Electronic unit, circuit design for the same, and production method

Information

  • Patent Grant
  • 7483275
  • Patent Number
    7,483,275
  • Date Filed
    Friday, September 6, 2002
    22 years ago
  • Date Issued
    Tuesday, January 27, 2009
    16 years ago
Abstract
A method for the production of an encapsulated and at least partly organic electronic device wherein the device comprises a combination of three groups of different electronic units or components which may be separate discrete structures arranged to be produced independently from one another electrically conductively interconnected, the groups including inorganic units, passive units and active units or active components such as antennae, diodes (rectifier diodes and/or light-emitting diodes), some of which units may be organic, e.g., organic transistors, and so on, and forming a resulting optimized circuit. The components of the three groups of units forming the resulting circuit are combined on a one piece flexible substrate film which can also serve as an encapsulation layer for the device.
Description

The invention relates to a novel concept for the production of an encapsulated and at least partly organic electronic unit. Said unit embodies a novel concept for the combination of different electronic components to form an electronic unit, such as antennae, diodes (rectifier diodes and/or light-emitting diodes), transistors, etc. and a circuit, which is optimized for this purpose.


Electronic units such as, for example, radio frequency identification (RFID) tags, Sensor Arrays, photovoltaic cells and the like, which are based on conventional silicon technology, are more well-established.


Said electronic units are employed, for example, as electronic bar codes for consumer goods, as electronic watermarks, as electronic stamps, as bag tags and/or as tickets.


Such electronic units could be produced significantly cheaper, if they could be built, at least in part, from components, which are based on organic electronics (plastic electronics). However, this presents several problems. At first, various components groups such as antennae, rectifiers and/or transponder chips have to be produced in very different processes and then assembled and encapsulated.


Circuits for the new plastic electronic components, which are familiar from DE 100 43 204.2, for example, have been published thus far by Hart, C. M., De Leeuw, O. M. et al., Philips Res. Lab., ESSCIRC '98, ISBN 2-86332-235-4, 1998) (see FIG. 1 in this regard), wherein only modulation transistor 4 and integrated circuit 5 are based on organic materials. Antenna 1, capacitor 2 and the silicon diode 3 are made from inorganic materials (conventional silicon technology). One OFET (organic field-effect transistor) 4 is inserted after the rectifier diode 3. However, the problem with this embodiment is that modulation transistor 4 can only switch a small portion of the electric power, since otherwise the power supply for the integrated circuit 5 would collapse. Another problem is that rectifier diode 3 utilizes only half of the furnished electric power to supply the RFID tag, since one diode can only rectify one half-wave of the alternating current. The reason this is such a particularly serious disadvantage is that the furnished power for an RFID tag, for example, is limited by law, and reducing by half the furnished power substantially limits the working range and thus the range of application of the electronic units.


A typical electronic unit such as the RFID tag is comprised of several components such as, for example, antennae, capacitors, diodes (light-emitting diodes and/or rectifier diodes), possibly photovoltaic cells and at least an integrated circuit including transistors. Such individual components necessitate different production methods, since they require different materials and processing techniques. Producing transistors, for example, calls for particular high-resolution deposition structuring techniques, which requires working with materials that can be relatively easily managed, whereas producing organic-based diodes and/or capacitors requires handling of difficult materials, which in turn provides sufficient quality with far less costly structuring. Again, metal is generally used in the production of antennae, which requires completely different processing equipment and techniques. Producing at least partially organic (plastic) electronic units is relatively complicated and has currently not yet been the subject of publications. However, solutions should be found for the necessary marketability as a mass throw-away product, so that these many different production steps can be handled as efficiently as possible.


The invention is therefore required to provide at least in part organic electronic units and/or circuits, which through selection and configuration of the components allows for cost-effective production and encapsulation. The objective hereby is to optimize familiar circuits with respect to power transfer and (charge) modulation and to realize efficient mass production methods at the same time.


Following is the description of a solution on how this can be realized: a novel concept of combining components into one electronic unit, such as antennae, diodes (rectifier diodes and/or light-emitting diodes), transistors, etc., and/or suitable optimization of the circuit design.


The subject matter of the invention concerns an organic electronic device comprising at least three groups of components:

    • One group of essentially inorganic units (e. g. antennae);
    • One group of passive, preferably, organic units; and
    • One group of active, preferably, organic units;


      wherein


      the group comprising passive units contains no active units or no active components, wherein the group of active units essentially contains organic field-effect transistors and usually no passive units, wherein the three groups can be produced independently from one another, wherein said units are interconnected by electrically conductive tracks and contacts on a flexible substrate and/or via a flexible encapsulation substrate layer forming a circuit on the substrate, through which circuit the electrically conductive tracks run between passive and active units from one group to another.


A group is considered one or several unit(s) integrated on one substrate (or region thereof) and/or under one encapsulation, which can be produced by procedural steps that can easily be combined in terms of process and that are based on comparable conditions.


Moreover, the subject matter of the invention concerns a circuit for an electronic unit that is at least partly based on organic functional polymers comprising the following components:


one antenna (1), one capacitor (2), one diode (3) and one modulation transistor (4) in front of an integrated circuit (5), wherein two capacitors (7, 8) and an additional diode (6) are switched in such a way as to supply the integrated circuit (5) via a capacitor (7), and wherein, at the same time, one diode (6) prevents said modulation transistor (4) from depriving said capacitor (7) with energy.


Lastly, the subject matter of the invention concerns a method to produce an organic electronic unit, based on at least one inorganic unit (antenna), comprising one passive, preferably, organic-based and one active, preferably, organic-based unit, said antenna, said passive and active units being pre-assembled separately, the circuit then being assembled through simple electric contacts of the individual components.


In this context, a complete transponder such as, for example, an RFID tag is considered an electronic unit, at any rate, a unit comprising several components, wherein said component represents the smaller unit, but can definitely consist of a multitude of components such as transistors, capacitors, photovoltaic cells, etc.


Diodes (rectifier and/or light-emitting diode), couplers such as an optocoupler, capacitors, resistors and/or the like are identified as “passive units.” An “active unit,” for example, refers to transistors, photovoltaic cells, sensors and/or the like. However, integrated active circuits could also be comprised of passive units such as resistors.


Within the framework of the invention passive and/or active units are preferably employed containing at least partly organic functional polymers (or electrically conductive or semiconducting organic materials, in general). For brevity's sake, such materials are identified as “organic units,” although said units may well embody non-organic parts, but at least one organic part, preferably, one organic functional polymer is embodied in one unit, which is referred to here as “organic unit.”


The circuit is particularly advantageous for the employment of RFID tags.


Antennae, for example, are utilized as units, which can be coils, for example, either made from metal or metallic compounds such as, for example, alloys, copper, aluminum and/or possibly also a metallic, organic functional polymer such as, for example, conductive silver and/or from organic material only, such as, for example, polyaniline, Pedot, Russ, or compounds thereof.


Antennae, such as the other units and/or components of the organic electronic unit, are also arranged on a substrate and protected by an encapsulation, which may form the substrate at the same time, against unwelcome environmental stress.


A flexible film (such as, for example, polyester) can be used as a substrate, for example. If necessary, said film may have distinctly different barrier properties against moisture and air, since the units are comprised in part of organic materials, which become unstable under the influence of moisture and/or oxygen. Said barrier properties may exist either through the film material itself, through additives in the film, through coating (such as, for example, silicates and/or metal-coating) and/or also through several of the aforementioned individual measures. The substrate film must be damage-resistant based on the conditions imposed by the production steps (temperature, mechanical forces, processing media . . . ).


Appropriate components, such as, for example, integrated circuits, consisting of organic transistors, passive units, organic diodes (light-emitting diodes as well as rectifier diodes), organic photovoltaic cells and similar components are arranged on the substrate and/or the encapsulation, preferably, flexible films. Moreover, a combination of organic and inorganic units is also possible (for example, mostly metallic antennae combined with an organic transponder chip circuits).


In order to insulate the films electrically, one insulation layer is deposited at least on the surface of the film (e.g. through methods such as screening, spray coating, crawling, laminating of an additional, possibly, pre-punched film . . . ).


All individual components were equipped with electrically conductive contacts. Two or more of these components were then interconnected by interconnecting said electrical contacts, preferably with electrically conductive glue or an electrically conductive adhesive.


By doing so, the required electrical hole contacts or strip tracks for the hole contacts (Vias) can be placed at the same time, or subsequently generated by opening the insulation layer, for example, by means of a laser. The vias can then be filled to make them conductible, for example, through screening of conductive glue or through currentless metal-coating. Under the simplest of circumstances, only a thin insulating layer is chosen so that filling of the vias can be abandoned.


The components were again encapsulated preferably with a film having a similar arrangement and similar characteristics as described for the substrate hereinabove. This can, for example, be carried out through gluing or welding. It is preferred that the encapsulation is deposited gas-tight. If the individual components were encapsulated before being assembled and contacted into a complete electronic unit, electrical connections can be lead through from this encapsulation, e.g., for power supply, signal transmission or for sensory purposes. Thus, an encapsulated unit with combined electronic components containing polymer is obtained. If the various components must be produced in different processes or, if it is economically more beneficial, the various components may also be deposited separately on the substrate film and/or on the encapsulation film and combine them as described in the assembly process hereinabove. Attention must be paid to the electrical insulation, on the one hand, and to a defined through-hole connection, on the other hand.


The production process of the respective component or the electronic unit is optimized in that the two films (substrate and encapsulation) are equally employed for the arrangement of components in order to require as few individual manufacturing steps for the complete production as possible.


Here, the term “organic material” or “organic functional polymer” comprises all sorts of organic, metallic-organic and/or organic/inorganic synthetic materials (hybrids), in particular those, which are referred to, for example, as “plastics” in the English language. It concerns all types of materials except semiconductors, which form classic diodes (germanium, silicon), and typical metallic conductors. Therefore, dogmatically speaking, there are no plans to limit the use to organic carbon-containing materials, rather, the wide use of, for example, silicon, is considered. Furthermore, the term should not be subject to any limitations with respect to molecular size, in particular, limitations to polymer and/or oligomer materials, rather, the use of “small molecules” is also quite possible. The word component “polymer” in functional polymer is historic and insofar contains no information about the existence of actual polymer compounds.


Said circuit is particularly advantageous for RFID tags that are based on organic material. As a result of the selection and configuration of the components on the units and the low number of different components, the circuit allows for cost-effective production and encapsulation.


The method for the production takes into consideration the fact that the individual components of an electronic unit, such as capacitor and transistor, for example, call for different manufacturing conditions and requirements. That way, all components of one “kind” are combined on one unit each, so that units can be produced in the shortest possible production line. The units are then encapsulated and linked with one another on the substrate, either individually or combined. In doing so, a unit embodying organic-based components can still be assembled with conventional, that is, silicon-containing components.





In the following, the invention is described in detail based on individual figures, which depict embodiments of the invention when compared to prior art:



FIG. 1 depicts prior art familiar from publications by Hart, C. M., Leeuw, D. M. et al., Philips Res. Lab., ESSCIRC '98, ISBN 2-86332-235-4, 1998.



FIGS. 2 through 4 depict schematically different embodiments of the circuit, FIG. 5 depicts the circuit from FIG. 4 divided into three components, and FIGS. 6 and 7 depict options on how to produce the circuit as complete electronic units.






FIG. 1 depicts a state-of-the-art circuit for an RFID tag. Only transistor 4 and the integrated circuit 5 of this circuit are made of organic material. Antenna 1, capacitor 2 and silicon diode 3 consist of inorganic material. Placing OFET 4 after rectifier diode 3 solves the problem of inadequate circuit speed and the OFETs' unfitness for alternating current compared with conventional transistors due to the properties of organic materials to act as charge carrier accumulators and not through the invasion of charge carriers. However, one problem with this embodiment remains, which is that modulation transistor 4 can only switch a small portion of the electrical power, since otherwise the power supply for gate circuit 5 would collapse. Another problem is that diode 3 can utilize only half of the furnished electric power to supply the RFID tag.


Simple switching variations according to the Philips publication, which consequently belong to prior art as well, consist in the integration of transistor 4 into gate circuit 5 or in leaving it out completely, and that the charge change at gate circuit 5 is directly utilized as a modulation signal. An example for this is a ring oscillator, which, as the sole gate circuit, is connected to output side of the rectifier. The oscillation causes periodic changes in power consumption, which can be directly read as charge modulation. Simple electronic watermarks can be produced this way, which oscillate with a predetermined frequency depending on the production of the ring oscillators.



FIG. 2 depicts an example of an embodiment:


One antenna 1 forms a ringing circuit in combination with one capacitor 2, which is adapted to the transmitter frequency of a reading device. An organic diode 3 forms a rectifier in combination with one capacitor 8, which emits a calendered direct current. An organic modulation transistor 4 is connected to the output side of the rectifier. One organic capacitor 7 forms stored energy for a gate circuit 5, and the organic diode 6 prevents said capacitor 7 from discharging via said modulation transistor 4. A gate circuit 8 embodies switching circuits, which read out from a storage and forward the information serially bit by bit to the output side. Said output side is connected with the gate of said modulation transistor 4. The speed of said gate circuit 5 is independent from the transmitter frequency of said reading device.



FIG. 3 depicts a similar embodiment, however, rectifier diode 3 is replaced by one bridge rectifier 3. Said rectifier comprises four integrated organic diodes.


If positive and negative voltage is required for the gate circuit, this can be accomplished by placing two rectifier units in parallel with simple diodes or diode bridge circuits. Another possibility to accomplish this is the installation of a bleeder after a simple rectifier circuit, for example, with resistors connected in series.



FIG. 4 again depicts the embodiment of a circuit, said circuit resembling that in FIGS. 2 and 3, however, all capacitors were replaced by one or two diodes each. Capacitor 2 is operated with alternating current and is therefore replaced by two diodes 2, 2′ placed in series with opposite poles. Said capacitors 7 and 8 are supplied with direct current and can therefore each be replaced by one diode (7, 8), which is switched in non-conducting direction. This example of an embodiment can completely do with capacitors, which greatly simplifies production of the circuit.


The problem concerning the low (charge) modulation in the circuit is solved as follows: the gate circuit is supplied by stored energy (e.g. one organic capacitor 7), wherein one organic diode 6 prevents said modulation transistor 4 from draining energy from said storage (see embodiment examples of FIGS. 2 through 4). Said energy storage is charged, when said modulation transistor 4 is blocked. One problem hereby is that the energy storage is discharged, when the bit rate 1 1 1 1 . . . (or 0 0 0 0, depending on the coding of the gate) occurs. This can be prevented, if gate circuit 5 of the RFID tag outputs the information bits in such a way that said modulation transistor 4 is shut off for a very brief period of time in between bits. This can be accomplished by not letting the energy storage fall below a certain charge state irrespective of the bit rate. The main advantage of the energy storage is attributable to the fact that said modulation transistor 4 can switch 100% of the electrical power without the collapse of the power supply to gate circuit 5.


The circuit solves an additional problem, which is the transmission of higher electrical power by utilizing organically integrable diodes, familiar from DE 100 44 842.9. This makes the use of a diode bridge circuit for the purpose of rectifying possible. This allows transmission of double the power, since both half-waves of the alternating current can be used (see embodiment examples of FIGS. 3 and 4). With the approach known from prior art, which is the hybrid use of a silicon diode, such a bridge circuit can practically not be used, since producing RFID tags with hybrid silicon diodes is too time-consuming and too expensive.


A particularly advantageous embodiment of the invention (FIG. 4) is based on the fact that organic diodes in non-conducting direction behave like capacitors. Two diodes placed in series with reversed polarity furnish therefore capacitors that can be operated with alternating current. The advantage of this circuit is the greatly simplified design of polymer RFID tags, since capacitors, that is, several layers of functional polymer and the appertaining process steps, can be dispensed with.



FIG. 5 shows the circuit depicted in FIG. 4 divided into various components 1,2 and 3.


At first, there is unit 11 having a substrate 14 (flexible film with barrier properties), which is provided with an electrically conductive track 1, functioning as an antenna, and with electrically conductive contacts 15. Then, there is unit 12 containing all components, functioning as diode or capacitor (2, 3, 6, 7 and 8), as well as also electrically conductible contacts 15. Finally, there is unit 13, combining all components 4, 5, which embody an organic transistor, as well as also electrically conductive contacts 15. Hereby, only several of such components must be based on organic materials, for example, an organic chip can also be assembled with inorganic diodes or, antennae may be made of metal or metallic compounds.



FIG. 6 shows how individual units 11, 12 and 13 can be beneficially assembled into one complete system.


Partial FIG. 6A shows unit 11 including antenna and contacts, partial FIGS. 6B and 6C depict a top view of units 12 and 13, in each case. Partial FIG. 6E depicts the assembled electronic unit and 6D shows the encapsulation film lying above. Finally, partial FIG. 6F depicts the cross-section of an electronic unit.

    • A) Using a suitable method, one antenna (1) as well as electrical contacts (15) are arranged on a substrate film (14) (e.g. through methods such as sputtering, vacuum deposition, galvanic or currentless deposition, printing, micro-punching, photolithography, etching or combinations). This embodies unit 11.
    • B) Unit 12, embodying, for example, diodes and capacitors as described in FIG. 5, is produced using a suitable method, and electrical contacts 15 are attached. One possibility to build capacitors, for example, is to generate a conductive polymeric region capable of metallization for the capacitor on the side of the substrate, arranged in such a way as to create capacity by means of said region and conductive regions of the transponder antenna after assembling both films.
    • C) Unit 13, embodying, for example, organic transistors 4 and integrated circuits 5 (produced, for example, by methods such as printing, photolithography, spin coating and the like) is produced using a suitable method, and electrical contacts 15 are attached.
    • D) Depicts encapsulation film 16, which is said to have barrier properties against environmental influence such as oxygen and/or water vapor like substrate 14, and can be deposited on the other units 11, 12 and 13 using suitable methods such as gluing or laminating.
    • E) Depicts the arrangement of units 11, 12 and 13 in the assembled state from above. Units 12 and 13 are arranged in such a way that the appropriate electrical contacts 15, in each case, are connected with one another.
    • F) Depicts the arrangement of E) aside; in addition, the encapsulation film is also drawn in.


The individual components or units 11, 12 and/or 13 are therefore arranged on the substrate or on the encapsulation film and coated with an insulating layer for electrical insulation. The films having been prepared in such a way are then adjusted and assembled into one complete system such as, for example, a transponder.


This can be carried out, for example, through gluing or welding. At the same time, the glue could also correspond to the aforementioned insulating layer or, by adding an additional step in the process, it could also be deposited, for example, through printing, spray coating or crawling. After the adjustment, both films are joined and pressed (autoclave, vacuum press, or the like). In this connection, the application of the glue and/or the pressing process are designed to guarantee that the thickness of the glue on the edges of the two films is minimized, so that there is also a lateral barrier against gases and moisture. At the same time, vias must be able to have electrical contact. Under high temperature and/or ultraviolet light the glue is quenched.


Said assembly principle is also beneficial for many additional products containing polymer electronic components, for example, photovoltaic-sensor assemblies with integrated gating circuits or OLEDs with integrated drive circuits. In this case, for example, the photovoltaic or OLED cells can be deposited on one film and the polymer circuits can be deposited on the other film. Of course, this way it is also possible to combine organic components with conventional, inorganic components.



FIG. 7 describes a different and beneficial way in which such components can be assembled to form a complete system. Again, the figure is subdivided into partial FIGS. 7A through 7E, which show the following:

    • A) Using a suitable method, one antenna 1 as well as electrical contacts 15 are arranged on a substrate 14 (e.g. through methods such as sputtering, vacuum deposition, galvanic or currentless deposition, printing, micro-punching, photolithography, etching or combinations). This embodies unit 11.
    • B) Unit 12, embodying, for example, diodes and capacitors as described in FIG. 5, is produced using a suitable method, and electrical contacts 15 are attached. Here, unit 12 is arranged directly on the encapsulation film 14, which reduces the overall number of units, thereby eliminating one step in the process.
    • C) Unit 13, embodying, for example, organic transistors and integrated circuits (produced, for example, by methods such as printing, photolithography, spin coating and the like) is produced using a suitable method, and electrical contacts 15 are attached.
    • E) Depicts the arrangement of units 11, 12 and 13 in the assembled state from above. Units 12 and 13 are arranged in such a way that the appropriate electrical contacts 15, in each case, are connected with one another.
    • F) Depicts the arrangement from FIG. 7D aside.


The method to produce electronic units, as depicted in the figures, can be employed not only for the production of RFID tags, rather, there are many more application examples, which embody at least one organic electronic unit and are arranged on a flexible substrate, such as, for example:

    • (Organic) photovoltaic cells or suitable Sensor Arrays with integrated electronics
    • Active organic displays (OLED or other displays)
    • Hand-held calculators consisting of several individual components
    • “Wearable electronics.” Electronic units inserted in clothing
    • Intelligent paper: electronics inserted into paper or paper-like material
    • Advertising labels with blinking and/or glowing and/or acoustic display.

Claims
  • 1. An organic electronic device comprising: a one piece flexible film substrate; andat least three groups of electrical components each attached directly to the substrate to thereby form the device:one group of the components comprising essentially inorganic units;one group of the components comprising passive units; andone group of the components comprising active units;
  • 2. The organic electronic device in accordance with claim 1 wherein at least one of said electrically conductive tracks and contacts comprises an electrically conductive adhesive.
  • 3. The organic device in accordance with claim 1 further including an RFID tag, inside the RFID tag are a sensor array and a photovoltaic cell coupled to the circuit, wherein the tag is arranged in a configuration comprising any one selected from the group consisting of wearable electronics, an active display, an electronic bar code, an electronic watermark, an electronic stamp, a bag tag and an electronic ticket.
  • 4. The organic electronic device in accordance with claim 1 wherein the circuit comprises the following components: an antenna , a first capacitor, a diode , and a modulation transistor, all of which being electrically coupled to and in front of an integrated circuit, in which a second and a third capacitor and an additional diode are switched in the circuit to supply current to the integrated circuit via the second capacitor, and where, at the same time, the additional diode prevents said modulation transistor from depriving said second capacitor with energy.
  • 5. The organic device of claim 1 including an encapsulation film for encapsulating at least the interconnected groups.
  • 6. A method to produce an organic electronic device comprising forming a circuit including forming and preassembling as separate discrete units in the circuit arranged to be assembled independently of one another at least one group of units with an antenna, a passive group of units and an active group of units, at least a portion of one of the passive groups and active groups comprising organic units, and then assembling the circuit through electrical interconnection of the individual groups of units directly onto a one piece substrate film; including forming a capacitor on a flexible substrate film or encapsulation film, the forming the capacitor step comprising: forming ohmically conductive regions on the antenna, and forming an ohmically conductive polymeric region on the substrate or encapsulation film for subsequent metallization to create the capacitor comDrisincl said ohmically conductive polymeric region on the substrate or encaDsulation film and ohmically conductive regions on the antenna after assembling the substrate film and active and passive groups.
  • 7. An organic electronic device comprising at least three groups of components: one group comprising essentially inorganic units,one group of passive units,one group of active, units,
  • 8. A method to produce an organic electronic device comprising: forming a circuit including forming and preassembling as separate discrete units in the circuit and arranged to be assembled independently of one another at least one group of units with an antenna, a passive group of units and an active group of units, at least a portion of one of the passive groups and active groups comprising organic units, and then assembling the circuit through electrical interconnection of the individual groups of units directly on a one piece flexible substrate film; andforming a capacitor on the flexible substrate film, the forming the capacitor step comprising:forming ohmically conductive regions on the antenna, and forming an ohmically conductive polymeric region on the substrate for subsequent metallization to create the capacitor comprising said ohmically conductive polymeric region on the substrate and the ohmically conductive regions on the antenna after assembling the substrate film and active and passive groups.
  • 9. A method of making an organic electronic device comprising: forming a one piece flexible film substrate; andforming at least three groups of electrical components each attached directly to the substrate to thereby form the device;forming one group of the components comprising essentially inorganic Units;forming one group of the components comprising passive units; andforming one group of the components comprising active units;wherein the forming of the group comprising passive units contains no active units or no active components and forming the group of active units essentially contains organic field-effect transistors, wherein the forming the three groups forms the three groups to comprise separate and discrete structures arranged to be assembled independently of one another, and are ohmically interconnected via electrically conductive tracks and contacts forming a circuit, through which the electrically conductive tracks run between passive and active units from one group to another on the substrate.
Priority Claims (1)
Number Date Country Kind
101 51 440 Oct 2001 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/DE02/03296 9/6/2002 WO 00 4/14/2004
Publishing Document Publishing Date Country Kind
WO03/038897 5/8/2003 WO A
US Referenced Citations (100)
Number Name Date Kind
3512052 MacIver et al. May 1970 A
3769096 Ashkin Oct 1973 A
3955098 Kawamoto May 1976 A
4302648 Sado et al. Nov 1981 A
4340657 Rowe Jul 1982 A
4442019 Marks Apr 1984 A
4865197 Craig Sep 1989 A
4926052 Hatayama et al. May 1990 A
4937119 Nickles et al. Jun 1990 A
5159296 Nelson Oct 1992 A
5170139 Nelson Dec 1992 A
5173835 Cornett et al. Dec 1992 A
5206525 Yamamoto et al. Apr 1993 A
5259926 Kuwabara et al. Nov 1993 A
5321240 Takahira Jun 1994 A
5347144 Garnier et al. Sep 1994 A
5364735 Akamatsu et al. Nov 1994 A
5395504 Hoffman et al. Mar 1995 A
5480839 Ezawa et al. Jan 1996 A
5486851 Gehner et al. Jan 1996 A
5502396 Desarzens Mar 1996 A
5546889 Wakita et al. Aug 1996 A
5569879 Gloton et al. Oct 1996 A
5574291 Dodabalapur et al. Nov 1996 A
5578513 Maegawa Nov 1996 A
5580794 Allen Dec 1996 A
5625199 Baumbach et al. Apr 1997 A
5630986 Miller May 1997 A
5652645 Jain Jul 1997 A
5691089 Smayling Nov 1997 A
5705826 Aratani et al. Jan 1998 A
5729428 Sakata et al. Mar 1998 A
5854139 Kondo et al. Dec 1998 A
5869972 Birch et al. Feb 1999 A
5883397 Isoda et al. Mar 1999 A
5892244 Tanaka et al. Apr 1999 A
5903239 Takahashi et al. May 1999 A
5967048 Fromson et al. Oct 1999 A
5970318 Choi et al. Oct 1999 A
5973598 Beigel Oct 1999 A
5994773 Hirakawa Nov 1999 A
5997817 Crismore et al. Dec 1999 A
5998805 Shi et al. Dec 1999 A
6036919 Thym et al. Mar 2000 A
6045977 Chandross et al. Apr 2000 A
6072716 Jacobsen et al. Jun 2000 A
6083104 Choi Jul 2000 A
6087196 Sturm et al. Jul 2000 A
6133835 De Leeuw et al. Oct 2000 A
6150668 Bao et al. Nov 2000 A
6197663 Chandross et al. Mar 2001 B1
6207472 Calligari et al. Mar 2001 B1
6215130 Dodabalapur Apr 2001 B1
6221553 Wolk et al. Apr 2001 B1
6251513 Rector et al. Jun 2001 B1
6284562 Batlogg et al. Sep 2001 B1
6300141 Segal et al. Oct 2001 B1
6321571 Themont et al. Nov 2001 B1
6322736 Bao et al. Nov 2001 B1
6329226 Jones et al. Dec 2001 B1
6330464 Colvin et al. Dec 2001 B1
6335539 Dimitrakopoulos et al. Jan 2002 B1
6340822 Brown et al. Jan 2002 B1
6344662 Dimitrakopoulos et al. Feb 2002 B1
6362509 Hart Mar 2002 B1
6384804 Dodabalapur et al. May 2002 B1
6403396 Gudesen et al. Jun 2002 B1
6429450 DeLeeuw et al. Aug 2002 B1
6461885 Lupo et al. Oct 2002 B1
6466131 Tuttle et al. Oct 2002 B1
6498114 Amundson et al. Dec 2002 B1
6501466 Yamagishi Dec 2002 B1
6517995 Jacobsen et al. Feb 2003 B1
6555840 Hudson et al. Apr 2003 B1
6593690 McCormick et al. Jul 2003 B1
6603139 Tessler et al. Aug 2003 B1
6621098 Jackson et al. Sep 2003 B1
6815240 Hayashi Nov 2004 B2
6821803 Hayashi Nov 2004 B2
6852583 Bernds et al. Feb 2005 B2
6943369 Hayashi Sep 2005 B2
20020018911 Bernius et al. Feb 2002 A1
20020022284 Heeger et al. Feb 2002 A1
20020025391 Angelopoulos et al. Feb 2002 A1
20020053320 Duthaler May 2002 A1
20020056839 Joo et al. May 2002 A1
20020068392 Lee et al. Jun 2002 A1
20020130042 Stiene Sep 2002 A1
20020170897 Hall Nov 2002 A1
20020195644 Dodabalapur et al. Dec 2002 A1
20030013220 Lupo Jan 2003 A1
20030059987 Sirringhaus Henning et al. Mar 2003 A1
20030112576 Brewer et al. Jun 2003 A1
20030175427 Loo et al. Sep 2003 A1
20040002176 Xu Jan 2004 A1
20040013982 Jacobson et al. Jan 2004 A1
20040026689 Bernds et al. Feb 2004 A1
20040084670 Tripsas et al. May 2004 A1
20040211329 Funahata et al. Oct 2004 A1
20050168340 Mosher et al. Aug 2005 A1
Foreign Referenced Citations (152)
Number Date Country
33 38 597 May 1985 DE
4243832 Jun 1994 DE
198 52312 May 1999 DE
198 16 860 Nov 1999 DE
19918193 Nov 1999 DE
198 51703 May 2000 DE
19851703 May 2000 DE
100 06257 Sep 2000 DE
199 21024 Nov 2000 DE
19933757 Jan 2001 DE
69519782 Jan 2001 DE
199 35 527 Feb 2001 DE
199 37 262 Mar 2001 DE
100 12204 Sep 2001 DE
10033112 Jan 2002 DE
100 45 192 Apr 2002 DE
100 47 171 Apr 2002 DE
100 43204 Apr 2002 DE
100 58 559 May 2002 DE
10061297 Jun 2002 DE
101 17 663 Oct 2002 DE
101 20 687 Oct 2002 DE
102 19905 Dec 2003 DE
0 108650 May 1984 EP
0 128 529 Dec 1984 EP
0 268 370 May 1988 EP
0 268 370 May 1988 EP
0 350 179 Jan 1990 EP
0 418504 Mar 1991 EP
0 442123 Aug 1991 EP
0460242 Dec 1991 EP
0501456 Sep 1992 EP
0501456 Sep 1992 EP
0 511807 Nov 1992 EP
0 528662 Feb 1993 EP
0685985 Dec 1995 EP
0716458 Jun 1996 EP
0 785 578 Jul 1997 EP
0 785 578 Jul 1997 EP
0 786820 Jul 1997 EP
0 615 256 Sep 1998 EP
0962984 Dec 1999 EP
0966182 Dec 1999 EP
0 979715 Feb 2000 EP
0981165 Feb 2000 EP
0989614 Mar 2000 EP
1 048 912 Nov 2000 EP
1 052 594 Nov 2000 EP
1065725 Jan 2001 EP
1065725 Jan 2001 EP
1 083 775 Mar 2001 EP
1 102 335 May 2001 EP
1 104 035 May 2001 EP
1 103916 May 2001 EP
1 134 694 Sep 2001 EP
1134694 Sep 2001 EP
1224999 Jul 2002 EP
1237207 Sep 2002 EP
1 318 084 Jun 2003 EP
2793089 Nov 2000 FR
723598 Feb 1955 GB
2 058 462 Apr 1981 GB
54069392 Jun 1979 JP
61167854 Jul 1986 JP
362065477 Mar 1987 JP
05152560 Jun 1993 JP
05259434 Oct 1993 JP
05347422 Dec 1993 JP
06-196724 Jul 1994 JP
08197788 Aug 1996 JP
09083040 Mar 1997 JP
09320760 Dec 1997 JP
10026934 Jan 1998 JP
11-040708 Feb 1999 JP
2969184 Nov 1999 JP
2000-029403 Jan 2000 JP
2000-173770 Jun 2000 JP
2001085272 Mar 2001 JP
2001-147659 May 2001 JP
2001-267578 Sep 2001 JP
WO 93 16491 Aug 1993 WO
WO 9417556 Aug 1994 WO
WO 9506240 Mar 1995 WO
WO 95 31831 Nov 1995 WO
WO 96 02924 Feb 1996 WO
WO 9619792 Jun 1996 WO
WO 9712349 Apr 1997 WO
WO 9718944 May 1997 WO
WO 98 18186 Apr 1998 WO
WO 9840930 Sep 1998 WO
WO9840930 Sep 1998 WO
WO 9907189 Feb 1999 WO
WO 9910929 Mar 1999 WO
WO 99 10939 Mar 1999 WO
WO 99 21233 Apr 1999 WO
WO 99 30432 Jun 1999 WO
WO9930432 Jun 1999 WO
WO 99 39373 Aug 1999 WO
WO 99 40631 Aug 1999 WO
WO 9953371 Oct 1999 WO
WO 99 54936 Oct 1999 WO
WO 9954936 Oct 1999 WO
WO 9966540 Dec 1999 WO
WO 0033063 Jun 2000 WO
WO 0036666 Jun 2000 WO
WO 0103126 Jan 2001 WO
WO 0106442 Jan 2001 WO
WO 0108241 Feb 2001 WO
WO 0115233 Mar 2001 WO
WO 01 15233 Mar 2001 WO
WO 0117029 Mar 2001 WO
WO 01 17041 Mar 2001 WO
WO 0127998 Apr 2001 WO
WO 0146987 Jun 2001 WO
WO 0147044 Jun 2001 WO
WO 01 47045 Jun 2001 WO
WO 0147044 Jun 2001 WO
WO 0147044 Jun 2001 WO
WO 0173109 Oct 2001 WO
WO 0173109 Oct 2001 WO
WO 0205360 Jan 2002 WO
WO 0205361 Jan 2002 WO
WO 0215264 Feb 2002 WO
WO 02 19443 Mar 2002 WO
WO 0229912 Apr 2002 WO
WO 0243071 May 2002 WO
WO 0247183 Jun 2002 WO
WO 0247183 Jun 2002 WO
WO 02065557 Aug 2002 WO
WO 02071139 Sep 2002 WO
WO 02071505 Sep 2002 WO
WO 02076924 Oct 2002 WO
WO 02091495 Nov 2002 WO
WO 02095805 Nov 2002 WO
WO 02095805 Nov 2002 WO
WO 02095805 Nov 2002 WO
WO 02099908 Dec 2002 WO
WO 02099907 Dec 2002 WO
WO 03046922 Jun 2003 WO
WO 03069552 Aug 2003 WO
WO 03067680 Aug 2003 WO
WO 03081671 Oct 2003 WO
WO 03095175 Nov 2003 WO
WO 2004032257 Apr 2004 WO
WO 2004042837 May 2004 WO
WO 2004042837 May 2004 WO
WO 2004007194 Jun 2004 WO
WO 2004007194 Jun 2004 WO
WO 2004047144 Jun 2004 WO
WO 2004047144 Jun 2004 WO
WO 2004083859 Sep 2004 WO
WO 00 79617 Dec 2004 WO
Related Publications (1)
Number Date Country
20040256467 A1 Dec 2004 US