This document relates to devices and methods for the treatment of health conditions including obesity and diabetes. For example, this document relates to devices and methods for treating obesity and diabetes using electroporation endoscopically.
Obesity is a global problem crossing age, ethnic, and socioeconomic boundaries. In general, obesity means having too much body fat. Morbid obesity is a serious health condition that can interfere with basic physical functions such as breathing or walking. Individuals who are morbidly obese are at greater risk for illnesses including diabetes, high blood pressure, sleep apnea, gastroesophageal reflux disease, infertility, low back pain, asthma, gallstones, osteoarthritis, heart disease, and cancer. Billions of dollars are spent each year treating millions of individuals around the world suffering from such diseases. Many people suffering from morbid obesity find it nearly impossible to lose weight by controlling their diet and exercising.
Type 2 diabetes is a chronic condition that affects the way a body metabolizes sugar (glucose). With type 2 diabetes, the body either resists the effects of insulin—a hormone that regulates the movement of sugar into cells—or doesn't produce enough insulin to maintain a normal glucose level. More common in adults, type 2 diabetes increasingly affects children as childhood obesity increases. There is no known cure for type 2 diabetes. In some cases it may be managed by eating well, exercising and maintaining a healthy weight. If diet and exercise aren't enough to manage blood sugar well, diabetes medications or insulin therapy may be needed.
Ablation/electroporation therapy is a type of minimally invasive procedure used to destroy tissue associated with various conditions. For example, ablation procedures can be used to treat tumors or to destroy heart tissue that's causing abnormally rapid heart rhythms. Ablation therapy may be administered using probes inserted through the skin, flexible tubes (catheters) inserted through a body conduit, or energy beams to reach the area being treated. Imaging techniques may be used to guide the ablation. The tissue is injured or destroyed with heat (e.g., radiofrequency ablation), extreme cold (cryoablation), lasers or a chemical.
This document provides devices and methods for the treatment of health conditions including obesity and diabetes. In some embodiments, the methods and systems provided herein can cause weight loss or control diabetes by reducing the caloric absorption of an individual, by increasing levels of gut hormones important in appetite regulation and insulin secretion, and/or by reshaping the mucosa of the small intestines. For example, this document provides several devices and methods for treating obesity and diabetes by using electroporation to modulate the duodenal mucosa. In addition, this document provides devices and methods for bypassing portions of the gastrointestinal (GI) tract to reduce nutritional uptake.
In one implementation, an electroporation device includes a shaft defining a first lumen therethrough; a proximal balloon circumferentially attached about a distal portion of the shaft; a middle portion extending distally of the proximal balloon; and a distal balloon extending distally of the middle portion. The middle portion defines a middle portion lumen in communication with the first lumen. The middle portion includes one or more electrodes configured to administer electroporation energy. The middle portion includes one or more apertures through a wall of the middle portion and in communication with the middle portion lumen. The middle portion has a longitudinally contracted configuration and a longitudinally extended configuration that is longer than the longitudinally contracted configuration. In some embodiments, the middle portion has a fixed length.
Such an electroporation device may optionally include one or more of the following features. The distal balloon may have a distal balloon lumen therethrough that is in communication with the middle portion lumen. The distal balloon lumen may be defined by a distal shaft on which the distal balloon is circumferentially attached. The shaft may define a proximal balloon inflation lumen in communication with the proximal balloon. The shaft and the middle portion may define a distal balloon inflation lumen in communication with the distal balloon. The middle portion may comprise an accordion configuration that facilitates the middle portion to reconfigure between the longitudinally contracted configuration and the longitudinally extended configuration. The first lumen and the middle portion lumen may be configured to receive an endoscope or to advance through the working channel of an endoscope. This catheter can also be advanced over a guide wire under endoscopic and/or fluoroscopic guidance.
In another implementation, a method of administering electroporation energy to patient includes deploying an electroporation device at a target location within the patient, energizing the one or more electrodes with electroporation energy, and, while energizing the one or more electrodes, supplying electrically conductive liquid into the electroporation device such that the electrically conductive liquid flows through the one or more apertures. The electroporation device includes a shaft defining a first lumen therethrough; a proximal balloon circumferentially attached about a distal portion of the shaft; a middle portion extending distally of the proximal balloon; and a distal balloon extending distally of the middle portion. The middle portion defines a middle portion lumen in communication with the first lumen. The middle portion includes one or more electrodes configured to administer electroporation energy. The middle portion includes one or more apertures through a wall of the middle portion and in communication with the middle portion lumen. The middle portion has a longitudinally contracted configuration and a longitudinally extended configuration that is longer than the longitudinally contracted configuration. In some embodiments, the middle portion has a fixed length.
Such a method of administering electroporation energy to patient may optionally include one or more of the following features. The target location may be a duodenum or a jejunum. The method may further comprise, before supplying electrically conductive liquid into the electroporation device, inflating the proximal balloon and the distal balloon. The method may further comprise, before supplying electrically conductive liquid into the electroporation device, extending the middle portion to reconfigure the middle portion from the longitudinally contracted configuration to the longitudinally extended configuration. The electrically conductive liquid may carry the electroporation energy from the one or more electrodes to tissue of the patient. The method may further comprise installing an endoscope shaft into the first lumen and the middle portion lumen, and using a single or double channel endoscope to deploy the electroporation device and or inject the electrically conductive liquid. This catheter can also be advanced over a guide wire under endoscopic and/or fluoroscopic guidance.
In another implementation, an electroporation device includes a shaft defining a lumen therethrough; a balloon circumferentially attached about a distal portion of the shaft, wherein the balloon has a longitudinal length between 5 to 20 cm; and one or more electrodes disposed on an outer surface of the balloon. The lumen is configured to receive an endoscope therein. In some embodiments, the balloon is a porous material that facilitates passage of an electrically conductive liquid therethrough. This catheter can also be advanced over a guide wire under endoscopic and/or fluoroscopic guidance.
In another implementation, a method of treating a patient includes deploying an electroporation device at a target location within an intestine of the patient. The electroporation device includes a shaft defining a first lumen therethrough; a distal balloon circumferentially attached about a distal portion of the shaft; a middle portion extending proximal to the distal balloon, where the electroporation electrodes are mounted; and an overtube with proximal balloon delivered over a single or double channel endoscope capable of inflating and deflating separate from distal balloon. The electroporation catheter is advanced through the working channel of the single or double channel endoscope to deliver therapy to the target tissue. The inflated distal balloon on the electroporation catheter and the inflated proximal balloon on the overtube over the endoscope provide a seal to create a column of electrically conductive liquid injected through the working channel of the endoscope.
In another implementation, a method of treating a patient includes deploying an electroporation device at a target location within an intestine of the patient. The electroporation device/catheter includes a shaft defining a first lumen therethrough, with no balloon on this shaft just electrodes delivered through the working channel of a single of double channel endoscope. An overtube with two balloons (proximal and distal) separated by a tissue supporting structure to spread the duodenal or jejunal folds is delivered over a single or double channel endoscope to the target small intestinal segment. The endoscope is retracted from the distal overtube balloon and a self sealing valve in the lumen of the distal portion of the overtube/distal balloon is sealed. After the proximal balloon is inflated and electrically conductive liquid is injected through the working channel of the endoscope to create a liquid column. The electroporation catheter is then delivered through the endoscope into the liquid column to deliver the electroporation current. In one example, the tissue supporting structure can be a collapsible/expandable stent or mesh, while in its expanded configuration the tissue supporting structure can spread mucosa folds to increase the surface area of mucosa that is accessible and exposed to the conductive liquid.
In another implementation, a method of treating a patient includes deploying an electroporation device at a target location within an intestine of the patient. The electroporation device includes a shaft defining a first lumen therethrough; a proximal balloon circumferentially attached about a distal portion of the shaft; a middle portion extending distally of the proximal balloon; and a distal balloon extending distally of the middle portion. The middle portion defines a middle portion lumen in communication with the first lumen. The middle portion includes one or more electrodes configured to administer electroporation energy. The middle portion includes one or more apertures through a wall of the middle portion and in communication with the middle portion lumen. The middle portion has a longitudinally contracted configuration and a longitudinally extended configuration that is longer than the longitudinally contracted configuration.
Such a method of treating a patient may optionally include one or more of the following features. The method may further comprise energizing the one or more electrodes with electroporation energy. The method may further comprise supplying liquid into the electroporation device such that the liquid flows through the one or more apertures and into the intestine. The liquid may comprise medicinal solutions or drugs. The method may further comprise stretching at least a portion of the intestine to increase an intestinal surface area in contact with the liquid.
Such a method of treating a patient may optionally include one or more of the following features. The liquid may comprise medicinal solutions or drugs that can be delivered to target small intestinal cell through the process of reversible electroporation. The method may further comprise stretching at least a portion of the intestine to increase an intestinal surface area in contact with the liquid. The method may further comprise an over the scope overtube with tissue retraction structure in between two balloons delivered over an endoscope to create a liquid column with stretch intestinal surface to effectively deliver electroporation current through a catheter delivered through the working channel of the endoscope. Finally, any of the electroporation catheters described can also be delivered over a guidewire under fluoroscopic guidance.
Particular embodiments of the subject matter described in this document can be implemented to realize one or more of the following advantages. In some embodiments, methods and systems provided herein provide a minimally invasive weight loss and/or diabetes therapy. For example, in some embodiments electroporation of the duodenal mucosa is performed endoscopically. Such minimally invasive techniques can reduce recovery times, patient discomfort, and treatment costs. In some embodiments, the methods and systems provided herein alter the body's ability to process sugar and may improve glycemic control for patients with Type 2 diabetes. Additionally, these catheters and/or overtubes can be used to ablate other portions of the gastrointestinal tract where superficial mucosal ablation can be utilized such as in the treatment of metaplasia, dysplasia, or superficial neoplasia of the gastrointestinal tract and/or cystic neoplasms of the pancreas where the electroporation catheter with electrodes is delivered through a 19 gauge endoscopic ultrasound needle to the cyst under endosonographic guidance.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described herein. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description herein. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers represent corresponding parts throughout.
This document provides devices and methods for the treatment of health conditions including obesity and diabetes. In some embodiments, the methods and systems provided herein can cause weight loss and/or can control diabetes by reducing the caloric absorption of an individual, by increasing levels of gut hormones important in appetite regulation and insulin secretion, and/or by reshaping the mucosa of the small intestines. For example, this document provides several devices and methods for treating obesity and diabetes by using electroporation to modulate the duodenal mucosa. In addition, this document provides devices and methods for bypassing portions of the GI tract to reduce nutritional uptake.
Referring to
As described further below, devices and methods for administering electroporation to modulate the duodenal mucosa 122 are provided herein. Moreover, using the provided devices and methods for administering electroporation, the depths and cell composition of the crypts and villi of duodenal mucosa 122 can be modulated. Using such devices and techniques, weight loss and/or control of diabetes by reducing the caloric absorption, by increasing gut hormones, and/or by re-setting the diseased intestinal mucosa of an individual can be achieved.
Referring to
Proximal shaft 210a, middle portion 240, and distal shaft 210b define a lumen 212. In some embodiments, lumen 212 is sized to slidably receive an endoscope shaft. In some embodiments, lumen 212 is sized to slidably receive a guidewire.
Proximal balloon 220 and distal balloon 230 are inflatable members. Accordingly, inflation media (e.g., saline, water, CO2, air, etc.) can be supplied to proximal balloon 220 and distal balloon 230 to cause their inflation. In some embodiments, the wall of proximal shaft 210a defines an inflation lumen through which inflation media is supplied to proximal balloon 220. In some embodiments, (i) the wall of proximal shaft 210a, (ii) the wall of middle portion 240, and (iii) the wall of distal shaft 210b defines an inflation lumen through which inflation media is supplied to distal balloon 230. Accordingly, in some embodiments the inflation and deflation of proximal balloon 220 and distal balloon 230 can be controlled separately. Alternatively, in some embodiments the inflation and deflation of proximal balloon 220 and distal balloon 230 are controlled unitarily. While balloons 220 and 230 are deflated, in some embodiments mucosa electroporation device 200 can pass through the working channel of an endoscope.
Proximal balloon 220 and distal balloon 230 are flexible, elastic, conformable balloon members. In some embodiments, proximal balloon 220 and distal balloon 230 are made from silicone, or latex, or other types compliable materials. Accordingly, when inflated, proximal balloon 220 and distal balloon 230 are conformable to the topography of the GI conduit. Therefore, proximal balloon 220 and distal balloon 230, when inflated, provide a substantial seal against the wall of the GI conduit. While in some embodiments proximal balloon 220 and distal balloon 230 are made from the same material, in some embodiments proximal balloon 220 and distal balloon 230 are made from dissimilar materials.
In some embodiments, the maximum outer diameter of proximal balloon 220 and/or distal balloon 230, when inflated, is in a range from about 30 mm to about 50 mm. The maximum inflated outer diameter of proximal balloon 220 and distal balloon 230 is scalable to any suitable size. For example, in some embodiments the maximum outer diameter of proximal balloon 220 and/or distal balloon 230, when inflated, is in a range from about 35 mm to about 45 mm, or from about 40 mm to about 50 mm, or from about 30 mm to about 40 mm, or from about 25 mm to about 35 mm, or from about 30 mm to about 60 mm. In some embodiments, the maximum outer diameters of proximal balloon 220 and distal balloon 230 are equal to each other. In some embodiments, the maximum outer diameters of proximal balloon 220 and distal balloon 230 are unequal.
As described further below, distal shaft 210b or distal balloon 230 includes a valve 232 disposed within the lumen 212. Valve 232 allows passage of an instrument (e.g., an endoscope or guidewire) therethrough. But, when no such instrument is in contact with valve 232, valve 232 acts as a closure at the distal end of lumen 212 so that lumen 212 is dead ended at or near distal balloon 230.
Middle portion 240 is longitudinally extendable and laterally deflectable and flexible. In the depicted embodiment, middle portion 240 is configured as an accordion member having multiple pleats and multiple flexible, extendable portions 242. In some embodiments, middle portion 240 is configured in other arrangements that are longitudinally extendable and laterally flexible. For example, and without limitation, in some embodiments middle portion 240 is configured as a coil (e.g., helically), an elastic member, an inter-foldable member, a rolled-up member, a telescoping member, and the like, and combinations thereof.
In some embodiments, middle portion 240, when fully longitudinally extended, is about 30 cm in length. The fully longitudinally extended length of middle portion 240 is scalable to any suitable size. For example, in some embodiments the fully longitudinally extended length of middle portion 240 is in a range from about 25 cm to about 35 cm, or from about 30 cm to about 40 cm, or from about 20 cm to about 30 cm, or from about 15 cm to about 35 cm, or from about 25 cm to about 50 cm.
Middle portion 240 is configured to facilitate electroporation. Accordingly, middle portion 240 includes one or more electrodes 244. Electrodes 244 can be different types of electrodes, and/or electrodes 244 can be configured to deliver different types of energy in different embodiments of electroporation device 200. For example, in the depicted embodiment electrodes 244 are DC electrodes. Alternatively, or additionally, mucosa electroporation device 200 can be configured to deliver other types of electroporation energy such as, but not limited to, radiofrequency (RF), AC, cryogenic, chemical, and the like. In some embodiments, a combination of such energy sources can be used within a single embodiment of electroporation device 200 (e.g., RF and DC are used in combination is some embodiments). The electroporation energy can be monopolar or bipolar. Electrodes 244 can be electrically wired to an electroporation energy source (not shown) located external to the patient. In some implementations, two or more types of electroporation energy sources can be coupled to electrodes 244. For example, in one particular non-limiting implementation a RF source and a NANOKNIFE® irreversible electroporation system by AngioDynamics, Inc. are both coupled to electrodes 244 such that a switch box is used to select between the two sources of energy.
Middle portion 240 also includes one or more apertures 246. Apertures 246 are openings through the wall of middle portion 240 such that lumen 212 is in fluid communication with the exterior of electroporation device 200 via apertures 246. In some embodiments, alternatively or additionally, the material comprising middle portion 240 is porous such that lumen 212 is in fluid communication with the exterior of mucosa electroporation device 200 via the pores of the material. As described further below, apertures 246 can provide passageways for a conductive liquid that will carry electroporation energy from electrodes 244 to the wall of the tissue structure (e.g., the duodenum) in which electroporation device 200 is resident.
Referring also to
In some embodiments, electroporation device 200 is configured to be deployed via a working channel of an endoscope or laparoscope. In some embodiments, electroporation device 200 is configured to be deployed over a guidewire instead of over endoscope 300. One or more radiopaque markers or echogenic markers, or both, may be disposed on one or more locations or on one or more portions of electroporation device 200 (e.g., on the balloons 220 and/or 230).
Referring to
Electroporation device 200 is shown after removal of a delivery device, such as endoscope 300 (
When fully deployed, proximal balloon 220 is inflated to occlude the proximal portion of the duodenum 120, and distal balloon 230 is inflated to occlude the distal portion of duodenum 120. The interior space of duodenum 120 defined between the proximal balloon 220 and the distal balloon 230 is substantially sealed from other portions of the GI tract 100.
With the balloons 220, 230 inflated, an electrically conductive liquid 400 can be delivered into the interior space between the balloons 220, 230 by injecting it via lumen 212 and apertures 246 (refer to
Electrodes 244 can be energized to provide a source of electroporation energy. The electrically conductive liquid 400 within the interior space between the balloons 220, 230 will carry the electrical energy from the electrodes 244 to duodenal mucosa 122. The pressure of electrically conductive liquid 400 within the interior space should be adjusted to be high enough such that electrically conductive liquid 400 is forced into the crypts of duodenal mucosa 122.
In some implementations, a sequential ablation technique where saline and dextrose are circulated in the interior space between the balloons 220, 230 sequentially, while delivering electroporation energy throughout is used. This would be a mechanical method to create phased ablation to minimize sloughing and essentially completely prevent bleeding or stricture. There would be a timed sequence with a pre-time set of two pumps that would create the phased delivery. The setup would be one pump continuously infuses the saline, and through the tubing a second pump will change the volume of dextrose or lactated ringers going in. The electroporation source could be kept constant, or alternatively more than one electrode placed along electroporation device 200 and a more standard electronic phasing circuit can be implemented.
In some embodiments, a hydrogel is used to electrically carry electroporation energy. In some cases the hydrogel may facilitate longer lasting contract of electroporation energy with duodenal mucosa 122, including within the crypts of duodenal mucosa 122.
In some embodiments, proximal balloon 220 is positioned so as to envelop the ampulla and to protect the ampulla during electroporation. Accordingly, in some embodiments proximal balloon 220 is highly compliant to provide such protection to the ampulla.
After administration of electroporation using electroporation device 200 and electrically conductive liquid 400, the delivery of the electroporation energy can be stopped. Then the balloons 220, 230 can be deflated, and electroporation device 200 can be removed from GI tract 100 of the patient.
Referring to
Shaft 520 defines a lumen 522 that is analogous to lumen 212 of electroporation device 200. In some embodiments, shaft 520 also defines one or more apertures 526. Apertures 526 allow an electrically conductive liquid to flow from lumen 522 to an interior space of balloon 510. However, such electrically conductive liquid is optional. That is, in some embodiments electrodes 530 deliver electroporation energy to duodenal mucosa 122 without the use of electrically conductive liquid.
Balloon 510 can be made of the materials described above in reference to balloons 220, 230 of electroporation device 200, for example. In some embodiments, the longitudinal length of balloon 510 is about 15 cm. The longitudinal length of balloon 510 is scalable to any suitable size. For example, in some embodiments the longitudinal length of balloon 510 is in a range from about 10 cm to about 20 cm, or from about 15 cm to about 25 cm, or from about 10 cm to about 25 cm, or from about 15 cm to about 20 mm, or from about 10 cm to about 15 cm. Balloon 510 can have an inflated maximum outer diameter that is sized as described above in reference to balloons 220, 230 of electroporation device 200, for example.
In some embodiments, electroporation device 500 is an example of a weeping balloon design. That is, balloon 510 can be partly or fully made from a porous or microporous material such that an electrically conductive liquid can elute, weep, or be otherwise transmitted through balloon 510 to form droplets 540. Accordingly, droplets 540 of electrically conductive liquid can carry electroporation energy from electrodes 530 to duodenal mucosa 122. In some embodiments, a hydrogel is used to electrically carry electroporation energy. In some cases the hydrogel may facilitate longer lasting contract of electroporation energy with duodenal mucosa 122, including within the crypts of duodenal mucosa 122.
Electrodes 530 can be analogous to electrodes 244 of electroporation device 200 as described above.
Referring to
Electroporation device 600 includes balloon 610, a shaft 620, and one or more electrodes 630. Balloon 610 is circumferentially disposed about shaft 620. Electrodes 630 are disposed on the outer surface of shaft 620. Electrodes 630 can be analogous to electrodes 244 of electroporation device 200 as described above.
The size and materials of construction of balloon 610 can be analogous to those of balloon 510 described above.
Shaft 620 defines a lumen 622 that is analogous to lumen 212 of electroporation device 200. Shaft 620 also defines one or more apertures 626. Apertures 626 allow an electrically conductive liquid to flow from lumen 622 to an interior space of balloon 610 where electrically conductive liquid can be energized with electroporation energy from electrodes 630. Thereafter, the energized electrically conductive liquid can elute, weep, or be otherwise transmitted through balloon 610 to form droplets 640 that carrying electroporation energy to duodenal mucosa 122, including within the crypts of duodenal mucosa 122.
Referring also to
Electroporation device 600 is shown after removal of a delivery device, such as endoscope 300 (
With balloon 620 inflated, an electrically conductive liquid can be infused into the interior space of balloon 620 by injecting it via lumen 622 and apertures 626 (refer to
Electrodes 630 can be energized to provide a source of electroporation energy. The electrically conductive liquid within the interior space of balloon 610 will carry the electrical energy from the electrodes 630, through the wall of balloon 610, and to duodenal mucosa 122, including into the crypts of duodenal mucosa 122.
In some embodiments, a hydrogel is used to electrically carry electroporation energy. In some cases the hydrogel may facilitate longer lasting contract of electroporation energy with duodenal mucosa 122, including within the crypts of duodenal mucosa 122.
After administration of electroporation using electroporation device 600 and the electrically conductive liquid, the delivery of the electroporation energy can be stopped. Then balloon 620 can be deflated, and electroporation device 600 can be removed from GI tract 100 of the patient.
Referring to
In the depicted embodiment, electroporation device 700 includes an endoscope 710, a proximal balloon 720, a distal balloon 730, and a catheter 740 that includes one or more electrodes 742. Proximal balloon 720 is located at a distal end region of endoscope 710. Catheter 740 is configured to be slidably disposed within a working channel of endoscope 710. Distal balloon 730 is attached at a distal end region of catheter 740. Electrodes 742 are attached at spaced-apart locations along the length of catheter 740.
In some embodiments, proximal balloon 720 is attached to the distal end region of endoscope 710 (and endoscope 710 includes an inflation lumen). In some embodiments, proximal balloon 720 is attached to a distal portion of a sheath (not shown) that includes an inflation lumen, and that defines a larger lumen that can slidably receive endoscope 710.
Balloons 720 and 730 can be compliant balloons that are sized and constructed like balloons 220, 230 of electroporation device 200, for example. Electrodes 742 can be analogous to electrodes 244 of electroporation device 200 as described above.
Endoscope 710 includes a lumen (e.g., an irrigation lumen) through which electrically conductive liquid 400 can flow. When electroporation device 700 is in use (as depicted in
Referring to
In the depicted embodiment, electroporation device 800 includes catheter shaft 810, a proximal balloon 820, a distal balloon 830, one or more electrodes 812, and one or more apertures 814. Proximal balloon 820 is attached to catheter shaft 810 at any suitable distance proximal from the distal end of catheter shaft 810. Distal balloon 830 is attached at a distal end region of catheter shaft 810. Electrodes 842 are attached at spaced-apart locations along the length of catheter shaft 810. Apertures 814 are defined at spaced-apart locations along the length of catheter shaft 810.
Balloons 820 and 830 can be compliant balloons that are sized and constructed like balloons 220, 230 of electroporation device 200, for example. Electrodes 812 can be analogous to electrodes 244 of electroporation device 200 as described above.
Catheter shaft 810 defines one or more apertures 814 through which electrically conductive liquid 400 can flow. When electroporation device 800 is in use (as depicted in
Referring to
In the depicted embodiment, electroporation device 900 includes an endoscope overtube 910, a proximal balloon 920, a distal balloon 930, a radially and/or longitudinally expandable middle portion 940, and an electroporation catheter 950 that includes one or more electrodes 952. An endoscope 300, along with the electroporation device 900, comprises an electroporation device system.
Proximal balloon 920 is attached to overtube 910 in a circumferential fashion. Middle portion 940 extends between proximal balloon 920 and distal balloon 930. Each of the overtube 910, proximal balloon 920, distal balloon 930, and middle portion 940 define a lumen that can slidably receive endoscope 300.
Within the lumen of distal balloon 930 is a distal valve 932. Valve 932 allows the passage of an instrument (e.g., endoscope 300 or guidewire) therethrough. But, when no such instrument is in contact with valve 932, valve 932 acts as a fluidic closure at the distal end of the lumen so that the lumen is dead ended at or near distal balloon 930.
Electroporation catheter 950 is configured to be slidably disposed within a working channel of endoscope 300 (as depicted in
Balloons 920 and 930 can be compliant balloons that are sized and constructed like balloons 220, 230 of electroporation device 200, for example. Electrodes 952 can be analogous to electrodes 244 of electroporation device 200 as described above.
Middle portion 940 is made of a foldable mesh or porous material. Hence, middle portion 940 can be radially and/or longitudinally compressed (as shown in
Endoscope 300 includes a lumen (e.g., an irrigation lumen) through which a supply of electrically conductive liquid 400 can be delivered as depicted in
When electroporation device 900 is in use, electrically conductive liquid 400 can flow through the lumen of endoscope 300, pass through the porous material of middle portion 940, and thereafter reside in duodenum 120 between proximal balloon 920 and distal balloon 930. In this arrangement, energy from energized electrodes 952 can be conducted by electrically conductive liquid 400 to duodenal mucosa 122, including within the crypts of duodenal mucosa 122. In some cases, the irregular wall topography and/or crypts of duodenal mucosa 122 may become more planar by the mechanical forces applied by electroporation device 900 to duodenal mucosa 122.
In some embodiments, the electroporation devices and systems provided herein can include design features to prevent or inhibit undesired electro-stimulation of non-targeted bodily structures such as, but not limited to, the patient's heart and/or nervous system. For example, in some embodiments insulating elements can be included on or adjacent to one or more portions of the electroporation devices provided herein. Such insulating elements can block the emitted energy from following particular paths so as to protect non-targeted bodily structures. In some embodiments, insulated bipolar electroporation is incorporated (e.g., where the electrodes are mounted within or on a balloon, and/or separate electrodes are placed in the proximal duodenum). Such electrodes can be used as the anode or cathode when the complimentary cathode or anode are located within, on, or as a separate electrode to a balloon placed in the distal duodenum. For example, the insulation can be an insulating coating on a particular side of a balloon, a second balloon which insulated, or an air sac acting as insulation element to cover one side of the external surface of a balloon. In some embodiments, such insulating techniques can be used to cover one side of the external surface of a weeping balloon. In some embodiments, the energy delivery devices make use of the curvature of the duodenum to provide the desired electroporation without extra duodenum stimulation. In some embodiments, bipolar electrodes are included (e.g., a distal electrode and a proximal electrode on an electroporation device).
In some cases when the aforementioned insulation is included, because of the insulation on the external surface, the adjacent duodenal tissue to the insulated surface will require remaining treatment. To do this, for the proximal duodenum some embodiments use a return electrode in the greater curvature of the stomach, and for the distal and mid duodenum electrodes are placed in the proximal jejunum or other portions of the GI tract. These embodiments can be in alternatives or additions to the already described configuration with the return electrode placed on the abdomen, on the back, or somewhere else externally.
In some embodiments, undesired electro-stimulation of non-targeted bodily structures can be avoided or inhibited using a unique method of electroporation where pulse DC currents are delivered judicially at various times throughout the cardiac cycle. In some embodiments, continuous electroporation throughout the cardiac cycle is given; however, if ectopy or any change in the cardiac rhythm is noted, then that trigger (e.g., the far-field ventricular electrogram) can be used as the sensor wherein the energy delivery will be limited to only the first 200 msec, for example, following the detected far-field QRS. In some embodiments, an internal ECG sensor and electric field sensor can be placed on the insulated surface of the electroporation device. If there is no electric field pointing in the direction of heart, then substantially no danger of electroporation interfering with normal heart rhythm exists, and continuous electroporation can be carried out. If there is electric field pointing towards the direction of the heart, then the signal from the internal ECG sensor can be used for timing the electroporation pulse delivery so that the pulse is not delivered in the most vulnerable phase of heart rhythm.
While the implementations described above pertain to the delivery of electroporation to the duodenal cells relevant for the management of diabetes and obesity, the duodenum and the adjacent portions of the GI tract also offer unique vantage points to deliver electroporation and other energy delivery to neighboring structures. Such neighboring structures included, but are not limited to, the celiac ganglion and plexus, lymphatic ganglia and plexus, and the renal nerves and associated plexuses. Since the GI tract is curved and tortuous, bipolar electroporation can be carried out by deploying a distal electrode and a proximal electrodes along GI tract in such a way that the electric field created in between these two points will cover the visceral tissues and organs on the path outside of GI tract. Therefore, therapy can be delivered using some embodiments provided herein for the treatment of conditions such as, but not limited to, pancreatic malignancy, pancreatic and deep visceral pain and for hypertension by reversible and irreversible electroporation of the ganglia. Such hypertension management, in turn, would help with a metabolic syndrome that results from the combination of obesity, diabetes, and hypertension.
In some additional embodiments, stent devices for treating health conditions including obesity and diabetes are combination devices that combine the benefit of placing internal conduits covering the surface of the duodenal mucosa along with the benefits of more permanent electroporation-based modulation. By combining the two (a stent and electroporation electrodes), a system to secure the stent is attained. The conduit is essentially a covered stent, but instead of a crossing diamond-type of scaffold, linear struts are included. The purpose of the linear struts is to elute a gel which on electroporation will adhere to the mucosa, providing a secure hold. Between the linear struts, there is nothing apposing the covered stent to the duodenal mucosa so that secretions may still come out and enter the duodenal lumen. Food would pass through the stent, and thus a two-pronged approach for treating this region can be attained. Additional iterations could include one-way valves placed in between the linear struts, or a blood sugar sensor/RF feedback for electroporation release to titrate for an individual an ideal total energy load to maintain blood sugars.
In another embodiment using a stent conduit, the known benefits of a rouxen-Y procedure with that of electroporation are combined. Here, a deflectable catheter which has both an internal lumen for a wire, RF electrodes which can place energy on the central wire, and a second monorail wire is maneuvered out of the lumen of the proximal duodenum. The catheter is then moved to enter the proximal jejunum, and then is deflected back towards its initial entry site, and through the monorail lumen, a snare is used to grab the central lumen wire. Thus, a rail that essentially leaves the lumen and reenters, feeding back to itself is created. Over this wire, at least three iterations are possible: a) a covered stent/conduit is advanced over the distal wire, and then to secure it, a suture is advanced over both proximal and distal wires and tightened on the duodenum, b) the conduit is placed over the proximal wire following its course and essentially creating the anastomosis externally and with a similar locking mechanism to keep it in place, and c) there is a combination of the prior two such that a conduit, a covered stent, and a locking mechanism are all used in a given patient.
In some embodiments, the stent could be adjusted with noninvasive methods, including magnets or endoscopically placed stents, and the stent itself may be delivered via a laparoscopic approach.
Additionally, the devices and techniques described herein can be applied in contexts beyond that of the duodenum. For example, the devices and techniques described herein can be applied in the contexts of the mucosa of the distal small and large intestines, and other endoluminal organs such as the gallbladder, pancreas, and in the arteriovenous system.
Additionally, the devices and techniques describes herein can be applied to pherese drugs to cells within the mucosa of the duodenum 122 to alter their function. For example drugs such as rapamycin know to modulate the effects of paneth and stem cells within the crypts of the small intestines can be ionized and pheresed into these cell using electroporation. Furthermore, sweet substances known to stimulate the enteroendocrine cells within the villi of the duodenum can be applied. Similarly, tacrolimus can be used to stimulate stem cells in some cases. As such, these devices and techniques may cycle energy alone, drug or substance alone, or in combination to treat obesity and diabetes.
Some of the devices and methods provided herein can also incorporate stimulatory electrodes or other devices that can be used to ascertain cell death or activity, or to measure the temperature, electrical field strength, and/or charge density of the delivered electroporative therapy.
Some of the devices provided herein which incorporate a balloon or balloon-like elements may be used to achieve stretch of the intestine, not only to increase the surface area of contact to the crypt cells, but by virtue of the stretch itself produce membrane poration and induced apoptosis.
Some embodiments of the balloon or mesh incorporated devices are designed to increase the charge density of delivery through injection-like ports that may be achieved by a serrated surface or actual expandable, low surface area, pointed elements. These may serve as actual injection ports for charge or an electrolyte-rich solution to transfer the electroporation rendering energy or serve as regions of high electron or other electrical force density by virtue of their shape, which would match the required area where the increased density of charge is required and thus minimizing risks of electrical or thermal injury to the non-targeted sites.
It should be understood that one or more of the features described anywhere herein may be combined with one or more other features described anywhere herein to create hybrid devices and/or methods, without departing from the scope of this disclosure.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described herein as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system modules and components in the embodiments described herein should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single product or packaged into multiple products.
Particular embodiments of the subject matter have been described. Other embodiments are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous.
This application is a National Stage application under 35 U.S.C. § 371 of International Application No. PCT/US2016/055966, having an International Filing Date of Oct. 7, 2016, which claims the benefit of U.S. Provisional Ser. No. 62/238,191 filed Oct. 7, 2015. The disclosures of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/055966 | 10/7/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/062753 | 4/13/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1953819 | Payne | Apr 1934 | A |
4676228 | Krasner | Jun 1987 | A |
5019034 | Weaver et al. | May 1991 | A |
5117828 | Metzger et al. | Jun 1992 | A |
5137817 | Busta et al. | Aug 1992 | A |
5282785 | Shapland et al. | Feb 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5464386 | Hofmann | Nov 1995 | A |
5498238 | Shapland et al. | Mar 1996 | A |
5505700 | Leone et al. | Apr 1996 | A |
5507724 | Hofmann et al. | Apr 1996 | A |
5549603 | Feiring | Aug 1996 | A |
5704908 | Hofmann et al. | Jan 1998 | A |
5807306 | Shapland | Sep 1998 | A |
5810762 | Hofmann | Sep 1998 | A |
5944710 | Dev et al. | Aug 1999 | A |
5968012 | Ren et al. | Oct 1999 | A |
6219577 | Brown, II et al. | Apr 2001 | B1 |
6326177 | Schoenbach et al. | Dec 2001 | B1 |
6389314 | Feiring | May 2002 | B2 |
6529778 | Prutchi | Mar 2003 | B2 |
6678558 | Dimmer et al. | Jan 2004 | B1 |
6758846 | Goble et al. | Jul 2004 | B2 |
6978172 | Mori et al. | Dec 2005 | B2 |
6994706 | Chornenky et al. | Feb 2006 | B2 |
7150745 | Stern et al. | Dec 2006 | B2 |
7285117 | Krueger et al. | Oct 2007 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
8048067 | Davalos et al. | Nov 2011 | B2 |
8221411 | Francischelli et al. | Jul 2012 | B2 |
8251986 | Chornenky et al. | Aug 2012 | B2 |
8282631 | Davalos et al. | Oct 2012 | B2 |
8355799 | Marion et al. | Jan 2013 | B2 |
8361066 | Long et al. | Jan 2013 | B2 |
8636648 | Gazdzinski | Jan 2014 | B2 |
8647338 | Chornenky et al. | Feb 2014 | B2 |
8915911 | Azure | Dec 2014 | B2 |
8926606 | Davalos et al. | Jan 2015 | B2 |
9005189 | Davalos et al. | Apr 2015 | B2 |
9011431 | Long et al. | Apr 2015 | B2 |
9078665 | Moss et al. | Jul 2015 | B2 |
9119600 | Richardson et al. | Sep 2015 | B2 |
9168096 | Kreindel | Oct 2015 | B2 |
9198733 | Neal, II et al. | Dec 2015 | B2 |
9277957 | Long et al. | Mar 2016 | B2 |
9283051 | Garcia et al. | Mar 2016 | B2 |
9289606 | Paul et al. | Mar 2016 | B2 |
9308043 | Zarins et al. | Apr 2016 | B2 |
9345538 | Deem et al. | May 2016 | B2 |
9351789 | Novichenok et al. | May 2016 | B2 |
9351790 | Zemei et al. | May 2016 | B2 |
9462960 | Kassab | Oct 2016 | B2 |
9480524 | Chorenky et al. | Nov 2016 | B2 |
9555020 | Pasricha et al. | Jan 2017 | B2 |
9597147 | Jackson et al. | Mar 2017 | B2 |
9598691 | Davalos | Mar 2017 | B2 |
9801681 | Laske et al. | Oct 2017 | B2 |
9827041 | Zarins et al. | Nov 2017 | B2 |
9861435 | Richardson et al. | Jan 2018 | B2 |
9918789 | Bagley et al. | Mar 2018 | B2 |
9993297 | Ben-Oren et al. | Jun 2018 | B2 |
9999467 | Moss et al. | Jun 2018 | B2 |
10004558 | Long et al. | Jun 2018 | B2 |
10010666 | Rubinsky et al. | Jul 2018 | B2 |
10039596 | Zarins et al. | Aug 2018 | B2 |
10064697 | Sharma et al. | Sep 2018 | B2 |
10070914 | Schoenbach et al. | Sep 2018 | B2 |
10238447 | Neal, II et al. | Mar 2019 | B2 |
10245105 | Davalos | Apr 2019 | B2 |
10292755 | Arena et al. | May 2019 | B2 |
10349998 | Levin et al. | Jul 2019 | B2 |
10448989 | Arena et al. | Oct 2019 | B2 |
20030153905 | Edwards | Aug 2003 | A1 |
20030236496 | Samson | Dec 2003 | A1 |
20040215180 | Starkebaum et al. | Oct 2004 | A1 |
20050234293 | Yamamoto | Oct 2005 | A1 |
20060084962 | Joye et al. | Apr 2006 | A1 |
20090203995 | Matonick | Aug 2009 | A1 |
20090269317 | Davalos | Oct 2009 | A1 |
20100023047 | Simpson | Jan 2010 | A1 |
20100179530 | Long et al. | Jul 2010 | A1 |
20100204560 | Salahieh et al. | Aug 2010 | A1 |
20100210994 | Zarif | Aug 2010 | A1 |
20100256630 | Hamilton et al. | Oct 2010 | A1 |
20110118732 | Rubinsky et al. | May 2011 | A1 |
20110144635 | Harper et al. | Jun 2011 | A1 |
20110160514 | Long et al. | Jun 2011 | A1 |
20110224768 | Edwards | Sep 2011 | A1 |
20120059255 | Paul et al. | Mar 2012 | A1 |
20120259269 | Meyer | Oct 2012 | A1 |
20130345670 | Rajagopalan et al. | Dec 2013 | A1 |
20140074077 | Lane | Mar 2014 | A1 |
20140088362 | Terliuc | Mar 2014 | A1 |
20150141987 | Caplan et al. | May 2015 | A1 |
20150164584 | Davalos et al. | Jun 2015 | A1 |
20150173824 | Davalos et al. | Jun 2015 | A1 |
20150182282 | Zemel | Jul 2015 | A1 |
20150182735 | Chang et al. | Jul 2015 | A1 |
20150216592 | Gnanashanmugam et al. | Aug 2015 | A1 |
20150289923 | Davalos et al. | Oct 2015 | A1 |
20150327944 | Neal, II et al. | Nov 2015 | A1 |
20160051324 | Stewart et al. | Feb 2016 | A1 |
20160058493 | Neal, II et al. | Mar 2016 | A1 |
20160066977 | Neal, II et al. | Mar 2016 | A1 |
20160081745 | Rajagopalan et al. | Mar 2016 | A1 |
20160175582 | Serna | Jun 2016 | A1 |
20160235470 | Callas et al. | Aug 2016 | A1 |
20160287314 | Arena et al. | Oct 2016 | A1 |
20160331441 | Konings | Nov 2016 | A1 |
20160338761 | Chornenky et al. | Nov 2016 | A1 |
20160354142 | Pearson et al. | Dec 2016 | A1 |
20160361109 | Weaver et al. | Dec 2016 | A1 |
20160367310 | Onik et al. | Dec 2016 | A1 |
20160374754 | Asirvatham | Dec 2016 | A1 |
20170014183 | Gifford, III et al. | Jan 2017 | A1 |
20170035501 | Chornenky et al. | Feb 2017 | A1 |
20170095290 | Sherman et al. | Apr 2017 | A1 |
20170105781 | Pasricha et al. | Apr 2017 | A1 |
20170112562 | Woloszko et al. | Apr 2017 | A1 |
20170203132 | Luttrull et al. | Jul 2017 | A1 |
20170232269 | Luttrull et al. | Aug 2017 | A1 |
20170245928 | Xiao et al. | Aug 2017 | A1 |
20170265929 | Callas et al. | Sep 2017 | A1 |
20170333122 | Rajagopalan et al. | Nov 2017 | A1 |
20170348049 | Vrba et al. | Dec 2017 | A1 |
20180021084 | Onik et al. | Jan 2018 | A1 |
20180028252 | Lalonde | Feb 2018 | A1 |
20180028264 | Onik et al. | Feb 2018 | A1 |
20180042661 | Long et al. | Feb 2018 | A1 |
20180043153 | Viswanathan et al. | Feb 2018 | A1 |
20180071014 | Neal et al. | Mar 2018 | A1 |
20180125575 | Schwartz et al. | May 2018 | A1 |
20180193082 | Rubinsky et al. | Jul 2018 | A1 |
20180193090 | de La Rama et al. | Jul 2018 | A1 |
20180193590 | Rajagopalan et al. | Jul 2018 | A1 |
20180221622 | Rajagopalan et al. | Aug 2018 | A1 |
20180250074 | Ben-Oren et al. | Sep 2018 | A1 |
20180250508 | Howard | Sep 2018 | A1 |
20180263694 | Moss et al. | Sep 2018 | A1 |
20190069949 | Vrba | Mar 2019 | A1 |
20190175248 | Neal, II et al. | Jun 2019 | A1 |
20190223938 | Arena et al. | Jul 2019 | A1 |
20190233809 | Neal, II et al. | Aug 2019 | A1 |
20190256839 | Neal, II et al. | Aug 2019 | A1 |
20190282294 | Davalos et al. | Sep 2019 | A1 |
20190328445 | Sano et al. | Oct 2019 | A1 |
20190344053 | Wang | Nov 2019 | A1 |
20190376055 | Davalos et al. | Dec 2019 | A1 |
20200060758 | Rajagopalan et al. | Feb 2020 | A1 |
20200060942 | Rajagopalan et al. | Feb 2020 | A1 |
20200093541 | Neal, II et al. | Mar 2020 | A9 |
20210113265 | D'Agostino et al. | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
1647747 | Aug 2005 | CN |
2 865 349 | Apr 2015 | EP |
3 050 531 | Aug 2016 | EP |
3 316 813 | May 2018 | EP |
3 169 260 | Sep 2019 | EP |
2009-531157 | Sep 2009 | JP |
2012-515018 | Jul 2012 | JP |
WO-9116945 | Nov 1991 | WO |
WO-9815318 | Apr 1998 | WO |
WO-0035349 | Jun 2000 | WO |
WO-2005089433 | Sep 2005 | WO |
WO-2005089433 | Sep 2005 | WO |
WO-2011047387 | Apr 2011 | WO |
WO-2011047387 | Apr 2011 | WO |
WO-2011072221 | Jun 2011 | WO |
WO-2014026055 | Feb 2014 | WO |
WO-2014118782 | Aug 2014 | WO |
WO-2014118782 | Aug 2014 | WO |
WO-2014189887 | Nov 2014 | WO |
WO-2014189887 | Nov 2014 | WO |
WO-2016178697 | Nov 2016 | WO |
WO-2017004432 | Jan 2017 | WO |
WO-2017062753 | Apr 2017 | WO |
WO-2017203380 | Nov 2017 | WO |
WO-2017212257 | Dec 2017 | WO |
WO-2018050025 | Mar 2018 | WO |
WO-2018089773 | May 2018 | WO |
WO-2018140473 | Aug 2018 | WO |
WO-2018167451 | Sep 2018 | WO |
Entry |
---|
Samihah Zura Mohd Nani, What is the best solvent for drugs?, Aug. 17, 2015 (Year: 2015). |
Extended European Search Report dated Aug. 20, 2019, for EP Application No. 16 854 413.8, filed on Oct. 7, 2016, 12 pages. |
Partial Supplementary Search Report dated May 15, 2019, for EP Application No. 16 854 413.8, filed on Oct. 7, 2016, 13 pages. |
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2016/55966, dated Dec. 29, 2016, 27 pages. |
PCT International Preliminary Report on Patentability in International Appln. No. PCT/US2016/55966, dated Apr. 10, 2018, 14 pages. |
Arena et al. (2011). “High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction,” Biomedical Engineering OnLine 10:102, 21 total pages. |
Cersosimo, E. et al., (2020). “Pathogenesis of Type 2 Diabetes Mellitus,” In Feingold KR, Anawalt B, Boyce A et al., ed. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2020:3-7, 45 total pages. |
Dong, S. et al. (2018). “First Human Trial of High-Frequency Irreversible Electroporation Therapy for Prostate Cancer,” Technology in Cancer Res. Treat. 17:1-9. |
DPP Research Group (2002). “The Diabetes Prevention Program (DPP),” Diabetes Care 25:2165-2171. |
Gilmer, T.P. et al. (1997). “The cost to health plans of poor glycemic control,” Diabetes Care 20:1847-1853. |
Knavel, E.M. et al. (2013). “Tumor Ablation: Common Modalities and General Practices,” Tech. Vasc. Interv. Radiol. 16:192-200. |
Martin, R.C.G. II (2015). “Use of irreversible electroporation in unresectable pancreatic cancer,” 4:211-215. |
Narayanan, G. (2015). “Irreversible Electroporation,” Semin Interv Radiol. 32:349-355. |
O'Brien, T.J. et al. (2019), “Experimental High-Frequency Irreversible Electroporation Using a Single-Needle Delivery Approach for Nonthermal Pancreatic Ablation In Vivo,” J. Vasc. Interv. Radiol. 30:854-862. |
Qaseem, A. et al. (2018). Hemoglobin A1c Targets for Glycemic Control With Pharmacologic Therapy for Nonpregnant Adults With Type 2 Diabetes Mellitus: A Guidance Statement Update From the American College of Physicians, Annals of Int. Med. 168:569-576. |
Rajagopalan, H. et al. (2016). “Endoscopic Duodenal Mucosal Resurfacing for the Treatment of Type 2 Diabetes: 6-Month Interim Analysis From the First-in-Human Proof-of-Concept Study,” Diabetes Care 39:2254-2261. |
Ringel-Scaia, V.M. et al. (2019), “High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity,” EBioMedicine 44:112-125. |
Sami, S.S. et al. (2012). “The Los Angeles Classification of Gastroesophageal Reflux Disease,” Video J. Encycl. GI Endosc. 1:103-104. |
Siddiqui, I.A. et al. (2017). “High-Frequency Irreversible Electroporation: Safety and Efficacy of Next-Generation Irreversible Electroporation Adjacent to Critical Hepatic Structures,” Surg. Innov. 24:276-283. |
Theodorakis, M.J. et al. (2006), “Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP,” Am. J. Physiol. Endocrinol. Metab. 290:E550-E559. |
Van Baar, A.C.G. et al. (2019). “Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes mellitus: one year results from the first international, open-label, prospective, multicentre study,” Gut 69:295-303. |
Verdam, F.J. et al. (2011), “Small Intestinal Alterations in Severely Obese Hyperglycemic Subjects.” J. Clin. Endocrinol. Metab. 96:E379-E383. |
Wagner, E.H. et al. (2001). “Effect of Improved Glycemic Control on Health Care Costs and Utilization,” JAMA 285:182-189. |
International Search Report dated Apr. 14, 2021, for PCT Application No. PCT/US2020/056720, filed on Oct. 21, 2020, 7 pages. |
Written Opinion of the International Searching Authority dated Apr. 14, 2021, for PCT Application No. PCT/US2020/056720, filed on Oct. 21, 2020, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20180296264 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62238191 | Oct 2015 | US |