The present invention relates to methods and devices for pretreatment of a conducting sampling substrate for collection and retention of chemical and biological samples where an electrostatic charge is used to transfer substances onto the sampling substrate without physical contact in order to complete analysis of those samples.
Analysis of molecules of interest at ambient atmosphere in a laboratory or field setting can be accomplished using an ionizing species to convert the molecules of interest to ions and directing or evacuating the ions into a spectrometer. However, the requirement to make up a solution can be challenging in a field setting.
In order to simplify the collection of substances of interest without physical contact a perforated conducting sheet is introduced between the metalized sheet used with a typical crime scene tool, an electrostatic dust print lifter, and the surface of interest. Upon activation of the electrostatic field particles of dust, chemicals presented in fingerprints, and powders on the surface of interest are attracted to the charged metalized sheet resulting in a proportion of those substances being collected on the surface of the perforated sheet without physical contact between the surface and the perforated sheet (in contrast to the teachings of U.S. Pat. No. 8,822,949 to Krechmer et al. which is herein expressly incorporated by reference in its entirety and for all purposes). Transfer of the perforated sheet to appropriate analytical instrumentation without requirement for additional sample handling facilitates it rapid analysis for more timely decision making.
In an embodiment of the present invention, a conducting perforated sample collector is pretreated and positioned in close proximity to a surface onto which a solid powder samples is present. Application of a high voltage field to the conducting collector generates a static potential between the surface containing substances of interest and the collector resulting in transfer of a portion of those substances of interest onto the pre-treated sampling surface where it is retained. Analysis to permit detection and characterization of the substance of interest is completed by direct analysis of the collector using an ambient atmosphere ionization enabled mass detector.
The confirmation of identity of substance of interest collected by using this non-contact sample collector can be completed by either direct method or by removal of the substances by extraction, thermal desorption from the collector into an analytical instrument or by direct interrogation with radiation based methods.
All Direct Analysis Real Time (DART) Atmospheric Pressure Ionization (API) measurements were carried out at 300° C. unless otherwise specified. All samples were prepared by pulverizing objects to powder form with a mortar and pestle. Lose powder sample were deposited on surfaces as dry powder. Wire mesh, perforated Mylar and collections of metal pins were used as the perforated surface for sample collection. All low resolution mass spectrometry was carried out using a DART equipped WATERS QDa mass detector. All high resolution mass spectrometry was carried out using a DART equipped Agilent QTOF mass spectrometer. Various embodiments of the present invention will be described in detail based on the following Figures, where:
Abbreviations include:
API=Atmospheric Pressure Ionization; CIE=Continuous Ionization Experiment; DART=Direct Analysis Real Time; DESI=Desorption ElectroSpray Ionization; DMS=differential mobility spectrometer; ESI=electrospray ionization; GIS=gas ion separator; HE=Hybrid Experiment; RS=reactive species; PE=Pulsed Experiment; SIM=Single Ion Monitoring; TIC=Total Ion Current.
Definitions of certain terms that are used hereinafter include:
The transitional term “comprising” is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
The transitional phrase “consisting of” excludes any element, step, or ingredient not specified in the claim, but does not exclude additional components or steps that are unrelated to the invention such as impurities ordinarily associated with a composition.
The transitional phrase “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s) of the claimed invention.
The term Gas-Ion Separator (GIS) will be used to refer to a device which separates ions from one or both neutral molecules and neutral atoms allowing the pre-concentration and transfer of the ions to an analysis system. The term ‘inlet tube’ will be used to refer to the low vacuum side of a GIS. The term ‘outlet tube’ will be used to refer to the high vacuum side of the GIS. In various embodiments of the invention, the contained tube can be an inlet tube. Active ionization refers to the process where an atmospheric analyzer not utilizing a radioactive nucleus can be used to ionize analyte ions. A capacitive surface is a surface capable of being charged with a potential. A surface is capable of being charged with a potential, if a potential applied to the surface remains for the typical duration time of an experiment, where the potential at the surface is greater than 50% of the potential applied to the surface. A vacuum of atmospheric pressure is approximately 760 torr. Here, ‘approximately’ encompasses a range of pressures from below 101 atmosphere=7.6×103 torr to 10−1 atmosphere=7.6×101 torr. A vacuum of below 10−3 torr would constitute a high vacuum. Here, ‘approximately’ encompasses a range of pressures from below 5×10−3 torr to 5×10−6 torr. A vacuum of below 10−6 torr would constitute a very high vacuum. Here, ‘approximately’ encompasses a range of pressures from below 5×10−6 torr to 5×10−9 torr. In the following, the phrase ‘high vacuum’ encompasses high vacuum and very high vacuum.
The word ‘contact’ is used to refer to any process by which molecules of a sample in one or more of the gas, liquid and solid phases becomes adsorbed, absorbed or chemically bound to a surface.
A grid becomes ‘coated’ with a substrate when a process results in substrate molecules becoming adsorbed, absorbed or chemically bound to a surface. A grid can be coated when beads are adsorbed, absorbed or chemically bound to the grid. A grid can be coated when nano-beads are adsorbed, absorbed or chemically bound to the grid.
A filament means one or more of a loop of wire, a segment of wire, a metal ribbon, a metal strand or an un-insulated wire, animal string, paper, perforated paper, fiber, cloth, silica, fused silica, plastic, plastic foam, polymer, Teflon, polymer impregnated Teflon, cellulose and hydrophobic support material coated and impregnated filaments. In various embodiments of the invention, a filament has a diameter of approximately 50 microns to approximately 2 mm. In measuring the diameter of a filament, approximately indicates plus or minus twenty (20) percent. In an embodiment of the invention, the length of the filament is approximately 1 mm to approximately 25 mm. In measuring the length of a filament, approximately indicates plus or minus twenty (20) percent.
The term ‘orientation’ means the position of a mesh with respect to another section of mesh or with respect to a grid or a sample holder. In an embodiment of the invention, the mesh, the grid, or the sample holder can be mounted on an X-Y translation stage to enable precise orientation of the samples spotted on the mesh relative to the ionizing species. The controlling electronics and the stepper motor drivers, for the X-Y stages, can be mounted directly onto a box housing the X-Y translation stage, while the microcontroller that controls the orientation can be separately mounted.
The term ‘proximity’ means the position of a mesh or an area on the mesh with respect to another mesh or other area on the mesh.
The term ‘registration’ means when an area of a mesh (e.g., the proximal area) lines up with the mesh to deliver the heat from the mesh to the proximal area of the time.
The term ‘contacting’ means the coming together or touching of objects or surfaces such as the sampling of a surface with an area of a mesh.
The shape of a mesh can be a cylinder, an elliptical cylinder, a long square block, a long rectangular block or a long thin surface.
The term ‘hole’ refers to a hollow space in an otherwise solid object, with an opening allowing light and/or particles to pass through the otherwise solid object. A hole can be circular, ellipsoid, pear shaped, a slit, or polygonal (including triangular, square, rectangular, pentagonal, hexagonal, heptagonal, and the like).
The term ‘hot’ in the context of hot atoms and/or hot molecules and the like, means a species having a velocity corresponding to a temperature above ambient (273 K) temperature. In an embodiment of the invention, a hot species has a velocity corresponding to a temperature of 300 K, 400 K, and 500 K.
The term ‘Continuous flow’ carrier gas means that the flow of the carrier gas into the discharge chamber is regulated in a constant fashion. The term ‘Hybrid flow’ carrier gas means that the flow of the carrier gas into the discharge chamber is pulsed on when the linear rail is moving the mesh for a measured time interval and otherwise there is no flow of the carrier gas into the discharge chamber. The term ‘Pulsed flow’ carrier gas means that the flow of the carrier gas into the discharge chamber is pulsed on when the linear rail is stopped for a time period and otherwise there is no flow of the carrier gas into the discharge chamber, as disclosed in U.S. patent application Ser. No. 17,266/246 to Oro et al. which is herein expressly incorporated by reference in its entirety and for all purposes.
The term ‘corona discharge’ means a discharge that occurs at relatively high gas pressures (e.g. at atmospheric pressure) in an electric field which is strongly non-uniform (for example by placing a thin wire inside a metal cylinder having a radius much larger than the wire). The electric field is sufficiently high to cause the ionization of the gas surrounding the wire, but not high enough to cause electrical breakdown or arcing to nearby conductor. The term ‘arc discharge’ means a discharge that relies on thermionic emission of electrons from the electrodes supporting the arc and that is characterized by a lower voltage than a glow discharge, but has a strong current. The term ‘glow discharge’ means a discharge that is produced by secondary electron emission.
The phrase ‘powder sample’ means a dry solid composed of many granular particles that flow freely when shaken or tilted and do not tend to form clumps except when wet. A powder sample containing an analyte includes a carrier in which an analyte has been added. A ‘diluent’ is a passive powder used to facilitate the transport of an analyte.
A metal comprises one or more elements consisting of lithium, beryllium, boron, carbon, nitrogen, oxygen, sodium, magnesium, aluminum, silicon, phosphorous, sulfur, potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, selenium, rubidium, strontium, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, tellurium, cesium, barium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, thallium, lead, bismuth, polonium, francium and radium. Thus a metal includes for example, a nickel titanium alloy known as nitinol or a chromium iron alloy used to make stainless steel.
A conducting non-metal comprises carbon (including graphite and other allotropes of carbon), germanium, silicon, selenium, arsenic and antimony.
A plastic comprises one or more of polystyrene, high impact polystyrene, polypropylene, polycarbonate, low density polyethylene, high density polyethylene, polypropylene, acrylonitrile butadiene styrene, polyphenyl ether alloyed with high impact polystyrene, expanded polystyrene, polyphenylene ether and polystyrene impregnated with pentane, a blend of polyphenylene ether and polystyrene impregnated with pentane or polyethylene and polypropylene.
A polymer comprises a material synthesized from one or more reagents selected from the group comprising of styrene, propylene, carbonate, ethylene, acrylonitrile, butadiene, vinyl chloride, vinyl fluoride, ethylene terephthalate, terephthalate, dimethyl terephthalate, bis-beta-terephthalate, naphthalene dicarboxylic acid, 4-hydroxybenzoic acid, 6-hyderoxynaphthalene-2-carboxylic acid, mono ethylene glycol (1,2 ethanediol), cyclohexylene-dimethanol, 1,4-butanediol, 1,3-butanediol, polyester, cyclohexane dimethanol, terephthalic acid, isophthalic acid, methylamine, ethylamine, ethanolamine, dimethylamine, hexamthylamine diamine (hexane-1,6-diamine), pentamethylene diamine, methylethanolamine, trimethylamine, aziridine, piperidine, N-methylpiperideine, anhydrous formaldehyde, phenol, bisphenol A, cyclohexanone, trioxane, dioxolane, ethylene oxide, adipoyl chloride, adipic, adipic acid (hexanedioic acid), sebacic acid, glycolic acid, lactide, caprolactone, aminocaproic acid and or a blend of two or more materials synthesized from the polymerization of these reagents.
A plastic foam is a polymer or plastic in which a gaseous bubble is trapped including polyurethane, expanded polystyrene, phenolic foam, XPS foam and quantum foam.
A ‘mesh’ means one or more of two or more connected filaments, two or more connected strings, foam, perforated paper, screens, paper screens, plastic screens, fiber screens, cloth screens, polymer screens, silica screens, TEFLON® (polytetrafluoroethylene (PVDF)) screens, polymer impregnated Teflon screens, and cellulose screens. In various embodiments of the invention, a mesh includes one or more of three or more connected filaments, three or more connected strings, mesh, foam, a grid, perforated paper, screens, plastic screens, fiber screens, cloth, and polymer screens. In an embodiment of the invention, a mesh can have approximately 10 filaments per mm. In another embodiment of the invention, a mesh can have approximately 20 filaments per mm. In an additional embodiment of the invention, a mesh can have approximately 30 filaments per mm. In an alternative embodiment of the invention, a mesh can have approximately 100 filaments per mm. In designing the number of filaments per mm, approximately indicates plus or minus twenty (20) percent.
A ‘conducting mesh’ means a mesh able to be charged with an electrostatic charge. A ‘conducting mesh’ includes a mesh where at least one of the components of the mesh is a conducting metal, a conducting non-metal or a conducting salt metal.
Non-conducting perforated surfaces include plastic mesh, fabric mesh, fiberglass mesh, fiberglass, and fabricated composite materials.
A ‘substratum’ is a polymer, a metal, and or a plastic.
A ‘grid’ is a substratum in which either gaps, spaces or holes have been punched or otherwise introduced into the substratum or in which a window or section has been cut out or otherwise removed from the substratum and a mesh has been inserted into the removed window or section. In an embodiment of the invention, the grid can have a thickness between a lower limit of approximately 1 micron and an upper limit of approximately 1 cm. In this range, approximately means plus or minus twenty (20) percent.
A ‘conducting grid’ means a grid able to hold an electrostatic charge. A ‘conducting grid’ includes a grid where the substratum is a conducting metal, a conducting non-metal or a conducting salt metal.
An ‘electrostatic charge’ is formed when an excess or deficiency of electrons are present on a sampling substrate surface. The electrostatic charge can be formed on the sampling substrate by contacting the sampling substrate with an electrostatic charge power supply. An electrostatic charge can be used to manipulate an analyte in a non-ferromagnetic diluent as described herein. In contrast, a magnetic field used to manipulate an analyte requires a ferromagnetic diluent as disclosed in U.S. Pat. No. 8,901,488 to Musselman which is herein expressly incorporated by reference in its entirety and for all purposes.
An ‘electrostatic charge power supply’ means a device which generates an electrostatic charge on a sampling substrate surface. A Van der Graff generator is an example of an electrostatic charge power supply. The maximal achievable potential achievable with a Van der Graff generator is roughly equal to the sphere radius multiplied by the electric field at which a corona discharge forms.
Coronavirus disease 2019 (COVID-19) means severe acute respiratory syndrome coronavirus 2 of the genus Betacoronavirus discovered in Wuhan, China in December 2019. COVID-19 is a member of the family Coronaviridae, which are enveloped viruses that possess extraordinarily large single-stranded Ribonucleic acid (RNA) genomes ranging from 26 to 32 kB. Structural proteins found on the surface of COVID-19 play an important role in the pathogenesis and development of the disease. COVID-19 is transmitted by contact with infectious material including respiratory droplets, and can result in fever, cough, and shortness of breath and in unfavorable instances progress to pneumonia and respiratory failure.
A ‘biomarker’ means one or more of the following generated by or resulting from an organism: a chemical, a protein, a protein fragment, a DNA strand, a RNA strand, a DNA fragment derived from a DNA strand, a RNA fragment derived from a RNA strand, and a metabolite.
A ‘respirator’ means a device worn over the mouth and/or nose to prevent the inhalation of chemicals. Health care workers wear respirators to filter out virus particles as they breathe. Respirators help protect health care workers so they don't get infected with COVID-19 while helping people who have been exposed to COVID-19. A N95 respirator is a type of respirator that fits more tightly around the nose and mouth than regular medical or surgical masks. N95 filters filter out 95% of solid particles. N95 filters are not oil resistant. P95 filters resist oil exposure for up to 40 hours and filter out 95% of solid particles. P100 filters resist oil exposure for up to 40 hours and filter out 99.97% of solid particles. A powered air-purifying respirator (PAPR) covers the whole head and uses a blower to filter air. Respirators are a form of personal protective equipment (PPE). Other types of PPE health professionals wear to protect them from such hazards as COVID-19 include goggles, gloves, and gowns. ‘Respiration’ means the inhalation and exhalation of air, as in ‘breathing’.
A ‘ventilator’ means a machine that helps a patient breathe by pumping oxygen into the lungs and removing carbon dioxide through a tube intubated (inserted) into a patient's trachea. COVID-19 is a respiratory disease that can cause lung inflammation and which makes breathing difficult for patients suffering from the effects of COVID-19.
The phrase ‘background chemical’ means a ‘matrix molecule’ and/or an ‘introduced contaminant’.
The phrase a ‘molecule of interest’ or ‘analyte’ means any naturally occurring species (e.g., caffeine, cocaine, tetra hydro cannabinol), or synthetic molecules that have been introduced to the biological system e.g., pharmaceutical drugs (e.g., lidocaine, methadone, sildenafil, Lipitor, enalapril and derivatives thereof), and recreational drugs (e.g., morphine, heroin, methamphetamine, and the like and derivatives thereof).
The phase ‘introduced contaminant’ means a chemical that becomes associated with a sample during sample preparation and/or sample analysis. An introduced contaminant can be airborne or present in or on surfaces that the sample is in contact. For example, perfumes and deodorants can be associated with and analyzed during sample analysis. Alternatively, phthalates present in plastic tubes used to handle samples can leach out of the plastic tube into the sample and thereby be introduced into the sample.
The phrase an ‘ion suppressor molecule’ means a background chemical which suppresses ionization of a molecule of interest and/or generates a background species which ionizes to the detriment of detection of a molecule of interest.
The phrase ‘background ion’ or ‘background species’ refers to an ion formed from a background chemical. The background species can include the molecule itself, an adduct of the molecule, a fragment of the molecule or combinations thereof.
The phrase ‘matrix effect’ refers to the reduction in ionization of a molecule of interest due to the presence of a background species. A matrix effect is caused when a background chemical suppresses ionization of a molecule of interest and/or a background species ionizes to the detriment of a molecule of interest. Without wishing to be bound by theory, in the former case it is believed that the molecule of interest is not ionized by the presence of the background chemical. In the latter case, the resulting mass spectrum is dominated by a background species to the detriment of the analysis of the molecule of interest. The background species can be suppressing and/or masking the ionization of a molecule of interest.
The phrase ‘analysis volume’ refers to the aliquot of sample that is analyzed, for example applied to a mesh for analysis.
The phrase an ‘ion intensifier’ means a chemical that inhibits the matrix effect.
The term ‘peak abundance’ is the number of ions produced. The peak abundance of the protonated molecule ion of a sample is a measure of the number of intact ions of the sample produced (other processes such as cationization can also be a measure of the number of intact ions of the sample produced). The relative peak abundance of two species is the sum of the intensity corresponding to each species.
DART API CIE
DART API CIE is a method of analysis that was introduced with, for example, QuickStrip and involves presenting a series of samples deposited in individual discrete positions on a movable surface. The surface is mounted on a holder fixed to a linear rail, where the linear rail allows a constant linear motion (i.e., a fixed velocity) to present the samples as a series for analysis. The surface (typically a mesh) contains areas where sample is present and areas where the sample is not present. The linear motion thereby results in the presentation of the samples in front of a static source of ionizing species and thereby permits the scanning (and analysis) of the samples.
DART API CIE utilizes a carrier gas that generates the ionizing species which is directed at a surface (e.g., a 1536 QuickStrip mesh card). In the DART API CIE mode of operation, the carrier gas is not pulsed and therefore ionizing species are directed at the surface irrespective of whether a sample is presented to the ionizing species or not.
Helium DART
DART is another API method suitable for the analysis of analytes. Various embodiments of DART API are described in U.S. Pat. No. 7,112,785 to Laramee which is herein expressly incorporated by reference in its entirety and for all purposes, is directed to desorption ionization of molecules from surfaces, liquids and vapor using a carrier gas containing reactive species (RS). The DART API can use a large volume of carrier gas, e.g., helium is suitable although other inert gases that can generate RS can be used.
Nitrogen DART
An API can ionize analyte molecules without the use of solvents to dissolve the analyte. The ionization occurs directly from solids and liquids. Molecules present in the gas phase can also be ionized by the reactive species exiting the API. In an embodiment of the invention, the reactive species utilized can be excited nitrogen atoms or molecules. In an embodiment of the invention, the reactive species can produce long lived metastable species to impact the analyte molecules at atmospheric pressure and, e.g., to affect ionization, see also U.S. Utility patent application Ser. No. 16,422/339 entitled “APPARATUS AND METHOD FOR REDUCING MATRIX EFFECTS”, inventor Brian D. Musselman, filed May 24, 2019, which is incorporated herein by reference in its entirety and for all purposes.
Gas-Ion Separator (GIS)
In various embodiments of the invention, devices and methods for transferring analyte ions desorbed from the sorbent surface using an atmospheric analyzer into the inlet of a mass spectrometer can utilize a GIS. Embodiments of this invention include devices and methods for collecting and transferring analyte ions and/or other analyte species formed within a carrier to the inlet of a mass spectrometer.
In an embodiment of the invention, one or both the inlet and the outlet GIS tubing can be made of one or more materials selected from the group consisting of stainless steel, non-magnetic stainless steel, steel, titanium, metal, flexible metal, ceramic, silica glass, plastic and flexible plastic. In an embodiment of the invention, the GIS tubing can range in length from 10 millimeters to 10 meters. In an embodiment of the invention, the GIS tubing can be made of non-woven materials. In an embodiment of the invention, the GIS tubing can be made from one or more woven materials.
In various embodiments of the invention, a GIS comprising two or more co-axial tubes with a gap between the tubes and a vacuum applied in the gap region is used to allow large volumes of carrier gas to be sampled. In various embodiments of the invention, a GIS is made up of an inlet tube and an outlet tube. In an embodiment of the invention, the proximal end of the inlet tube is closest to the sorbent surface and the distal end of the inlet tube can be some distance away from the proximal end where a vacuum can be applied. In various embodiments of the invention, the proximal end of the outlet tube is adjacent the distal end of the inlet tube and the distal end of the outlet tube enters the spectroscopy system.
Ninety Degree GIS
The use of robotic sample depositions, allows systems to deposit sub-microliter volumes of sample with precise high speed X-Y plate orientation for DART API analysis of the samples. Previously, the performance of a Ninety Degree GIS component has been compromised by high background and matrix effects. Unexpectedly, using the pulsed carrier gas source and stepping to a fixed position, the Ninety Degree GIS shows no signs of high background and matrix effects. Accordingly, the pulsed carrier gas source and stepping to a fixed position allows direct DART API with the Ninety Degree GIS analysis from higher performance robotics without the requirement for moving the sample from the sample deposition robot. Further, the Ninety Degree GIS can be combined with an extended X-Y plate with a holder that allows movement of the samples deposited onto the QuickStrip mesh through the desorption ionization region located at the distal end of the DART source such that the sample deposited onto the front side of the mesh can be vaporized and ionized in close proximity to the proximal end of the GIS positioned at the back side of the mesh. The Ninety Degree GIS can be combined with an extended X-Y plate with a holder that allows movement of the samples deposited onto the QuickStrip mesh through the desorption ionization region located at the distal end of the DART source such that the sample deposited onto the front side of the mesh can be vaporized and ionized in close proximity to the proximal end of the GIS positioned at the back side of the mesh.
API
The process of API involves the initial action of ionizing a gas by an electrical discharge. In plasma-based API, the electrical discharge of inert gases such as nitrogen, argon and helium lead to the formation of ionized gas molecules, atoms, and metastable molecules and atoms. These charged and energetic particles exit the ionization source where they interact with the molecules in air including background chemicals. Ions are formed during that interaction. Those ions are usually (i) intact protonated or deprotonated molecules such as NO+, O2−, H3O+, (ii) clusters of water molecules with one proton, and (iii) ions derived from the molecules present in the ambient air including background chemicals. API becomes an analytical tool when those protonated water molecules interact with analytes present in the air resulting in transfer of the proton to the analyte. The analyte can enter the ionizing species by introduction of the analyte as a gas, liquid or solid, positioned in the path of the products of the electrical discharge of the gas. Two forms of API are Atmospheric Pressure Chemical Ionization (APCI) using an electrical discharge between a high voltage needle and a surface to which the sample has been applied, and Direct Analysis in Real Time (DART) using an electrical discharge and heated gas which desorbs the sample from a surface into the atmosphere (DART API). In absence of a sample, the molecules present in the ambient air become ionized and when detected generate a mass spectrum.
In many cases the purposeful introduction of a sample into the ionizing species results in formation of an ion that is easily measured by using a spectrometer positioned in close proximity to the site of the API.
In the case of biological samples certain molecules present possess very high proton affinity meaning that their purposeful introduction into the ionizing species results in their ionization and formation of ionized dimers containing two of the molecules and a proton. High proton affinity molecule can also combine with another molecule or some closely related molecule forming a mixed dimer or tetramer in the protonated form. The affinity for these molecules for protons prohibits the use of the ionizing method as an analytical method since other molecule of interest in the sample cannot remain un-ionized and are thus not detected using a spectrometer positioned in close proximity to the site of the API. In the API experiments the domination of the resulting spectra by one molecule or collection of high proton affinity molecules is commonly identified as an experiment where the matrix effect is present.
Matrix Assisted Laser Desorption (MALDI-TOFMS) is an analytical instrument useful for the detection of biomolecules present in bacteria, viruses, RNA fragments, DNA fragments and other biological materials the presence of which can permit confirmation of the identity of the biological material or its origin.
Atmospheric Pressure MALDI MS is an analytical instrument with capabilities of the MALDI-TOF but without requirement for positioning the sample inside the high vacuum region of a mass spectrometer.
Collection of trace evidence at crime scenes is a complex activity involving multiple activities ranging from inspection to identify the trace to be collected, photography to document its place and time of the collection and use of specialized tools and containers to collect, transport and store the materials in preparation for their display at trial or further analysis post-crime. Drugs of abuse are often seized during its transport or a point-of-sale when those materials are presented in a wide variety of in packaging. More recently reports of law enforcement officers being exposed to life threatening chemicals during the collection and transport of those drugs interest had grown in the potential for non-contact sampling and analysis of these materials which may or may not be drugs at all. Field-based analysis of drugs present as powders is facilitated by the use of colorimetric test. Those test involve the transferring a small amount of the seized powder or liquid into a container where a chemical interaction between the sample and chemicals in the test solution produces a visible color change as an indication of presence of a narcotic. Laboratory based testing if typically completed in order to confirm the results of the colorimetric or other so called screening test. Both screening and laboratory test incorporate a step where the sample of interest must be physically transferred to the container by physical contact between the sample and a tool manipulated by the personnel administering test. In the case of field test the danger of exposure is high. In the laboratory test significant safety measures are taken during sample handling. Specialized equipment with disposable containers and use of organic solvent which have a negative impact on the environment are increasing the cost of operation at a time when the demand for more extensive testing to prove guilt is rising. It is for example, no longer considered acceptable to mix samples from separate containers together in order to reduce the testing cost and therefore is 100 samples are seized then 100 samples need to be analyzed in order to demonstrate a preponderance of evidence that the drug was present whether or not the samples were 1 kilogram or 100 milligrams each. Therefore methods to streamline the collection of evidence and enabling more efficient sample processing while reducing operating expense might be desirable.
The collection of dust prints at a crime scene is facilitated by devices designed to transfer the dust from surfaces using an electrostatic field to charge and collect the dust on metalized sheets. The dust print image is photographed at the scene for cataloging, transporting, storage and subsequent analysis in the forensic laboratory. The application of this dust collection method to the transfer of chemicals from a surface or container has been enabled here by using those same Electro Static field Generators (ESG). In utilizing the ESG and in order to avoid the tedious practice of removing the chemicals from the metalized sheets a perforate collector sheet has been placed between the metalized sheet and the surface containing the substances of interest. Unlike traditional ESG use, a gap is introduced in order to separate the metalize sheet and perforated collector assembly from the sample surface in to facilitate non-contact transfer of the substance of interest onto the perforated sheet which is designed to permit for either chemical analysis or detection of biological organisms using appropriate analytical instrumentation.
In this invention the use of the electrostatic print lifter device 101 for collection of chemicals for direct analysis is enabled by the substitution of a perforated sampling surface 125 between the surface 158 onto which the chemical is present and the conducting plastic 112. The pre-treatment of that perforated surface 125 with a chemical having limited volatility enables retention and concentration of the evidence on the perforated surface. Analysis of the perforated sampling surface 125 once laden with sample is then completed in the field by using ambient ionization methods or in the laboratory by using any one or more of a number of analytical instruments.
Previously, collection of loose powders at a crime scene for purposes of securing evidence involves physical collection of the powders by use of a vacuum device to suction the powder onto a filter from which it can be removed and deposited into a container for cataloging, transporting, storage and subsequent analysis in the forensic laboratory. These collection methods involve physical contact between the evidence and the filter or other collection devices and subsequent transfer of that evidence to appropriate analytical instrumentation for analysis. Further, those processes can be laborious and time consuming.
In an embodiment of the present invention, a Van de Graff generator 102 which does not have an external ground electrode can be used to ‘charge transfer’ a sample. The collection of substances for direct analysis is enabled by positioning a perforated sampling surface between the surface upon which the evidence/sample is present and the Van de Graff generator conducting plastic. Pre-treatment of that perforated surface with an individual chemical or mixture of chemicals having limited volatility enables retention and concentration of the evidence on the perforated surface. In an alternative configuration, a conducting plastic strip is inserted between the Van de Graff generator and the pre-treated perforated surface in order to permit use of non-conducting perforated surface for sample collection. In each configuration analysis of the perforated sample laden surface is then completed in the field by using ambient ionization methods or in the laboratory by using any of a number of analytical instruments.
In an embodiment of the present invention, the sample on the surface is in powder form having previously been pulverized in preparation for analysis. The powder may be derived from a larger object such as a pharmaceutical tablet, seeds, food products, and commercial goods having properties that permit their fracture into sufficiently small fragments that static electricity can cause their movement from the surface upon which they are at rest towards the electrically charged conducting plastic.
In an embodiment of the invention the perforated surface positioned between the surface upon which the sample is presented and the conducting plastic sheet to which the high voltage is applied is composed of a mesh or a grid. In various embodiments of the invention, the surface is a metal mesh, a metal grid, a metalized plastic mesh, or a metalized plastic grid. In various embodiments of the invention, the plastic of the metalized plastic mesh or the metalized plastic grid is a hard plastic or a soft plastic. In various embodiments of the invention, the surface is a cellulose mesh. In other embodiments of the invention, the surface is a woven fabric.
In an embodiment of the invention the perforated surface positioned between the surface upon which the sample is presented and the conducting plastic sheet to which the high voltage is applied is not in contact with the surface upon which the sample is presented in order to effect non-contact sampling from that surface.
In an embodiment of the invention the conducting plastic sheet to which the high voltage is applied is attached to a roller to permit sampling from a large surface area. The perforated surface is configured to cover the conducting plastic sheet. The collection of sample is completed by moving the roller surface across the surface upon which the sample is presented in order to permit the collection of a substance from a wider surface area. In an alternative configuration the surface of the perforated pretreated sheet is separated from the sampling surface by physical standoffs to permit non-contact sampling.
In an embodiment of the invention the conducting plastic sheet to which the high voltage is applied is attached to a non-conducting ticket or card having a portion of which is a pretreated perforated conducting surface where a three dimensional object can be positioned such that the perforated sheet is in contact with the conducting plastic sheet where substances on the surface of the three dimensional object can be transferred to the ticket for analysis. In an alternate configuration where the portion of the card includes a pretreated perforated conducting surface the high voltage can be applied directly to the conducting surface without requirement for the conducting plastic sheet.
In an embodiment of the invention an electrostatic charge is applied to a single or array of conducting pins generating a electrostatic charge where the distal end of the pin is positioned in close proximity to a grounded surface upon which samples of interest are present. The pin surface is pre-treated to permit retention of sample collected from the surface. In an alternative experiment the sample surface may be a movable surface positioned in close proximity to the distal end of the pin to permit sampling of a wider surface area in a non-contact manner. In both experiments the pin or array of pins can be moved by manual or robotic means to a position where the distal ends of each pin is presented for direct analysis. Alternatively, the pins may be processed to remove the sample from its surface by using solvents, or aqueous solutions in order to permit chemical analysis of those chemicals.
In an embodiment of the invention an electrostatic charge is applied to a single or array of conducting pins generating a electrostatic charge where the distal end of the pin is positioned in close proximity to a grounded surface upon which samples of interest are present. The pin surface is pre-treated to permit retention of sample collected from the surface. In an alternative experiment the pin or array of pins may be moved along a surface with the distal end of the pin or pins positioned in close proximity to the sample in order to permit sampling from a wider surface area in a non-contact manner. In an alternative experiment where the surface upon which sample is present is non-conducting the pin or array of pins can be moved by manual or robotic means to a position where the distal ends of each pin is in contact with the sample surface.
In an embodiment of the invention an ESG can be configured to enable collection of powders from a variety of porous and non-porous surfaces including horizontal, vertical or curved surfaces. The ESP device presents capability to lift powder off of floors, carpet, upholstery, and even human skin.
Flowing Gases
Commercial air cleaners utilize static electricity to extract dust from air as it moves through the cleaner unit. The presence of chemicals in the air can be indicative of air quality with certain chemicals being of interest in environmental studies. Columns of air can be generated by action of a vacuum pump, or by pressurization of the air and its discharge to a lower pressure area. Human breath can be discharged through an air cleaner in order to isolate certain molecules although such headspace studies often involve collection of vapors rather than substances such as microorganisms, bacteria, or viral particles. As bacteria and virus are often exhaled as a consequence of a cough or sneeze and those particles may immediately become associated with dust or other particulates in the air an air purifier should be capable to collect those particles under normal operating conditions. Dust collected by using an array of conducting pins enclosed in a pipe or box through which the breath is passed when activated by application of a high voltage to the array might prove viable for extraction of a viral particle (virion), a viral envelope, a viral coat protein, bacteria, a bacterial cell envelope or a bacterial cell membrane. Utilizing an ambient ionization source equipped mass detector to identify certain chemical or biomarker compounds that are known to be present in a virus particle or on the cell surface of bacteria can be used as a first pass inspection for their presence. In the case of an RNA based virus, detection of individual RNA bases or portions of RNA, such as RNA dinucleotides can prove suitable as a presumptive test for the presence of a RNA virus. As those molecules would not normally be present on, for example, a cardboard box used in shipping or a postal letter, their detection can be viewed as a warning sign for the presence of a virion, either accidental or intentional (bioterror). In an embodiment of the invention, an array of charged pins in enclosed in a container through which an individual can breathe. The breathing causes the transfer of virus particles into the container where electrostatic forces result in their transfer to the surface of the collection pins. Transfer of the collection pins to the analytical instrument completes the analysis.
In an embodiment of the invention, electrodes of opposite charge are configured to create a static field in a container thorough which an individual can breathe. The individual breathing causes movement of virus particles into that container where electrostatic forces result in their transfer to the surface of the electrodes. The electrodes may be present as a collection of metal pins, an array of metal pins, a single conducting plastic sheet, an array of conducting plastic strips or a combination of any of these materials which results in generation of a static electric field when exposed to high voltage. The surface of the electrodes can be covered with a pre-treated screen to increase the efficiency of contaminant collection.
In an embodiment of the invention electrodes of opposite charge are configured to create a static field in a container thorough which an individual can breathe. A pretreated perforated surface is applied over the electrodes. The individual breathing causes movement of virus particles into that container where electrostatic forces result in their transfer to the surface of pretreated surface.
In an embodiment of the invention a container though which an individual can breath is attached to the air intake port of a respirator in order to collect particles from air passing through the container as the respirator wearer breathes. In an embodiment of the invention, the container includes a collector to collect particles as the respirator wearer breathes. In an embodiment of the invention, the a collector is made up of electrodes. In an alternative embodiment of the invention, the container includes a pre-treated mesh configured between the open volume of the collector. Application of an electrostaic charge transfers the particles from the collector to pre-treated mesh. In an alternative embodiment of the invention, container can be accessed and the mesh can be positioned for transfer of the particles to the mesh. In an embodiment of the invention, the container can be accessed and the mesh can be positioned for transfer of the particles to the mesh in a source to thereafter allow the ionizing gas in order to permit detection of chemicals present on the mesh. In an alternate configuration the mesh may be removable in order to permit movement of the mesh to where it can be positioned in the direct analysis ionizing gas in order to permit detection of chemicals present on the mesh expanding on the configuration of the collector. In this configuration the respirator can be worn continuously without interruption by replacement of the container with another container. Analysis of the mesh to detect biomarkers can be used to assess the presence of disease/contaminants in the ambient air. Those contaminants may be organisms or chemicals in nature.
In an embodiment of the invention the electrostatic field enabled container though which an individual can breath is attached to a respirator in order to collect particles from breath as it passes through the collector as the respirator wearer breathes. A pre-treated mesh is configurated between the open volume of the collector through which air is passing and the electrodes in the container in order to collect the particles. The mesh is either permanently fixed in which case after use by respirator wearer the container can be opened and the mesh positioned in the direct analysis ionizing gas in order to permit detection of chemicals present on the mesh. In an alternate configuration the mesh may be removable in order to permit movement of the mesh to where it can be positioned in the direct analysis ionizing gas in order to permit detection of chemicals present on the mesh expanding on the configuration of the collector. In this configuration the respirator can be worn continuously without interruption by replacement of the mesh with another mesh. Analysis of the mesh to detect biomarkers can be used to assess the presence of contaminants being exhaled by the wearer. Those contaminants can be organisms or chemicals in nature.
In an embodiment of the invention the mesh utilized for collection of the contaminants can be removed from the collector and placed in a culture medium in order to facilitate the identification of the contaminant. Post-culture and upon formation of discernable colonies or copies of organisms ambient ionization methods including direct analysis with ionizing gas or atmospheric pressure matrix assisted laser desorption ionization mass spectrometry can be used to permit positive identification of bacteria, virus or other organisms that may or may not be a threat to life by using biomarkers linked to those organisms.
In an embodiment of the invention the electrostatic field enabled container though which an individual can breath is attached to the air intake port of a ventilator in order to collect particles from air passing through the collector as the respirator wearer breathes. A pre-treated mesh is configurated between the open volume of the collector through which air is passing and the electrodes in the container in order to collect the particles. The mesh is either permanently fixed in which case after use by ventilator user the container can be opened and the mesh positioned in the direct analysis ionizing gas in order to permit detection of chemicals present on the mesh. In an alternate configuration the mesh may be removable in order to permit movement of the mesh to where it can be positioned in the direct analysis ionizing gas in order to permit detection of chemicals present on the mesh expanding on the configuration of the collector. In this configuration the respirator can be worn continuously without interruption by replacement of the mesh with another mesh. Analysis of the mesh to detect biomarkers, can be used to assess the presence of contaminants in the ambient air. Those contaminants may be organisms or chemicals in nature.
In an embodiment of the invention the electrostatic field enabled container is attached to the exhalation port of a ventilator in order to collect particles exiting the user in their breath as it passes into and through the collector. A pre-treated mesh is configurated between the open volume of the collector through which air is passing and the electrodes in the container in order to collect the particles. The mesh is either permanently fixed in which case after use by respirator wearer the container can be opened and the mesh positioned in the direct analysis ionizing gas in order to permit detection of chemicals present on the mesh. In an alternate configuration the mesh may be removable in order to permit movement of the mesh to where it can be positioned in the direct analysis ionizing gas in order to permit detection of chemicals present on the mesh expanding on the configuration of the collector. In this configuration the ventilator can be used continuously without interruption by replacement of the mesh with another mesh. Analysis of the mesh to detect biomarkers, can be used to assess the presence of contaminants being exhaled by the wearer. Those contaminants may be organisms or chemicals in nature.
In an embodiment of the invention the electrostatic field enabled container with its pre-treated mesh collector may be positioned between the counter of a continuous flow condensing nucleus counter (CNC) and its exit pump port. In this configuration the CNC facilitates growth of the particles exiting either the ventilator or respirator where the particle growth permits a more accurate count of the number of particles. The utility of knowing the particle count entering the electrostatic field container may be used as an indicator that sufficient particles have entered the collector to warrant the direct analysis measurement of the contaminant. In an alternative configuration of the invention a second pre-treated mesh may be positioned between the particle counting detector of the CNC and its outlet port in-line in order to capture particles that are to small to be influenced by the static electric field for their direct measurement where the addition of the exit port pump may increase the velocity of the particles to a greater extent than the velocity imparted by normal exhalation.
In an embodiment of the invention, a method of collection of a chemical for analysis can be transferred from individual wells of a 96, 384 or a 1536 well plate to an analysis surface using an electrostatic charge. As an example of the method, a mixture of oxycodone and acetaminophen powders are deposited in odd numbered wells 125 while even numbered wells 115 of row ‘I’ and the remainder of the wells 115 of a 384 well plate 110 remain empty, see
In an alternative embodiment of the invention, the sampling surface can be a series of metal pins held in a linear strip with a non-conducting handle positioned such that the pins are in close proximity but not touching the well plate.
The 96 well plate prepared for transfer to wire mesh (as shown in
Unexpectedly, in an embodiment of the invention a method of collection of oxycodone and dextromethorphan for analysis without cross contamination can be demonstrated by depositing oxycodone and dextromethorphan powder into individual wells of one row of a 384 well plate where the powder is transferred to an analysis surface using an electrostatic charge. The 384 well plate is utilized to create greater separation between the chemicals during the collection onto the wire mesh. In an embodiment of the invention, the sampling surface can be a wire mesh pretreated with a solution of 20% glycerin in methanol positioned longitudinally along a row of the well plate covering each of the 24 wells. A strip of metalized plastic can be positioned on top of the wire mesh surface. A high voltage power supply can be positioned such that one of its electrodes is in contact with the metalized plastic and the other of its electrodes is in contact with earth ground. The power supply can be energized to generate the high voltage and after a short time interval the power supply can be turned off. The wire mesh strip can be moved to the analytical instrument where it can be positioned for positive ion chemical analysis. Results of such an analysis are shown in
In an embodiment of the invention, a method of collection of gallic acid and caffeic acid can be demonstrated by depositing gallic acid and caffeic acid powder into individual wells of one row of a 384 well plate. In an embodiment of the invention, the sampling surface can be a wire mesh pretreated with a solution of 2% mineral oil in toluene positioned longitudinally along a row of the well plate covering each of its 24 wells. A Van de Graff generator can be positioned above the pretreated wire mesh surface and can contact with the mesh. A high voltage field emanating form the Van de Graff generator in the on cycle enables transferring of the gallic acid and caffeic acid from the well plate onto the pretreated wire mesh. Analysis can be completed by moving the wire mesh strip to the analytical instrument where it can be positioned for negative ion chemical analysis as shown in
In an embodiment of the invention, a method of collection of Uridine (U), Cytidine (C), Guanosine (G) and Adensine (A) can be demonstrated by depositing a mixture of U, C, G and A into the individual wells of one row of a 384 well plate. In an embodiment of the invention, the sampling surface can be a wire mesh surface positioned longitudinally along the row of the well plate covering each of its 12 wells. A Van de Graff generator can be activated and a high voltage can be applied to the metal pins by touching of the generator output electrodes to the handle or any component of the pin assembly for a short time interval. The power can then be turned off. The metal pins can be moved to the analytical instrument where it is positioned for chemical analysis. The results of this positive ion analysis are shown in
In an embodiment of the invention, a method of collection of pyrimidine bases and nucleosides can be demonstrated by depositing a mixture of pyrimidine bases and nucleosides onto a cellulose surface. A pretreated wire mesh surface can be positioned above that cellulose surface covering the area of the cellulose surface to which the mixture of pyrimidine bases and nucleosides has been applied, see
In an embodiment of the invention, a mask can include in addition to the mask filter, a container to analyze contaminants that have been introduced into the air intake of the mask. The mask filter protects others from contaminants, while capturing contaminants the user is exhaling. The container is designed to alert the user that contamination would occur in the absence of the mask (i.e., the N95 disc has protected the user from contamination).
In an alternative embodiment of the invention, the mask filter protects the user from contaminants by capturing contaminants the user would otherwise be inhaling. The mask can include a container with an air intake 980, an inlet system 981 a port for attachment of a removable container for collection of particles as they pass from the proximal end 980 of the inlet system 981 to the distal end connecting with the mask 990 supplying air to the user.
In an alternative embodiment of the invention, a mask 900 includes a removable container 981 for collection of particles as they pass through the mask inlet system (see
In a further embodiment of the invention, the container can be associated with a device used for monitoring the environment at a location.
In an embodiment of the invention, the container can be analyzed by atmospheric ionization. In an alternative embodiment of the invention, the container can be analyzed by ionization techniques that require a vacuum such as laser desorption and matrix assisted laser desorption.
In an embodiment of the invention, a hand held high voltage power supply 472 positioned such that it is in contact with top of a wire mesh surface 252 which is positioned directly on the cellulose surface below 585 in order to permit collection of chemicals onto the mesh.
Embodiments contemplated herein further include Embodiments P1-P42 following.
Embodiment P1. A system for ionizing an analyte including a pretreated sampling substrate, a holder adapted to undertake one or more steps including retain the pretreated sampling substrate; orient the pretreated sampling substrate in proximity of a powder sample containing an analyte, and orient the pretreated sampling substrate in proximity of an ionizing species, a power supply configured to energize the pretreated sampling substrate with an electrostatic charge in order to transfer a portion of the analyte to the pretreated sampling substrate; and a desorption ionization source adapted to direct the ionizing species towards the analyte on the pretreated sampling substrate, where the ionizing species generate a plurality of analyte ions.
Embodiment P2. The system of Embodiment P1, where the desorption ionization source is an electrospray ionization source.
Embodiment P3. The system of Embodiment P1, where the desorption ionization source is a DART ionization source.
Embodiment P4. The system of Embodiment P1, where the desorption ionization source utilizes a carrier gas to direct energetic particles at the pretreated sampling substrate.
Embodiment P5. The system of Embodiment P4, where the carrier gas is selected from the group consisting of helium, nitrogen, oxygen, neon, argon, krypton, and xenon.
Embodiment P6. The system of Embodiment P4, where a temperature of the carrier gas is between a lower limit of approximately 270° K and an upper limit of approximately 600° K.
Embodiment P7. The system of Embodiment P4, where the carrier gas is heated to a temperature between a lower limit of approximately 50° C. and an upper limit of approximately 500° C.
Embodiment P8. The system of Embodiment P1, further including analyzing the plurality of analyte ions with a spectrometer.
Embodiment P9. The system of Embodiment P8, further including a gas ion separator, where the gas ion separator is located between the system of claim 1 and an ion detector.
Embodiment P10. The system of Embodiment P1, where the pretreated sampling substrate comprises a viscous liquid selected from the group consisting of glycerol, mineral oil, cottonseed oil, groundnut oil, corn oil, wheat germ oil, olive oil, castor oil, sesame oil, dimethyl formamide and dimethyl sulfoxide, ethyl carbonate, ethyl acetate, benzyl benzoate, propylene glycol, 1,3-butylene glycol, tetrahydrofuran, polyethylene glycols, methyl paraben, fatty acid esters of sorbitan, and mixtures thereof.
Embodiment P11. The system of Embodiment P10, where the pretreated sampling substrate further comprises an alcohol.
Embodiment P12. The system of Embodiment P10, where the desorption ionization source is a matrix assisted laser desorption ionization (MALDI) source, where the pretreated sampling substrate further comprises one or more chemicals selected from the group consisting of 2,5-dihydroxybenzoic acid, 3,5-dimethoxy-4-hydroxy-cinnamic acid, alpha-cyano-4-hydroxycinnamic acid, 3-hydroxypicolinic acid, 2,2′:5′,2″-Terthiophene and dithranol.
Embodiment P13. The system of Embodiment P1, where the pretreated sampling substrate is non-conducting.
Embodiment P14. The system of Embodiment P13, where a conducting surface is positioned between the pretreated sampling substrate and the power supply.
Embodiment P15. The system of Embodiment P14, where the conducting surface is analyzed with a matrix assisted laser desorption ionization (MALDI) source.
Embodiment P16. The system of Embodiment P1, where the power supply is a Van der Graff generator.
Embodiment P17. A method of ionizing an analyte with an atmospheric pressure ionization device including pretreating a sampling substrate, orienting the sampling substrate in proximity of a powder sample containing an analyte, transferring the powder sample to the sampling substrate using an electrostatic charge and directing ionizing species at the sampling substrate to generate ions of the analyte.
Embodiment P18. The method of Embodiment P17, where the first step involves contacting the sampling substrate with a solution containing a viscous liquid.
Embodiment P19. The method of Embodiment P18, where the viscous liquid is selected from the group consisting of glycerol, mineral oil, cottonseed oil, groundnut oil, corn oil, wheat germ oil, olive oil, castor oil, sesame oil, dimethyl formamide and dimethyl sulfoxide, ethyl carbonate, ethyl acetate, benzyl benzoate, propylene glycol, 1,3-butylene glycol, tetrahydrofuran, polyethylene glycols, methyl paraben, fatty acid esters of sorbitan, and mixtures thereof.
Embodiment P20. The method of Embodiment P17, where step (a) involves contacting the sampling substrate in a solution containing an alcohol.
Embodiment P21. The method of Embodiment P20, where the alcohol is selected from the group consisting of methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, isobutyl alcohol, t-butyl alcohol, n-pentyl alcohol, isopentyl alcohol, neopentyl alcohol, cyclopentyl alcohol, n-hexanol, cyclohexyl alcohol, n-heptyl alcohol, n-octyl alcohol, n-nonyl alcohol, n-decyl alcohol, allyl alcohol, benzyl alcohol, diphenylcarbinol, triphenylcarbinol, tetrahydrofurfuryl alcohol and mixtures thereof.
Embodiment P22. The method of Embodiment P17, where step (a) involves contacting the sampling substrate in a solution containing an alcohol and water.
Embodiment P23. The method of Embodiment P22, where the alcohol is selected from the group consisting of methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, isobutyl alcohol, t-butyl alcohol, n-pentyl alcohol, isopentyl alcohol, neopentyl alcohol, cyclopentyl alcohol, n-hexanol, cyclohexyl alcohol, n-heptyl alcohol, n-octyl alcohol, n-nonyl alcohol, n-decyl alcohol, allyl alcohol, benzyl alcohol, diphenylcarbinol, triphenylcarbinol, tetrahydrofurfuryl alcohol and mixtures thereof.
Embodiment P24. The method of Embodiment P22, where the solution has an aqueous component between a lower limit of approximately 2 percent and an upper limit of approximately 80 percent.
Embodiment P25. The method of Embodiment P17, where step (a) involves contacting the sampling substrate in a solution containing a viscous liquid and an alcohol.
Embodiment P26. The method of Embodiment P25, where the viscous liquid is selected from the group consisting of glycerol, mineral oil, cottonseed oil, groundnut oil, corn oil, wheat germ oil, olive oil, castor oil, sesame oil, dimethyl formamide and dimethyl sulfoxide, ethyl carbonate, ethyl acetate, benzyl benzoate, propylene glycol, 1,3-butylene glycol, tetrahydrofuran, polyethylene glycols, methyl paraben, fatty acid esters of sorbitan, and mixtures thereof.
Embodiment P27. The method of Embodiment P25, where the alcohol is selected from the group consisting of methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, isobutyl alcohol, t-butyl alcohol, n-pentyl alcohol, isopentyl alcohol, neopentyl alcohol, cyclopentyl alcohol, n-hexanol, cyclohexyl alcohol, n-heptyl alcohol, n-octyl alcohol, n-nonyl alcohol, n-decyl alcohol, allyl alcohol, benzyl alcohol, diphenylcarbinol, triphenylcarbinol, tetrahydrofurfuryl alcohol and mixtures thereof.
Embodiment P28. The method of Embodiment P17, where step (a) involves immersing the sampling substrate in a solution containing a viscous liquid, an alcohol and water.
Embodiment P29. The method of Embodiment P28, where the viscous liquid is selected from the group consisting of glycerol, mineral oil, cottonseed oil, groundnut oil, corn oil, wheat germ oil, olive oil, castor oil, sesame oil, dimethyl formamide and dimethyl sulfoxide, ethyl carbonate, ethyl acetate, benzyl benzoate, propylene glycol, 1,3-butylene glycol, tetrahydrofuran, polyethylene glycols, methyl paraben, fatty acid esters of sorbitan, and mixtures thereof.
Embodiment P30. The method of Embodiment P28, where the alcohol is selected from the group consisting of methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, isobutyl alcohol, t-butyl alcohol, n-pentyl alcohol, isopentyl alcohol, neopentyl alcohol, cyclopentyl alcohol, n-hexanol, cyclohexyl alcohol, n-heptyl alcohol, n-octyl alcohol, n-nonyl alcohol, n-decyl alcohol, allyl alcohol, benzyl alcohol, diphenylcarbinol, triphenylcarbinol, tetrahydrofurfuryl alcohol and mixtures thereof.
Embodiment P31. The method of Embodiment P28, where the solution has an aqueous component between a lower limit of approximately 2 percent and an upper limit of approximately 80 percent.
Embodiment P32. The method of Embodiment P17, where pretreating includes immersing the sampling substrate in a solution and/or dispensing the solution on the sampling substrate.
Embodiment P33. The method of Embodiment P17, where the electrostatic charge is generated using a Van der Graff generator.
Embodiment P34. The method of Embodiment P33, where the sampling substrate is non-conducting.
Embodiment P35. The method of Embodiment P34, where a conducting surface is positioned between the sampling substrate and the Van der Graff generator.
Embodiment P36. A kit for preparing an analyte for ionization and analysis including a pretreated sampling substrate including a holder enclosed in a sterile container and a power supply configured to energize the pretreated sampling substrate with an electrostatic charge in order to transfer a portion of a powder sample to the pretreated sampling substrate, where the pretreated sampling substrate is adapted to allow an ionizing species to be directed to separate regions of the pretreated sampling substrate to allow the ionizing species to form a plurality of analyte ions from the separate regions of the pretreated sampling substrate.
Embodiment P37. The kit of Embodiment P36, further including a conducting surface, where the conducting surface can be located between the pretreated sampling substrate and the power supply.
Embodiment P38. The kit of Embodiment P36, where the power supply is a Van der Graff generator.
Embodiment P39. A device for detecting contamination including a filter, a pretreated sampling substrate and an aluminized sheet, where contacting the aluminized sheet with a power supply transfers a contaminant present on the filter to the pretreated sampling substrate, where the pretreated sampling substrate is adapted to allow an ionizing species to form a plurality of analyte ions from the pretreated sampling substrate.
Embodiment P40. The device of Embodiment P39, further including a holder in which the pretreated sampling substrate can be inserted.
Embodiment P41. A kit for detecting contamination including a filter enclosed in a sterile container, a pretreated sampling substrate including a holder enclosed in a sterile container an aluminized sheet and a power supply configured to energize the aluminized sheet with an electrostatic charge in order to transfer a contaminant present on the filter to the pretreated sampling substrate, where the pretreated sampling substrate is adapted to allow an ionizing species to allow ionizing species to form a plurality of analyte ions from the pretreated sampling substrate.
Embodiment P42. A system for ionizing an analyte including a pretreated sampling substrate, a power supply configured to energize the pretreated sampling substrate with an electrostatic charge in order to transfer a portion of the analyte to the pretreated sampling substrate and a desorption ionization source adapted to direct an ionizing species towards the analyte on the pretreated sampling substrate, where the ionizing species generate a plurality of analyte ions.
Example embodiments of the methods, systems, and components of the present invention have been described herein. As noted elsewhere, these example embodiments have been described for illustrative purposes only, and are not limiting. Other embodiments are possible and are covered by the invention. Such embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. For example, it is envisaged that, irrespective of the actual shape depicted in the various Figures and embodiments described above, the outer diameter exit of the inlet tube can be tapered or non-tapered and the outer diameter entrance of the outlet tube can be tapered or non-tapered.
Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims priority to the U.S. Provisional Patent Application No. 63/030,081 entitled “ELECTROSTATIC LOADING OF POWDER SAMPLES FOR IONIZATION”, by inventor Brian D. Musselman, filed May 26, 2020, which is incorporated herein by reference in its entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3633027 | Rhyage | Jan 1972 | A |
3957470 | Dawes | May 1976 | A |
4016421 | Hull | Apr 1977 | A |
4144451 | Kambara | Mar 1979 | A |
4213326 | Brodasky | Jul 1980 | A |
4542293 | Fenn | Sep 1985 | A |
4546253 | Tsuchiya | Oct 1985 | A |
4654052 | Sharp | Mar 1987 | A |
4662914 | Hansen | May 1987 | A |
4861988 | Henion | Aug 1989 | A |
4941618 | Hildebrand | Jul 1990 | A |
5012052 | Hayes | Apr 1991 | A |
5055677 | Amirav | Oct 1991 | A |
5137553 | Dawes | Aug 1992 | A |
5192865 | Zhu | Mar 1993 | A |
5306412 | Whitehouse | Apr 1994 | A |
5352892 | Mordehai | Oct 1994 | A |
5367163 | Otsuka | Nov 1994 | A |
5381008 | Tanner | Jan 1995 | A |
5412208 | Covey | May 1995 | A |
5448062 | Cooks | Sep 1995 | A |
5552599 | Giessmann | Sep 1996 | A |
5559326 | Goodley | Sep 1996 | A |
5614711 | Li | Mar 1997 | A |
5624537 | Turner | Apr 1997 | A |
5629518 | Grotheer | May 1997 | A |
5684300 | Taylor | Nov 1997 | A |
5716825 | Hancock | Feb 1998 | A |
5736741 | Bertsch | Apr 1998 | A |
5788166 | Valaskovic | Aug 1998 | A |
5859433 | Franzen | Jan 1999 | A |
5868322 | Loucks, Jr. | Feb 1999 | A |
5877495 | Takada | Mar 1999 | A |
5889404 | Abdel-Rahman | Mar 1999 | A |
5959297 | Weinberg | Sep 1999 | A |
5997746 | Valaskovic | Dec 1999 | A |
6085601 | Linker | Jul 2000 | A |
6107628 | Smith | Aug 2000 | A |
6124675 | Betrand | Sep 2000 | A |
6188065 | Takada | Feb 2001 | B1 |
6190559 | Valaskovic | Feb 2001 | B1 |
6225623 | Turner | May 2001 | B1 |
6297499 | Fenn | Oct 2001 | B1 |
6335525 | Takada | Jan 2002 | B1 |
6359275 | Bertsch | Mar 2002 | B1 |
6395183 | Valaskovic | May 2002 | B1 |
6562211 | Kunnecke | May 2003 | B1 |
6583408 | Smith | Jun 2003 | B2 |
6600155 | Andrien, Jr. | Jul 2003 | B1 |
6646256 | Gourley | Nov 2003 | B2 |
6649907 | Ebeling | Nov 2003 | B2 |
6670608 | Taylor | Dec 2003 | B1 |
6690006 | Valaskovic | Feb 2004 | B2 |
6713757 | Tanner | Mar 2004 | B2 |
6717139 | Taniguchi | Apr 2004 | B2 |
6723985 | Schultz | Apr 2004 | B2 |
6744041 | Sheehan | Jun 2004 | B2 |
6744046 | Valaskovic | Jun 2004 | B2 |
6753523 | Whitehouse | Jun 2004 | B1 |
6784424 | Willoughby | Aug 2004 | B1 |
6794642 | Bateman | Sep 2004 | B2 |
6803565 | Smith | Oct 2004 | B2 |
6806468 | Laiko | Oct 2004 | B2 |
6818889 | Sheehan | Nov 2004 | B1 |
6861647 | Reilly | Mar 2005 | B2 |
6875980 | Bateman | Apr 2005 | B2 |
6878930 | Willoughby | Apr 2005 | B1 |
6888132 | Sheehan | May 2005 | B1 |
6914243 | Sheehan | Jul 2005 | B2 |
6943347 | Willoughby | Sep 2005 | B1 |
6949739 | Franzen | Sep 2005 | B2 |
6949740 | Sheehan | Sep 2005 | B1 |
6949741 | Cody | Sep 2005 | B2 |
6956205 | Park | Oct 2005 | B2 |
6977372 | Valaskovic | Dec 2005 | B2 |
6979816 | Tang | Dec 2005 | B2 |
6987264 | Whitehouse | Jan 2006 | B1 |
6992299 | Lee | Jan 2006 | B2 |
7015466 | Takats | Mar 2006 | B2 |
7019289 | Wang | Mar 2006 | B2 |
7034292 | Whitehouse | Apr 2006 | B1 |
7041972 | Bajic | May 2006 | B2 |
7049584 | Whitehouse | May 2006 | B1 |
7053368 | Thakur | May 2006 | B2 |
7064317 | McLuckey | Jun 2006 | B2 |
7071464 | Reinhold | Jul 2006 | B2 |
7081618 | Laprade | Jul 2006 | B2 |
7081621 | Willoughby | Jul 2006 | B1 |
7095019 | Sheehan | Aug 2006 | B1 |
7098452 | Schneider | Aug 2006 | B2 |
7112785 | Laramee | Sep 2006 | B2 |
7138626 | Karpetsky | Nov 2006 | B1 |
7157698 | Makarov | Jan 2007 | B2 |
7161145 | Oser | Jan 2007 | B2 |
7196525 | Sparkman | Mar 2007 | B2 |
7247495 | Amirav | Jul 2007 | B2 |
7253406 | Sheehan | Aug 2007 | B1 |
7332345 | Darrach | Feb 2008 | B2 |
7423261 | Truche | Sep 2008 | B2 |
7429731 | Karpetsky | Sep 2008 | B1 |
7462826 | Schneider | Dec 2008 | B2 |
7544933 | Cooks | Jun 2009 | B2 |
7569812 | Karpetsky | Aug 2009 | B1 |
7582864 | Verentchikov | Sep 2009 | B2 |
7700913 | Musselman | Apr 2010 | B2 |
7705297 | Musselman | Apr 2010 | B2 |
7714281 | Musselman | May 2010 | B2 |
7772546 | Jackson | Aug 2010 | B2 |
7777181 | Musselman | Aug 2010 | B2 |
7815484 | Kriman | Oct 2010 | B2 |
7858926 | Whitehouse | Dec 2010 | B1 |
7893408 | Hieftje | Feb 2011 | B2 |
7915579 | Chen | Mar 2011 | B2 |
7923681 | Collings | Apr 2011 | B2 |
7928364 | Musselman | Apr 2011 | B2 |
7929138 | Webb | Apr 2011 | B1 |
7982183 | Marakov | Jul 2011 | B2 |
7982185 | Whitehouse | Jul 2011 | B2 |
8003935 | Robinson | Aug 2011 | B2 |
8026477 | Musselman | Sep 2011 | B2 |
8044346 | Kostiainen | Oct 2011 | B2 |
RE43078 | Cody | Jan 2012 | E |
8101910 | Loboda | Jan 2012 | B2 |
8207497 | Musselman | Jun 2012 | B2 |
8217341 | Musselman | Jul 2012 | B2 |
8242459 | Sun | Aug 2012 | B2 |
8278619 | Makarov | Oct 2012 | B2 |
8304718 | Ouyang | Nov 2012 | B2 |
8308339 | Karpetsky | Nov 2012 | B2 |
8334507 | Whitehouse | Dec 2012 | B1 |
8362418 | Xu | Jan 2013 | B2 |
8410431 | Ouyang | Apr 2013 | B2 |
8410452 | Koenig | Apr 2013 | B2 |
8421005 | Musselman | Apr 2013 | B2 |
8440965 | Musselman | May 2013 | B2 |
8481922 | Musselman | Jul 2013 | B2 |
8497474 | Musselman | Jul 2013 | B2 |
8519354 | Charipar | Aug 2013 | B2 |
8525109 | Musselman | Sep 2013 | B2 |
8558170 | Musselman | Oct 2013 | B1 |
8563945 | Musselman | Oct 2013 | B2 |
RE44603 | Cody | Nov 2013 | E |
8592756 | Ouyang | Nov 2013 | B2 |
8592758 | Nilles | Nov 2013 | B1 |
8604423 | Enke | Dec 2013 | B2 |
8648295 | Enke | Feb 2014 | B2 |
8664000 | Yang | Mar 2014 | B2 |
8686351 | Ouyang | Apr 2014 | B2 |
8704167 | Cooks | Apr 2014 | B2 |
8710437 | Cooks | Apr 2014 | B2 |
8729496 | Musselman | May 2014 | B2 |
8754365 | Krechmer | Jun 2014 | B2 |
8766177 | Verbeck, IV | Jul 2014 | B2 |
8766178 | Ouyang | Jul 2014 | B2 |
8803085 | Ouyang | Aug 2014 | B2 |
8816275 | Ouyang | Aug 2014 | B2 |
8822949 | Krechmer | Sep 2014 | B2 |
8853627 | Ouyang | Oct 2014 | B2 |
8859956 | Ouyang | Oct 2014 | B2 |
8859957 | Ouyang | Oct 2014 | B2 |
8859958 | Ouyang | Oct 2014 | B2 |
8859959 | Ouyang | Oct 2014 | B2 |
8859986 | Cooks | Oct 2014 | B2 |
8890063 | Ouyang | Nov 2014 | B2 |
8895916 | Musselman | Nov 2014 | B2 |
8895918 | Cooks | Nov 2014 | B2 |
8901488 | Musselman | Dec 2014 | B1 |
8927926 | Shimada | Jan 2015 | B2 |
8932875 | Cooks | Jan 2015 | B2 |
8933398 | Ouyang | Jan 2015 | B2 |
8937288 | Cooks | Jan 2015 | B1 |
8963079 | Ouyang | Feb 2015 | B2 |
8963101 | Krechmer | Feb 2015 | B2 |
9024254 | Cooks | May 2015 | B2 |
9064674 | Ouyang | Jun 2015 | B2 |
9105435 | Musselman | Aug 2015 | B1 |
9116154 | Ouyang | Aug 2015 | B2 |
9159540 | Ouyang | Oct 2015 | B2 |
9165752 | Cooks | Oct 2015 | B2 |
9224587 | Krechmer | Dec 2015 | B2 |
9230792 | Cooks | Jan 2016 | B2 |
9337007 | Musselman | May 2016 | B2 |
9390899 | Musselman | Jul 2016 | B2 |
9484195 | Ouyang | Nov 2016 | B2 |
9500630 | Cooks | Nov 2016 | B2 |
9514923 | Krechmer | Dec 2016 | B2 |
9538945 | Cooks | Jan 2017 | B2 |
9546979 | Cooks | Jan 2017 | B2 |
9548192 | Cooks | Jan 2017 | B2 |
9551079 | Cooks | Jan 2017 | B2 |
9558926 | Musselman | Jan 2017 | B2 |
9607306 | Hieftje | Mar 2017 | B2 |
RE46366 | Cody | Apr 2017 | E |
9620344 | Cooks | Apr 2017 | B2 |
9633827 | Musselman | Apr 2017 | B2 |
9700251 | Cooks | Jul 2017 | B2 |
9704700 | Cooks | Jul 2017 | B2 |
9719181 | Cooks | Aug 2017 | B2 |
9733228 | Cooks | Aug 2017 | B2 |
9824875 | Musselman | Nov 2017 | B2 |
9941105 | Cooks | Apr 2018 | B2 |
9960029 | Krechmer | May 2018 | B2 |
10004440 | Cooks | Jun 2018 | B2 |
10008374 | Ouyang | Jun 2018 | B2 |
10014169 | Cooks | Jul 2018 | B2 |
10056243 | Musselman | Aug 2018 | B2 |
10079140 | Cooks | Sep 2018 | B2 |
10088461 | Cooks | Oct 2018 | B2 |
10090142 | Musselman | Oct 2018 | B2 |
10113242 | Cooks | Oct 2018 | B2 |
10134575 | Krechmer | Nov 2018 | B2 |
10283340 | Musselman | May 2019 | B2 |
10395911 | Cooks | Aug 2019 | B2 |
10395913 | Cooks | Aug 2019 | B2 |
10553417 | Musselman | Feb 2020 | B2 |
10636640 | Musselman | Apr 2020 | B2 |
10643833 | Krechmer | May 2020 | B2 |
10643834 | Musselman | May 2020 | B2 |
10679839 | Musselman | Jun 2020 | B2 |
11049707 | Musselman | Jun 2021 | B2 |
20020121596 | Laiko | Sep 2002 | A1 |
20020121598 | Park | Sep 2002 | A1 |
20020162967 | Atkinson | Nov 2002 | A1 |
20020185593 | Doring | Dec 2002 | A1 |
20020185595 | Smith | Dec 2002 | A1 |
20020185606 | Smith | Dec 2002 | A1 |
20030052268 | Doroshenko | Mar 2003 | A1 |
20030070913 | Miller | Apr 2003 | A1 |
20040094706 | Covey | May 2004 | A1 |
20040129876 | Franzen | Jul 2004 | A1 |
20040159784 | Doroshenko | Aug 2004 | A1 |
20050230635 | Takats | Oct 2005 | A1 |
20050236374 | Blankenship | Oct 2005 | A1 |
20060266941 | Vestal | Nov 2006 | A1 |
20070114389 | Karpetsky | May 2007 | A1 |
20070228271 | Truche | Oct 2007 | A1 |
20070272849 | Kirihara | Nov 2007 | A1 |
20080156985 | Venter | Jul 2008 | A1 |
20080202915 | Hieftje | Aug 2008 | A1 |
20080217254 | Anderson | Sep 2008 | A1 |
20090090197 | Finlay | Apr 2009 | A1 |
20090090858 | Musselman | Apr 2009 | A1 |
20100078550 | Wiseman | Apr 2010 | A1 |
20100140468 | Musselman | Jun 2010 | A1 |
20110215798 | Beer | Sep 2011 | A1 |
20120006983 | Cody | Jan 2012 | A1 |
20120068063 | Fernandez | Mar 2012 | A1 |
20120145890 | Goodlett | Jun 2012 | A1 |
20120208004 | Wolcott | Aug 2012 | A1 |
20120223226 | Rafferty | Sep 2012 | A1 |
20120312980 | Whitehouse | Dec 2012 | A1 |
20120322683 | Liu | Dec 2012 | A1 |
20130020482 | Enke | Jan 2013 | A1 |
20130037710 | Wu | Feb 2013 | A1 |
20130092832 | Enke | Apr 2013 | A1 |
20130273552 | Ohashi | Oct 2013 | A1 |
20130284915 | Shimada | Oct 2013 | A1 |
20130299688 | Balogh | Nov 2013 | A1 |
20140024822 | Connolly | Jan 2014 | A1 |
20150364310 | Musselman | Dec 2015 | A1 |
20160314956 | Cooks | Oct 2016 | A1 |
20170082604 | Ouyang | Mar 2017 | A1 |
20170084438 | Cooks | Mar 2017 | A1 |
20170084442 | Ng | Mar 2017 | A1 |
20170103879 | Cooks | Apr 2017 | A1 |
20170130352 | Cooks | May 2017 | A1 |
20170135613 | Cooks | May 2017 | A1 |
20170148622 | Musselman | May 2017 | A1 |
20170154761 | Ouyang | Jun 2017 | A1 |
20170168032 | Cooks | Jun 2017 | A1 |
20170221695 | Cooks | Aug 2017 | A1 |
20170229299 | Musselman | Aug 2017 | A1 |
20170248547 | Campbell | Aug 2017 | A1 |
20170248607 | Cooks | Aug 2017 | A1 |
20170273605 | Cooks | Sep 2017 | A1 |
20170287690 | Cooks | Oct 2017 | A1 |
20170309462 | Cooks | Oct 2017 | A1 |
20170335477 | Cooks | Nov 2017 | A1 |
20170343526 | Cooks | Nov 2017 | A1 |
20170349547 | Cooks | Dec 2017 | A1 |
20180017535 | Cooks | Jan 2018 | A1 |
20180024108 | Cooks | Jan 2018 | A1 |
20180033603 | Cooks | Feb 2018 | A1 |
20180040464 | Cooks | Feb 2018 | A1 |
20180043327 | Cooks | Feb 2018 | A1 |
20180047552 | Cooks | Feb 2018 | A1 |
20180061620 | Cooks | Mar 2018 | A1 |
20180076015 | Musselman | Mar 2018 | A1 |
20180188273 | Cooks | Jul 2018 | A1 |
20180204712 | Cooks | Jul 2018 | A1 |
20180247804 | Shelley | Aug 2018 | A1 |
20180275118 | Cooks | Sep 2018 | A1 |
20180279927 | Cooks | Oct 2018 | A1 |
20180286651 | Ouyang | Oct 2018 | A1 |
20180330934 | Cooks | Nov 2018 | A1 |
20190206668 | Cooks | Jul 2019 | A1 |
20190219555 | Cooks | Jul 2019 | A1 |
20190237315 | Cooks | Aug 2019 | A1 |
20190371592 | Musselman | Dec 2019 | A1 |
20200020516 | Cooks | Jan 2020 | A1 |
20200110010 | Pawliszyn | Apr 2020 | A1 |
20200121229 | Cooks | Apr 2020 | A1 |
20200219711 | Cooks | Jul 2020 | A1 |
20200321208 | Cooks | Oct 2020 | A1 |
20200340962 | Cooks | Oct 2020 | A1 |
20200355587 | Pawliszyn | Nov 2020 | A1 |
20200357620 | Cooks | Nov 2020 | A1 |
20200357671 | Ouyang | Nov 2020 | A1 |
20200381237 | Cooks | Dec 2020 | A1 |
20200381238 | Cooks | Dec 2020 | A1 |
20200381239 | Ouyang | Dec 2020 | A1 |
20200402786 | Cooks | Dec 2020 | A1 |
20210098245 | Shelley | Apr 2021 | A1 |
20210166927 | Ouyang | Jun 2021 | A1 |
20210265155 | Cooks | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
106796866 | May 2017 | CN |
102007015542 | Oct 2007 | DE |
1434050 | Jun 2004 | EP |
2263578 | Jul 1993 | GB |
50-106694 | Aug 1975 | JP |
51-120288 | Oct 1976 | JP |
52-91494 | Aug 1977 | JP |
60-41748 | Mar 1985 | JP |
2003185635 | Jul 2003 | JP |
2003222574 | Aug 2003 | JP |
2005-150027 | Jun 2005 | JP |
2007525677 | Jun 2007 | JP |
2009539114 | Nov 2009 | JP |
WO03025973 | Mar 2003 | WO |
WO03081205 | Oct 2003 | WO |
WO2004068131 | Aug 2004 | WO |
WO2005094389 | Oct 2005 | WO |
WO2008054393 | May 2008 | WO |
WO2008082603 | Jul 2008 | WO |
WO2015195599 | Dec 2015 | WO |
WO2016145041 | Sep 2016 | WO |
WO2017040359 | Mar 2017 | WO |
WO2017053911 | Mar 2017 | WO |
WO2017070478 | Apr 2017 | WO |
WO2017079193 | May 2017 | WO |
WO2017127670 | Jul 2017 | WO |
WO2017132444 | Aug 2017 | WO |
WO2017180871 | Oct 2017 | WO |
WO2018175713 | Sep 2018 | WO |
Entry |
---|
The AccuTOF-DART Mass Spectrometer, Jan. 1, 2006, pp. 1-6; www.jeolusa.com/SERVICESUPPORT/ApplicationsResources/AnalyticalInstruments/Documents/Downloads/tabid/337/DMXModule/693/CommandCore_Download/Default.aspx?EntryId=171. |
Cody, R.B. et al., “Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions” Anal. Chem., 2005, 77, 2297-2302. |
Cooks, R.G. et al., “Ambient Mass Spectrometry”, Science, 2006, 311, 1566-1570. |
Dalton, C.N. et al., “Electrospray-Atmospheric Sampling Glow Discharge Ionization Source for the Direct Analysis of Liquid Samples”, Analytical Chemistry, Apr. 1, 2003, vol. 75, No. 7, pp. 1620-1627. |
Garimella, S. et al., “Gas-flow assisted ion transfer for mass spectrometry”, J. Mass Spectrom. 2012, 17, 201-207. |
Guzowski, J.P. Jr. et al., “Development of a Direct Current Gas Sampling Glow Discharge Ionization Source for the Time-of-Flight Mass Spectrometer”, J. Anal. At. Spectrom., 14, 1999, pp. 1121-1127. |
Haddad, R., et al., “Easy Ambient Sonic-Spray Ionization Mass Spectrometry Combined with Thin-Layer Chromatography,” Analytical Chemistry, vol. 80, No. 8, Apr. 15, 2008, pp. 2744-2750. |
Harris, Glenn A. et al., Ambient Sampling/Ionization Mass Spectrometry: Applications and Current Trends, Apr. 15, 2011, Anal. Chem. 2011, 83, pp. 4508-4538. |
Harris, Glenn A. et al., Simulations and Experimental Investigation of Atmospheric Transport in an Ambient Metastable-Induced Chemical Ionization Source, Anal. Chem. 2009, 81, pp. 322-329. |
Hill, C.A. et al., “A pulsed corona discharge switchable high resolution ion mobility spectrometer-mass spectrometer”, Analyst, 2003, 128, pp. 55-60. |
Hiraoka, K. et al., “Atmospheric-Pressure Penning Ionization Mass Spectrometry”, Rapid Commun. Mass Spectrom., 18, 2004, pp. 2323-2330. |
McLuckey, S.A. et al., “Atmospheric Sampling Glow Discharge Ionization Source for the Determination of Trace Organic Compounds in Ambient Air”, Anal. Chem., 60, 1988, pp. 2220-2227. |
Otsuka, K. et al., “An Interface for Liquid Chromatography/Liquid Ionization Mass Spectrometer”, Analytical Sciences, Oct. 1988, vol. 4, pp. 467-472. |
Takáts et al., “Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization,” Science, vol. 306, No. 5695, Oct. 15, 2004, pp. 471-473. |
Tembreull, R., et al., “Pulsed Laser Desorption with Resonant Two-Photon Ionization Detection in Supersonic Beam Mass Spectrometry,” Anal. Chem., vol. 58, 1986, pp. 1299-1303, p. 1299. |
Ifa et al., Ambient Ionization Mass Spectrometry for Cancer Diagnosis and Surgical Margin Evaluation, Clinical Chem., (2016) 62, 111-123. |
Voelker, S.E. et al., “Evaluation of four field portable devices for the rapid detection of mitragynine in suspected kratom products” 201 (2021) 114104. |
Yang et al., Argon Direct Analysis in Real Time Mass Spectrometry in Conjunction with Makeup Solvents: A Method for Analysis of Labile Compounds, Anal Chem., (2013) 83, 1305-1309. |
Yu et al., Bioanalysis without Sample Cleanup or Chromatography: The Evaluation and Initial Implementation of Direct Analysis in Real Time Ionization Mass Spectrometry for the Quantification of Drugs in Biological Matrixes, Anal Chem., (2009) 81, 193-202. |
Zang et al., Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics, J. Am. Soc. Mass Spectrom., (2017) 28, 1489-1496. |
Zhang et al., Will Ambient Ionization Mass Spectrometry Become an Integral Technology in the Operating Room of the Future?, Clinical Chem., (2016) 62, 1172-1174. |
Zhao, J. et al., Liquid Sample Injection Using an Atmospheric Pressure Direct Current Glow Discharge Ionization Source, Analytical Chemistry, Jul. 1, 1992, vol. 64, No. 13, pp. 1426-1433. |
International Search Report, Application No. PCT/US2007/63006, dated Feb. 5, 2008, 8 pages. |
Extended European Search Report, Application No. 07757665.0 PCT/US2007/063006 dated Jan. 7, 2010, 8 pages. |
Article 94(3) European Communication, Application No. 07757665.0 PCT/US2007/063006, dated Mar. 14, 2012, 9 pages. |
International Search Report, Application No. PCT/US2007/69823, dated Feb. 15, 2008, 8 pages. |
Extended European Search Report, Application No. 07797812.0 PCT/US2007/069823, dated Apr. 4, 2010, 9 pages. |
Article 94(3) European Communication, Application No. 07797812.0 PCT/US2007/069823, dated Jul. 27, 2012, 9 pages. |
International Search Report, Application No. PCT/US2007/69821, dated Feb. 7, 2008. |
Extended European Search Report, Application No. 07797811.2 PCT/US2007/069821, dated Mar. 25, 2010, 9 pages. |
European Summons, Application No. 07797811.2 PCT/US2007/069821, Feb. 18, 2013, 8 pages. |
International Search Report, Application No. PCT/US2007/81439, dated Mar. 20, 2008, 9 pages. |
Extended European Search Report, Application No. 07844307.4 PCT/US2007/081439, dated Apr. 14, 2010, 12 pages. |
Japanese Office Action, Application No. 2008-558459 PCT/US2007/063006, dated Jan. 19, 2012, 4 pages. |
Unofficial Translation of Japanese Office Action, Application No. 2008-558459 PCT/US2007/063006, dated Jan. 19, 2012, 5 pages. |
Chinese Office Action, Application No. 200780015974.5 PCT/US2007/063006, dated Feb. 2, 2012, 5 pages. |
Chinese Office Action, Application No. 200780015974.5 PCT/US2007/063006, dated Sep. 25, 2012, 8 pages. |
Chinese Office Action, Application No. 200780015974.5 PCT/US2007/063006, dated Dec. 26, 2012, 7 pages. |
International Search Report, Application No. PCT/US2012/000061, dated Aug. 6, 2013, 8 pages. |
Oral Proceedings European Communication, Application No. 07757665.0 PCT/US2007/063006, Sep. 3, 2013, 5 pages. |
Korean Patent Application 7024130/2008 Office Action, dated Jun. 29, 2013, 3 pages. |
Korean Patent Application 7024130/2008 Office Action, translation, dated Jun. 29, 2013, 3 pages. |
Article 94(3) European Communication, Application No. 07797811.2 PCT/US2007/069821, dated Feb. 2, 2012, 8 pages. |
Summons Application No. 07797811.2 PCT/US2007/069821, Feb. 18, 2013, 10 pages. |
Chinese Office Action, Application No. 201280003101.3, PCT/US12/00061, dated Jan. 22, 2016, 3 pages. |
Translation of Chinese Office Action, Application No. 201280003101.3, PCT/US12/00061, dated Jan. 22, 2016, 18 pages. |
Japanese Office Action, Application No. 2013552527 , PCT/US12/00061, dated Jan. 22, 2016, 3 pages. |
Translation of Japanese Office Action, Application No. 2013552527, PCT/US12/00061, dated Jan. 22, 2016, 4 pages. |
Extended European Search Report, Application No. 12742544.5, PCT/US20012/0000061, dated Sep. 12, 2017, 9 pages. |
Form 1224, Preliminary amendment, EP Application No. 12742544.5, PCT/US20012/0000061, dated Mar. 22, 2018, 7 pages. |
Amended Claims, EP Application No. 12742544.5, PCT/US20012/0000061, Mar. 22, 2018, 3 pages. |
Gibbins, J.R., ‘Variable Heating Rate Wire Mesh Pyrolysis Apparatus’ Rev. Sci. Instr. 60 (1989) pp. 1129-1139. |
Korean Patent Application, Application No. 10-2013-7008108, Notice of Final Rejection, dated Jun. 7, 2018, 2 pages. |
Korean Patent Application, Application No. 10-2013-7008108, Notice of Final Rejection, dated Sep. 5, 2018, 6 pages. |
Translation of Korean Patent Application, Application No. 10-2013-7008108, Notice of Final Rejection, dated Sep. 5, 2018, 5 pages. |
Korean Patent Application, Application No. 10-2013-7008108, Response to Notice of Final Rejection, Amendment dated Oct. 31, 2018, 3 pages. |
Machine Translation of Amendment, Response to Notice of Final Rejection in Korean Patent Application, Application No. 10-2013-7008108, dated Oct. 31, 2018, 2 pages. |
Korean Patent Application, Application No. 10-2013-7008108, Response to Notice of Final Rejection, Argument dated Oct. 31, 2018, 12 pages. |
Machine Translation of Argument, Response to Notice of Final Rejection in Korean Patent Application, Application No. 10-2013-7008108, dated Oct. 31, 2018, 27 pages. |
International Search Report, Application No. PCT/US19/34041, dated Nov. 1, 2019, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20210372892 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
63030081 | May 2020 | US |