Interior vehicle components often include a surface layer of premium natural leather. The leather is wrapped around and secured to an underlying structure. The leather is pliable, and thus conforms to the contours of the underlying structure. In luxury vehicles, leather is generally applied as a surface layer over components that may come in direct contact with occupants of the vehicle, such as interior panels, seats, and door linings. The main function of the leather is for aesthetics and to provide a luxurious look to the interior of the vehicle. However, natural leather offers no functionality to the vehicle components. Accordingly, there is a need for an improved surface layer for vehicle components.
According to one aspect, a method of producing an embossed functional leather assembly includes preparing a functional leather assembly, which includes providing a leather substrate comprising a first side and a second side opposite from the first side; and applying a flexible conductive trace over the first side of the leather substrate. The functional leather assembly is embossed to provide an embossed texture at the first side of the functional leather substrate.
According to another aspect, a method of producing an embossed functional leather assembly includes providing a leather substrate comprising a first side and a second side opposite from the first side; arranging a pigmented coating on the first side of the leather substrate; applying a flexible conductive trace over the pigmented coating on the first side of the leather substrate; optionally applying a topcoat over the flexible conductive trace; and embossing the resulting assembly to provide an embossed texture at the first side of the functional leather substrate.
According to another aspect, a method of producing an embossed functional leather assembly includes preparing a functional leather assembly, which includes providing a leather substrate comprising a first side and a second side opposite from the first side; applying a flexible conductive trace over the first side of the leather substrate; and arranging a pigmented coating on the first side of the leather substrate to thereby cover the trace. The functional leather assembly is embossed to provide an embossed texture at the first side of the functional leather substrate.
According to another aspect, method of producing a functional vehicle component includes preparing a functional leather assembly by applying an electronic circuit, including a flexible conductive trace, to a first side of a leather substrate. The functional leather assembly is embossed to provide an embossed texture at the first side of the functional leather substrate, and the functional leather assembly is arranged to cover a surface of a vehicle component such that the first side of the leather substrate faces away from the vehicle component.
According to another aspect, method of producing a functional vehicle component includes preparing a functional leather assembly by applying an electronic circuit, including a flexible conductive trace, to a first side of a leather substrate; arranging a pigmented coating on the first side of the leather substrate to thereby cover the circuit; and applying an anti-soiling layer to the pigmented coating. The functional leather assembly is embossed to provide an embossed texture at the first side of the functional leather substrate, and the functional leather assembly is arranged to cover a surface of a vehicle component such that the first side of the leather substrate faces away from the vehicle component.
According to another aspect, a functional vehicle component comprises a functional leather assembly. The functional leather assembly includes a leather substrate comprising a first side and a second side opposite from the first side, and a flexible electrically conductive trace arranged on the first side of the leather substrate. The functional leather assembly is embossed with an embossed texture at the first side of the leather substrate.
According to another aspect, a functional vehicle component comprises a functional leather assembly. The functional leather assembly includes a leather substrate comprising a first side and a second side opposite from the first side, a flexible electrically conductive trace arranged on the first side of the leather substrate, and a pigmented coating on the first side of the leather substrate and covering the trace. The functional leather assembly is embossed with an embossed texture at the first side of the leather substrate.
Smart functional vehicle components can be used to make an occupant's experience in the vehicle more comfortable and enjoyable as compared to non-functional vehicle components.
The present subject matter provides a smart functional leather assembly that is flexible, and therefore can be wrapped around or over various vehicle components to make the vehicle components smart and functional. The smart functional leather assembly can be arranged on an interior or exterior of a vehicle. The outermost surface of the smart functional leather assembly presents a clean finish to a vehicle component, and therefore has an uncluttered appearance despite having a smart functional capacity.
The present subject matter includes a smart functional leather assembly, and a method of making a leather substrate to be smart and functional, as opposed to being used for only aesthetic purposes, without cluttering the appearance of the leather substrate. For this purpose, the smart functional leather assembly may include electronic elements including for example, traces, switches (e.g. actuator buttons), sensors, or other functional or smart elements on a first side of the leather substrate. When used in an interior of a vehicle, the functional leather assembly can provide a dynamic interior experience for occupants of a vehicle, yet provide a smart functional vehicle component that has an uncluttered appearance.
Referring now to the figures, where the depictions are for purposes of illustrating one or more embodiments only and not for purposes of limiting the same, the present subject matter includes a smart functional leather assembly 2 (also referred to herein as “functional leather assembly” or “leather assembly”). As depicted, the functional leather assembly 2 includes a leather substrate 4, an electronic circuit layer 14, a pigmented coating 26, and an optional anti-soiling layer 28.
The leather substrate 4 may be in the form of a leather sheet, including a first side 6 and a second side 8 opposite from the first side 6. The first side 6 of the leather substrate 4 may face the same direction as an A-surface 10 of the functional leather assembly 2 (see
The leather substrate 4 may be processed from natural animal hide, or may include composite leather (e.g. bonded leather) or synthetic leather products. When natural animal hide is used as the leather substrate, the animal hide may be subject to a leather preparation processes including one or more of tanning, soaking, sammying, shaving, fleshing/splitting, drying, staking, milling, and drying. Then, after application of a base coat, the hide may be cut into a desired shape for a particular application, for example to cover a seat, interior panel, steering wheel, or other vehicle component 40 in a vehicle to form the smart functional vehicle component 12. The hide may be cut or formed to a particular size or shape to correspond to the shape and size of the vehicle component 40 on which it will be arranged. The natural animal hide may be replaced or supplemented with bonded leather, synthetic leather, other leather composite material, or other material or layers as desired. In accordance with the present subject matter, the leather substrate 4 may have a shape and size that is configured to wrap around or over a surface 42 of an interior panel, a door, a seat (
After the leather substrate 4 is prepared as desired, the electronic circuit layer 14, pigmented coating 26, and optional anti-soiling layer 28 may be applied to the leather substrate 4 to form a leather assembly 2. In one embodiment, the electronic circuit layer 14, pigmented coating 26, and optional anti-soiling layer 28 allow some characteristics (e.g. surface texture or grain, and softness) of the leather substrate 4 to be at least partially perceived by occupants of the vehicle, such as by touch or sight.
The electronic circuit layer 14 (also referred to herein as “circuit layer” or “circuit”) is flexible, and is arranged on the first side 6 of the leather substrate 4, optionally in direct contact with the first side 6 of the leather substrate 4 or having one or more intervening layers arranged therebetween. The circuit 14 includes one or more flexible electrically conductive traces 16 (also referred to herein as “flexible conductive traces,” “conductive traces,” or “traces”). As used herein, “electrically conductive” or “conductive” refers to a material or structure that can transmit an electric current or signal. By “flexible”, it is meant a layer, circuit, trace or other element or material that is not rigid, brittle, or stiff, and instead bends, stretches, changes shape, or otherwise yields to external forces, yet does not break or lose functionality when subject to such external forces. When referring to a “flexible electronic circuit” or “flexible conductive trace”, it is meant that the electronic circuit 14 and trace 16 retrain their electrical conductivity even when bent, stretched, twisted or otherwise deformed to a strain of 10% to at least 20%. In one embodiment, the circuit 14 and traces 16 do not break when so deformed.
The circuit 14 optionally includes one or more electronic elements (e.g. light sources 18, switches 20, sensors 22, wireless transmitters 24, resistors, capacitors, wires, diodes, transistors, inductors, power sources, transformers, fuses, antennas, or the like, each of which may be flexible) that are in electrical communication with the traces 16. In an alternative embodiment, these electronic elements of the circuit 14 may be arranged elsewhere other than as part of the circuit 14, but still in electrical communication with the conductive traces 16. The circuit 14 is arranged on the first side 6 of the leather substrate 4 in order to provide functionality to the leather substrate 4.
Although the circuit 14 is depicted in
The circuit layer 14 may comprise one or more electrically isolated circuits. In one embodiment, the circuit layer 14 includes only one electronic circuit. In another embodiment, the circuit layer 14 includes more than one electronic circuit, for example, two, three or more electronic circuits. When more than one circuit is included in the circuit layer 14, each individual circuit may each be configured to perform a different function than the other circuits, which may mean that each circuit is electrically isolated/separated from the other circuits, or the circuits can be independently operated, or each circuit can function separately from the other circuits, or the circuits are electrically connected to different types of electronic elements of the circuit layer 14.
The circuit 14 includes at least one flexible conductive trace 16. Further, as will be understood, the figures only schematically depict the traces 16, and are not meant to restrict the traces 16 to be in any particular arrangement. In one non-limiting embodiment, the circuit 14 contacts the first side 6 of the leather substrate 4. In another embodiment, the circuit 14 is arranged on a polymer film, which is then arranged on the first side 6 of the leather substrate 4.
The conductive traces 16 and electronic components may each be formed using an electrically conductive ink that includes a binder (e.g. polymer material such as polyimide) and conductive particles, including for example, copper, silver, carbon, silver chloride, or other electrically conductive particles. Optionally, the one or more optional electronic elements of the circuit 14 can comprise prefabricated units that are electrically connected to the traces 16 by using a conductive adhesive for example.
The one or more conductive traces 16 and optional electronic elements of the circuit 14 may each be formed by applying, e.g. printing, a conductive ink directly on the first side 6 of the leather substrate 4, followed by curing, drying, hardening, etc. of the conductive ink to thereby form the conductive traces 16, and electronic elements of the circuit 14. In other words, the conductive traces 16 and electronic elements of the circuit 14 may be defined by, or include a printed and cured conductive ink. Conductive inks that are suitable to create the one or more traces and electronic elements of the circuit 14 are not particularly limited, and may include conductive metal (e.g. silver) or other particles, and can include for example, PE671, PE773, PE873, and PE971 Stretchable Conductors, PE410 Ink-Jet Silver Conductor, 5021, 5025, 5028, and 5064HY Ag Conductors, ME601 and ME602 Stretchable Silver Conductors, PE827 and PE828 Ultra-Low Temperature Cure Silver Composite Conductors, Kapton™ KA801 Polyimide Silver Conductor, available from E. I. du Pont de Nemours and Company; and CI-1036, CI-4040, CI-2051, and CI-1062 Stretchable Conductive Ink available from Engineered Materials Systems, Inc. (EMS).
These conductive inks can be applied directly on the first side 6 of the leather substrate 4, or on a film that is to be arranged on the first side 6 of the leather substrate 4. The conductive ink can be applied by any method including pad-printing, flexography, rotogravure, spraying, dipping, syringe dispensing, stenciling, screen printing, aerosol jet printing, or inkjet printing for example in order to create an electronic circuit. The flexible electrically conductive traces 16 can be formed using other materials or processes including etching, in-mold forming of the electronic circuits, selective photocuring, and circuit scribe, for example. In one illustrative embodiment, the one or more conductive traces 16 are formed by screen printing a conductive ink on the first side 6 of the leather substrate 4.
In one non-limiting example, one or more light sources 18 are included as an electronic element in the functional leather assembly 2. The light sources 18 may comprise for example, a light emitting diode (LED), an electroluminescent light source, or other light source. The light sources 18 emit light when activated, and are electrically connected to the circuit 14. The light sources 18 may simply provide illumination by emitting light, which may be used to provide illumination to the interior or exterior of the vehicle, and the light sources 18 may emit light in one or more colors and/or intensities. The light sources 18 may be paired to certain functions of the vehicle or vehicle components, such that the light sources 18 operate to emit light at different intensities and/or colors depending on certain circumstances such as during normal operation of the vehicle, during operation of a vehicle entertainment system, during dangerous operation of the vehicle, or other circumstances or situations as desired.
The light source 18 may be configured, such as by arrangement or operation, to emit light that provides visual indicators that convey information to a vehicle occupant. In other words, the light source 18 may be arranged, or may emit light in such a way that the light emitted by the light source 18 provides more than mere illumination, and instead additionally conveys information to a vehicle occupant. The visual indicators provided by the light source 18 may correspond to signals or data derived from the electronic systems of a vehicle or the HMI 34. The visual indicators provided by the light source 18 are not particularly limited by the present disclosure, and may provide information such as warnings, notices (e.g. the time), alerts, instructions, information relating to a current condition or situation relating to the vehicle or vehicle components, an occupant of the vehicle, or an environment of the vehicle including an immediate surrounding environment of the vehicle, and combinations thereof.
The light emitted by the light source 18 may indicate a location of the circuit 14 or the location of the various electronic elements of the circuit 14. The light source 18 may also be activated to emit light when a certain associated object is within a predetermined distance from the functional leather assembly 2. For example, the light source 18 may be activated to emit light when a portable electronic device or vehicle occupant is within a predetermined distance from the functional leather assembly 2.
The light source 18 is not limited in any way and can include luminescent light sources (e.g. electroluminescent, photoluminescent, mechanoluminescent light sources), and incandescent light sources. Illustrative examples of the light source 18 include a light emitting diode (LED), an organic light emitting diode (OLED), or a photoluminescent or electroluminescent light source configured in a film or sheet. In a non-limiting example, the light source 18 comprises LED's having a light emitting area with a size of 100 μm×100 μm (i.e. 100 μm diameter) or less, herein referred to micro LED's. A micro LED comprises of an array of one or more individual light emitters, where an array may have a diameter of about 2 μm-20 mm and the individual light emitters have typical diameters of about 2-20 μm. In one aspect, the one or more micro LED's are arranged as part of the circuit 14.
One or more sensors 22 may be included as part of the circuit 14. The sensors 22 are not particularly limited, and can include a sensor having any configuration including those that can sense pressure, temperature, proximity, location, speed, velocity, acceleration, tilt, motion, humidity, light, biometrics of a vehicle occupant, etc. In one embodiment, the circuit 14 includes one or more pressure sensors.
As described herein, a switch 20 may be included in the electronic circuit 14. The switch 20 may be operable to make or break a conductive path in the circuit 14 in order to activate a particular function of the circuit 14, the electronic elements of the circuit 14, or a vehicle system or component. The switch 20 may be a parallel plate capacitive switch for example, or other type of switch as desired such as a membrane switch. The switch may define a button that can be actuate by an occupant of the vehicle making contact with the switch.
The leather assembly 2 also includes a pigmented coating 26 arranged on the circuit 14 to at least partially conceal the circuit 14, or on the first side 6 of the leather substrate 4 between the leather substrate 4 and the circuit 14. The pigmented coating 26 may be arranged directly in contact with the circuit 14 or may be arranged with one or more intervening layers therebetween. In an embodiment, the pigmented coating 26 is not included, or the pigmented coating 26 may be clear (i.e. optically transparent) and/or the circuit 14 and electronic elements thereof may be positioned on top of the pigmented coating 26. The pigmented coating 26 is not particularly limited by the present subject matter, and may include one or more translucent layers, films, or coatings arranged on the flexible circuit 14. By “translucent” it is meant material(s) or a layer(s) that allows light to pass therethrough, but causes sufficient diffusion to prevent perception of distinct images through the material or layer. In accordance with the present subject matter, the pigmented coating 26 may produce sufficient diffusion of light such that visibility through the pigmented coating 26 of the flexible electronic circuit 14 and all the electronic elements of the circuit 14, except for light emitted by the light source 18, is inhibited or prevented by the pigmented coating 26. In one embodiment, the flexible electronic circuit 14 and all the electronic elements of the circuit 14 are camouflaged by the pigmented coating 26. In a non-limiting example, the flexible electronic circuit 14 and all the electronic elements of the circuit 14 are not visible through the coating 26
Visibility of the light source 18 through the pigmented coating 26 is optionally inhibited by the pigmented coating 26 so that the light source 18 is camouflaged by the pigmented coating 26. However, the pigmented coating 26 may be sufficiently translucent (rather than being completely opaque) such that when the light source 18 is activated to emit light, the light emitted by the light source 18 is visible through the pigmented coating 26. Accordingly, the pigmented coating 26 at least in some measure may conceal the flexible circuit 14 (including the light source 18) from view, yet allows light emitted from the light source 18 to be transmitted therethrough so that the emitted light is visible through the pigmented coating 26 and can be seen. Light emitted from the light source 18 that is transmitted through the pigmented coating 26 may be seen for example, by a vehicle occupant, and can be used for vehicle illumination or as visual indicators to convey information to a vehicle occupant.
The pigmented coating 26 may include a polymer, textiles, composite materials, enamels, paper, glass, metal, ceramic, other material, and combinations thereof. In one non-limiting example, the pigmented coating 26 comprises one or more layers, each including for example, a mixture of polymer and pigment particles. The polymer may be an acrylic urethane resin for example. The pigmented coating 26 may be formed by applying one or more coatings of the polymer/pigment mixture as a liquid over the flexible circuit 14 and curing the polymer to produce the pigmented coating 26 as a solid layer covering the circuit 14. The pigmented coating 26 may have a pigment loading and thickness sufficient to inhibit or prevent the circuit 14 and the electronic elements of the circuit 14, including the light source 18, from being visible through the pigmented coating 26. However, the pigmented coating 26 is sufficiently translucent, as opposed to being completely opaque, such that light emitted by the light source 18 can be seen through the pigmented coating 26. In one non-limiting embodiment, the pigmented coating 26 has a thickness from 5-50 μm, 15-40 μm, or 20-30 μm. Other thicknesses can be used.
In one embodiment for example, the pigmented coating 26 includes a multi-layer structure including a 20-45 microns thick base color layer that is applied wet on the leather substrate 4 and dried at about 100° C. for one minute; a 15-20 micron thick color coat is then applied wet and dried at 100° C. for one minute; and then three layers of topcoat each at 5-20 microns thick (for a total of 15-60 microns thickness) are applied wet and then dried at 100° C. for one minute. The base color layer, the color coat, and the topcoat layers may each be applied by spraying and each may comprise a polyurethane acrylic dispersion with pigment. The base color layer and color coat are included to provide abrasion resistance and color consistency. The topcoat is provided for haptics and color performance. The leather substrate may also be coated initially with a base coat of polyurethane and acrylic dispersion, applied by a roller, and included to provide adhesion to the leather substrate 4.
The leather assembly 2 optionally includes an anti-soiling layer 28 arranged on the pigmented coating 26. The anti-soiling layer 28 includes an anti-soiling component for inhibiting the aggregation of soil, dirt, stains or other debris on the leather assembly 2. In one non-limiting embodiment, the anti-soiling layer 28 includes a polymer carrier that is applied at 1-10 microns thick and then dried at 100° C. for one minute to form a coating on the leather assembly 2. Other carriers, thicknesses, and drying times and temperatures may be used. In an alternative embodiment, the functional leather assembly 2 may not include a separate and distinct anti-soiling layer 28, and can instead include an anti-soiling component as part of the pigmented coating 26.
The anti-soiling layer 28, or an anti-soiling component included in the pigmented coating 26, may present an exposed outermost surface (i.e. A-surface 10) of the functional leather assembly 2, and these are optionally included to resist any type of dirt accumulation on the leather assembly 2 while possibly retaining at least some physical and aesthetical properties of the underlying layers of the functional leather assembly 2. The anti-soiling layer 28 is not particularly limited by the present subject matter, and may be included as a distinct layer as depicted in
The anti-soiling component included in the anti-soiling layer 28 or in the pigmented coating 26, is not particularly limited and may comprise acrylic urethane resin, polyurethane resin, polyisocyanate, carbodiimide, fluorine-containing materials such as tetrafluoroethylene (TFE)-copolymers, silicone, etc.
The functional leather assembly 2 can include various other layers or components as desired. In one embodiment and although not shown in the figures, the functional leather assembly 2 includes a dielectric layer over or between one or more conductive traces 16 or conductive traces 16 of the circuit 14. The dielectric material may generally include a non-conductive resin cured to form a dielectric layer. In one embodiment, a dielectric layer is arranged between the circuit 14 and the pigmented coating 26 in order to avoid moisture exposure during formation of the pigmented coating 26, or to make the circuit 14 more durable and resistant to abrasion and therefore maintain electrical conductivity after repeated use. A dielectric layer or coating may also be used as an insulator, for example, to provide electrical insulation between a first trace or circuit and an overlying second trace or circuit.
The dielectric layer may cover only the trace or circuit, or may also generally cover other portions of the circuit 14 or leather substrate 4. That is, the dielectric layer may be generally applied over the first circuit as one continuous layer, where the conductive traces of the first circuit and spaces therebetween are covered by the dielectric layer, or may be applied as a discontinuous layer that covers only the conductive traces of the first circuit, but not the spaces therebetween. In one non-limiting example, the dielectric layer is applied only at a location where a second trace or circuit overlaps the first trace or circuit. In this regard, the circuit 14 may include a plurality of separate and distinct traces 16 that may be arranged in different planes or sub-layers of the circuit layer 14, where various conductive traces 16 may overlap each other. For example, with reference to
The entire leather assembly 2 is embossed as depicted in
Embossment of the leather assembly 2 can comprise roll-to-roll heated embossment accomplished by processing the leather assembly 2 through heated embossing rollers 30, 30 to impart the embossed texture at the first side 6 of the leather substrate 4. Roll-to-roll heated embossment can comprise embossment at conditions of 80-100° C., 20-30 Bar, and dwell speed of 2.5-4.5 to apply natural leather grain embossment pattern to the A-surface 10 of the functional leather assembly 2. Embossment of the leather assembly 2 can comprise other methods, including roll-to-plate, roll-to-die, stamping, clamping, punching, pressing, and the use of various embossing rollers, embossing dies, embossing stamps, or other embossing tools. The embossed texture is not particularly limited, and may include leather grain, dimples or other textures, patterns, indicia, or a combination thereof. The leather grain texture can include reproductions of various animal grains, including cow, snake, crocodile, other animals, and variations and combinations thereof. Through applying different types of embossment, the smart functional leather assembly 2 can have different types of aesthetic appearances and feel, while maintaining functionality imparted by the circuit 14.
The embossed texture is applied directly to the A-surface 10 of the leather assembly 2 and over the circuit 14, for example as depicted in
The functional leather assembly 2 can be arranged to a vehicle component 40 to form a smart functional vehicle component 12 (also referred to herein as “functional vehicle component’). The embossed functional leather assembly 2 may be included on any vehicle component 40 as desired, for example on any surface 42 of an interior or exterior vehicle component 40, such as a vehicle seat (
The functional vehicle component 12 is not particularly limited by the present subject matter, and may comprise any interior functional vehicle component such as an interior panel, a door, a seat (
The embossed functional leather assembly 2 is arranged on the vehicle component 40 in order to enhance, not only the functionality, but also the aesthetics of the vehicle component 40. The leather substrate 4 is naturally flexible, pliable, and stretchable, and therefore the embossed functional leather assembly 2 is also flexible and can therefore be wrapped around or over, or applied to the vehicle component 40 and conformed to the contours of the surface 42 of the vehicle component 40. The embossed functional leather assembly 2 may be arranged on the vehicle component 40 by stretching and wrapping the embossed leather assembly 2 around the vehicle component 40. The embossed functional leather assembly 2 may be fixed, such as by adhesive or fasteners, to the vehicle component 40. Because the circuit 14, including traces 16, are also flexible, the circuit 14 and traces 16 can at least partially conform to the contours of the surface 42 of the vehicle component 40 without eliminating their functionality. The embossed functional leather assembly 2 may be in direct contact with the surface 42 of the vehicle component 40, or may have one or more optional layers arranged therebetween. Optionally, the embossed functional leather assembly 2 may simply cover or be arranged over the surface 42 of the vehicle component 40.
Once installed in the vehicle, operation of the embossed functional leather assembly 2, the circuit 14, the electrically conductive traces 16, and the associated electronic elements of the circuit 14, may correspond to signals or data derived from one or more electronic systems of a vehicle or may be intermittently or continuously activated during operation of the vehicle. The data or signals may be accessed from, sensed by, generated by, or otherwise acquired from or produced by one or more vehicle electronic systems. Further, the embossed functional leather assembly 2, the circuit 14, the electrically conductive traces 16, and the associated electronic elements of the circuit 14 may provide signals or data to the one or more electronic systems of the vehicle.
The vehicle electronic systems from which this data or these signals may be derived, or to which this data or these signals may be communicated, are not particularly limited and may include one or more vehicle electronic control units (ECU's) associated with a vehicle engine, transmission, body, chassis, passive and active safety features, vehicle performance, driver assistance, interior and exterior environment, vehicle diagnostics, vehicle control, audio/visual entertainment, navigation, electrical systems, telematics, and combinations thereof. The vehicle electronic systems can include a door control unit, engine control unit, electric power steering control unit, human-machine interface (HMI), powertrain control module, transmission control unit; seat control unit, speed control unit, telematics control unit, transmission control unit, brake control module (ABS or ESC), battery management system, central control module, central timing module, general electronic module, body control module, suspension control module, or combinations thereof.
In another embodiment, the embossed functional leather assembly 2 includes a microcontroller 38 electrically connected to the circuit 14, e.g. at an edge of the leather substrate 4. The microcontroller 38 may be electrically connected to the circuit 14 after embossment of the functional leather assembly 2. The microcontroller 38 may be used to make an electrical connection to the circuit 14, and thus may provide communication to and from the one or more conductive traces 16 and electronic elements of the circuit 14, or to control functions of the one or more conductive traces 16 and electronic elements of the circuit 14. The microcontroller 38 may be mounted at the edge of the leather substrate 4 and embossed functional leather assembly 2 before or after the embossed functional leather assembly 2 is fixed over the first side 6 of the vehicle component 40. Various vehicle electronic systems, such as an electronic control unit 32 (ECU), human machine interface 34 (HMI), or vehicle power source 36, may be electrically connected to the functional leather assembly 2 through the microcontroller 38 in order to communicate with the embossed functional leather assembly 2. The circuit 14 may also be electrically connected to the vehicle ECU 32, the vehicle power source 36, the vehicle HMI 34, or other vehicle systems by direct connection with a conductive lead.
The ECU 32 may control operation of the embossed functional leather assembly 2, the electrically conductive traces 16, and the associated electronic elements of the circuit 14. The ECU 32 may be electrically connected to the vehicle power source 36 for powering the ECU 32 and/or the circuit 14.
The HMI 34 may be used to control functioning of the embossed functional leather assembly 2 and the circuit 14, including the electrically conductive traces 16 and the associated electronic elements of the circuit 14. Such arrangement could allow a user to provide input through the HMI 34 to selectively activate the electronic elements of the circuit 14 to perform a particular function. Such user input may be active (user initiated) or passive (sensed input from a user), and can include audible or tactile input. The system may be configured to allow a user to audibly select an operation of the functional leather assembly 2, the circuit 14, the electrically conductive traces 16, and the associated electronic elements of the circuit 14. Alternatively, an operation of the embossed functional leather assembly 2 may be controlled by an integral actuator button (e.g. switch 20) included in the circuit 14.
The circuit 14 and the electronic elements of the circuit 14 may be electrically connected to a power source 36 of the vehicle for providing electrical power to the circuit 14 for activating the electronic elements of the circuit 14. The vehicle power source 36 may comprise a vehicle battery, engine, or alternator, for example. The power source 36 may be connected to the embossed functional leather assembly 2 through the microcontroller 38. In one embodiment, a smart functional vehicle system includes the embossed smart functional leather assembly 2, along with one or more of the microcontroller 38, ECU 32, HMI 34, and vehicle power source 36.
The embossed functional leather assembly 2, including the one or more conductive traces 16 along with the various electronic elements of the circuit 14, may be selectively operable based on a current condition or situation relating to the vehicle or vehicle components, an occupant of the vehicle, or an environment of the vehicle including an immediate or a distant surrounding environment of the vehicle, and combinations thereof. A non-limiting example of the conditions of the vehicle that may be used as a basis for such selective operation include historical, current, or projected vehicle performance characteristics or diagnostic information, or the like. Conditions of the vehicle occupants that may be used as a basis for such selective operation can include a physical condition of a driver, such as the driver being drowsy or inattentive while driving, or the proximity of an object (such as an occupant or an occupants hand) or a global position relative to the vehicle or to the embossed functional leather assembly 2. Conditions of the surrounding environment that may be used as a basis for such selective operation can include proximity of an object (such as another vehicle) to the vehicle, the current time, newsfeeds, amber alerts, nearby points of interest, or the like.
With reference to
The present subject matter also includes a method 44 of producing an embossed functional leather assembly 2. As depicted in
The leather substrate 4 may be provided in step 52 of method 50, as an animal hide preliminarily prepared before application of the circuit 14 by passing the animal hide through various processes such as soaking, sammying, shaving, fleshing/splitting, drying, staking, and milling. Then, after application of a base coat, the hide may be set aside to rest. The hide may then be cut to a predetermined shape to produce a leather substrate 4 that can be arranged on a particular vehicle component 40.
An electronic circuit 14 may then be applied in step 54 of method 50 by printing a conductive ink on the first side 6 of the leather substrate 4. The conductive ink can be applied through any suitable process or technique, and in an illustrative embodiment, is applied by one or more of (a) screen printing, (b) aerosol jet printing, and (c) inkjet printing. One or more electronic elements (e.g. a light source 18 such as a micro LED) may optionally be arranged on the leather substrate 4 as part of the circuit 14 in step 56 of method 50.
Then, the pigmented coating 26 can be applied on the circuit 14 in step 58 of method 50. The pigmented coating 26 can include one or more separately applied layers with each including pigment, such that the pigmented coating 26 may inhibit or prevent the circuit 14 from being visible therethrough. The anti-soiling layer 28 is optionally applied on the pigmented coating 26 in step 60 of method 50 to thereby produce a functional leather assembly 2. Step 60 optionally includes applying an acrylic urethane resin anti-soiling component as part of the pigmented coating 26, and/or as a topcoat (i.e. an anti-soiling layer 28) that is separate from and applied over the pigmented coating 26.
The functional leather assembly 2 is then embossed in step 48 of method 44. Embossment may be accomplished by roll-to-roll embossing, for example, by sending the functional leather assembly 2 through two embossing rollers 30, 30 as indicated by the left-pointing arrow in
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives or varieties thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/667,178 filed May 4, 2018; is a continuation-in-part application of U.S. application Ser. No. 15/635,803 filed Jun. 28, 2017; is a continuation-in-part application of U.S. application Ser. No. 15/635,838 filed Jun. 28, 2017; and is a continuation-in-part application of U.S. application Ser. No. 15/635,862 filed Jun. 28, 2017; all of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3049077 | Damm, Jr. | Aug 1962 | A |
3075280 | Jack et al. | Jan 1963 | A |
3391846 | White | Jul 1968 | A |
4964674 | Altmann et al. | Oct 1990 | A |
5002335 | Bengtsson | Mar 1991 | A |
5622652 | Kucherovsky et al. | Apr 1997 | A |
5624736 | DeAngelis et al. | Apr 1997 | A |
5763058 | Isen et al. | Jun 1998 | A |
5843263 | Mitchell | Dec 1998 | A |
5948297 | Haubner et al. | Sep 1999 | A |
6106920 | Pichon et al. | Aug 2000 | A |
6311350 | Kaiserman et al. | Nov 2001 | B1 |
6345839 | Kuboki et al. | Feb 2002 | B1 |
6371604 | Yamane et al. | Apr 2002 | B1 |
6395121 | De Bastiani | May 2002 | B1 |
6545236 | Valk et al. | Apr 2003 | B2 |
6579593 | Mori et al. | Jun 2003 | B1 |
6607681 | Ito et al. | Aug 2003 | B1 |
6652128 | Misaras | Nov 2003 | B2 |
6697694 | Mogensen | Feb 2004 | B2 |
6729025 | Farrell et al. | May 2004 | B2 |
6868934 | Dirrig | Mar 2005 | B2 |
7301351 | Deangelis et al. | Nov 2007 | B2 |
7395717 | DeAngelis et al. | Jul 2008 | B2 |
7432459 | Stoschek et al. | Oct 2008 | B2 |
7516809 | Hetzenecker et al. | Apr 2009 | B2 |
7710279 | Fields | May 2010 | B1 |
7719007 | Tompkins et al. | May 2010 | B2 |
7808488 | Martin et al. | Oct 2010 | B2 |
7989725 | Boddie et al. | Aug 2011 | B2 |
8114791 | Child et al. | Feb 2012 | B2 |
8315061 | Ullmann et al. | Nov 2012 | B2 |
8330079 | Yasuda et al. | Dec 2012 | B2 |
8463352 | Song | Jun 2013 | B2 |
8497850 | Foerster et al. | Jul 2013 | B2 |
8506141 | Cannon et al. | Aug 2013 | B2 |
8507102 | O'Leary | Aug 2013 | B1 |
8552299 | Rogers et al. | Oct 2013 | B2 |
8587422 | Andrews et al. | Nov 2013 | B2 |
8704758 | Figley et al. | Apr 2014 | B1 |
8725230 | Lisseman et al. | May 2014 | B2 |
8732866 | Genz et al. | May 2014 | B2 |
8784342 | Hyde et al. | Jul 2014 | B2 |
8804344 | Moncrieff | Aug 2014 | B2 |
8985012 | Yiannakou | Mar 2015 | B2 |
8999431 | Nagarajan et al. | Apr 2015 | B2 |
9108402 | Sudo et al. | Aug 2015 | B2 |
9159221 | Stantchev | Oct 2015 | B1 |
9180803 | Cleary et al. | Nov 2015 | B2 |
9192031 | Deyaf | Nov 2015 | B2 |
9372123 | Li et al. | Jun 2016 | B2 |
9403460 | Hickey et al. | Aug 2016 | B2 |
9416495 | Depres et al. | Aug 2016 | B2 |
9421884 | Boyer et al. | Aug 2016 | B2 |
9448631 | Winter et al. | Sep 2016 | B2 |
9481297 | Salter et al. | Nov 2016 | B2 |
9554732 | Schaffer | Jan 2017 | B2 |
9576446 | Zellers | Feb 2017 | B2 |
9672703 | Alexiou et al. | Jun 2017 | B2 |
9715687 | Lau et al. | Jul 2017 | B1 |
9723122 | Ghaffari et al. | Aug 2017 | B2 |
9724869 | Niskala et al. | Aug 2017 | B2 |
9800079 | Wippler | Oct 2017 | B2 |
9873446 | Gardner et al. | Jan 2018 | B2 |
9875866 | Liao et al. | Jan 2018 | B2 |
9886093 | Moussette et al. | Feb 2018 | B2 |
9973021 | Leabman et al. | May 2018 | B2 |
20020084721 | Walczak | Jul 2002 | A1 |
20020104746 | Valk | Aug 2002 | A1 |
20070052529 | Perez | Mar 2007 | A1 |
20070149001 | Uka | Jun 2007 | A1 |
20070236450 | Colgate et al. | Oct 2007 | A1 |
20080157533 | Flottemesch | Jul 2008 | A1 |
20080202912 | Boddie et al. | Aug 2008 | A1 |
20080257706 | Haag | Oct 2008 | A1 |
20090004478 | Baetzold et al. | Jan 2009 | A1 |
20090061251 | Kirmeier | Mar 2009 | A1 |
20090108985 | Haag | Apr 2009 | A1 |
20090251917 | Wollner | Oct 2009 | A1 |
20090301852 | Keist et al. | Dec 2009 | A1 |
20100137702 | Park et al. | Jun 2010 | A1 |
20100206614 | Park et al. | Aug 2010 | A1 |
20110267795 | Kim et al. | Nov 2011 | A1 |
20120113667 | Brandt et al. | May 2012 | A1 |
20120235566 | Karalis et al. | Sep 2012 | A1 |
20130160183 | Reho et al. | Jun 2013 | A1 |
20130192412 | Sekiya et al. | Aug 2013 | A1 |
20140022070 | Golomb | Jan 2014 | A1 |
20140084045 | Yang et al. | Mar 2014 | A1 |
20140203770 | Salter | Jul 2014 | A1 |
20140240132 | Bychkov | Aug 2014 | A1 |
20140246415 | Wittkowski | Sep 2014 | A1 |
20140265555 | Hall et al. | Sep 2014 | A1 |
20140310610 | Ricci | Oct 2014 | A1 |
20140354568 | Andrews et al. | Dec 2014 | A1 |
20150017421 | Sotzing | Jan 2015 | A1 |
20150175172 | Truong | Jun 2015 | A1 |
20150196209 | Morris et al. | Jul 2015 | A1 |
20150250420 | Longinotti-Buitoni et al. | Sep 2015 | A1 |
20150261264 | Brown et al. | Sep 2015 | A1 |
20150288048 | Tang et al. | Oct 2015 | A1 |
20150344060 | Staszak et al. | Dec 2015 | A1 |
20150376832 | Li et al. | Dec 2015 | A1 |
20150378254 | Wang et al. | Dec 2015 | A1 |
20160004362 | Kring | Jan 2016 | A1 |
20160007475 | Zanesi | Jan 2016 | A1 |
20160042268 | Puttkammer | Feb 2016 | A1 |
20160144690 | Wittkowski et al. | May 2016 | A1 |
20160167130 | Ida et al. | Jun 2016 | A1 |
20160218712 | Ben Abdelziz | Jul 2016 | A1 |
20160264078 | McGuire, Jr. et al. | Sep 2016 | A1 |
20160272112 | DeGrazia et al. | Sep 2016 | A1 |
20160276865 | Pike et al. | Sep 2016 | A1 |
20160311366 | Lisseman | Oct 2016 | A1 |
20160327979 | Lettow | Nov 2016 | A1 |
20170022379 | Loccufier et al. | Jan 2017 | A1 |
20170038795 | Lettow et al. | Feb 2017 | A1 |
20170052624 | Hunt et al. | Feb 2017 | A1 |
20170061753 | Khoshkava et al. | Mar 2017 | A1 |
20170092098 | Alampallam et al. | Mar 2017 | A1 |
20170101547 | Loccufier et al. | Apr 2017 | A1 |
20170137050 | Michelmann | May 2017 | A1 |
20170147106 | Kwon | May 2017 | A1 |
20170166237 | Oh | Jun 2017 | A1 |
20170174124 | Salter | Jun 2017 | A1 |
20170291493 | Bostick et al. | Oct 2017 | A1 |
20170308778 | Foerster et al. | Oct 2017 | A1 |
20170311666 | Gladish et al. | Nov 2017 | A1 |
20170325518 | Poupyrev et al. | Nov 2017 | A1 |
20170325524 | Hyde et al. | Nov 2017 | A1 |
20170325525 | Hyde et al. | Nov 2017 | A1 |
20170326013 | Hyde et al. | Nov 2017 | A1 |
20170337462 | Thiele et al. | Nov 2017 | A1 |
20170341573 | Gerhard | Nov 2017 | A1 |
20180208111 | Lisseman | Jul 2018 | A1 |
20190001879 | Ali | Jan 2019 | A1 |
20190008050 | Ali | Jan 2019 | A1 |
20190077311 | Ali et al. | Mar 2019 | A1 |
20190135199 | Galan Garcia et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
519037 | Mar 2018 | AT |
519702 | Sep 2018 | AT |
201405914 | Feb 2010 | CN |
202138313 | Feb 2012 | CN |
202765080 | Mar 2013 | CN |
103618389 | Mar 2014 | CN |
105196867 | Dec 2015 | CN |
204926416 | Dec 2015 | CN |
105507015 | Apr 2016 | CN |
105951471 | Sep 2016 | CN |
2026892 | Dec 1971 | DE |
102010053354 | Aug 2011 | DE |
202012004803 | Jun 2012 | DE |
202013005923 | Jul 2013 | DE |
202015001403 | Jul 2015 | DE |
102015200264 | Jul 2016 | DE |
102015200272 | Jul 2016 | DE |
1580080 | Sep 2005 | EP |
2628627 | Aug 2013 | EP |
1313537 | Apr 1973 | GB |
2009045077 | Mar 2009 | JP |
2014015145 | Jan 2014 | JP |
2015054564 | Mar 2015 | JP |
20100129652 | Dec 2010 | KR |
20120001064 | Feb 2012 | KR |
20140110321 | Sep 2014 | KR |
20150061894 | Jun 2015 | KR |
20160089299 | Jul 2016 | KR |
20180060758 | Jun 2018 | KR |
201809286 | Mar 2018 | TW |
WO2002103718 | Dec 2002 | WO |
WO2011006641 | Jan 2011 | WO |
WO2011012225 | Feb 2011 | WO |
WO2015103565 | Jul 2015 | WO |
WO2015151595 | Oct 2015 | WO |
WO2016057487 | Apr 2016 | WO |
WO2016170160 | Oct 2016 | WO |
WO2018032026 | Feb 2018 | WO |
Entry |
---|
Fukuyama et al.: “Multi-Layered Fabric Electrode for Movement Artifact Reduction in Capacitive ECG Measurement” Conf Proc IEEE Eng Med Biol Soc. 2013;2013:555-8. |
Heuer et al.: “Unobtrusive In-Vehicle Biosignal Instrumentation for Advanced Driver Assistance and Active Safety”, 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES) Nov. 30-Dec. 2, 2010 (Abstract only). |
Sangeetha et al.: “Stimuli Responsive Leathers Using Smart Retanning Agents”, JALCA, vol. 107, 2012 (Abstract only). |
International Search Report of Serial No. PCT/US2018/031803 dated Jul. 20, 2018, 2 pages. |
Written Opinion of Serial No. PCT/US2018/031803 dated Jul. 20, 2018, 8 pages. |
International Search Report of Serial No. PCT/US2018/031583 dated Jul. 20, 2018, 2 pages. |
Written Opinion of Serial No. PCT/US2018/031583 dated Jul. 20, 2018, 7 pages. |
Office Action of U.S. Appl. No. 15/635,838 dated Feb. 5, 2019, 46 pages. |
Office Action of U.S. Appl. No. 16/186,870 dated Feb. 6, 2019, 26 pages. |
Cooper, Tyler; “Wireless Inductive Power Night Light.” Adafruit. https://learn.adafruit.com/wireless-inductive-power-night-light?view=all. |
Rao, S.; “High-definition haptics: Feel the difference!”, Texas Instruments Incorporated, Analog Applications Journal 3Q 2012, 6 pages. |
Wang et al.; “Wireless Power Transfer System in the LED Lighting Application.” 2015 12th China International Forum on Solid State Lighting (2015): 120-122. |
International Search Report and Written Opinion of Serial No. PCT/US2018/032358 dated Jun. 21, 2018, 10 pages. |
Office Action of U.S. Appl. No. 15/635,838 dated May 13, 2019, 22 pages. |
Office Action of U.S. Appl. No. 15/635,838 dated Jun. 28, 2019, 14 pages. |
Office Action of U.S. Appl. No. 16/186,870 dated Aug. 13, 2019, 16 pages. |
Office Action of U.S. Appl. No. 15/635,862 dated Mar. 30, 2018, 17 pages |
Office Action of U.S. Appl. No. 15/635,862 dated Aug. 16, 2018, 12 pages. |
Office Action of U.S. Appl. No. 16/186,870 dated Jun. 6, 2019, 17 pages. |
Davis, Alex; “Faurecia's Self-Driving Car Seat Knows When You Need a Massage”, Wired; Transportation, Nov. 17, 2015; https://www.wired.com/2015/11/faurecias-self-driving-car-seat-knows-when-you-need-a-massage. |
Kindermann, “Automotive—Leather innovation from Wollsdorf—Smart Leather”, Mar. 26, 2019, 2 pages. |
Wollsdorf Leather, “Medical—Durability for Special applications indoors and outdoors”, 2 pages. |
TDK Group Company, Piezo Haptic Actuator—POwerHapTM, 15G Type, Preliminary data, Jun. 9, 2017, 9 pages. |
Wollsdorf Leder “Wollsdorf Leder in the interior space”, 4 pages, https://www.wollsdorf.com/w/en/products/upholstery/services/leder/. |
Office Action of U.S. Appl. No. 16/186,870 dated Oct. 23, 2019, 15 pages. |
International Search Report and Written Opinion of Serial No. PCT/US2019/030130 dated Aug. 30, 2019, 33 pages. |
Final Office Action of U.S. Appl. No. 15/635,838 dated Oct. 11, 2019, 31 pages. |
Office Action of U.S. Appl. No. 15/635,803 dated Dec. 12, 2019, 48 pages. |
Office Action of U.S. Appl. No. 15/635,838 dated Dec. 26, 2019, 21 pages. |
J. Hoefler, B. Hageman, E Nungesser and R. Smith, “High-performance acrylic polymer technology”, Leather International, Apr. 22, 2016. |
Afzali, A. and SH Maghsoodlou; “Nanostructured Polymer Blends and Composites in Textiles”, Nanostructured Polymer Blends and Composites in Textiles (2016): 58. https://books.google.com/books?hl=en&lr=&id=upXwCgAAQBAJ&oi=fnd&pg=PA41&dq=leather+smart_material+OR+intelligent_material++vehicle+OR+automotive+OR+automobile+OR+car+OR+driver+illuminate+OR+color+&ots=EtKF9oClou&sig=dFB_31AgXvteP7vqBtl5R6_lsql#v=onepage&q&f=false. |
CSIR-Central Leather Research Institute, “A novel bi-functional leather for smart product applications and a process for the preparation thereof” https://www.clri.org/Patents.aspx?P=22. |
Wegene Jima Demisie, Thanikaivelan Palanisamy, Krishnaraj Kaliappa, Phebe Kavati, Chandrasekaran Bangaru; “Concurrent genesis of color and electrical conductivity in leathers through in-situ polymerization of aniline for smart product applications”, Feb. 28, 2015 https://onlinelibrary.wiley.com/doi/abs/10.1002/pat.3483. |
M. F. Farooqui and A. Shamim; “Dual band inkjet printed bow-tie slot antenna on leather”, 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, 2013, pp. 3287-3290. IEEE Xplorer. |
S. Griffiths; Daily Mail.com, Sep. 23, 2015, “The smart car seat that tackles Road Rage: Chair gives drivers a relaxing massage or a blast of air to focus their attention” https://www.dailymail.co.uk/sciencetech/article-3246341/The-smart-car-seat-tackles-Road-Rage-Chair-gives-drivers-relaxing-massage-blast-air-focus-attention.html. |
J. Zaklit, Y. Wang, Y. Shen and N. Xi; “Quantitatively characterizing automotive interior surfaces using an Optical TIR-based texture sensor”, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, 2009, pp. 1721-1726., doi: 10.1109/ROBIO.2009.5420440, IEEE Xplore. |
Office Action of U.S. Appl. No. 16/186,870 dated Feb. 13, 2020, 32 pages. |
Number | Date | Country | |
---|---|---|---|
20190077310 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62667178 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15635862 | Jun 2017 | US |
Child | 16185633 | US | |
Parent | 15635838 | Jun 2017 | US |
Child | 15635862 | US | |
Parent | 15635803 | Jun 2017 | US |
Child | 15635838 | US |