Electronically controlled throttle valve with limp home mechanism

Information

  • Patent Grant
  • 6502542
  • Patent Number
    6,502,542
  • Date Filed
    Thursday, November 2, 2000
    23 years ago
  • Date Issued
    Tuesday, January 7, 2003
    21 years ago
Abstract
The subject invention is a linkage assembly for an electronically controlled throttle (ETC) that provides for the precise setting of a limp home engine speed for a vehicle. Essentially a controlled amount of movement is attained between a closed position and a limp home throttle position. A throttle valve is attached to a first shaft and rotates to regulate air intake. The first shaft is attached to a sector gear. The sector gear is driven by the ETC. A stop bracket limits the amount that the sector gear can close the throttle valve. The stop bracket defines an opening, and a cam is disposed within the opening. A spring biases the stop bracket against the cam. Normally, the ETC can overcome the spring and the stop bracket is forced against the cam such that stop bracket contacts the cam to define a closed throttle position. Of course, when operational the ETC can drive the valve to open position as demanded by the vehicle. The limp home engine speed is set by a preset by the difference between the length of the opening of the stop bracket and a width of the cam. If the ETC becomes disabled, there is not enough force to overcome the spring and move the sector gear to the closed throttle position, instead the sector gear remains at the second stop position to provide the limp home engine idle speed that allows a driver to sufficiently maneuver the vehicle.
Description




BACKGROUND OF THE INVENTION




This application discloses an improved limp home feature for an electronic throttle control.




An electronic throttle control (ETC) replaces the mechanical throttle linkage to control the position of the throttle valve. The throttle valve actuated by the ETC is opened proportionally according to signals received from a sensor placed on an accelerator pedal. The ETC opens the throttle valve proportionally to movement of the accelerator pedal.




A typical ETC will be mounted to a throttle body. The throttle body includes an airflow passage though which air is brought into the engine. The throttle valve is disposed within the airflow passage and attached to a shaft for rotation about an axis to regulate the intake of air. A closed throttle position is set to provide a minimum airflow requirement for an engine, to keep an engine at or near a stall condition.




A limp home throttle position is set for when the ETC is disabled, and provides an engine speed that will produce enough power that can easily be controlled by a driver. The intent of the limp home throttle valve position is to provide the driver with sufficient power to maneuver the vehicle.




Current mechanisms for attaining the limp home throttle valve position include double spring arrangements that are balanced against each other to provide the proper throttle valve position upon disablement of the ETC. The double spring arrangement typically includes one spring to close the throttle valve acting against another spring to open the throttle valve to the limp home throttle valve position. The double spring arrangement must be carefully balanced to attain the desired amount of throttle valve opening for the limp home position. Further, the use of opposing springs creates an inconsistent limp home throttle position because the balance between the springs may change over time. The limp home position must be set precisely, because a limp home engine speed that is too low will not provide the necessary engine power to maneuver the vehicle. Alternatively, too high an engine speed may create a sensation in the driver of being out of control of the vehicle.




For these reasons it is desirable and necessary to provide a simple mechanism that provides for reliable setting and preservation of the limp home throttle valve position for an ETC.




SUMMARY OF THE INVENTION




The subject invention is an electronic throttle control with a linkage assembly that provides for the setting of a limp home throttle valve position. Essentially, the subject invention eliminates the double spring arrangement of the prior art by providing a self-closing throttle valve.




The throttle valve includes an airfoil shape utilizing the flow of air through the throttle body to produce a closing force, thereby eliminating the need for a throttle return spring. The throttle valve also includes differential areas that create a net force that rotates the throttle valve towards the closed position. The throttle valve arrangement allows a precise amount of throttle movement from a closed throttle position to the limp home throttle position when the ETC motor is disabled. A throttle valve is attached to a shaft within the airflow passage and rotates about an axis to regulate air intake. An electric motor drives a lever rigidly attached to the shaft through a linkage assembly. A biasing member attached to the shaft biases the throttle valve toward the closed position when the throttle valve is at or near the open position. A second biasing member attached to the sector gear biases the throttle valve to a limp home position when the electric motor is disabled.




The subject invention overcomes the deficiencies of the prior art by providing a simple, reliable and cost effective linkage assembly that provides for the ETC limp home throttle positions.











BRIEF DESCRIPTION OF THE DRAWINGS




The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:





FIG. 1

is a perspective view of an electronically controlled throttle body with a cutaway showing the throttle valve;





FIG. 2

is a cross-sectional view of the throttle valve;





FIG. 3

is a side view of the throttle linkage in the open throttle position; and





FIG. 4

is a side view of the throttle linkage in the closed throttle position.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views, where the subject invention is an electronically controlled throttle assembly


10


with linkage that provides for a limp home throttle valve position. The electronically controlled throttle assembly


10


is shown in FIG.


1


and includes a throttle body


12


defining an airflow passage


14


. A throttle valve


16


is fixed to a shaft


18


to rotate the throttle valve


14


about an axis


20


. An electric motor


22


drives the shaft


16


through a linkage assembly


24


. The airflow passage


14


of the throttle body


12


provides for intake of air into an engine of a motor vehicle. The throttle valve


16


rotates about the axis


20


to regulate the flow of air through the airflow passage


14


between open and closed positions.




Referring to

FIGS. 1 and 2

, the intake of air through the airflow passage


14


creates airflow in the direction indicated by arrows A and the throttle valve


16


includes an airfoil shape such that the airflow across the throttle valve


16


will tend to close the throttle valve


16


.

FIG. 2

shows the cross-section of the throttle valve


16


. The throttle valve


16


includes first and second sections


26


,


28


. The sections


26


,


28


are arranged on opposite sides of the axis


20


. Each of the sections


26


,


28


are curved into an airfoil shape to create a closing force. The sections


26


,


28


are curved in opposing directions to create the closing force that rotates the throttle valve about the axis


20


toward the closed position.




In addition to the airflow shape of the throttle valve


16


, the first section


26


of the airfoil includes an area greater than the second section


28


. Airflow through the airflow passage


14


applies a pressure force to the throttle valve


14


. The difference in areas between the first and second sections


26


,


28


provides a net pressure force that rotates the throttle valve


14


toward the closed position. One result of this configuration is that the need for a throttle return spring is minimized or reduced because the throttle valve


14


configuration, described above will be biased toward the closed position.




Referring to

FIG. 3

, the linkage assembly


24


of the subject invention includes a sector gear


30


driven by the electric motor


22


through at least one drive gear. Specifically, a first gear


32


is mounted on a shaft


36


, drives a second drive gear


28


, which in turn drives the sector gear


30


to rotate the shaft


18


. The linkage assembly


24


shown in

FIG. 3

is shown in the fully open position. The electric motor


22


drives the drive gears


30


,


32


, and


34


rotate the shaft and thereby the throttle valve


16


to the fully open position. The linkage assembly


24


includes a first biasing member


38


attached to the shaft


36


. The first biasing member


38


engages a first stop


40


when the throttle valve is in the fully open position to bias the throttle valve


16


towards the closed position. The first biasing member


38


is preferably a plastic rod engaged to bias the throttle valve


14


towards the open throttle position only when the throttle valve


16


is at or near the fully open throttle position. Rotating the throttle valve


16


away from the open position disengages the first biasing member


38


from the first stop


40


.




The first biasing member


38


serves to kick the throttle valve


16


away from the open position to aid in closing of the throttle valve


16


. Moving the throttle valve


16


from the fully open position to an intermediate open position, allows the airfoil shaped throttle valve


14


and the differing areas of the first and second sections


26


,


28


to further drive the throttle valve


14


toward the closed throttle position. When the electric motor


22


is engaged to rotate the throttle valve


14


between the open and closed positions. Upon disablement of the electric motor


22


, the first biasing member


38


and the airfoil shaped throttle valve


16


act force rotation of the throttle valve


14


towards the closed position.




The linkage assembly


24


in

FIG. 4

is shown in the closed position. The linkage assembly


24


includes a second biasing member


42


to position the throttle valve


16


into a limp home position. The second biasing member


42


is attached to the sector gear


30


and engages a second stop


44


when the throttle valve


16


is moved to the closed position. The second biasing member


42


is preferably a plastic circle spring


46


. The circle spring


46


provides a non-linear biasing force on the sector gear


30


to bias the throttle valve


16


to the limp home position. Normally, the electric motor will overcome the biasing force exerted by the circle spring


46


and drive the throttle valve


16


to the closed position. Upon disablement of the electric motor


22


the circle spring


46


overcomes the forces exerted by the airfoil shaped throttle valve


16


to move the throttle valve


16


to the limp home position.




The circle spring


46


is preferably constructed from plastic. A thickness


48


of the circle spring


46


determines the magnitude of the biasing force exerted on the throttle valve


16


. The biasing force of the circle spring


46


is balanced against the forces created by the configuration of the throttle valve


16


such that the throttle valve


16


opens to the limp home position. It should be understood that the second biasing member may be of any type known in the art. Specifically, it is within the contemplation of this invention that the second biasing member may be a solid piece of rubber sized to provide for the proper opening of the throttle valve to attain the limp home throttle valve position.




In operation, the electric motor


22


drives the sector gear


30


through the linkage assembly


24


and thereby drives the throttle valve


16


between the open position and the closed position. At the open position the first biasing member


38


engages the first stop


40


to bias the throttle valve toward the closed position. The electric motor


22


is able to drive the throttle valve


16


against the biasing force of the first biasing member


38


to the open position. During operation, the first biasing member


38


acts to assist the electric motor


22


to rotate the throttle valve


16


from the open position. Further, the shape and configuration of the throttle valve


16


aids the electric motor


22


in moving the throttle valve


16


to the closed position. The closed position may only be attained with the added force of the electric motor


22


.




Without the force of the electric motor


22


, the force of the circle spring


46


may not be overcome. Therefore upon disablement of the electric motor


22


, the first biasing member


38


kicks the throttle valve


16


towards the closed position, the difference between areas of the first and second sections


26


,


28


and the airfoil shape further drive the throttle valve


16


toward the closed position. The throttle valve


16


is prevented from reaching the closed position and acts against the closing forces to move the throttle valve


16


to the limp home position. The limp home position provides sufficient engine power to the motor vehicle to maneuver the vehicle.




The foregoing description is exemplary and not just a material specification. The invention has been described in an illustrative manner, and should be understood that the terminology used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications are within the scope of this invention. It is understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.



Claims
  • 1. An electronically controlled throttle valve assembly for a motor vehicle comprising;a throttle body defining an air flow passage; a throttle valve for regulating air through said air flow passage movable between an open position and a closed position, said throttle valve having first and second areas and said first area is greater than said second area; a shaft fixed to rotate said throttle valve about an axis; said first and second areas arranged on opposite sides of said axis and the intake of air causes a pressure force on said first and second areas such that said throttle valve is rotated about said axis towards said closed position.
  • 2. The assembly of claim 1, wherein said throttle valve includes an airfoil shape, such that the intake of air causes a lift force to rotate said throttle valve towards said closed position.
  • 3. The assembly of claim 1, further including a first biasing member attached to said shaft, said first biasing member engaged when said throttle valve is in said fully open position to bias said throttle valve towards a closed position.
  • 4. The assembly as in claim 3, wherein said first biasing member is a linear plastic rod extending from said shaft such that in said open position said plastic rod provides a biasing force towards said closed position.
  • 5. The assembly of claim 1, further including a lever attached to rotate said shaft and a second biasing member attached to said lever, said second biasing member engaged when said throttle valve is in said closed position to bias said throttle valve towards said filly open position.
  • 6. The assembly as in claim 5, further including an electric motor to drive said lever to rotate said shaft and said throttle valve between said open and closed positions.
  • 7. The assembly as in claim 6, wherein said second biasing member biases said throttle valve toward said fully open position to a limp home throttle valve position, and said limp home throttle valve position is attained when said electric motor is disabled and cannot overcome said second biasing member.
  • 8. The assembly as in claim 5, wherein said second biasing member is a circular plastic spring.
  • 9. An electronically controlled throttle valve assembly for a motor vehicle comprising;a throttle body defining an air flow passage; a throttle valve having an airfoil shape for regulating intake of air movable between an open and closed position; a shaft fixed to rotate said throttle valve about an axis; said airfoil shape of said throttle valve creating a lift force to rotate said throttle valve about said axis towards said closed position.
  • 10. The assembly of claim 9, wherein said throttle valve includes first and second areas and said first area is greater than said second area, said first and second areas arranged on opposite sides of said axis and the intake of air causes a pressure force on each of said areas such that said throttle valve is rotated towards a closed position.
  • 11. The assembly of claim 10, further including a first biasing member engaged when said throttle valve in said fully open position and biases said throttle valve toward said closed position.
  • 12. The assembly of claim 10, further including a lever attached to rotate said shaft, and a second biasing member attached to said lever, said biasing member engaged when said throttle valve is in said closed position to bias said throttle valve toward said open position to a limp home position such that the engine provides sufficient power to maneuver the motor vehicle.
  • 13. The assembly of claim 12, further including a drive to rotate said lever between said open and closed positions.
  • 14. The assembly of claim 13, wherein said second biasing member is a circular spring, said circular spring biases said throttle valve from said closed position to said limp home position upon disablement of said drive.
Parent Case Info

This application claims priority to provisional application Ser. No. 60/163,983 filed on Nov. 8, 1999.

US Referenced Citations (9)
Number Name Date Kind
3442489 Cary et al. May 1969 A
3960177 Baumann Jun 1976 A
4480815 Kreij Nov 1984 A
4489917 Baumann Dec 1984 A
5146887 Gluchowski et al. Sep 1992 A
5735243 Asai et al. Apr 1998 A
5752484 Apel et al. May 1998 A
6003490 Kihara et al. Dec 1999 A
6037730 Turner et al. Mar 2000 A
Foreign Referenced Citations (1)
Number Date Country
0459 509 Dec 1991 EP
Provisional Applications (1)
Number Date Country
60/163983 Nov 1999 US