The disclosure relates to an electrosurgical device. More specifically, it relates to an electrosurgical device for applying electrical energy to cut through tissue in a region of a patient's body.
An electrosurgical device operable to traverse body vasculature to deliver a fluid and electrical energy about its distal end is disclosed herein. The electrosurgical device comprises an electrically conductive elongate member for traversing body vasculature wherein electrical energy is deliverable through the wall of the elongate member; a lumen defined by the elongate member; one or more distal apertures defined at or near the distal end of the elongate member and in fluid communication with the lumen; and an energy delivery device in electrical communication with the elongate member at or about the distal end of the elongate member. The energy delivery device includes an electrode for delivering energy. A thermal shield (also referred to herein as a spacer) is positioned between the electrode and the elongate member for thermally protecting portions of the electrosurgical device.
In a first broad aspect, embodiments of the present invention include an electrosurgical device comprising an elongate member with an electrically conductive wall for delivering electrical energy therethrough, the elongate member defining a lumen that is in fluid communication with at least one distal aperture; an energy delivery device including an electrode electrically coupled to the wall of the elongate member; and an electrically insulative thermal shield between the electrode and the elongate member. In some embodiments, the electrode is at the distal tip of the electrosurgical device.
As a feature of the first broad aspect, in some embodiments the electrosurgical device further comprises a layer of insulation covering the elongate member, and the electrically insulative thermal shield is located between the layer of insulation and the electrode in order to protect the layer of insulation from heat generated by delivery of energy via the electrode. In some embodiments, a distal portion of the layer of insulation overlaps both the distal end of the elongate member and a proximal portion of the thermal shield.
As another feature of the first broad aspect, certain embodiments include a flexible elongate member.
As another feature of the first broad aspect, in some embodiments of the electrosurgical device, the proximal end of the energy delivery device further comprises an energy delivery device coupler for electrically coupling with the elongate member. In some embodiments, the energy delivery device has an intermediate portion for accommodating the thermal shield. Some such embodiments include the energy delivery device coupler comprising an electrically conductive spacer fitting within and substantially blocking a distal part (including the distal end) of the lumen, with the electrically conductive spacer in electrical communication with an electrically conductive surface of the wall of the elongate member. The energy delivery device can further comprise an intermediate conductive element extending between the electrically conductive spacer and the electrode, and, in some such embodiments, the thermal shield surrounds the intermediate conductive element. In some embodiments the thermal shield is generally cylindrical shaped and has a center bore for receiving the intermediate conductive element. Typically, the electrically conductive spacer is cylindrical shaped and the intermediate conductive element is elongate. In some embodiments, the device further includes a disc-shaped electrode support that supports a conductive dome electrode portion shaped like a segment of a sphere (such as a hemisphere) formed on a surface of the electrode support. The electrode support may or may not form a part of the electrode. In some embodiments, the electrode support is integral with the electrode.
Certain embodiments of the first broad aspect include the elongate member comprising either a braided conductive layer, a metal layer with a helical configuration, or a metal tube with an interrupted helical groove cut into its outer surface. Other embodiments of the first broad aspect include the elongate member comprising non-metallic conductive materials.
In some embodiments of the electrosurgical device, the elongate member, the electrode, and the electrically insulative thermal shield have outer diameters that range from about 0.014 inches to about 0.050 inches. For some applications, embodiments of the device have dimensions (in particular outer diameter dimensions) that correspond with guidewire sizes to facilitate withdrawing the electrosurgical device from a patient during a procedure and exchanging it with a guidewire. Guidewires used in applicable procedures are typically selected from the group consisting of guidewires having an outer dimension of about 0.014 inches, 0.018 inches, 0.025 inches, 0.035 inches, and 0.038 inches. As an example, to facilitate exchange with a 0.035 inch guidewire, certain embodiments of the electrosurgical device include an elongate member with an outer diameter that ranges from about 0.033 inches to about 0.035 inches, the electrode having an outer diameter that ranges from about 0.032 inches to about 0.035 inches, and the electrically insulative thermal shield having an outer diameter that ranges from about 0.028 inches to about 0.031 inches. In a specific embodiment, the elongate member has an outer diameter of about 0.033 inches, the electrode has an outer diameter of about 0.032 inches, and the electrically insulative thermal shield has an outer diameter of about 0.028 inches. Embodiments can have dimensions corresponding to other guidewire sizes to facilitate exchange with other guidewires.
The electrosurgical device can further comprise a support wire or spine extending proximally from the electrically conductive spacer or another part of the electrosurgical device. The support spine adds stiffness and support to the elongate member, thereby facilitating advancement of the elongate member through body vessels. In general, there is no minimum spine length and the maximum support spine length is limited by the length of the lumen containing the spine. In some embodiments, the support spine can extend for a distance of about 3.835 inches (about 10 cm) or about 4 inches. In alternative embodiments, the support spine extends for a distance of at least about 3.835 inches (about 10 cm). In embodiments where a distal portion of the elongate member comprises a metal layer with cuts at least partially therethrough, the support spine can extend beyond the cut portion of the elongate member. In some embodiments, the support spine extends at least one centimeter proximal of the cut portion. Further details regarding the support spine are found in co-pending U.S. Provisional Patent Application Ser. No. 61/777,368, filed 12 Mar. 2013, previously incorporated by reference in its entirety.
In some embodiments, elongate member 6 is between about 50 cm and about 120 cm in length, as is the lumen 26 defined therein. In such embodiments, support spine can have a length between about 50 cm and about 120 cm. In embodiments of electrosurgical device 20 suitable for exchange, the length of elongate member 6 is between about 50 cm and about 250 cm, as is the length of the lumen 26 defined therein. In such embodiments, support spine can have a length between about 50 cm and about 250 cm in length.
Some embodiments of the first broad aspect include an electrosurgical device wherein the elongate member has a fixed length, and an energy delivery device with a substantially atraumatic tip.
In some embodiments of the first broad aspect, the thermal shield has a thermal conductivity of at least 1 W/m-K, and/or the thermal shield is a ceramic. In alternate embodiments, the thermal shield has a thermal conductivity of at least 2 W/m-K. Some embodiments of the electrosurgical device include a thermal shield comprising a material with a thermal conductivity ranging from about 1 W/m-K to about 5 W/m-K, for example, zirconium oxide and silicon carbide. Other embodiments of the electrosurgical device include a thermal shield comprising a material having a thermal conductivity ranging from about 15 W/m-K to about 40 W/m-K, for example, zirconia toughened alumina (ZTA), sapphire crystal (aluminum oxide), and silicon nitride.
In a second broad aspect, embodiments of the invention include a method to cross partial or total blockages with tough (calcified) caps, such as chronic total occlusions (CTOs), in vessels such as peripheral vessels. In some embodiments of this broad aspect, the method comprises the following steps: (1) injecting a contrast fluid through an electrosurgical device positioned adjacent an occlusion; (2) assessing visibility of one or more channels through the occlusion using an imaging modality; (3) if no channels are visible in step 2, delivering energy from the electrosurgical device to the occlusion; and (4) repeating steps (1)-(3), as needed, until one or more channels through the occlusion are visualized. The method typically further comprises a step of delivering energy to the one or more visualized channels using the electrosurgical device for creating a pathway through the occlusion.
Some embodiments of the second broad aspect include step (5) delivering contrast fluid after cutting through the blockage to confirm the crossing.
In a third broad aspect, embodiments of the invention include a method of cutting through an occlusion in a vessel of a patient, comprising the following steps: (i) positioning an electrosurgical device at a first desired location in the vessel substantially adjacent the occlusion; (ii) delivering energy using the electrosurgical device to at least partially cut through the occlusion; and (iii) measuring pressure using a pressure transmitting lumen defined by the electrosurgical device in order to determine the position of the electrosurgical device at least one of before and after step (ii). In some embodiments, step (i) comprises delivering contrast fluid through the electrosurgical device for confirming position at the first desired location. Some embodiments further comprise step (iv) advancing the electrosurgical device to a second location; and step (v) confirming position of the electrosurgical device at the second location using one or more of a pressure measurement through a pressure transmitting lumen defined by the electrosurgical device, or delivering contrast fluid through the electrosurgical device.
Other methods of using the electrosurgical device comprise delivering cooling fluid and/or electrolytes through the lumen and aperture, and/or measuring pressure through the lumen and aperture.
In order that the invention may be readily understood, embodiments of the invention are illustrated by way of examples in the accompanying drawings, in which:
Current devices used for recanalization of chronic total occlusions (CTOs) are generally solid flexible wires, such as guidewires. Such devices typically lack means to deliver fluid for visualization during the recanalization procedure, which is one of the greatest challenges in CTO recanalization. As a solution, physicians commonly exchange the channeling device with a fluid delivery catheter, resulting in a cumbersome and time consuming procedure. Other challenges to CTO recanalization exist specifically when using a device to deliver electrical or thermal energy to the CTO. For example, the energy delivered for channeling may produce heat that may damage parts of the device close to the heating zone.
The inventors of the present application have conceived of, and reduced to practice, various embodiments of a device with features that address the above described challenges. The device includes a flexible elongate member comprised of an electrically conductive material. In addition, the elongate member defines a lumen suitable for fluid delivery, while remaining suitably dimensioned for traversing vasculature and channeling through an occlusion. The device is configured for delivering energy to an electrode through the side-wall of the elongate member such that it is not necessary to include a conductive wire within the lumen to provide energy to the electrode. This configuration leaves the fluid delivery portion of the lumen substantially free of obstruction, and enables the device to have a diameter suitable for delivery to, and channeling through, a CTO. Embodiments of the disclosed device further include a heat-shield between the electrode and the elongate member to protect the elongate member from heat damage.
In embodiments including an electrically insulative heat/thermal shield, the present inventors have further conceived and reduced to practice a means of maintaining a conductive pathway between the wall of the elongate member and the electrode. For example, the disclosed device also includes structure(s) defining the electrical pathway, where the structure(s) is/are small and structurally sound. The electrode and the structure(s) providing the pathway to the elongate member together form an energy delivery device. In some embodiments, an electrically conductive support spine extends from the energy delivery device proximally through a portion of the lumen to provide a secondary electrical path from the elongate member to the electrode. The support spine simultaneously provides structural support to the elongate member, particularly as the device bends or curves during use.
In addition, the present inventors have conceived of and reduced to practice novel methods of medical treatment. Some of the disclosed methods include channeling through chronic total occlusions within vasculature and delivering fluids using a single medical device rather than separate devices for energy delivery and fluid delivery.
With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of certain embodiments of the present invention only. Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
Electrical continuity exists between distal region 24 of elongate member 6 and electrode 19 of energy delivery device 15. As insulation layer 7 is present over substantially the entire elongate member, the path of least resistance for electrical energy flowing through elongate member 6 is through the electrode 19.
A thermal shield 3, located proximal of electrode 19, protects the integrity of the portion of device 20 proximal of electrode. Thermal shield 3 is an electrical and thermal insulator that functions to insulate and thus protect the distal region 24 of the elongate member (including insulation layer 7) from the heat generated at electrode 19. Thermal shield 3 also prevents arcing between the electrode and the elongate member. In typical embodiments of electrosurgical device 20, such as the example shown in
In embodiments with the above-described overlap of insulation layer 7, the overlap forms a sealed junction. This configuration may help minimize arcing observed proximal of the thermal shield 3 near the junction, and may help minimize degradation of insulation layer 7 from the heat generated by the delivery of electrical energy from the electrode to the surrounding tissue. The overlap of insulation layer 7 with thermal shield 3 can also prevent fluid from leaking from the distal portion of lumen 26. In some embodiments, thermal shield 3 can have a taper or step 40 to provide a smoother outer diameter transition between insulation layer 7 and thermal shield 3, as shown in
In some embodiments, elongate member 6 defines one or more apertures (or sideports) 25, as shown in
In the embodiment of
Electrosurgical device 20 further includes means for electrically coupling proximal region 22 of elongate member 6 to an energy source. In the embodiment of
Shown in detail in
Some embodiments of electrosurgical device 20 include a support spine 1 (also referred to as a support wire/stiffening member), as shown in
In the embodiment illustrated in
Further details regarding the support spine are found in co-pending U.S. Provisional Patent Application Ser. No. 61/777,368, filed 12 Mar. 2013, previously incorporated by reference in its entirety.
Some embodiments, such as the embodiment of
In some embodiments, one or more visualization markers, such as radiopaque markers 5 shown in
Some alternative embodiments have a spiral or a coiled marker 5 rather than band markers. A coiled marker 5 is typically comprised of platinum or tungsten. In the embodiments of
Energy delivery device 15 of the embodiment of
Electrode 19 is configured and sized to provide a current density at electrode 19 sufficient to generate arcing in a region of tissue when electrode 19 is positioned proximate the region of tissue. This arcing creates a channel through at least a portion of the region of tissue. For details regarding electrosurgical arcing and channel creation, reference is made to U.S. patent application Ser. No. 12/926,292, previously incorporated herein by reference in its entirety.
As illustrated in
Electrode 19 is electrically and operatively coupled to energy delivery device 15 by a variety of means, for example, gluing or insert molding. The electrode is made from any suitable electrically conductive material. Examples of suitable materials include stainless steels, copper, and platinum.
The electrode may be one of various shapes and sizes, for example, substantially cylindrical, and/or having a hemispherical, rounded, or domed end.
Making reference to
In some embodiments, elongate member 6 is fabricated from a super-elastic material, which facilitates the advancement of electrosurgical device 20 through tortuous vasculature.
Elongate member 6 is electrically coupled to energy delivery device 15 by a variety of connecting means. For example, in one embodiment, elongate member 6 can be welded or soldered to conductive spacer 4 of energy delivery device 15.
Embodiments of elongate member 6 are made from a number of different materials. Examples include stainless steel, copper, nickel, titanium, and alloys thereof. In some embodiments, elongate member 6 comprises a stainless steel hypotube or a nitinol hypotube.
In some embodiments, notches are cut into elongate member 6, for example, by laser-cutting. The region comprising the notches retains conductivity along elongate member 6, but is relatively more flexible than it would be without such cuts. Different configurations of cuts are possible, including c-cuts, spiral shaped cuts, interrupted spiral cuts, interlocking cuts, and dove-tail cuts. The cuts or notches may be made partially or completely through a wall of elongate member 6.
The specific embodiment of
This variable flexibility assists in the proper positioning and use of electrosurgical device 20 in surgical procedures. For example, a more flexible distal region 24 is desirable for navigating through conduits in a patient's body, such as blood vessels, while a stiffer proximal region 22 is desirable for pushability of the device and resistance to kinking under axial compression force. A relatively stiffer proximal region 22 is desirable for torque response and radial rigidity. The flexibility of an embodiment of elongate member 6 depends on its wall thickness and/or outer diameter. Different embodiments of the elongate member 6 may have different wall thicknesses and/or different outer diameters in order to create a device with the desired flexibility. To vary flexibility along the length of the elongate member 6, alternative embodiments of elongate member 6 may have varying wall thickness with a constant outer diameter along its length, and/or varying outer diameter with a constant wall thickness along its length.
In some embodiments of electrosurgical device 20 incorporating a spine 1 in which elongate member 6 is biased to be straight, the shape memory properties and stiffness of spine 1 compensate for the flexibility created by cuts into the elongate member 6. These characteristics of spine 1 also allow electrosurgical device 20 to display the stiffness and response of a guidewire, and revert to a straight configuration after bending. In addition, spine 1 can act as a bridge across the cuts to distribute the bending stress along elongate member 6, as described with reference to FIGS. 25A and 25B of U.S. Provisional Patent Application Ser. No. 61/777,368.
In some embodiments, the length of elongate member 6 is between about 50 cm and about 120 cm, and has an inner diameter of about 0.028 inches and an outer diameter of about 0.032 inches. Embodiments of this length have a fixed (i.e. not removable) hub (or handle). Other embodiments have an inner diameter of about 0.025 inches and an outer diameter of about 0.029 inches. The dimensions of elongate member 6 depend on factors such as the distance to the target site, the tortuosity and/or diameter of the vessel(s) to be navigated, whether or not the elongate member is desired to be exchange length, and any other requirement imposed by auxiliary devices to be used with elongate member 6. For example, elongate member 6 is typically sized to be compatible with a particular sheath and/or dilator.
Alternative configurations of the energy delivery device 15 are possible. The embodiment of
In some embodiments of medical device 20, the support spine 1 functions as the primary (or only) pathway for electrical energy to travel from elongate member 6 to energy delivery device 15. In the example of
The embodiment of
Making reference to
Medical device 20 may be used in conjunction with a source of energy suitable for delivery to a patient's body. Sources of energy include generators of ultrasonic, microwave, radiofrequency, or other forms of electromagnetic energy. In embodiments utilizing ultrasonic energy, energy delivery device 15 may comprise an ultrasound transducer. In one particular embodiment, the source of energy is a radiofrequency (RF) electrical generator, such as a generator operable in the range of about 100 kHz to about 3000 kHz, designed to generate a high voltage in a short period of time. More specifically, the voltage generated by the generator may increase from about 0 Vrms to greater than about 400 Vrms in less than about 0.6 seconds. The maximum voltage generated by the generator may be between about 180 V peak-to-peak and about 3000 V peak-to-peak. The waveform generated may vary, and may include a sine-wave or a rectangular wave, amongst others. In some embodiments, the impedance encountered during RF energy application may be very high due to the small size of the electrode. The generator is operable to deliver energy notwithstanding the increased impedance, and may be operable to maintain the desired voltage even with low or fluctuating tissue impedance. Output impedance of a suitable generator may be between 100 ohm and 200 ohm. In one particular example, energy is delivered to a tissue within a body at a voltage that rapidly increases from 0 Vrms to 400 Vrms. Alternate embodiments of suitable radiofrequency generators have power capabilities of 0 to 25 watts, 0 to 50 watts, or 0 to 300 watts.
In one broad aspect, electrosurgical device 20 is used to deliver energy to a target site within a body of a human or animal while concurrently or sequentially delivering a fluid via aperture(s) 25.
In some embodiments, the energy may be radiofrequency (RF) current, and the energy may puncture or create a void or channel in the tissue at the target site. An operator uses the medical device 20 to deliver RF energy to a target tissue to create an insulative vapor layer around the electrode, thereby resulting in an increase in impedance. For example, the impedance may increase to greater than 4000Ω. Increasing the voltage increases the intensity of fulguration, which may be desirable as it allows for an increased tissue puncture rate. An example of an appropriate generator for this application is the BMC RF Puncture Generator (Model numbers RFP-100 and RFP-100A, Baylis Medical Company, Montreal, Canada). These generators can deliver continuous RF energy at about 480 kHz. A grounding pad or dispersive electrode is connected to the generator for contacting or attaching to a patient's body to provide a return path for the RF energy when the generator is operated in a monopolar mode.
Further details regarding delivery of energy to a body may be found in U.S. patent application Ser. No. 10/347,366 (filed on Jan. 21, 2003), Ser. No. 10/760,749 (filed on Jan. 21, 2004), Ser. No. 10/666,288 (filed on Sep. 19, 2003), and Ser. No. 11/265,304 (filed on Nov. 3, 2005), and U.S. Pat. No. 7,048,733 (application Ser. No. 10/666,301, filed on Sep. 19, 2003), all of which are incorporated herein by reference.
In some embodiments, electrosurgical device 20 may be used to create a channel through an occluded lumen or other material within the body. Examples may include blood vessels, stent-graft fenestrations, the bile duct, or airways of the respiratory tract. An occlusion may comprise fibrous tissue or other material, and the occlusion may be partial or substantially complete. In some embodiments, electrosurgical device 20 is positioned such that the electrode is adjacent the material to be punctured. Energy may be delivered from a source, such as a generator, via elongate member 6, to the target site such that a void, or channel, is created in or through the tissue. Further details regarding delivery of energy to create channels through tissue or occlusions may be found in U.S. patent application Ser. No. 12/926,292, filed on Nov. 8, 2010, U.S. patent application Ser. No. 13/286,041, filed on Oct. 31, 2011, and U.S. Pat. No. 8,048,071, issued Nov. 1, 2011 previously incorporated herein by reference.
After crossing an occlusion with electrosurgical device 20, an operator can replace device 20 with a guidewire prior to installation or insertion of a separate device used for widening the puncture or channel, such as a dilator or balloon catheter. In one method of using electrosurgical device 20, an operator can install a guidewire 42, such as a wire with a curved or bent distal end, through lumen 26 of electrosurgical device 20 and out of an aperture 25, as indicated by arrow 43 in
In some embodiments, a method of the present invention includes delivering contrast or imaging fluid to the treatment site to provide the physician with information about the environment using a medical imaging modality. For example, under fluoroscopy, an operator can inject contrast fluids into CTOs in the coronary vessels to expose microvessels that may be used as pathways within the occlusion.
Some CTOs have tough proximal caps that are difficult to cross. Referring to
After the steps described in the above method are completed and the CTO is crossed, more contrast fluid can be delivered to confirm the crossing.
Some methods of using electrosurgical device 20 to cross CTOs or other occlusions or stenoses include delivering fluid for cooling the tissue around the occlusion to avoid heat damage to the tissue surrounding the electrode.
Other methods of using electrosurgical device 20 to cross CTOs include delivering energy on a substantially continuous and constant basis, while advancing and delivering cooling fluid at least partly concurrently with the delivery of energy. In such embodiments, energy delivery is maintained while fluid delivery may be stopped or started during the procedure. Thus, at certain points in the procedure energy and fluid are delivered simultaneously, while at other points only energy is delivered.
Further methods of using electrosurgical device 20 to cross occlusions such as CTOs include continuously delivering fluid while advancing the device, and delivering energy as needed. The energy can be delivered continuously or intermittently. In such embodiments, delivery of fluid is maintained, while the delivery of energy may be terminated or initiated during the procedure. As in the previous embodiment, at certain points in the procedure energy and fluid are delivered simultaneously, while at other points only fluid is delivered. Discontinuous delivery may include delivering energy or fluid in short pulses, repeating longer periods of delivery, or intermittent delivery controlled by the physician.
Injected fluid (such as saline) may also serve as an electrolyte to improve the efficacy of the energy delivered to puncture the tissue.
Any of the above described methods of crossing CTOs may include using a slow, continual flow of contrast fluid from the aperture as the operator advances electrosurgical device 20 such that a small trail of contrast fluid is left in the channel, thereby creating visible trace of the pathway of electrosurgical device 20.
A further aspect of the invention is a method of creating a transseptal puncture. With reference now to
Some embodiments of the method further comprise step (v) advancing the device to a second desired location. In certain embodiments of this aspect, the medical device comprises at least one radiopaque marker 5 and step (v) comprises monitoring at least one of the radiopaque markers 5. Some embodiments of the method comprise step (vi) measuring pressure at the second location. The medical device may comprise at least one radiopaque marker 5 and step (vi) may be performed after confirming the position of the pressure sensing mechanism at the second location using the radiopaque markers.
For some embodiments, step (i) comprises introducing the device into the patient's vasculature (and/or other body lumens). The step of introducing the device into the patient's vasculature may comprise inserting the device 20 into a dilator 52 and a guiding sheath 50 positioned in the patient's vasculature. In certain embodiments, the device 20 and at least one of the dilator 52 and sheath 50 each comprise a radiopaque marking, and step (ii) comprises aligning the radiopaque markings to aid in positioning the device. For certain alternative embodiments of the method, step (v) comprises advancing the dilator 52 and the sheath 50 into the second location together over the spatially fixed electrosurgical device 20. In other alternative embodiments, step (v) comprises advancing the dilator, sheath, and medical device all together into the second location.
In certain embodiments of this method aspect, the material to be cut is tissue located on an atrial septum 56 of a heart. Further, the region of tissue may be the fossa ovalis 60 of a heart. In such a case, the pressure measured at the first location is the blood pressure in the right atrium 54, and the pressure measured at the second location is the blood pressure in the left atrium 58.
In some alternative embodiments, the method further includes delivering imaging fluid that is visible using an imaging system in order to confirm the position of the electrosurgical device 20 at the second desired location.
In certain embodiments of the method, the medical device, dilator, and sheath are introduced into the heart via the inferior vena cava (as shown in
Thus, as described herein above, embodiments of the present invention include an electrosurgical device comprising an electrically conductive elongate member for traversing body vasculature configured and operable to allow energy to flow through the wall of the elongate member; a hollow lumen defined by the elongate member with one or more apertures defined by a wall of the elongate member at or near its distal end; and an energy delivery device in electrical communication with the elongate member located at or about the distal end of the member. The energy delivery device has an electrode for delivering energy and a thermal shield is positioned between the electrode and the elongate member for protecting portions of the device from heat associated with the delivery of energy to tissue via the electrode. Method aspects of the present invention include using the electrosurgical device to traverse body vasculature of a patient and to deliver both fluid and electrical energy from or about its distal end.
The embodiments of the invention described above are intended to be exemplary only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
This application is a continuation-in-part of international application PCT/IB2014/059830, filed Mar. 14, 2014, which claims the benefit of U.S. provisional application 61/781,231, filed Mar. 14, 2013 and a continuation-in-part of international application PCT/IB2014/059696, filed Mar. 12, 2014, which claims the benefit of U.S. provisional application 61/781,231, filed Mar. 14, 2013 and U.S. provisional application “Medical Device Having a Support Wire”, No. 61/777,368, filed 12 Mar. 2013. All of the aforementioned applications are hereby incorporated by reference in their entirety. This application incorporates by reference, in their entirety, the contents of U.S. application Ser. No. 12/926,292, filed Nov. 8, 2010, and titled “Electrosurgical device for creating a channel through a region of tissue and methods of use thereof”, and U.S. patent application Ser. No. 13/286,041, filed on Oct. 31, 2011, and U.S. Pat. No. 8,048,071, issued Nov. 1, 2011.
Number | Name | Date | Kind |
---|---|---|---|
175254 | Oberly | Mar 1876 | A |
827626 | Gillet | Jul 1906 | A |
848711 | Weaver | Apr 1907 | A |
1072954 | Junn | Sep 1913 | A |
1279654 | Charlesworth | Sep 1918 | A |
1918094 | Geekas | Jul 1933 | A |
1996986 | Weinberg | Apr 1935 | A |
2021989 | De Master | Nov 1935 | A |
2146636 | Lipchow | Feb 1939 | A |
3429574 | Williams | Feb 1969 | A |
3448739 | Stark et al. | Jun 1969 | A |
3575415 | Fulp et al. | Apr 1971 | A |
3595239 | Petersen | Jul 1971 | A |
4129129 | Amrine | Dec 1978 | A |
4244362 | Anderson | Jan 1981 | A |
4401124 | Guess et al. | Aug 1983 | A |
4587972 | Morantte, Jr. | May 1986 | A |
4639252 | Kelly et al. | Jan 1987 | A |
4641649 | Walinsky et al. | Feb 1987 | A |
4669467 | Willett et al. | Jun 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4790311 | Ruiz | Dec 1988 | A |
4790809 | Kuntz | Dec 1988 | A |
4793350 | Mar et al. | Dec 1988 | A |
4807620 | Strul et al. | Feb 1989 | A |
4832048 | Cohen | May 1989 | A |
4840622 | Hardy | Jun 1989 | A |
4863441 | Lindsay et al. | Sep 1989 | A |
4884567 | Elliott et al. | Dec 1989 | A |
4892104 | Ito et al. | Jan 1990 | A |
4896671 | Cunningham et al. | Jan 1990 | A |
4928693 | Goodin et al. | May 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4960410 | Pinchuk | Oct 1990 | A |
4977897 | Hurwitz | Dec 1990 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5019076 | Yamanashi et al. | May 1991 | A |
5047026 | Rydell | Sep 1991 | A |
5081997 | Bosley et al. | Jan 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5112048 | Kienle | May 1992 | A |
5154724 | Andrews | Oct 1992 | A |
5201756 | Horzewski et al. | Apr 1993 | A |
5209741 | Spaeth | May 1993 | A |
5211183 | Wilson | May 1993 | A |
5221256 | Mahurkar | Jun 1993 | A |
5230349 | Langberg | Jul 1993 | A |
5246438 | Langberg | Sep 1993 | A |
5281216 | Klicek | Jan 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5300069 | Hunsberger et al. | Apr 1994 | A |
5314418 | Takano et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5327905 | Avitall | Jul 1994 | A |
5330520 | Maddison et al. | Jul 1994 | A |
5364393 | Auth et al. | Nov 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5380304 | Parker | Jan 1995 | A |
5383876 | Nardella | Jan 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5398683 | Edwards et al. | Mar 1995 | A |
5403338 | Milo | Apr 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5425382 | Golden et al. | Jun 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5490859 | Mische et al. | Feb 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5507751 | Goode et al. | Apr 1996 | A |
5509411 | Littmann et al. | Apr 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5555618 | Winkler | Sep 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5575766 | Swartz et al. | Nov 1996 | A |
5575772 | Lennox | Nov 1996 | A |
5599347 | Hart et al. | Feb 1997 | A |
5605162 | Mirzaee et al. | Feb 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5622169 | Golden et al. | Apr 1997 | A |
5624430 | Eton et al. | Apr 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5643255 | Organ | Jul 1997 | A |
5667488 | Lundquist et al. | Sep 1997 | A |
5673695 | McGee et al. | Oct 1997 | A |
5674208 | Berg et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5718701 | Shai et al. | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5741249 | Moss et al. | Apr 1998 | A |
5743905 | Eder et al. | Apr 1998 | A |
5766135 | Terwilliger | Jun 1998 | A |
5779688 | Imran et al. | Jul 1998 | A |
5782900 | De et al. | Jul 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5814028 | Swartz et al. | Sep 1998 | A |
5824026 | Diaz | Oct 1998 | A |
5830214 | Flom et al. | Nov 1998 | A |
5836875 | Webster, Jr. | Nov 1998 | A |
5836946 | Diaz et al. | Nov 1998 | A |
5848986 | Lundquist et al. | Dec 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5851210 | Torossian | Dec 1998 | A |
5885227 | Finlayson | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5893885 | Webster, Jr. | Apr 1999 | A |
5904679 | Clayman | May 1999 | A |
5913854 | Maguire et al. | Jun 1999 | A |
5916210 | Winston | Jun 1999 | A |
5921957 | Killion et al. | Jul 1999 | A |
5931818 | Werp et al. | Aug 1999 | A |
5944023 | Johnson et al. | Aug 1999 | A |
5951471 | De et al. | Sep 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5957842 | Littmann et al. | Sep 1999 | A |
5964757 | Ponzi | Oct 1999 | A |
5967976 | Larsen et al. | Oct 1999 | A |
5989276 | Houser et al. | Nov 1999 | A |
5992418 | De et al. | Nov 1999 | A |
6001095 | De et al. | Dec 1999 | A |
6007555 | Devine | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6013072 | Winston et al. | Jan 2000 | A |
6017340 | Cassidy et al. | Jan 2000 | A |
6018676 | Davis et al. | Jan 2000 | A |
6030380 | Auth et al. | Feb 2000 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6048349 | Winston et al. | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6053870 | Fulton, III | Apr 2000 | A |
6053904 | Scribner et al. | Apr 2000 | A |
6056747 | Saadat et al. | May 2000 | A |
6063077 | Schaer | May 2000 | A |
6063093 | Winston et al. | May 2000 | A |
6080151 | Swartz et al. | Jun 2000 | A |
6093185 | Ellis et al. | Jul 2000 | A |
6099524 | Lipson et al. | Aug 2000 | A |
6106515 | Winston et al. | Aug 2000 | A |
6106520 | Laufer et al. | Aug 2000 | A |
6117131 | Taylor | Sep 2000 | A |
6120499 | Dickens et al. | Sep 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6155264 | Ressemann et al. | Dec 2000 | A |
6156031 | Aita et al. | Dec 2000 | A |
6171305 | Sherman | Jan 2001 | B1 |
6179824 | Eggers et al. | Jan 2001 | B1 |
6192280 | Sommer et al. | Feb 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6193715 | Wrublewski et al. | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217575 | Devore et al. | Apr 2001 | B1 |
6221061 | Engelson et al. | Apr 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6234178 | Goble et al. | May 2001 | B1 |
6241666 | Pomeranz et al. | Jun 2001 | B1 |
6245054 | Fuimaono et al. | Jun 2001 | B1 |
6267758 | Daw et al. | Jul 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6293945 | Parins et al. | Sep 2001 | B1 |
6296615 | Brockway et al. | Oct 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6302898 | Edwards et al. | Oct 2001 | B1 |
6304769 | Arenson et al. | Oct 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6360128 | Kordis et al. | Mar 2002 | B2 |
6364877 | Goble et al. | Apr 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6394976 | Winston et al. | May 2002 | B1 |
6395002 | Ellman et al. | May 2002 | B1 |
6405067 | Mest et al. | Jun 2002 | B1 |
6419674 | Bowser et al. | Jul 2002 | B1 |
6428551 | Hall et al. | Aug 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6475214 | Moaddeb | Nov 2002 | B1 |
6477396 | Mest et al. | Nov 2002 | B1 |
6485485 | Winston et al. | Nov 2002 | B1 |
6508754 | Liprie et al. | Jan 2003 | B1 |
6524303 | Garibaldi | Feb 2003 | B1 |
6530923 | Dubrul et al. | Mar 2003 | B1 |
6554827 | Chandrasekaran et al. | Apr 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6562049 | Norlander et al. | May 2003 | B1 |
6565562 | Shah et al. | May 2003 | B1 |
6607529 | Jones et al. | Aug 2003 | B1 |
6632222 | Edwards et al. | Oct 2003 | B1 |
6638222 | Chandrasekaran et al. | Oct 2003 | B2 |
6639999 | Cookingham et al. | Oct 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6651672 | Roth | Nov 2003 | B2 |
6662034 | Segner et al. | Dec 2003 | B2 |
6663621 | Winston et al. | Dec 2003 | B1 |
6702775 | Devore | Mar 2004 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6709444 | Makower | Mar 2004 | B1 |
6723052 | Mills | Apr 2004 | B2 |
6733511 | Hall et al. | May 2004 | B2 |
6740103 | Hall et al. | May 2004 | B2 |
6752800 | Winston et al. | Jun 2004 | B1 |
6755816 | Ritter et al. | Jun 2004 | B2 |
6767338 | Hawk et al. | Jul 2004 | B2 |
6811544 | Schaer | Nov 2004 | B2 |
6814733 | Schwartz et al. | Nov 2004 | B2 |
6820614 | Bonutti | Nov 2004 | B2 |
6823218 | Berube | Nov 2004 | B2 |
6834201 | Gillies et al. | Dec 2004 | B2 |
6842639 | Winston et al. | Jan 2005 | B1 |
6852109 | Winston et al. | Feb 2005 | B2 |
6855143 | Davison et al. | Feb 2005 | B2 |
6860856 | Ward et al. | Mar 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6911026 | Hall et al. | Jun 2005 | B1 |
6951554 | Johansen et al. | Oct 2005 | B2 |
6951555 | Suresh et al. | Oct 2005 | B1 |
6955675 | Jain | Oct 2005 | B2 |
6970732 | Winston et al. | Nov 2005 | B2 |
6980843 | Eng et al. | Dec 2005 | B2 |
7027873 | Pajunk et al. | Apr 2006 | B2 |
7029470 | Francischelli et al. | Apr 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7083566 | Tornes et al. | Aug 2006 | B2 |
7112197 | Hartley et al. | Sep 2006 | B2 |
7335197 | Sage et al. | Feb 2008 | B2 |
7593778 | Chandran et al. | Sep 2009 | B2 |
7618430 | Scheib | Nov 2009 | B2 |
7651492 | Wham | Jan 2010 | B2 |
7666203 | Chanduszko et al. | Feb 2010 | B2 |
7678081 | Whiting et al. | Mar 2010 | B2 |
7682360 | Guerra | Mar 2010 | B2 |
7706894 | Stewart et al. | Apr 2010 | B2 |
7828796 | Wong et al. | Nov 2010 | B2 |
7900928 | Held et al. | Mar 2011 | B2 |
8192425 | Mirza et al. | Jun 2012 | B2 |
8241313 | McFarlin et al. | Aug 2012 | B2 |
8257323 | Joseph et al. | Sep 2012 | B2 |
8388549 | Paul et al. | Mar 2013 | B2 |
8500697 | Kurth et al. | Aug 2013 | B2 |
11339579 | Stearns | May 2022 | B1 |
20010012934 | Chandrasekaran et al. | Aug 2001 | A1 |
20010021867 | Kordis et al. | Sep 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020022781 | McIntire et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020087153 | Roschak et al. | Jul 2002 | A1 |
20020087156 | Maguire et al. | Jul 2002 | A1 |
20020111618 | Stewart et al. | Aug 2002 | A1 |
20020111620 | Cooper et al. | Aug 2002 | A1 |
20020123749 | Jain | Sep 2002 | A1 |
20020147485 | Mamo et al. | Oct 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20020188302 | Berg et al. | Dec 2002 | A1 |
20020198521 | Maguire | Dec 2002 | A1 |
20030032929 | McGuckin | Feb 2003 | A1 |
20030040742 | Underwood et al. | Feb 2003 | A1 |
20030069522 | Jacobsen et al. | Apr 2003 | A1 |
20030130655 | Woloszko et al. | Jul 2003 | A1 |
20030144658 | Schwartz et al. | Jul 2003 | A1 |
20030158480 | Tornes et al. | Aug 2003 | A1 |
20030163153 | Scheib | Aug 2003 | A1 |
20030181855 | Simpson et al. | Sep 2003 | A1 |
20030225392 | McMichael et al. | Dec 2003 | A1 |
20040015162 | McGaffigan | Jan 2004 | A1 |
20040019350 | O'Brien et al. | Jan 2004 | A1 |
20040024396 | Eggers | Feb 2004 | A1 |
20040030328 | Eggers et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040073243 | Sepetka et al. | Apr 2004 | A1 |
20040077948 | Molante et al. | Apr 2004 | A1 |
20040116851 | Johansen et al. | Jun 2004 | A1 |
20040127963 | Uchida et al. | Jul 2004 | A1 |
20040133113 | Krishnan | Jul 2004 | A1 |
20040133130 | Ferry et al. | Jul 2004 | A1 |
20040143256 | Bednarek | Jul 2004 | A1 |
20040147950 | Mueller et al. | Jul 2004 | A1 |
20040181138 | Hindricks et al. | Sep 2004 | A1 |
20040181213 | Gondo | Sep 2004 | A1 |
20040230188 | Cioanta et al. | Nov 2004 | A1 |
20050004585 | Hall et al. | Jan 2005 | A1 |
20050010208 | Winston et al. | Jan 2005 | A1 |
20050043728 | Ciarrocca | Feb 2005 | A1 |
20050049628 | Schweikert et al. | Mar 2005 | A1 |
20050059966 | McClurken et al. | Mar 2005 | A1 |
20050065507 | Hartley et al. | Mar 2005 | A1 |
20050085806 | Auge et al. | Apr 2005 | A1 |
20050090816 | McClurken et al. | Apr 2005 | A1 |
20050096529 | Cooper et al. | May 2005 | A1 |
20050101984 | Chanduszko et al. | May 2005 | A1 |
20050119556 | Gillies et al. | Jun 2005 | A1 |
20050137527 | Kunin | Jun 2005 | A1 |
20050149012 | Penny et al. | Jul 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050203507 | Truckai et al. | Sep 2005 | A1 |
20050261607 | Johansen et al. | Nov 2005 | A1 |
20050288631 | Lewis et al. | Dec 2005 | A1 |
20060041253 | Newton et al. | Feb 2006 | A1 |
20060074398 | Whiting et al. | Apr 2006 | A1 |
20060079769 | Whiting et al. | Apr 2006 | A1 |
20060079787 | Whiting et al. | Apr 2006 | A1 |
20060079884 | Manzo et al. | Apr 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060089638 | Carmel et al. | Apr 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060142756 | Davies et al. | Jun 2006 | A1 |
20060189972 | Grossman | Aug 2006 | A1 |
20060235381 | Whayne et al. | Oct 2006 | A1 |
20060241586 | Wilk | Oct 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060264927 | Ryan | Nov 2006 | A1 |
20060276710 | Krishnan | Dec 2006 | A1 |
20070043349 | Swanson et al. | Feb 2007 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070066878 | Worley et al. | Mar 2007 | A1 |
20070066975 | Wong et al. | Mar 2007 | A1 |
20070118099 | Trout, III | May 2007 | A1 |
20070123964 | Davies et al. | May 2007 | A1 |
20070167775 | Kochavi et al. | Jul 2007 | A1 |
20070208256 | Marilla | Sep 2007 | A1 |
20070225681 | House | Sep 2007 | A1 |
20070270791 | Wang et al. | Nov 2007 | A1 |
20080039865 | Shaher et al. | Feb 2008 | A1 |
20080042360 | Veikley | Feb 2008 | A1 |
20080086120 | Mirza et al. | Apr 2008 | A1 |
20080097213 | Carlson et al. | Apr 2008 | A1 |
20080108987 | Bruszewski et al. | May 2008 | A1 |
20080146918 | Magnin et al. | Jun 2008 | A1 |
20080171934 | Greenan et al. | Jul 2008 | A1 |
20080208121 | Youssef et al. | Aug 2008 | A1 |
20080275439 | Francischelli et al. | Nov 2008 | A1 |
20080287944 | Pearson et al. | Nov 2008 | A1 |
20080294158 | Pappone et al. | Nov 2008 | A1 |
20090105742 | Kurth et al. | Apr 2009 | A1 |
20090138009 | Viswanathan et al. | May 2009 | A1 |
20090163850 | Betts et al. | Jun 2009 | A1 |
20090177114 | Chin et al. | Jul 2009 | A1 |
20090240237 | Goldfarb et al. | Sep 2009 | A1 |
20090264977 | Bruszewski et al. | Oct 2009 | A1 |
20100069734 | Worley et al. | Mar 2010 | A1 |
20100070050 | Mathis et al. | Mar 2010 | A1 |
20100087789 | Leeflang et al. | Apr 2010 | A1 |
20100114017 | Lenker et al. | May 2010 | A1 |
20100125282 | Machek et al. | May 2010 | A1 |
20100137859 | Wang | Jun 2010 | A1 |
20100168684 | Ryan | Jul 2010 | A1 |
20100168739 | Wu et al. | Jul 2010 | A1 |
20100179632 | Bruszewski et al. | Jul 2010 | A1 |
20100191142 | Paul et al. | Jul 2010 | A1 |
20100194047 | Sauerwine | Aug 2010 | A1 |
20100204691 | Bencini | Aug 2010 | A1 |
20100211076 | Germain et al. | Aug 2010 | A1 |
20110046619 | Ducharme | Feb 2011 | A1 |
20110118582 | De La Rama et al. | May 2011 | A1 |
20110118735 | Abou-Marie et al. | May 2011 | A1 |
20110130648 | Beeckler et al. | Jun 2011 | A1 |
20110152716 | Chudzik et al. | Jun 2011 | A1 |
20110160592 | Mitchell | Jun 2011 | A1 |
20110190763 | Urban et al. | Aug 2011 | A1 |
20120029444 | Anderson | Feb 2012 | A1 |
20120143293 | Mauch et al. | Jun 2012 | A1 |
20120172857 | Harrison et al. | Jul 2012 | A1 |
20120232546 | Mirza et al. | Sep 2012 | A1 |
20120265055 | Melsheimer et al. | Oct 2012 | A1 |
20120277730 | Salahieh et al. | Nov 2012 | A1 |
20120330121 | Anderson et al. | Dec 2012 | A1 |
20120330156 | Brown et al. | Dec 2012 | A1 |
20130184551 | Paganelli et al. | Jul 2013 | A1 |
20130184735 | Fischell et al. | Jul 2013 | A1 |
20130282084 | Mathur et al. | Oct 2013 | A1 |
20140100561 | Biadillah et al. | Apr 2014 | A1 |
20140206987 | Urbanski et al. | Jul 2014 | A1 |
20140296769 | Hyde et al. | Oct 2014 | A1 |
20150231367 | Salstrom et al. | Aug 2015 | A1 |
20160220741 | Garrison et al. | Aug 2016 | A1 |
20170232234 | McDaniel et al. | Aug 2017 | A1 |
20190021763 | Zhou et al. | Jan 2019 | A1 |
20190247035 | Gittard et al. | Aug 2019 | A1 |
20220354572 | Davies et al. | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
0257754 | Nov 1911 | DE |
2822829 | Nov 1979 | DE |
0667126 | Aug 1995 | EP |
1169976 | Jan 2002 | EP |
2204134 | Jul 2010 | EP |
2968846 | Jan 2016 | EP |
H03-53255 | May 1991 | JP |
11-089937 | Apr 1999 | JP |
2004-275765 | Oct 2004 | JP |
2005-521465 | Jul 2005 | JP |
2011-115581 | Jun 2011 | JP |
2012-510831 | May 2012 | JP |
9962414 | Dec 1999 | WO |
0382134 | Oct 2003 | WO |
2007090075 | Aug 2007 | WO |
2012061161 | May 2012 | WO |
2012088601 | Jul 2012 | WO |
Entry |
---|
European Search Report for European Application No. 14764721.8 dated Sep. 16, 2016. |
European Supplementary Search Report for Application No. EP 14763003 completed on Sep. 9, 2016. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/IB2014/059696, dated May 7, 2014, 22 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/IB2014/059830, dated Aug. 27, 2014, 14 pages. |
Japanese Office Action for corresponding Application No. JP2015-562534 dated Dec. 26, 2017. |
Japanese Office Action for counterpart Japanese Application No. 2015-562497, dated Dec. 26, 2017. |
JP Office Action dated Aug. 14, 2018. |
Patent Cooperation Treaty, International Preliminary Report on Patentability, International Application No. PCT/IB2014/059641, dated Sep. 15, 2015. |
Translation of abstract of JPH03-53255U. |
Office Action for corresponding Japanese application No. 2021-016433, dated Dec. 23, 2021. |
Translation of Office Action for corresponding Japanese application No. 2021-016433, dated Dec. 23, 2021. |
Number | Date | Country | |
---|---|---|---|
20210000536 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
61781231 | Mar 2013 | US | |
61777368 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14851353 | Sep 2015 | US |
Child | 16935533 | US | |
Parent | PCT/IB2014/059830 | Mar 2014 | US |
Child | 14851353 | US | |
Parent | PCT/IB2014/059696 | Mar 2014 | US |
Child | PCT/IB2014/059830 | US |