | Mar 2006 | B2 |
7030330 | Suda | Apr 2006 | B2 |
7038832 | Kanbe | May 2006 | B2 |
7126499 | Lin et al. | Oct 2006 | B2 |
7129930 | Cathey et al. | Oct 2006 | B1 |
7134205 | Bruennel | Nov 2006 | B2 |
7146701 | Mahoney et al. | Dec 2006 | B2 |
7151236 | Ducruet et al. | Dec 2006 | B2 |
7151237 | Mahoney et al. | Dec 2006 | B2 |
7154059 | Chou | Dec 2006 | B2 |
7161084 | Sandbach | Jan 2007 | B2 |
7166813 | Soma | Jan 2007 | B2 |
7172303 | Shipman et al. | Feb 2007 | B2 |
7189932 | Kim | Mar 2007 | B2 |
7256766 | Albert et al. | Aug 2007 | B2 |
7283119 | Kishi | Oct 2007 | B2 |
7301113 | Nishimura et al. | Nov 2007 | B2 |
7312790 | Sato et al. | Dec 2007 | B2 |
7378607 | Koyano et al. | May 2008 | B2 |
7385806 | Liao | Jun 2008 | B2 |
7391555 | Albert et al. | Jun 2008 | B2 |
7414213 | Hwang | Aug 2008 | B2 |
7429707 | Yanai et al. | Sep 2008 | B2 |
7432460 | Clegg | Oct 2008 | B2 |
7510342 | Lane et al. | Mar 2009 | B2 |
7531764 | Lev et al. | May 2009 | B1 |
7541554 | Hou | Jun 2009 | B2 |
7589292 | Jung et al. | Sep 2009 | B2 |
7639187 | Caballero et al. | Dec 2009 | B2 |
7639571 | Ishii et al. | Dec 2009 | B2 |
7651231 | Chou et al. | Jan 2010 | B2 |
7679010 | Wingett | Mar 2010 | B2 |
7724415 | Yamaguchi | May 2010 | B2 |
7781690 | Ishii | Aug 2010 | B2 |
7813774 | Perez-Noguera | Oct 2010 | B2 |
7842895 | Lee | Nov 2010 | B2 |
7847204 | Tsai | Dec 2010 | B2 |
7851819 | Shi | Dec 2010 | B2 |
7866866 | Wahlstrom | Jan 2011 | B2 |
7893376 | Chen | Feb 2011 | B2 |
7923653 | Ohsumi | Apr 2011 | B2 |
7947915 | Lee et al. | May 2011 | B2 |
7999748 | Ligtenberg et al. | Aug 2011 | B2 |
8063325 | Sung et al. | Nov 2011 | B2 |
8077096 | Chiang et al. | Dec 2011 | B2 |
8080744 | Yeh et al. | Dec 2011 | B2 |
8098228 | Shimodaira et al. | Jan 2012 | B2 |
8109650 | Chang et al. | Feb 2012 | B2 |
8119945 | Lin | Feb 2012 | B2 |
8124903 | Tatehata et al. | Feb 2012 | B2 |
8134094 | Tsao et al. | Mar 2012 | B2 |
8143982 | Lauder et al. | Mar 2012 | B1 |
8156172 | Muehl et al. | Apr 2012 | B2 |
8178808 | Strittmatter et al. | May 2012 | B2 |
8184021 | Chou | May 2012 | B2 |
8212160 | Tsao | Jul 2012 | B2 |
8212162 | Zhou | Jul 2012 | B2 |
8218301 | Lee | Jul 2012 | B2 |
8232958 | Tolbert | Jul 2012 | B2 |
8246228 | Ko et al. | Aug 2012 | B2 |
8253048 | Ozias et al. | Aug 2012 | B2 |
8253052 | Chen | Sep 2012 | B2 |
8263887 | Chen et al. | Sep 2012 | B2 |
8289280 | Travis | Oct 2012 | B2 |
8299382 | Takemae et al. | Oct 2012 | B2 |
8317384 | Chung et al. | Nov 2012 | B2 |
8319298 | Hsu | Nov 2012 | B2 |
8325141 | Marsden | Dec 2012 | B2 |
8330725 | Mahowald et al. | Dec 2012 | B2 |
8354629 | Lin | Jan 2013 | B2 |
8378857 | Pance | Feb 2013 | B2 |
8383972 | Liu | Feb 2013 | B2 |
8384566 | Bocirnea | Feb 2013 | B2 |
8404990 | Lutgring et al. | Mar 2013 | B2 |
8451146 | Mahowald et al. | Mar 2013 | B2 |
8431849 | Chen | Apr 2013 | B2 |
8436265 | Koike et al. | May 2013 | B2 |
8462514 | Myers et al. | Jun 2013 | B2 |
8500348 | Dumont et al. | Aug 2013 | B2 |
8502094 | Chen | Aug 2013 | B2 |
8542194 | Akens et al. | Sep 2013 | B2 |
8548528 | Kim et al. | Oct 2013 | B2 |
8564544 | Jobs et al. | Oct 2013 | B2 |
8569639 | Strittmatter | Oct 2013 | B2 |
8575632 | Kuramoto et al. | Nov 2013 | B2 |
8581127 | Jhuang et al. | Nov 2013 | B2 |
8592699 | Kessler et al. | Nov 2013 | B2 |
8592702 | Tsai | Nov 2013 | B2 |
8592703 | Johnson et al. | Nov 2013 | B2 |
8604370 | Chao | Dec 2013 | B2 |
8629362 | Knighton et al. | Jan 2014 | B1 |
8642904 | Chiba et al. | Feb 2014 | B2 |
8651720 | Sherman et al. | Feb 2014 | B2 |
8659882 | Liang et al. | Feb 2014 | B2 |
8731618 | Jarvis et al. | May 2014 | B2 |
8748767 | Ozias et al. | Jun 2014 | B2 |
8759705 | Funakoshi et al. | Jun 2014 | B2 |
8760405 | Nam | Jun 2014 | B2 |
8786548 | Oh et al. | Jul 2014 | B2 |
8791378 | Lan | Jul 2014 | B2 |
8835784 | Hirota | Sep 2014 | B2 |
8847090 | Ozaki | Sep 2014 | B2 |
8847711 | Yang et al. | Sep 2014 | B2 |
8853580 | Chen | Oct 2014 | B2 |
8854312 | Meierling | Oct 2014 | B2 |
8870477 | Merminod et al. | Oct 2014 | B2 |
8884174 | Chou et al. | Nov 2014 | B2 |
8921473 | Hyman | Dec 2014 | B1 |
8922476 | Stewart et al. | Dec 2014 | B2 |
8943427 | Heo et al. | Jan 2015 | B2 |
8976117 | Krahenbuhl et al. | Mar 2015 | B2 |
8994641 | Stewart et al. | Mar 2015 | B2 |
9007297 | Stewart et al. | Apr 2015 | B2 |
9012795 | Niu et al. | Apr 2015 | B2 |
9024214 | Niu et al. | May 2015 | B2 |
9029723 | Pegg | May 2015 | B2 |
9063627 | Yairi et al. | Jun 2015 | B2 |
9064642 | Welch et al. | Jun 2015 | B2 |
9086733 | Pance | Jul 2015 | B2 |
9087663 | Los | Jul 2015 | B2 |
9093229 | Leong et al. | Jul 2015 | B2 |
9213416 | Chen | Dec 2015 | B2 |
9223352 | Smith et al. | Dec 2015 | B2 |
9234486 | Das et al. | Jan 2016 | B2 |
9235236 | Nam | Jan 2016 | B2 |
9274654 | Slobodin et al. | Mar 2016 | B2 |
9275810 | Pance et al. | Mar 2016 | B2 |
9300033 | Han et al. | Mar 2016 | B2 |
9305496 | Kimura | Apr 2016 | B2 |
9348425 | Chi et al. | May 2016 | B2 |
9405369 | Modarres et al. | Aug 2016 | B2 |
9412533 | Hendren et al. | Aug 2016 | B2 |
9443672 | Martisauskas | Sep 2016 | B2 |
9448628 | Tan et al. | Sep 2016 | B2 |
9448631 | Winter et al. | Sep 2016 | B2 |
9449772 | Leong et al. | Sep 2016 | B2 |
9471185 | Guard | Oct 2016 | B2 |
9477382 | Hicks et al. | Oct 2016 | B2 |
9502193 | Niu et al. | Nov 2016 | B2 |
9612674 | Degner et al. | Apr 2017 | B2 |
9640347 | Kwan et al. | May 2017 | B2 |
9704665 | Brock et al. | Jul 2017 | B2 |
9704670 | Leong et al. | Jul 2017 | B2 |
9710069 | Leong et al. | Jul 2017 | B2 |
9715978 | Hendren | Jul 2017 | B2 |
9734965 | Martinez et al. | Aug 2017 | B2 |
9761389 | Leong et al. | Sep 2017 | B2 |
9793066 | Brock et al. | Oct 2017 | B1 |
9910211 | Kloeppel et al. | Mar 2018 | B2 |
10001812 | Andre et al. | Jun 2018 | B2 |
20020079211 | Katayama et al. | Jun 2002 | A1 |
20020093436 | Lien | Jul 2002 | A1 |
20020113770 | Jacobson et al. | Aug 2002 | A1 |
20020149835 | Kanbe | Oct 2002 | A1 |
20030169232 | Ito | Sep 2003 | A1 |
20040004559 | Rast | Jan 2004 | A1 |
20040225965 | Garside et al. | Nov 2004 | A1 |
20050035950 | Daniels | Feb 2005 | A1 |
20050253801 | Kobayashi | Nov 2005 | A1 |
20060011458 | Purcocks | Jan 2006 | A1 |
20060020469 | Rast | Jan 2006 | A1 |
20060120790 | Chang | Jun 2006 | A1 |
20060181511 | Woolley | Aug 2006 | A1 |
20060243987 | Lai | Nov 2006 | A1 |
20070200823 | Bytheway et al. | Aug 2007 | A1 |
20070285393 | Ishakov | Dec 2007 | A1 |
20080131184 | Brown et al. | Jun 2008 | A1 |
20080136782 | Mundt et al. | Jun 2008 | A1 |
20080251370 | Aoki | Oct 2008 | A1 |
20090046053 | Shigehiro et al. | Feb 2009 | A1 |
20090103964 | Takagi et al. | Apr 2009 | A1 |
20090128496 | Huang | May 2009 | A1 |
20090262085 | Wassingbo et al. | Oct 2009 | A1 |
20090267892 | Faubert | Oct 2009 | A1 |
20100045705 | Vertegaal et al. | Feb 2010 | A1 |
20100066568 | Lee | Mar 2010 | A1 |
20100109921 | Annerfors | May 2010 | A1 |
20100156796 | Kim et al. | Jun 2010 | A1 |
20100253630 | Homma et al. | Oct 2010 | A1 |
20110032127 | Roush | Feb 2011 | A1 |
20110056817 | Wu | Mar 2011 | A1 |
20110056836 | Tatebe et al. | Mar 2011 | A1 |
20110205179 | Braun | Aug 2011 | A1 |
20110261031 | Muto | Oct 2011 | A1 |
20110267272 | Meyer et al. | Nov 2011 | A1 |
20110284355 | Yang | Nov 2011 | A1 |
20120012446 | Hwa | Jan 2012 | A1 |
20120032972 | Hwang | Feb 2012 | A1 |
20120090973 | Liu | Apr 2012 | A1 |
20120098751 | Liu | Apr 2012 | A1 |
20120154289 | Mahowald | Jun 2012 | A1 |
20120286701 | Yang et al. | Nov 2012 | A1 |
20120298496 | Zhang | Nov 2012 | A1 |
20120313856 | Hsieh | Dec 2012 | A1 |
20130043115 | Yang et al. | Feb 2013 | A1 |
20130093500 | Bruwer | Apr 2013 | A1 |
20130093733 | Yoshida | Apr 2013 | A1 |
20130100030 | Los et al. | Apr 2013 | A1 |
20130120265 | Horii et al. | May 2013 | A1 |
20130161170 | Fan et al. | Jun 2013 | A1 |
20130215079 | Johnson et al. | Aug 2013 | A1 |
20130270090 | Lee | Oct 2013 | A1 |
20140015777 | Park et al. | Jan 2014 | A1 |
20140027259 | Kawana et al. | Jan 2014 | A1 |
20140071654 | Chien | Mar 2014 | A1 |
20140082490 | Jung et al. | Mar 2014 | A1 |
20140090967 | Inagaki | Apr 2014 | A1 |
20140098042 | Kuo et al. | Apr 2014 | A1 |
20140151211 | Zhang | Jun 2014 | A1 |
20140184496 | Gribetz et al. | Jul 2014 | A1 |
20140191973 | Zellers et al. | Jul 2014 | A1 |
20140218851 | Klein et al. | Aug 2014 | A1 |
20140252881 | Dinh et al. | Sep 2014 | A1 |
20140291133 | Fu et al. | Oct 2014 | A1 |
20140375141 | Nakajima | Dec 2014 | A1 |
20150010723 | Krishnan | Jan 2015 | A1 |
20150016038 | Niu et al. | Jan 2015 | A1 |
20150083561 | Han et al. | Mar 2015 | A1 |
20150270073 | Yarak, III et al. | Sep 2015 | A1 |
20150277559 | Vescovi et al. | Oct 2015 | A1 |
20150287553 | Welch et al. | Oct 2015 | A1 |
20150309538 | Zhang | Oct 2015 | A1 |
20150370339 | Ligtenberg et al. | Dec 2015 | A1 |
20150378391 | Huitema et al. | Dec 2015 | A1 |
20160049266 | Stringer et al. | Feb 2016 | A1 |
20160093452 | Zercoe et al. | Mar 2016 | A1 |
20160096195 | Barnes | Apr 2016 | A1 |
20160172129 | Zercoe et al. | Jun 2016 | A1 |
20160189890 | Leong et al. | Jun 2016 | A1 |
20160189891 | Zercoe et al. | Jun 2016 | A1 |
20160329166 | Hou et al. | Nov 2016 | A1 |
20160336124 | Leong et al. | Nov 2016 | A1 |
20160336127 | Leong et al. | Nov 2016 | A1 |
20160336128 | Leong et al. | Nov 2016 | A1 |
20160343523 | Hendren et al. | Nov 2016 | A1 |
20160351360 | Knopf et al. | Dec 2016 | A1 |
20160365204 | Cao et al. | Dec 2016 | A1 |
20160378234 | Ligtenberg et al. | Dec 2016 | A1 |
20160379775 | Leong et al. | Dec 2016 | A1 |
20170004939 | Kwan et al. | Jan 2017 | A1 |
20170011869 | Knopf et al. | Jan 2017 | A1 |
20170090104 | Cao et al. | Mar 2017 | A1 |
20170090106 | Cao et al. | Mar 2017 | A1 |
20170301487 | Leong et al. | Oct 2017 | A1 |
20170315624 | Leong et al. | Nov 2017 | A1 |
20170315628 | Yao | Nov 2017 | A1 |
20180040441 | Wu et al. | Feb 2018 | A1 |
20180074694 | Lehmann et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2155620 | Feb 1994 | CN |
2394309 | Aug 2000 | CN |
1533128 | Sep 2004 | CN |
1542497 | Nov 2004 | CN |
2672832 | Jan 2005 | CN |
1624842 | Jun 2005 | CN |
1812030 | Aug 2006 | CN |
1838036 | Sep 2006 | CN |
1855332 | Nov 2006 | CN |
101051569 | Oct 2007 | CN |
200961844 | Oct 2007 | CN |
200986871 | Dec 2007 | CN |
101146137 | Mar 2008 | CN |
201054315 | Apr 2008 | CN |
201084602 | Jul 2008 | CN |
201123174 | Sep 2008 | CN |
201149829 | Nov 2008 | CN |
101315841 | Dec 2008 | CN |
201210457 | Mar 2009 | CN |
101438228 | May 2009 | CN |
101465226 | Jun 2009 | CN |
101494130 | Jul 2009 | CN |
101502082 | Aug 2009 | CN |
201298481 | Aug 2009 | CN |
101546667 | Sep 2009 | CN |
101572195 | Nov 2009 | CN |
101800281 | Aug 2010 | CN |
101807482 | Aug 2010 | CN |
101868773 | Oct 2010 | CN |
201655616 | Nov 2010 | CN |
102110542 | Jun 2011 | CN |
102119430 | Jul 2011 | CN |
201904256 | Jul 2011 | CN |
102163084 | Aug 2011 | CN |
201927524 | Aug 2011 | CN |
201945951 | Aug 2011 | CN |
201945952 | Aug 2011 | CN |
201956238 | Aug 2011 | CN |
102197452 | Sep 2011 | CN |
202008941 | Oct 2011 | CN |
202040690 | Nov 2011 | CN |
102280292 | Dec 2011 | CN |
102338348 | Feb 2012 | CN |
102375550 | Mar 2012 | CN |
202205161 | Apr 2012 | CN |
102496509 | Jun 2012 | CN |
10269527 | Aug 2012 | CN |
102622089 | Aug 2012 | CN |
102629526 | Aug 2012 | CN |
202372927 | Aug 2012 | CN |
102679239 | Sep 2012 | CN |
102683072 | Sep 2012 | CN |
202434387 | Sep 2012 | CN |
202523007 | Nov 2012 | CN |
102832068 | Dec 2012 | CN |
102955573 | Mar 2013 | CN |
102956386 | Mar 2013 | CN |
102969183 | Mar 2013 | CN |
103000417 | Mar 2013 | CN |
103165327 | Jun 2013 | CN |
103180979 | Jun 2013 | CN |
203012648 | Jun 2013 | CN |
203135988 | Aug 2013 | CN |
103377841 | Oct 2013 | CN |
103489986 | Jan 2014 | CN |
203414880 | Jan 2014 | CN |
103681056 | Mar 2014 | CN |
103699181 | Apr 2014 | CN |
203520312 | Apr 2014 | CN |
203588895 | May 2014 | CN |
103839715 | Jun 2014 | CN |
103839720 | Jun 2014 | CN |
103839722 | Jun 2014 | CN |
203630729 | Jun 2014 | CN |
103903891 | Jul 2014 | CN |
103956290 | Jul 2014 | CN |
203733685 | Jul 2014 | CN |
104021968 | Sep 2014 | CN |
204102769 | Jan 2015 | CN |
204117915 | Jan 2015 | CN |
104517769 | Apr 2015 | CN |
204632641 | Sep 2015 | CN |
105097341 | Nov 2015 | CN |
2530176 | Jan 1977 | DE |
3002772 | Jul 1981 | DE |
29704100 | Apr 1997 | DE |
202008001970 | Aug 2008 | DE |
0441993 | Aug 1991 | EP |
1835272 | Sep 2007 | EP |
1928008 | Jun 2008 | EP |
2202606 | Jun 2010 | EP |
2426688 | Mar 2012 | EP |
2439760 | Apr 2012 | EP |
2463798 | Jun 2012 | EP |
2664979 | Nov 2013 | EP |
2147420 | Mar 1973 | FR |
2911000 | Jul 2008 | FR |
2950193 | Mar 2011 | FR |
1361459 | Jul 1974 | GB |
S50115562 | Sep 1975 | JP |
59171414 | Sep 1984 | JP |
S60055477 | Mar 1985 | JP |
S61172422 | Oct 1986 | JP |
S62072429 | Apr 1987 | JP |
62237618 | Oct 1987 | JP |
S63182024 | Nov 1988 | JP |
H0422024 | Apr 1992 | JP |
H0520963 | Jan 1993 | JP |
H0524512 | Aug 1993 | JP |
05225850 | Sep 1993 | JP |
H05342944 | Dec 1993 | JP |
H09204148 | Aug 1997 | JP |
H10312726 | Nov 1998 | JP |
H11194882 | Jul 1999 | JP |
2000010709 | Jan 2000 | JP |
2000057871 | Feb 2000 | JP |
2000339097 | Dec 2000 | JP |
2001100889 | Apr 2001 | JP |
2003114751 | Sep 2001 | JP |
2002260478 | Sep 2002 | JP |
2002298689 | Oct 2002 | JP |
2003522998 | Jul 2003 | JP |
2005108041 | Apr 2005 | JP |
2006164929 | Jun 2006 | JP |
2006185906 | Jul 2006 | JP |
2006521664 | Sep 2006 | JP |
2006269439 | Oct 2006 | JP |
2006277013 | Oct 2006 | JP |
2006344609 | Dec 2006 | JP |
2007115633 | May 2007 | JP |
2007514247 | May 2007 | JP |
2007156983 | Jun 2007 | JP |
2008021428 | Jan 2008 | JP |
2008041431 | Feb 2008 | JP |
2008100129 | May 2008 | JP |
2008191850 | Aug 2008 | JP |
2008533559 | Aug 2008 | JP |
2008293922 | Dec 2008 | JP |
2009099503 | May 2009 | JP |
2009181894 | Aug 2009 | JP |
2010061956 | Mar 2010 | JP |
2010244088 | Oct 2010 | JP |
2010244302 | Oct 2010 | JP |
2011018484 | Jan 2011 | JP |
2011065126 | Mar 2011 | JP |
2011150804 | Aug 2011 | JP |
2011165630 | Aug 2011 | JP |
2011524066 | Aug 2011 | JP |
2011187297 | Sep 2011 | JP |
2012022473 | Feb 2012 | JP |
2012043705 | Mar 2012 | JP |
2012063630 | Mar 2012 | JP |
2012098873 | May 2012 | JP |
2012134064 | Jul 2012 | JP |
2012186067 | Sep 2012 | JP |
2012230256 | Nov 2012 | JP |
2014017179 | Jan 2014 | JP |
2014026807 | Feb 2014 | JP |
2014216190 | Nov 2014 | JP |
2014220039 | Nov 2014 | JP |
2016053778 | Apr 2016 | JP |
1019990007394 | Jan 1999 | KR |
1020020001668 | Jan 2002 | KR |
100454203 | Oct 2004 | KR |
1020060083032 | Jul 2006 | KR |
1020080064116 | Jul 2008 | KR |
1020080066164 | Jul 2008 | KR |
2020110006385 | Jun 2011 | KR |
1020120062797 | Jun 2012 | KR |
1020130040131 | Apr 2013 | KR |
20150024201 | Mar 2015 | KR |
200703396 | Jan 2007 | TW |
M334397 | Jun 2008 | TW |
201108284 | Mar 2011 | TW |
201108286 | Mar 2011 | TW |
M407429 | Jul 2011 | TW |
201246251 | Nov 2012 | TW |
201403646 | Jan 2014 | TW |
WO9744946 | Nov 1997 | WO |
WO2005057320 | Jun 2005 | WO |
WO2006022313 | Mar 2006 | WO |
WO2007049253 | May 2007 | WO |
WO2008045833 | Apr 2008 | WO |
WO2009005026 | Jan 2009 | WO |
WO2012011282 | Jan 2012 | WO |
WO2012027978 | Mar 2012 | WO |
WO2013096478 | Jun 2013 | WO |
WO2014175446 | Oct 2014 | WO |
Entry |
---|
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions,” http://www.wearable.technology/our-technologies, 3 pages, at least as early as Jan. 6, 2016. |
Number | Date | Country | |
---|---|---|---|
20180029339 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
61844833 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14326858 | Jul 2014 | US |
Child | 15725125 | US |