This application claims the benefit under 35 U.S.C. 120 to co-pending U.S. Patent Application Ser. No. 61/540,755 filed on Sep. 29, 2011, entitled, THERMOMETER WITH CAMERA AND VIDEO DISPLAY, which is incorporated herein by reference in its entirety for all purposes.
Aspects of the present invention generally relate to thermometers, and more particularly to an electronic thermometer having a camera and a video display.
Medical thermometers are typically employed to measure a subject's body temperature to facilitate the prevention, diagnosis, and treatment of diseases, body ailments, etc., for humans and other animals. An accurate reading of a subject's body temperature is required for effective use and should be taken from the internal or core temperature of a subject's body. Several thermometer devices are known for measuring a subject's body temperature, such as, for example, electronic thermometers, including tympanic thermometers.
Many tympanic thermometers have a sensing probe that is inserted into a subject's orifice (e.g., ear) for measuring the subject's body temperature. The sensing probe includes an electromagnetic radiation sensor, such as a thermopile for sensing infrared emission from the tympanic membrane, or eardrum. During use, the thermopile is generally located inside the ear canal. The thermopile may utilize a waveguide of radiant heat to transfer heat energy from the tympanic membrane to the sensor. Conventionally, the probe is inserted “blindly” into the ear canal, whereby the user cannot visualize the anatomy of the inner ear, cannot determine the depth at which the probe is inserted in the ear, and cannot determine if the sensing probe is accurately sensing the infrared emitting from the tympanic membrane.
In a first aspect, a thermometer for measuring a temperature of a subject generally comprises a probe adapted to be inserted into an orifice of the subject. An electromagnetic radiation sensor at the probe senses electromagnetic radiation within the orifice of the subject. The electromagnetic radiation sensor is configured to generate data indicative of both the temperature of the subject and one or more anatomical images of the subject. The thermometer includes a visual display. A controller, including a processor, is in communication with the electromagnetic radiation sensor and the visual display and is configured to: receive the generated data from the electromagnetic radiation sensor; compute the temperature of the subject based on the received generated data; generate a temperature image on the display indicative of the computed temperature of the subject; compute one or more anatomical images of the subject based on the received generated data; and generate the one or more computed anatomical images of the subject on the display.
In another aspect, a tympanic thermometer for measuring a temperature of a subject generally comprises a handle sized and shaped to be held by a user, a visual display on handle, and a probe extending outward from the handle and adapted to be inserted into an ear canal of the subject. An infrared radiation temperature sensor in the probe senses infrared radiation emitting from a tympanic membrane of the subject when the probe is inserted in the ear canal of the subject. The infrared radiation temperature sensor is configured to generate temperature data indicative of the temperature of the subject. A visible light image sensor at the probe senses visible light radiation reflecting from ear canal when the probe is inserted in the ear canal of the subject. The visible light image sensor is configured to generate anatomical image data indicative of the anatomy of the subject. A controller, including a processor, is in communication with the infrared radiation temperature sensor, the visible light sensor, and the visual display. The controller is configured to: receive the generated temperature data from the infrared radiation temperature sensor; compute the temperature of the subject based on the received temperature data; generate a temperature image on the display indicative of the computed temperature of the subject; receive the generated anatomical image data from the visible light image sensor; and generate one or more anatomical images of the subject on the display based on the received image data.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Other features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
The exemplary embodiments of an electronic thermometer and methods of use disclosed are discussed in terms of medical thermometers for measuring body temperature and, more particularly, in terms of a tympanic thermometer that includes a temperature sensor for measuring body temperature when the thermometer is inserted into an ear of a subject. But the disclosed elements can be used with other types of electronic thermometers without departing from the scope of the present invention.
In the discussion that follows, the term “proximal” will refer to the portion of a structure that is closer to a practitioner, while the term “distal” will refer to the portion that is farther from the practitioner.
Aspects of the present invention relate to an electronic thermometer and, more particularly, to an electronic tympanic thermometer including a probe for insertion into an ear canal (broadly, an orifice) of the subject, a temperature sensor in the probe, and a camera (broadly, an image sensor) adjacent a distal end of the probe. The camera detects or senses one or more types of electromagnetic radiation (e.g., visible light, infrared radiation, etc.) from within the ear and converts the sensed radiation to image data that is indicative of one or more anatomical images of the inside of the subject's ear. In one embodiment, the electronic thermometer includes an image display for displaying the image(s) generated from the anatomical image data. Moreover, a temperature image indicating a temperature computed by the thermometer may be displayed on the display, such as superimposed over the image(s) of the inside of the subject's ear.
In one embodiment, the image sensor comprises an infrared (IR) image sensor for generating image data relating to the sensed IR radiation emitting from the inside of the patient's ear (e.g., IR radiation emitting from the patient's tympanic membrane). In another embodiment, the image sensor comprises a visible light image sensor for generating image data relating to the sensed visible light from inside the patient's ear. In yet another embodiment, the electronic thermometer includes both an IR image sensor and a visible light image sensor, and a switch for selecting between two modes of operation: one mode for displaying an IR image (e.g., a thermal image) and another mode for displaying a visible image.
Reference will now be made in detail to exemplary embodiments of the present disclosure, which are illustrated in the accompanying Figures. Turning now to the Figures and initially to
The tympanic thermometer 20 is releasably mounted in a holder 40 for storage in contemplation for use. The tympanic thermometer 20 and holder 40 may be fabricated from semi-rigid, rigid plastic and/or metal materials suitable for temperature measurement and related use. It is envisioned that the holder 40 may include the electronics necessary to facilitate powering the tympanic thermometer 20, including, for example, battery charging capability, etc. The thermometer 20 is operable in a sleep mode wherein the thermometer 20 conserves energy and is not capable of performing a temperature measurement and an awake mode wherein the thermometer is operating at full power and is capable of performing a temperature measurement in certain conditions as will be described in greater detail below.
Referring to
A probe cover 32 may be disposed over the heat sensing probe 22. The probe cover 32 has a distal end 54 that is substantially enclosed by a film 56. The film is substantially transparent to infrared radiation and configured to facilitate sensing of infrared emissions by heat sensing probe 22. The film 56 is advantageously impervious to ear wax, moisture, and bacteria to prevent disease propagation. One skilled in the art, however, will realize that other materials and fabrication methods suitable for assembly and manufacture are also within the scope of the present invention. The probe cover 32 may be shaped, for example, frustoconically, or shaped in a tapered manner as to allow for easier insertion into the ear of the subject and attachment and detachment from the heat sensing probe 22. The probe cover 32, which is disposable, may be fabricated from materials suitable for measuring body temperature via the tympanic membrane with a tympanic thermometer measuring apparatus. These materials may include, for example, plastic materials, such as, for example, polypropylene, polyethylene, etc., depending on the particular temperature measurement application and/or preference of a practitioner.
Referring to
Referring still to
In the illustrated embodiment of
The temperature sensor 122 detects or senses a temperature parameter of the subject (e.g., IR radiation emitted from the tympanic membrane) and generates temperature data based on the detected or sensed temperature parameter. The reference temperature sensor 124 detects or senses a temperature parameter of the can 102 and generates reference temperature data based on the detected or sensed reference temperature parameter. The image sensor 130 detects or senses radiation from within the subject's orifice (e.g., ear) and generates image data based on the detected or sensed radiation. Each of the sensors 122, 124, and 130 communicates with a control circuit or controller 132 of the thermometer 20. That is, the controller 132 receives the temperature data from the temperature sensor 122, the reference temperature data from the reference temperature sensor 124, and the image data from the image sensor 130. The controller 132, which includes a processor, is configured (i.e., programmed) to determine or compute a body temperature of the subject based on the received temperature data from the temperature sensor and the reference temperature data from reference temperature sensor.
As shown in
Referring again to
In one example, the reference temperature data generated by the reference temperature sensor 124 is used (e.g., analyzed) by the controller 132 to adjust (e.g., calibrate and/or compensate) the temperature data generated by the temperature sensor 122 in order to compute the temperature of the subject. In the illustrated embodiment, the reference temperature sensor 124 is adapted to detect the temperature of the base 126 of the sensor can 102. The reference temperature sensor 124 may be a thermistor or other temperature-sensing sensor.
In another embodiment, the image sensor 130 comprises a visible light image sensor for sensing radiation L in the visible light spectrum that is reflected (i.e., emitted) by the anatomy (e.g., inner ear) of the subject. The visible light image sensor 130 generates visible light data, and the controller 132 computes a visible anatomical image based on the visible light data and generates the image(s) (e.g., a video), of the anatomy of the subject 170 on the display 30. In one example, the display 30 comprises a video display that displays, for example, a live continuous stream of video generated by the controller 132 based on the visible light data received from the image sensor 130. In the embodiment including the visible image sensor 130, the visible image(s) 170 generated on the display 30 may inform the practitioner whether ear wax or another foreign object is present on the distal tip of the thermometer probe 22, provide visual cues to aid in controlling the insertion depth of the thermometer probe, and/or aid in determining whether the ear needs to be cleaned before a measurement is taken. Additionally, the visible images (e.g., video) may be used to train users so that they are able to develop an efficient and accurate technique for using a tympanic thermometer.
In one example, the controller 132 is configured to generate the temperature image 160 on the video display 30 based on the temperature data received from the temperature sensor 122 (e.g., the IR temperature sensor) and the reference temperature data received from the reference temperature sensor 124. The temperature image 160 (e.g., 98.6° F., as illustrated in
The embodiment shown in
Referring to
Referring now to
Referring to
In another example of this embodiment, the controller 132 processes the data outputs of the IR image sensor 130a and the visual light image sensor 130b to simultaneously generate IR and visual anatomical images 170 on the display 30. For example, the visual image may overlay the IR image, or vice-versa. It is further contemplated that the visual anatomical image and the IR anatomical image may be displayed side-by-side on the display 30.
Anatomical imaging addresses problems in tympanic thermometry, including blind placement, wax in the ear canal, wax on the probe tip, improper insertion depth, improper insertion angle, and missing or damaged (e.g., tears, holes, haze) probe cover. The tympanic thermometer 20 having an image sensor 130 and a display 30 for displaying the anatomy of the subject eliminates the blind technique for placement to allow the practitioner to determine whether the probe 22 is properly inserted within the subject's ear. In addition, the thermometer 20 allows a practitioner to recognize whether the probe cover 32 is present and, if so, whether the probe cover is clean and undamaged. The thermometer is also useful to the practitioner for identifying possible ear infections.
Advantageously, a film commonly required for infection control on probe covers can now be eliminated because the camera (i.e., image sensor 130) provides detection of foreign material on the lens or the probe cover, which enables warning the user as soon as the device is turned on. Warning the user provides an opportunity for the user to first clean the lens or replace the probe cover before proceeding with a temperature measurement. As such, aspects of the invention permit use of lower cost and simpler probe covers, much like speculums for otoscopes.
In addition to acting as a visual placement aid, in another embodiment the controller 132 may also be configured (i.e., programmed) for automatic detection of proper placement of the probe 22 in the orifice (e.g., ear canal) of the subject, automatic detection and alert for wax in the ear canal, and automatic detection and indication of proper insertion depth of the probe. With respect to automatic detection of placement, those of ordinary skill in the art are familiar with image processing software for identifying certain shapes, sizes, and the like within regions of interest of an image. Such image processing software is useful for identifying the hottest spot within the ear canal and triggering the temperature measurement when that spot is in the center of the camera's field of view. Moreover, image processing software can be used to enhance any of the uses of the captured video or other images.
In another embodiment, the processor of controller 132 is programmed to identify a first condition wherein the video images indicate that the probe 22 is received in probe cover 32 but not inserted into the subject, and a second condition wherein the video images indicate that the probe 22 is received in probe cover 32 and inserted into the subject. The processor can be programmed to provide an indication, such as a read-out on the display 30 of the thermometer 20, notifying the practitioner which condition is being detected. However, the indications can be provided in other ways such as audible indications without departing from the scope of the invention.
In another embodiment, the processor can also be programmed to activate the temperature sensor 122 to measure the temperature of the subject only after the processor identifies the second condition wherein the probe 22 is received in the probe cover 32 and inserted into the subject. This improves the accuracy of the thermometer 20 because power is not supplied to the temperature sensor 122 until the probe 22 is properly inserted into the subject. Also, external effects on the temperature sensor 122 are minimized making the temperature readings produced by the temperature sensor more accurate.
In the same embodiment, the processor can be programmed to trigger an alarm when the processor identifies the first condition wherein the probe 22 is inserted into the subject without a probe cover. For instance a flashing light may be displayed on the display 30 of the thermometer 20 indicating to the practitioner that the probe 22 has been improperly inserted into the subject. If the processor identifies this first condition, the thermometer 20 will continue to prevent power from being supplied to the temperature sensor 122 so that the thermometer cannot measure the temperature of the subject. The display 30 may further prompt the practitioner to clean the probe 22 before properly reinserting the probe into the patient with a probe cover. By alerting the practitioner to clean the probe 22 and place a probe cover over the probe before the thermometer 20 is used again, the potential contamination that occurs when the thermometer is used after it has been inserted into a subject without a probe cover is minimized.
Having described embodiments of the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
Those skilled in the art will note that the order of execution or performance of the methods illustrated and described herein is not essential, unless otherwise specified. That is, it is contemplated by the inventors that elements of the methods may be performed in any order, unless otherwise specified, and that the methods may include more or less elements than those disclosed herein. For example, it is contemplated that executing or performing a particular operation before, contemporaneously with, or after another operation is within the scope of aspects of the invention.
When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Number | Date | Country | |
---|---|---|---|
61540755 | Sep 2011 | US |