EMITTER ELECTRODE HAVING A STRIP SHAPE

Information

  • Patent Application
  • 20080030919
  • Publication Number
    20080030919
  • Date Filed
    July 20, 2007
    17 years ago
  • Date Published
    February 07, 2008
    16 years ago
Abstract
A strip-shaped emitter electrode including at least one emission edge extending along the length of such emitter electrode. When the strip-shaped emitter electrode is coupled to a voltage supply, current or an electrical charge at the emission edge ionizes the air and generates corona discharge, resulting in ion production. Erosion occurs at the emission edge such that the lifespan of the strip emitter electrode is dependent, at least in part, on the width of the strip emitter electrode.
Description
BACKGROUND

Existing wire emitter electrodes (referred to as “Prior Art Wire Emitter(s)”) ionize the air and generate corona discharge at levels proportionate to the current running through the electrode. Such electrodes are operatively coupled to a voltage supply which enables such current flow. The amount of ionized particles and corona discharge generated is a function of the emitter current. The higher the emitter current, the more air is ionized and the greater the corona discharge.


Ozone production can be a byproduct of corona discharge if certain conditions are present. This ionization process can cause oxygen molecules (O2) to split in the air. The split molecules seek stability and attach themselves to other oxygen molecules (O2), forming ozone (O3). Inhaling excess amounts of ozone can be undesirable and even harmful depending upon the conditions present in a given environment. Ozone generation for a given Prior Art Wire Emitter length at normal room humidity, temperature and pressure can be a function of the material of the wire, the emitter current and the diameter of the wire. For a given emitter current and material, the smaller the diameter of the wire, the less ozone is produced. One disadvantage to small diameter wires is that they tend to wear down at a relatively high rate.


Accordingly, there is a need to overcome or otherwise reduce the disadvantages described above.




BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A is a perspective view of a Prior Art Wire Emitter.



FIG. 1B is a perspective view of one embodiment of a strip emitter electrode, as described below.



FIG. 1C is an enlarged, perspective view of one embodiment of a strip emitter electrode, as described below.



FIG. 2 is a graph indicating ozone production of an air treatment apparatus using one embodiment of a strip emitter electrode compared to a Prior Art Wire Emitter electrode used to generate the same emitter current.



FIG. 3 is a front perspective view of one embodiment of an air treatment apparatus which includes the strip emitter electrode described below.




DETAILED DESCRIPTION


FIG. 1A illustrates a perspective view of a Prior Art Wire Emitter. The use of a strip emitter electrode 10, as illustrated in FIGS. 1B and 1C, overcomes or reduces the problems related to Prior Art Wire Emitters by exhibiting a longer structural lifetime and generating desired levels of corona discharge associated with acceptable amounts of ozone.


Referring now to FIGS. 1B and 1C, in one embodiment, the strip emitter electrode 10 includes a rectangular body having a length 12, a width 14, a thickness 16, and emission edges 18a and 18b. Edges 18a and 18b are defined by the length 12 and the thickness 16, and edges 18a and 18b extend along the length 12 of the strip emitter electrode 10. When a current flows through the strip emitter electrode 10, corona current concentrates on at least one of edges 18a and 18b. Accordingly, any erosion of the strip emitter electrode 10 caused by corona current progresses from the respective edge 18a or 18b of the strip emitter electrode 10 inward along the width 14. This enables strip emitter electrode 10 to perform the ionic emission function for a relatively long period of time. The concentration of corona at at least one of edges 18a and 18b of the strip emitter electrode 10 results in ionization similar to that resulting from corona emitted from a thin wire within corresponding levels of ozone generation.


With continued reference to FIG. 1C, erosion may progress inward from edge 18a. For example: after one period of operation, the edge 18a deteriorates and recedes to line 20a; after a longer period of operation, the edge 18a deteriorates and recedes to line 20b; and after an even longer period of time, the edge 18a deteriorates and recedes to line 20c. In on example, this process continues until the entire width 14 of the strip emitter electrode is depleted or disintegrated. The lifespan of the strip emitter electrode 10 is a function, in part, of the width 14 of the strip emitter electrode 10. All other variables being equal, in this example, the greater the width 14, the longer the lifespan of a strip emitter electrode 10. If edge 18a of the strip emitter electrode 10 were the only edge eroding due to current concentration, the life of the strip emitter electrode 10 would terminate approximately when the erosion reaches edge 18b. If both edges 18a and 18b are eroding due to current concentration, the life of the strip emitter electrode 10 would terminate approximately when the erosions lines extending inward from respective edges 18a and 18b converge.


Such a strip emitter electrode 10 may have any suitable rectangular geometry and have any suitable length 12, width 14 and thickness 16. For example, the width 14 of the strip emitter electrode 10 could extend from 0.1 mm upward. Additionally, the thickness 16 of the strip emitter electrode 10 could range from 0.01 mm to 0.15 mm. In one tested embodiment, the width 14 of the strip emitter electrode 10 is approximately 2.3 mm, and the thickness 16 of the strip emitter electrode 10 is approximately 0.02 mm. Additionally, the strip emitter electrode 10 may be composed of any suitable material. In one embodiment, the strip emitter electrode 10 is composed of molybdenum. In the illustrated and tested embodiment, the strip emitter electrode 10 has a flexible foil structure. It should be appreciated, however, that the strip emitter electrode 10 can have any suitable rigid or flexible structure, including, but not limited to: (a) a ribbon; (b) a foil; (c) a tape; (d) a belt or band; or (e) any other suitable relatively thin structure.


Referring now to Table 1 below, to demonstrate the relationship between Prior Art Wire Emitter diameter and ozone generation, consider a tungsten Prior Art Wire Emitter electrode between 0.1 and 0.12 mm in diameter. The following table illustrates the ozone production of such a Prior Art Wire Emitter electrode at a designated current as a function of the diameter of the wire.

TABLE 1Wire Diameter, mmO3, mg/hr0.122.620.12.230.081.96


As illustrated in Table 1, ozone generation resulting from such Prior Art Wire Emitter decreases with wire diameter. However, as described above, smaller diameter wires may not have a sufficient lifespan for practical application, breaking and requiring replacement because corona current erodes the Prior Art Wire Emitters.


In one test, ozone generation of an air treatment apparatus including Prior Art Wire Emitter electrodes was measured as a function of current at designated currents. Then, ozone generation of the same air treatment apparatus including a plurality of the strip emitter electrodes 10 was measured at the same current. Then, the two sets of results where compared, as illustrated in Table 2 below. For this test, Prior Art Wire Emitters having a diameter of 0.12 mm were used. Molybdenum strip emitter electrodes, having a width of 2.3 mm and a thickness of 0.02 mm, were used. In this particular test, both the Prior Art Wire Emitters and such strip emitter electrodes 10 were operated in an air treatment apparatus which also includes collector and driver electrodes. In this test, the emitter electrodes and the collector electrodes were operatively coupled to a voltage generator. Table 2 below and FIG. 2 include relevant test data.

TABLE 2O3, mg/hrO3, mg/hrStrip EmitterPrior Art Wire EmitterI, μAElectrodesElectrodes2001.82.84003.75.56005.58


As illustrated in Table 2 and FIG. 2, operating at the same designated currents, the use of the strip emitter electrodes resulted in less ozone generation than the use of the Prior Art Wire Emitter electrodes.


Performance of the air treatment apparatus used in this test was also measured in terms of Clean Air Delivery Rate (“CADR”). CADR is the amount of clean air measured in cubic feet per minute that an air cleaner delivers to a room. The performance of the air treatment apparatus used in this particular test, independent of ozone generation differentiation, was substantially similar when using the strip emitter electrodes 10, as opposed to the Prior Art Wire Emitters. This is illustrated by the sample estimated CADR results of Table 3 below. The “High,” “Med,” “Low,” and “Quiet” designators in Table 3 refer to various operating modes of the air treatment apparatus from which these results were measured. While performing at similar CADR levels, the ozone generation using strip emitter electrodes 10 was significantly lower.

TABLE 3CADR(Prior Art Wire EmitterCADRModeElectrode)(Strip Emitter Electrode)High155.4174.3Medium137.6138.6Low124.3135.2Quiet100.6110.3


It should be appreciated that although the strip emitter electrode 10 described in this application was tested in an air treatment apparatus including a collector electrode in the foregoing example, the strip emitter electrode 10 may be incorporated into a variety of air treatment devices including, without limitation, various electrode configurations, pure ionizers (such as a strip emitter electrode which causes ions to flow toward any suitable grounded object), or any other suitable device. For example, the strip emitter electrode could be utilized in air treatment devices including at least one of: (a) emitter electrodes; (b) collector electrodes; (c) electrodes interstitially located between the collector electrodes (driver electrodes); and (d) additional suitable electrodes. An example of such a device is shown in FIG. 3, which illustrates an air treatment apparatus including an elongated housing which supports the internal components of the air treatment apparatus. In this illustration, the air treatment apparatus could include an electrode assembly with at least one of the strip emitter electrodes 10 illustrated in FIGS. 1B and 1C. Though the housing shown has an elongated shape, it should be understood that other shapes for the air treatment apparatus are suitable. In one embodiment, such air treatment apparatus includes a control panel for turning on and off the air treatment apparatus, or for changing operating settings (e.g., low, medium, high or quiet). In operation, the air treatment apparatus draws surrounding air into the apparatus through the front air inlet. The front air inlet can include a plurality of fins, slats or louvers that facilitate air flow into the apparatus. An electrode assembly in the air treatment apparatus cleans or removes particles from the air as air flows through the apparatus.


The apparatus can remove dust particles and other airborne particles from the air, including particles which cause odor, as well as particles present in smoke and other gases. Also, the apparatus can condition and treat the air by removing or altering chemicals present in the air. Furthermore, the apparatus can collect and kill airborne pathogens and micro-organisms through the effect of the electric field produced by the electrode assembly and cold plasma of corona discharge. Once cleaned or otherwise treated, the air exits the apparatus through the rear air outlet. Similar to the front air inlet, the rear air outlet can include a plurality of fins, slats or louvers that facilitate air flow out of the apparatus.


In one embodiment, the strip emitter electrode 10 includes a first end and a second end, the first and second end both held by a tensioning mechanism or holder which holds the strip emitter electrode tight in a linear configuration, eliminating or reducing slack.


In various embodiments, the strip emitter electrode may be either a permanent or replaceable component of an air treatment apparatus or any device. Alternatively, the strip emitter electrode may constitute a device in and of itself (i.e., a pure ionizer as described above), used with a voltage source. In such embodiment, the strip emitter electrode can be a replaceable item.


Additionally, the strip emitter electrode may be fabricated in a variety of ways and by a variety of devices. For example, the strip emitter electrode could be produced as a product of: (a) a laser cutting method; (b) mechanical cutting method; (c) any combination of these methods; or (d) any suitable fabrication method like, for example, rolling. Such methods could employ a variety of cutting devices, including: (i) lasers; (ii) mechanical cutters; (iii) any combination of these devices; or (iv) any suitable device.


It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims
  • 1. An electrode comprising: a rectangular body having a length, a width, a thickness, and a plurality of edges which extend along the length, the rectangular body being configured to be operatively coupled to a voltage source, the voltage source being operable to cause: (a) ionization; and (b) erosion of at least one of the edges, the erosion progressing toward the other edge.
  • 2. The electrode of claim 1, wherein the electrode has a flexible characteristic, a first end, and a second end, the first end and the second being configured to be held in place by at least one holder.
  • 3. The electrode of claim 1, wherein the electrode is fabricated using a cutting or rolling device selected from the group consisting of: (a) a laser; (b) a mechanical cutter; (c) any combination of a laser and a mechanical cutter; and (d) a roller.
  • 4. The electrode of claim 1, wherein the electrode is a component of an ionic air treatment apparatus.
  • 5. The electrode of claim 1, wherein the electrode is a component of an ionizer.
  • 6. The electrode of claim 1, wherein the electrode has a structure selected from the group consisting of: (a) a ribbon; (b) strip; (c) a foil; (d) a tape; (e) a belt; and (f) a band.
  • 7. The electrode of claim 6, wherein the electrode is flexible along the length.
PRIORITY CLAIM

This application claims priority to, and is a continuation in part of, pending U.S. patent application Ser. No. 11/694,281, filed Mar. 30, 2007, which is a continuation in part of pending U.S. patent application Ser. No. 11/007,734, filed Dec. 8, 2004, which is a continuation of U.S. patent application Ser. No. 10/717,420, filed Nov. 19, 2003, now abandoned, which claimed priority to U.S. Provisional Patent Application No. 60/500,437, filed Sep. 4, 2003, now expired, all of which are fully incorporated herein by reference. This application relates to the following commonly-owned co-pending patent applications: U.S. PatentAppln. No.FiledDocket No.90/007,276Oct. 29, 2004112440-06811/041,926Jan. 21, 2005112440-07211/091,243Mar. 28, 2005112440-35211/062,057Feb. 18, 2005112440-44111/071,779Mar. 3, 2005112440-70210/994,869Nov. 22, 2004112440-70311/007,556Dec. 8, 2004112440-70910/074,209Feb. 12, 2002112440-72710/685,182Oct. 14, 2003112440-74310/944,016Sep. 17, 2004112440-74410/795,934Mar. 8, 2004112440-76110/435,289May 9, 2003112440-76211/064,797Feb. 24, 2005112440-76911/003,671Dec. 3, 2004112440-77411/003,035Dec. 3, 2004112440-77511/007,395Dec. 8, 2004112440-77610/876,495Jun. 25, 2004112440-78310/809,923Mar. 25, 2004112440-78411/004,397Dec. 3, 2004112440-79810/895,799Jul. 21, 2004112440-79910/642,927Aug. 18, 2003112440-80311/823,346Apr. 12, 2004112440-80410/662,591Sep. 15, 2003112440-80511/061,967Feb. 18, 2005112440-80611/150,046Jun. 10, 2005112440-84811/188,448Jul. 25, 2005112440-87711/188,478Jul. 25, 2005112440-87811/293,538Dec. 2, 2005112440-93211/457,396Jul. 13, 2006112440-96611/464,139Aug. 11, 2006112440-96911/694,281Mar. 30, 2007112440-1010 The contents of the following patent applications and issued patents are fully incorporated herein by reference: U.S. PatentAppln. No.FiledU.S. Pat. No.Docket No.90/007,276Oct. 29, 2004112440-6809/419,720Oct. 14, 19996,504,308112440-68US211/041,926Jan. 21, 2005112440-7209/231,917Jan. 14, 19996,125,636112440-34411/091,243Mar. 28, 2005112440-35210/978,891Nov. 1, 2004112440-35511/087,969Mar. 23, 20057,056,370112440-36109/197,131Nov. 20, 19986,585,935112440-38108/924,580Sep. 5, 19975,802,865112440-39709/148,843Sep. 4, 19986,189,327112440-40009/232,196Jan. 14, 19996,163,098112440-40710/454,132Jun. 4, 20036,827,088112440-40809/721,055Nov. 22, 20006,640,049112440-40910/405,193Apr. 1, 2003112440-41009/669,253Sep. 25, 20006,632,407112440-41409/249,375Feb. 12, 19996,312,507112440-41609/742,814Dec. 19, 20006,672,315112440-41709/415,576Oct. 8, 19996,182,671112440-41809/344,516Jun. 25, 19996,152,146112440-41909/163,024Sep. 29, 19985,975,090112440-42011/062,057Feb. 18, 2005112440-44110/188,668Jul. 2, 20026,588,434112440-50110/815,230Mar. 30, 20046,953,556112440-52811/003,516Dec. 3, 2004112440-70111/071,779Mar. 3, 2005112440-70210/994,869Nov. 22, 2004112440-70311/007,556Dec. 8, 2004112440-70911/003,894Dec. 3, 2004112440-71010/661,988Sep. 12, 20037,097,695112440-71210/774,579Feb. 9, 20047,077,890112440-71409/730,499Dec. 5, 20006,713,026112440-71510/156,158May 28, 20026,863,869112440-71609/186,471Nov. 5, 19986,176,977112440-71711/003,752Dec. 3, 2004112440-72110/835,743Apr. 30, 20046,908,501112440-72210/791,561Mar. 2, 2004112440-72310/658,721Sep. 9, 20036,896,853112440-72411/006,344Dec. 7, 2004112440-72610/074,209Feb. 12, 2002112440-72710/023,460Dec. 13, 2001112440-72810/379,966Mar. 5, 2003112440-74210/685,182Oct. 14, 2003112440-74310/944,016Sep. 17, 2004112440-74410/074,096Feb. 12, 20026,974,560112440-74910/074,347Feb. 12, 20026,911,186112440-75010/795,934Mar. 8, 2004112440-76110/435,289May 9, 2003112440-76209/774,198Jan. 29, 20016,544,485112440-76311/064,797Feb. 24, 2005112440-76911/003,034Dec. 3, 2004112440-77211/003,671Dec. 3, 2004112440-77411/003,035Dec. 3, 2004112440-77511/007,395Dec. 8, 2004112440-77610/074,827Feb. 12, 2002112440-77910/876,495Jun. 25, 2004112440-78310/809,923Mar. 25, 2004112440-78411/062,173Feb. 18, 2005112440-78810/074,082Feb. 12, 20026,958,134112440-78910/278,193Oct. 21, 20026,749,667112440-79309/924,600Aug. 8, 20016,709,484112440-79409/564,960May 4, 20006,350,417112440-79510/806,293Mar. 22, 20046,972,057112440-79611/004,397Dec. 3, 2004112440-79810/895,799Jul. 21, 2004112440-79910/625,401Jul. 23, 20036,984,987112440-80210/642,927Aug. 18, 2003112440-80311/823,346Apr. 12, 2004112440-80410/662,591Sep. 15, 2003112440-80511/061,967Feb. 18, 2005112440-80611/150,046Jun. 10, 2005112440-84811/188,448Jul. 25, 2005112440-87711/188,478Jul. 25, 2005112440-87860/777,943Feb. 25, 2006112440-89711/293,538Dec. 2, 2005112440-93211/338,974Jan. 25, 2006112440-94110/794,526Mar. 4, 20047,014,686112440-94910/267,006Oct. 8, 20026,899,745112440-949DIV11/457,396Jul. 13, 2006112440-96611/464,139Aug. 11, 2006112440-96910/168,723Jun. 21, 20026,897,617112440-97510/168,724Jun. 21, 20026,603,268112440-978

Provisional Applications (1)
Number Date Country
60500437 Sep 2003 US
Continuations (1)
Number Date Country
Parent 10717420 Nov 2003 US
Child 11781078 Jul 2007 US
Continuation in Parts (2)
Number Date Country
Parent 11694281 Mar 2007 US
Child 11781078 Jul 2007 US
Parent 11007734 Dec 2004 US
Child 11781078 Jul 2007 US