This invention relates generally to electronics connectors, and more particularly, but not exclusively, provides an electronics (e.g., PCMCIA card) connector with an integrated heat sink.
PCMCIA cards (also referred to as PC cards), such as a PCMCIA card 100 shown in
PCMCIA cards have evolved into peripheral devices for adding functionality to computers and other computing devices. For example, PCMCIA cards can include modems, wireless transceivers, LAN adapters and other devices. In addition, PCMCIA cards can provide decryption services to unlock channels or other features of a cable or satellite TV box.
However, a disadvantage of electronic components, such as PCMCIA cards, is that as they get more complex, their internal circuitry tend to generate a significant amount of heat, which must be dissipated to prevent damaging the component and adjacent equipment in the system. One conventional mechanism to dissipate the heat is to use a fan. However, fans can be noisy and relatively expensive.
A conventional solution to this problem is to use a heat sink. However, conventional heat sinks do not draw heat from all surfaces of PCMCIA cards. Further, heat sinks can damage PCMCIA cards during insertion/extraction from PCMCIA connectors due to scratching.
Accordingly, a new system is needed that dissipates heat without the noise and expense of a fan and without the drawbacks of conventional heat sinks.
The present invention provides a heat sink and electronic component (e.g., a PCMCIA card) connector that overcomes the drawbacks mentioned above. The heat sink is designed to contact at least two surfaces of a PCMCIA card or other electronic device, thereby ensuring that heat from the PCMCIA card is better dissipated. Further, the heat sink can be movably coupled to the connector such that the heat sink moves horizontally in parallel with a PCMCIA card or other component during insertion/ejection. The heat sink can also move downwards and upwards during component insertion and ejection, respectively.
In an embodiment of the invention, the heat sink comprises a heat sink body and a heat transmitting member. The heat sink body is designed to contact a first section of a component. The heat transmitting member, which is coupled to the heat sink body, extends from the heat sink body to enable contact between the member and a second section of the component.
In an embodiment of the invention, the electronic component connector comprises a connector frame and the heat sink. The connector frame receives a component, such as a PCMCIA card. The heat sink is vertically and horizontally movably coupled to the connector frame such that insertion of a component into the connector frame causes the heat sink to move horizontally in parallel with the component and vertically downwards to contact the component.
An embodiment of the invention provides a method comprising: receiving an electronic component (e.g., a PCMCIA card) within a frame of a component connector; horizontally moving the heat sink in parallel with the component; and moving the heat sink downward until it contacts the component.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
The following description is provided to enable any person having ordinary skill in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the embodiments will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles, features and teachings disclosed herein.
The heat transmitting member 220 can comprise a single plate or a plurality of ribs for transmitting heat from the PCMCIA card 100 to the heat sink body 210. The heat transmitting member 220 can be made of aluminum or any other heat transmitting material. The heat transmitting member 220 is angled downwards from a horizontal plane of the heat sink body 210 so that the heat transmitting member 220 can come into contact with the lower section 130 of the PCMCIA card 100 as shown in
In an embodiment of the invention, the heat sink body 210 has a width approximately equal to the PCMCIA card 100, i.e., about 54 mm, and a length slightly less than then length of the PCMCIA card 100, e.g., about 60 mm. The heat transmitting member 220 can have width equal to about the width of the PCMCIA card 100, i.e., about 54 mm, and a length of several mm, e.g., about 10 mm. Each rib of the heat transmitting member 220 can have a width of about 2 mm with a distance of 1 mm between adjacent ribs.
It will be appreciated by one of ordinary skill in the art the heat sink body 210 and heat transmitting member 220 can comprise different dimensions than those listed above. Further, other designs may be used in implementing the heat sink body 210 and heat transmitting member 220. In addition, additional members 220 can be coupled to the heat sink body 210 to contact other sections of the PCMCIA card 100 and/or other devices.
The heat sink frame 615 generally has approximately the same dimensions of the heat sink body 210 and has an open interior space such that the bottom surface of the heat sink body 210 can come into direct contact with the top surface of the raised section 110 of the PCMCIA card 100. The heat sink frame 615 also includes two sidewalls 627, each having two openings 628 for shafts 630 to pass through. The shafts 630 are each secured to the heat sink frame 627 via a spring washer 625 and a nut 620. It will be appreciated by one of ordinary skill in the art that the shafts 630 can take any form or shape that is capable of alignment with the guard rails 643 and 648.
The heat sink frame 615 is movably coupled to a connector frame 640 that receives the PCMCIA card 100 and to an ejector 645 that ejects the PCMCIA card 100 to an unmated position from contact pins 655. Specifically, the shafts 630 are aligned with guard rails 643 and 648 on the connector frame 640 and ejector 645, respectively. The guard rails 643 are located in sidewalls of the connector frame 640 and are a few mm in length. The guard rails 643 have a sloping shape to enable gradual vertical movement of the heat sink 200. The guard rails 648 have a horizontally and vertically reversed L-shape and are used to move the heat sink 200, and to lock in place when the PCMCIA card 100 is ejected. Operation of the guard rails 643 and 648 will be discussed in further detail below.
The connector frame 640 also includes card guides 635 to guide the PCMCIA card 100 in a lateral direction within the connector frame 640. The card guides 635 are lateral grooves along the interior length of the connector frame 640 and have a thickness equal about at least the thickness of a PCMCIA card, e.g., about 3.3 mm.
The ejector 645, which is movably coupled to the connector frame 640 includes a link 410 that is pivotally coupled to the connector frame 640 at fulcrum 642 at an end the connector frame opposite a card insertion end of the connector frame 640. An ejector lever 415 is coupled to an end of the link 410 such that lateral movement of the lever 415 causes the link 410 to pivot, pushing the ejector 645 outwards, thereby pushing the PCMCIA card 100 partially out of the connector frame 640 where it can be fully extracted by a user.
An insulator body 650 is coupled to the connector frame 640 at an end opposite of a receiving end of the connector frame 640. The insulator body 650 includes contact pins 655 for connecting with the I/O port of the PCMCIA card 100. The contacts 655 can then feed data from and transmit data to the PCMCIA card 100 to/from the device in which the connector 400 is installed.
When a card 100 is ejected, the shaft 630 is located in the leftmost section of the guard rail 643 and rightmost section of the guard rail 648. The guard rail 643 is shaped as a sectioned line with varying down slopes. A first section has a down slope of about 45° and a second section has a down slope of about 20°. By having varying down slopes, extra horizontal force is required to initially when inserting the card 100 into the frame 640 of the connector 400. However, once the shaft 630 reaches the second section, less horizontal force is requires due to the reduced down slope. Alternatively, the varying slopes can provide equal insertion force, wherein the second section provides less insertion force to compensate for increased insertion force from the levers or arms 910, coil springs 610 and contact pins 655.
The guard rail 648 is shaped like a horizontally and vertically reversed “L” and the horizontal area acts to lock the heat sink 200 to prevent moving down at a card ejected position.
Continuous pressing against the knobs 710 leads to pushing/sliding of the ejector 645 inwards in the connector 400, thereby causing the shaft 630 to move to the left side of the guard rail 648. Movement of the shaft 630 relative to the guard rail 643 is minimal, if any.
To eject the PCMCIA card 100, the ejection button 420 is pushed inwards, pushing the lever 415 inwards and activating the link 410, which rotates, pushing the ejector 645 outwards. Accordingly, the shaft 630 passes over the protrusion 1200 and heads upwards along the guard rail 643, thereby pushing the heat sink 200 upwards from the PCMCIA card 100.
Accordingly, the connector 400 prevents scratching and other damaging of the PCMCIA card 100 by enabling the heat sink 200 to move in parallel with the PCMCIA card 100 during insertion and extraction. Further, during the insertion, shaft 630 still keep to moving down after the heat sink 200 contacts the PCMCIA card 100, this motion provides enough contact force to the card 100 even if it has tolerance on its dimensions. In addition, the guard rails 643 comprise two separate downward sloped sections that can keep the insertion force relatively constant as an initial steep angle transfers into a shallow angle to compensate for the upward biased levers or arms 910, coil springs 605 and mating force of contact pins 655 or ease insertion after partial insertion. During ejection, the different sections and upward biased levers or arms 910 and coil springs 605 assist in ejection of the PCMCIA card 100.
The foregoing description of the illustrated embodiments of the present invention is by way of example only, and other variations and modifications of the above-described embodiments and methods are possible in light of the foregoing teaching. The embodiments described herein are not intended to be exhaustive or limiting. The present invention is limited only by the following claims.
This application claims benefit of and incorporates by reference patent application Ser. No. 60/538,970, entitled “PCMCIA Connector with Heat Sink,” filed on Jan. 23, 2004, by inventor Takeshi Nishimura.
Number | Name | Date | Kind |
---|---|---|---|
4471837 | Larson | Sep 1984 | A |
5473506 | Kikinis | Dec 1995 | A |
5475563 | Donahoe et al. | Dec 1995 | A |
5793609 | Donahoe et al. | Aug 1998 | A |
5796584 | Myrberg | Aug 1998 | A |
5953211 | Donahoe et al. | Sep 1999 | A |
6205023 | Moribe et al. | Mar 2001 | B1 |
6278609 | Suzuki et al. | Aug 2001 | B1 |
6418024 | Edevold et al. | Jul 2002 | B1 |
6870746 | Leeson et al. | Mar 2005 | B1 |
6942506 | Kimura et al. | Sep 2005 | B1 |
20040226689 | Thompson et al. | Nov 2004 | A1 |
20050074995 | Kimura et al. | Apr 2005 | A1 |
20050190540 | Shearman et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
03188589 | Aug 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20050162834 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60538970 | Jan 2004 | US |