ENABLING SESSION-BASED PERMISSION SETS

Information

  • Patent Application
  • 20170337391
  • Publication Number
    20170337391
  • Date Filed
    May 19, 2016
    8 years ago
  • Date Published
    November 23, 2017
    6 years ago
Abstract
A computer implemented method for activating assignments of permission sets may include enabling, by a server computing system, assignment of one or more permission sets to a user, wherein access to a computing resource associated with the one or more permission sets is blocked until the assignment of the one or more permission sets is activated; detecting, by the server computing system, a start of a first user session associated with the user; and activating, by the server computing system, the assignment of the one or more permission sets based on the detecting of the start of the first user session and based on one or more of the user and the first user session satisfying one or more qualification requirements.
Description
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.


FIELD OF THE INVENTION

One or more implementations relate generally to permissions, and more specifically for assigning session-based permission allowing access to components of a system to users of cloud computing services.


BACKGROUND

The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also correspond to implementations of the claimed inventions.


Generally, users of an organization can access resources based on permissions granted to them by an administrator. However, existing techniques of granting permissions are not very flexible. For example, once permission is granted to a user the permission remains static until modified by the administrator. It would be helpful to provide the administrators more flexible tools to control access to resources.





BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and serve only to provide examples of possible structures and process operations for the disclosed inventive systems, apparatus, methods and computer-readable storage media for activating assignment of permission sets. These drawings in no way limit any changes in form and detail that may be made by one skilled in the art without departing from the spirit and scope of the disclosed implementations.



FIG. 1 shows a block diagram of an example of an environment 10 in which an on-demand database service can be used in accordance with some implementations.



FIG. 2 shows a block diagram of an example of some implementations of elements of FIG. 1 and various possible interconnections between these elements.



FIG. 3A shows a system diagram illustrating an example of architectural components of an on-demand database service environment 1200 according to some implementations.



FIG. 3B shows a system diagram further illustrating an example of architectural components of an on-demand database service environment according to some implementations.



FIG. 4 shows a system diagram illustrating an example of architectural components 400 for assigning permission sets to users and activating the assignments according to some implementations.



FIG. 5 shows a graphical representation of permission assignments to users using profiles, in accordance with some implementations.



FIG. 6 shows a graphical representation of permissions assignments to users via permission sets, in accordance with some implementations.



FIG. 7 shows a flowchart of an example of a computer implemented method 700 for assigning permission sets to one or more users in accordance with some implementations.



FIG. 8 shows a flowchart of an example of a computer implemented method 800 for assigning permission sets to one or more users in accordance with some implementations.



FIG. 9 shows a flowchart of an example of a computer implemented method 900 for determining users with a permission in accordance with some implementations.



FIG. 10 shows a flowchart of an example of a computer implemented method 1000 for determining users with a permission as well as assigning permissions to users in accordance with some implementations.



FIG. 11 shows a flowchart of an example of a method 1100 for activating the assignment of permission sets to one or more users.





DETAILED DESCRIPTION

Examples of systems, apparatus, and methods according to the disclosed implementations are described in this section. These examples are being provided solely to add context and aid in the understanding of the disclosed implementations. It will thus be apparent to one skilled in the art that implementations may be practiced without some or all of these specific details. In other instances, certain process/method operations, also referred to herein as “blocks,” have not been described in detail in order to avoid unnecessarily obscuring implementations. Other applications are possible, such that the following examples should not be taken as definitive or limiting either in scope or setting.


In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific implementations. Although these implementations are described in sufficient detail to enable one skilled in the art to practice the disclosed implementations, it is understood that these examples are not limiting, such that other implementations may be used and changes may be made without departing from their spirit and scope. For example, the blocks of methods shown and described herein are not necessarily performed in the order indicated. It should also be understood that the methods may include more or fewer blocks than are indicated. In some implementations, blocks described herein as separate blocks may be combined. Conversely, what may be described herein as a single block may be implemented in multiple blocks.


Various implementations described or referenced herein are directed to different systems, apparatus, methods and computer-readable storage media for activating assignments of permission sets to enable access to computing resources such as data objects, components, and other entities of a system.


In some examples, permissions can be managed and assigned via permission sets. Multiple permission sets may be assigned to a user of a system in order to grant access to a variety of resources. In some implementations, a permission set is structured as a container of permissions.


In some implementations, the permission set can be assigned directly to a user based on a user session, with the permissions layered to provide one or more rights needed to access computing resources in an on-demand database service environment including, but not exclusive of: objects, fields, pages, programmatic functions, identity service providers, and general functions.


For instance, users and permission sets may be assigned to each other based upon criteria. The assignments of users and permission sets may be stored in one or more databases of an on-demand database service environment. In some implementations, the assignment of the permission sets to a user may not allow the user to access the resources until the assignment is activated. Activation may be dependent on whether a user session is detected and whether some qualification requirements associated with the user and/or user session are satisfied. A user session may be detected after the user logs in and is authenticated by the system.


It may be noted that the qualification requirements associated with the activation of the assignment may be different from the criteria associated with assigning the permission sets to the users. The qualification requirements may be determined by the administrator and may vary depending on the implementations. Using the user session and the qualification requirements before activating the assignment of the permission sets provides the administrator a framework to have additional levels of control over how the resources can be accessed. Thus, the administrator may define what is required and what is needed by the organization before activating the assignments of certain permission sets. For instance, even though a user is assigned a particular permission set, the assignment of the permission set may not be activated if the system determines that the user logs in from an IP address that is outside a range of authorized IP addresses.


Further, because a permission set is only assigned and not activated, the possibility of unauthorized access of the resources claiming to be on behalf of the user can be avoided because there would be no user session. In some implementations, a user interface may be provided to enable the administrator to indicate that an assignment of a permission set to a user needs to be activated before the user can access the related resources. For instance, the administrator may select an option on the user interface to block access to the resources until the assignment is activated.


In some implementations, the activation of the assignment is valid only during the duration of the user session. That is the activation may be automatically revoked once it is detected that the user logs off from the system. It may be noted that, depending on the qualification requirements, there is no guarantee that the assignment of the same permission sets is activated when the user logs back in to the system at a later time.


In some implementations, the activation of the assignment can be revoked before the expiration of the user session. For instance, after the assignment is activated, the system may revoke the activation of the assignment based on detecting a change in the user's computing environment that fails the qualification requirements.


A permission server in an on-demand database service environment can store criteria data regarding the types of users and permission sets to assign to each other. For example, a computing device can provide to the server data indicating an attribute of a user (e.g., geographic location, industry, role, level of experience, etc.) and particular permissions to be assigned to the users fitting the attributes. Permission sets meeting the criteria may be selected and assigned to the users. In this way, the users can gain access to components of a system after logging into the system and after the assignment is activated.


The permission server may also analyze multiple permission sets that fit the criteria data. Certain permission sets may be preferred and assigned to a user. Accordingly, permissions may appear in multiple permission sets.


In some an on-demand database service environments, an Application Programming Interface (API) is configured to expose a collection of permissions and their assignments to users through appropriate network-based services and architectures, for instance, using Simple Object Access Protocol (SOAP) Web Service and Representational State Transfer (REST) APIs.


Some implementations of the disclosed techniques can allow developers to create advanced administrative tooling to reduce administrative time managing a user's rights, enable advanced reporting of a user's permissions through their permission set assignments, and allow developers to integrate master entitlement systems like Active Directory or Lightweight Directory Access Protocol (LDAP) services in an on-demand database service environment for the purpose of synchronizing a user's rights across multiple services and applications.


In some implementations, a permission set may be presented to an administrator as a container of permissions. However, each permission can reside in a separate API object exposed in a shared API that has a child-parent relationship with the same permission set object. This allows a given permission set to scale to millions of permissions for a user while allowing a developer to take advantage of joins across the API objects to query, insert, update, and delete any permission across the millions of possible choices. This makes the API highly scalable, reliable, and efficient for developers to use.


In some implementations, a permission set API constructed using the techniques disclosed herein can provide scalable, reliable, and efficient mechanisms for a developer to create tools that manage a user's permissions across various sets of access controls and across types of users. Administrators who use this tooling can effectively reduce their time managing a user's rights, integrate with external systems, and report on rights for auditing and troubleshooting purposes.


These and other implementations may be embodied in various types of hardware, software, firmware, and combinations thereof. For example, some techniques disclosed herein may be implemented, at least in part, by computer-readable media that include program instructions, state information, etc., for performing various services and operations described herein. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by a computing device such as a server or other data processing apparatus using an interpreter. Examples of computer-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media; and hardware devices that are specially configured to store program instructions, such as read-only memory (“ROM”) devices and random access memory (“RAM”) devices. These and other features of the disclosed implementations will be described in more detail below with reference to the associated drawings.



FIG. 1 shows a block diagram of an example of an environment 10 in which an on-demand database service can be used in accordance with some implementations. Environment 10 may include user systems 12, network 14, database system 16, processor system 17, application platform 18, network interface 20, tenant data storage 22, system data storage 24, program code 26, and process space 28. In other implementations, environment 10 may not have all of these components and/or may have other components instead of, or in addition to, those listed above.


Environment 10 is an environment in which an on-demand database service exists. User system 12 may be implemented as any computing device(s) or other data processing apparatus such as a machine or system that is used by a user to access a database system 16. For example, any of user systems 12 can be a handheld computing device, a mobile phone, a laptop computer, a work station, and/or a network of such computing devices. As illustrated in FIG. 1 (and in more detail in FIG. 2) user systems 12 might interact via a network 14 with an on-demand database service, which is implemented in the example of FIG. 1 as database system 16.


An on-demand database service, implemented using system 16 by way of example, is a service that is made available to outside users, who do not need to necessarily be concerned with building and/or maintaining the database system. Instead, the database system may be available for their use when the users need the database system, i.e., on the demand of the users. Some on-demand database services may store information from one or more tenants into tables of a common database image to form a multi-tenant database system (MTS). A database image may include one or more database objects. A relational database management system (RDBMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 18 may be a framework that allows the applications of system 16 to run, such as the hardware and/or software, e.g., the operating system. In some implementations, application platform 18 enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 12, or third party application developers accessing the on-demand database service via user systems 12.


The users of user systems 12 may differ in their respective capacities, and the capacity of a particular user system 12 might be entirely determined by permissions (permission levels) for the current user. For example, where a salesperson is using a particular user system 12 to interact with system 16, that user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 16, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level, also called authorization.


Network 14 is any network or combination of networks of devices that communicate with one another. For example, network 14 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. Network 14 can include a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the “Internet” with a capital “I.” The Internet will be used in many of the examples herein. However, it should be understood that the networks that the present implementations might use are not so limited, although TCP/IP is a frequently implemented protocol.


User systems 12 might communicate with system 16 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 12 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP signals to and from an HTTP server at system 16. Such an HTTP server might be implemented as the sole network interface 20 between system 16 and network 14, but other techniques might be used as well or instead. In some implementations, the network interface 20 between system 16 and network 14 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least for users accessing system 16, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.


In one implementation, system 16, shown in FIG. 1, implements a web-based customer relationship management (CRM) system. For example, in one implementation, system 16 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, web pages and other information to and from user systems 12 and to store to, and retrieve from, a database system related data, objects, and Webpage content. With a multi-tenant system, data for multiple tenants may be stored in the same physical database object in tenant data storage 22, however, tenant data typically is arranged in the storage medium(s) of tenant data storage 22 so that data of one tenant is kept logically separate from that of other tenants so that one tenant does not have access to another tenant's data, unless such data is expressly shared. In certain implementations, system 16 implements applications other than, or in addition to, a CRM application. For example, system 16 may provide tenant access to multiple hosted (standard and custom) applications, including a CRM application. User (or third party developer) applications, which may or may not include CRM, may be supported by the application platform 18, which manages creation, storage of the applications into one or more database objects and executing of the applications in a virtual machine in the process space of the system 16.


One arrangement for elements of system 16 is shown in FIGS. 1 and 2, including a network interface 20, application platform 18, tenant data storage 22 for tenant data 23, system data storage 24 for system data 25 accessible to system 16 and possibly multiple tenants, program code 26 for implementing various functions of system 16, and a process space 28 for executing MTS system processes and tenant-specific processes, such as running applications as part of an application hosting service. Additional processes that may execute on system 16 include database indexing processes.


Several elements in the system shown in FIG. 1 include conventional, well-known elements that are explained only briefly here. For example, each user system 12 could include a desktop personal computer, workstation, laptop, PDA, tablet, smartphone, or any wireless access protocol (WAP) enabled device or any other computing device capable of interfacing directly or indirectly to the Internet or other network connection. The term “computing device” is also referred to herein simply as a “computer”. User system 12 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) of user system 12 to access, process and view information, pages and applications available to it from system 16 over network 14. Each user system 12 also typically includes one or more user input devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a graphical user interface (GUI) provided by the browser on a display (e.g., a monitor screen, LCD display, etc.) of the computing device in conjunction with pages, forms, applications and other information provided by system 16 or other systems or servers. For example, the user interface device can be used to access data and applications hosted by system 16, and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user. As discussed above, implementations are suitable for use with the Internet, although other networks can be used instead of or in addition to the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.


According to one implementation, each user system 12 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 16 (and additional instances of an MTS, where more than one is present) and all of its components might be operator configurable using application(s) including computer code to run using processor system 17, which may be implemented to include a central processing unit, which may include an Intel Pentium® processor or the like, and/or multiple processor units. Non-transitory computer-readable media can have instructions stored thereon/in, that can be executed by or used to program a computing device to perform any of the methods of the implementations described herein. Computer program code 26 implementing instructions for operating and configuring system 16 to intercommunicate and to process web pages, applications and other data and media content as described herein is preferably downloadable and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any other type of computer-readable medium or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for the disclosed implementations can be realized in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).


According to some implementations, each system 16 is configured to provide web pages, forms, applications, data and media content to user (client) systems 12 to support the access by user systems 12 as tenants of system 16. As such, system 16 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to refer to a computing device or system, including processing hardware and process space(s), an associated storage medium such as a memory device or database, and, in some instances, a database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database objects described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.



FIG. 2 shows a block diagram of an example of some implementations of elements of FIG. 1 and various possible interconnections between these elements. That is, FIG. 2 also illustrates environment 10. However, in FIG. 2 elements of system 16 and various interconnections in some implementations are further illustrated. FIG. 2 shows that user system 12 may include processor system 12A, memory system 12B, input system 12C, and output system 12D. FIG. 11B shows network 14 and system 16. FIG. 2 also shows that system 16 may include tenant data storage 22, tenant data 23, system data storage 24, system data 25, User Interface (UI) 30, Application Program Interface (API) 32, PL/SOQL 34, save routines 36, application setup mechanism 38, applications servers 50.sub.1-50.sub.N, system process space 52, tenant process spaces 54, tenant management process space 60, tenant storage space 62, user storage 64, and application metadata 66. In other implementations, environment 10 may not have the same elements as those listed above and/or may have other elements instead of, or in addition to, those listed above.


User system 12, network 14, system 16, tenant data storage 22, and system data storage 24 were discussed above in FIG. 1. Regarding user system 12, processor system 12A may be any combination of one or more processors. Memory system 12B may be any combination of one or more memory devices, short term, and/or long term memory. Input system 12C may be any combination of input devices, such as one or more keyboards, mice, trackballs, scanners, cameras, and/or interfaces to networks. Output system 12D may be any combination of output devices, such as one or more monitors, printers, and/or interfaces to networks. As shown by FIG. 2, system 16 may include a network interface 20 (of FIG. 1) implemented as a set of HTTP application servers 50, an application platform 18, tenant data storage 22, and system data storage 24. Also shown is system process space 52, including individual tenant process spaces 54 and a tenant management process space 60. Each application server 50 may be configured to communicate with tenant data storage 22 and the tenant data 23 therein, and system data storage 24 and the system data 25 therein to serve requests of user systems 12. The tenant data 23 might be divided into individual tenant storage spaces 62, which can be either a physical arrangement and/or a logical arrangement of data. Within each tenant storage space 62, user storage 64 and application metadata 66 might be similarly allocated for each user. For example, a copy of a user's most recently used (MRU) items might be stored to user storage 64. Similarly, a copy of MRU items for an entire organization that is a tenant might be stored to tenant storage space 62. A UI 30 provides a user interface and an API 32 provides an application programmer interface to system 16 resident processes to users and/or developers at user systems 12. The tenant data and the system data may be stored in various databases, such as one or more Oracle databases.


Application platform 18 includes an application setup mechanism 38 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 22 by save routines 36 for execution by subscribers as one or more tenant process spaces 54 managed by tenant management process 60 for example. Invocations to such applications may be coded using PL/SOQL 34 that provides a programming language style interface extension to API 32. A detailed description of some PL/SOQL language implementations is discussed in commonly assigned U.S. Pat. No. 7,730,478, titled METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, issued on Jun. 1, 2010, and hereby incorporated by reference in its entirety and for all purposes. Invocations to applications may be detected by one or more system processes, which manage retrieving application metadata 66 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.


Each application server 50 may be communicably coupled to database systems, e.g., having access to system data 25 and tenant data 23, via a different network connection. For example, one application server 50.sub.1 might be coupled via the network 14 (e.g., the Internet), another application server 50.sub.N−1 might be coupled via a direct network link, and another application server 50.sub.N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 50 and the database system. However, it will be apparent to one skilled in the art that other transport protocols may be used to optimize the system depending on the network interconnect used.


In certain implementations, each application server 50 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 50. In one implementation, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 50 and the user systems 12 to distribute requests to the application servers 50. In one implementation, the load balancer uses a least connections algorithm to route user requests to the application servers 50. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain implementations, three consecutive requests from the same user could hit three different application servers 50, and three requests from different users could hit the same application server 50. In this manner, by way of example, system 16 is multi-tenant, wherein system 16 handles storage of, and access to, different objects, data and applications across disparate users and organizations.


As an example of storage, one tenant might be a company that employs a sales force where each salesperson uses system 16 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 22). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.


While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 16 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant-specific data, system 16 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.


In certain implementations, user systems 12 (which may be client systems) communicate with application servers 50 to request and update system-level and tenant-level data from system 16 that may involve sending one or more queries to tenant data storage 22 and/or system data storage 24. System 16 (e.g., an application server 50 in system 16) automatically generates one or more SQL statements (e.g., one or more SQL queries) that are designed to access the desired information. System data storage 24 may generate query plans to access the requested data from the database.


Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects according to some implementations. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for case, account, contact, lead, and opportunity data objects, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.


In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. Commonly assigned U.S. Pat. No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by Weissman et al., issued on Aug. 17, 2010, and hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In certain implementations, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.



FIG. 3A shows a system diagram illustrating an example of architectural components of an on-demand database service environment 1200 according to some implementations. A client machine located in the cloud 1204, generally referring to one or more networks in combination, as described herein, may communicate with the on-demand database service environment via one or more edge routers 1208 and 1212. A client machine can be any of the examples of user systems 12 described above. The edge routers may communicate with one or more core switches 1220 and 1224 via firewall 1216. The core switches may communicate with a load balancer 1228, which may distribute server load over different pods, such as the pods 1240 and 1244. The pods 1240 and 1244, which may each include one or more servers and/or other computing resources, may perform data processing and other operations used to provide on-demand services. Communication with the pods may be conducted via pod switches 1232 and 1236. Components of the on-demand database service environment may communicate with a database storage 1256 via a database firewall 1248 and a database switch 1252.


As shown in FIGS. 3A and 3B, accessing an on-demand database service environment may involve communications transmitted among a variety of different hardware and/or software components. Further, the on-demand database service environment 1200 is a simplified representation of an actual on-demand database service environment. For example, while only one or two devices of each type are shown in FIGS. 3A and 3B, some implementations of an on-demand database service environment may include anywhere from one to many devices of each type. Also, the on-demand database service environment need not include each device shown in FIGS. 3A and 3B, or may include additional devices not shown in FIGS. 3A and 3B.


Moreover, one or more of the devices in the on-demand database service environment 1200 may be implemented on the same physical device or on different hardware. Some devices may be implemented using hardware or a combination of hardware and software. Thus, terms such as “data processing apparatus,” “machine,” “server” and “device” as used herein are not limited to a single hardware device, but rather include any hardware and software configured to provide the described functionality.


The cloud 1204 is intended to refer to a data network or plurality of data networks, often including the Internet. Client machines located in the cloud 1204 may communicate with the on-demand database service environment to access services provided by the on-demand database service environment. For example, client machines may access the on-demand database service environment to retrieve, store, edit, and/or process information.


In some implementations, the edge routers 1208 and 1212 route packets between the cloud 1204 and other components of the on-demand database service environment 1200. The edge routers 1208 and 1212 may employ the Border Gateway Protocol (BGP). The BGP is the core routing protocol of the Internet. The edge routers 1208 and 1212 may maintain a table of IP networks or ‘prefixes’, which designate network reachability among autonomous systems on the Internet.


In one or more implementations, the firewall 1216 may protect the inner components of the on-demand database service environment 1200 from Internet traffic. The firewall 1216 may block, permit, or deny access to the inner components of the on-demand database service environment 1200 based upon a set of rules and other criteria. The firewall 1216 may act as one or more of a packet filter, an application gateway, a stateful filter, a proxy server, or any other type of firewall.


In some implementations, the core switches 1220 and 1224 are high-capacity switches that transfer packets within the on-demand database service environment 1200. The core switches 1220 and 1224 may be configured as network bridges that quickly route data between different components within the on-demand database service environment. In some implementations, the use of two or more core switches 1220 and 1224 may provide redundancy and/or reduced latency.


In some implementations, the pods 1240 and 1244 may perform the core data processing and service functions provided by the on-demand database service environment. Each pod may include various types of hardware and/or software computing resources. An example of the pod architecture is discussed in greater detail with reference to FIG. 12B.


In some implementations, communication between the pods 1240 and 1244 may be conducted via the pod switches 1232 and 1236. The pod switches 1232 and 1236 may facilitate communication between the pods 1240 and 1244 and client machines located in the cloud 1204, for example via core switches 1220 and 1224. Also, the pod switches 1232 and 1236 may facilitate communication between the pods 1240 and 1244 and the database storage 1256.


In some implementations, the load balancer 1228 may distribute workload between the pods 1240 and 1244. Balancing the on-demand service requests between the pods may assist in improving the use of resources, increasing throughput, reducing response times, and/or reducing overhead. The load balancer 1228 may include multilayer switches to analyze and forward traffic.


In some implementations, access to the database storage 1256 may be guarded by a database firewall 1248. The database firewall 1248 may act as a computer application firewall operating at the database application layer of a protocol stack. The database firewall 1248 may protect the database storage 1256 from application attacks such as structure query language (SQL) injection, database rootkits, and unauthorized information disclosure.


In some implementations, the database firewall 1248 may include a host using one or more forms of reverse proxy services to proxy traffic before passing it to a gateway router. The database firewall 1248 may inspect the contents of database traffic and block certain content or database requests. The database firewall 1248 may work on the SQL application level atop the TCP/IP stack, managing applications' connection to the database or SQL management interfaces as well as intercepting and enforcing packets traveling to or from a database network or application interface.


In some implementations, communication with the database storage 1256 may be conducted via the database switch 1252. The multi-tenant database storage 1256 may include more than one hardware and/or software components for handling database queries. Accordingly, the database switch 1252 may direct database queries transmitted by other components of the on-demand database service environment (e.g., the pods 1240 and 1244) to the correct components within the database storage 1256.


In some implementations, the database storage 1256 is an on-demand database system shared by many different organizations. The on-demand database system may employ a multi-tenant approach, a virtualized approach, or any other type of database approach. An on-demand database system is discussed in greater detail with reference to FIGS. 1 and 2.



FIG. 3B shows a system diagram further illustrating an example of architectural components of an on-demand database service environment according to some implementations. The pod 1244 may be used to render services to a user of the on-demand database service environment 1200. In some implementations, each pod may include a variety of servers and/or other systems. The pod 1244 includes one or more content batch servers 1264, content search servers 1268, query servers 1282, file force servers 1286, access control system (ACS) servers 1280, batch servers 1284, and app servers 1288. Also, the pod 1244 includes database instances 1290, quick file systems (QFS) 1292, and indexers 1294. In one or more implementations, some or all communication between the servers in the pod 1244 may be transmitted via the switch 1236.


In some implementations, the app servers 1288 may include a hardware and/or software framework dedicated to the execution of procedures (e.g., programs, routines, scripts) for supporting the construction of applications provided by the on-demand database service environment 1200 via the pod 1244. In some implementations, the hardware and/or software framework of an app server 1288 is configured to execute operations of the services described herein, including performance of the blocks of methods described with reference to FIGS. 4-11. In alternative implementations, two or more app servers 1288 may be included and cooperate to perform such methods, or one or more other servers described herein can be configured to perform the disclosed methods.


The content batch servers 1264 may handle requests internal to the pod. These requests may be long-running and/or not tied to a particular customer. For example, the content batch servers 1264 may handle requests related to log mining, cleanup work, and maintenance tasks.


The content search servers 1268 may provide query and indexer functions. For example, the functions provided by the content search servers 1268 may allow users to search through content stored in the on-demand database service environment.


The file force servers 1286 may manage requests for information stored in the Fileforce storage 1298. The Fileforce storage 1298 may store information such as documents, images, and basic large objects (BLOBs). By managing requests for information using the file force servers 1286, the image footprint on the database may be reduced.


The query servers 1282 may be used to retrieve information from one or more file systems. For example, the query system 1282 may receive requests for information from the app servers 1288 and then transmit information queries to the NFS 1296 located outside the pod.


The pod 1244 may share a database instance 1290 configured as a multi-tenant environment in which different organizations share access to the same database. Additionally, services rendered by the pod 1244 may call upon various hardware and/or software resources. In some implementations, the ACS servers 1280 may control access to data, hardware resources, or software resources.


In some implementations, the batch servers 1284 may process batch jobs, which are used to run tasks at specified times. Thus, the batch servers 1284 may transmit instructions to other servers, such as the app servers 1288, to trigger the batch jobs.


In some implementations, the QFS 1292 may be an open source file system available from Sun Microsystems® of Santa Clara, Calif. The QFS may serve as a rapid-access file system for storing and accessing information available within the pod 1244. The QFS 1292 may support some volume management capabilities, allowing many disks to be grouped together into a file system. File system metadata can be kept on a separate set of disks, which may be useful for streaming applications where long disk seeks cannot be tolerated. Thus, the QFS system may communicate with one or more content search servers 1268 and/or indexers 1294 to identify, retrieve, move, and/or update data stored in the network file systems 1296 and/or other storage systems.


In some implementations, one or more query servers 1282 may communicate with the NFS 1296 to retrieve and/or update information stored outside of the pod 1244. The NFS 1296 may allow servers located in the pod 1244 to access information to access files over a network in a manner similar to how local storage is accessed.


In some implementations, queries from the query servers 1222 may be transmitted to the NFS 1296 via the load balancer 1228, which may distribute resource requests over various resources available in the on-demand database service environment. The NFS 1296 may also communicate with the QFS 1292 to update the information stored on the NFS 1296 and/or to provide information to the QFS 1292 for use by servers located within the pod 1244.


In some implementations, the pod may include one or more database instances 1290. The database instance 1290 may transmit information to the QFS 1292. When information is transmitted to the QFS, it may be available for use by servers within the pod 1244 without using an additional database call.


In some implementations, database information may be transmitted to the indexer 1294. Indexer 1294 may provide an index of information available in the database 1290 and/or QFS 1292. The index information may be provided to file force servers 1286 and/or the QFS 1292.


As multiple users might be able to change the data of a record, it can be useful for certain users to be notified when a record is updated. Also, even if a user does not have authority to change a record, the user still might want to know when there is an update to the record. For example, a vendor may negotiate a new price with a salesperson of company X, where the salesperson is a user associated with tenant Y. As part of creating a new invoice or for accounting purposes, the salesperson can change the price saved in the database. It may be important for co-workers to know that the price has changed. The salesperson could send an email to certain people, but this is onerous and the salesperson might not email all of the people who need to know or want to know. Accordingly, some implementations of the disclosed techniques can inform others (e.g., co-workers) who want to know about an update to a record automatically.


The tracking and reporting of updates to a record stored in a database system can be facilitated with a multi-tenant database system 16, e.g., by one or more processors configured to receive or retrieve information, process the information, store results, and transmit the results. In other implementations, the tracking and reporting of updates to a record may be implemented at least partially with a single tenant database system.



FIG. 4 shows a system diagram illustrating an example of architectural components 400 for assigning permission sets to users and activating the assignments according to some implementations. Architectural components 400 in FIG. 4 may provide communications to be transmitted among a variety of different hardware and/or software components. For example, architectural components 400 may include user system 12, permission server 405, and permission database 415.


The various components are able to communicate with each other over the Internet or a combination of networks including the Internet. For example, in some implementations, user system 12 may communicate with permission server 405. Permission server 405 may further communicate with permission database 415. Accordingly, permission server 405 may process data received from user system 12, and access, analyze, and/or modify data stored in permission database 415. Permission server 405 may also transmit data from permission database 415 to user system 12.


For example, permission server 405 may receive data regarding criteria, such as a geographic location, a level with an organizational hierarchy, title, an industry, a role, and/or a permission. In some implementations, permission server 405 may query permission database 415 to select a permission set associated with the criteria received from user system 12. Permission server 405 may also identify users associated with the criteria. In some implementations, permission server 405 may receive the criteria via an application programming interface (API).


In some implementations, once a permission set is associated with the criteria and the user, the permission set is assigned to the user. However, in some implementations, even though the permission set is assigned, the user may not be able to access the related resources until the assignment is activated. That is, the user may have an entitlement to the permission set, but the entitlement may not be realized until it is activated.


In some implementations, the system may activate the assignment after determining that the user is logged in with a user session and that the user satisfies certain qualification requirements. Thus, if the system detects that someone else is attempting to access the resources via the assigned permission set on behalf of the user, that attempt would be blocked because there is no active user session by the user. The verification of the qualification requirements and the detection of the user session may be performed by the verification server 410. The activation of the assignment may be performed by the verification server 410 and/or the permission server 405. In some implementations, the assignment of the permission sets may vary depending on how the qualification requirements are satisfied. This provides the administrator the ability to dynamically activate the assignment of selective permission sets.


Accordingly, after the permission server 405 assigns the selected permission set to the identified users and after the assignment is activated, the users may obtain access rights to one or more resources of the system.



FIG. 5 shows a graphical representation of permission assignments to users using profiles, in accordance with some implementations. In the implementation of FIG. 5, profiles 505, 510, and 515 include a variety of permissions 1-8. For example, profile 505 includes permissions 1, 2, 5, and 6. Profile 510 includes permissions 1, 2, 5, 6, and 7. Profile 515 includes permissions 1-8. Permissions may include an indication of access, and/or type of access, to a particular computing resource such as a component of a system.


Profiles 505, 510, and 515 may be assigned to a variety of users 520 and 525. For example, profile 505 may be a profile indicating a non-management employee within an organization, and therefore, includes permissions 1, 2, 5, and 6 to provide employees assigned to profile 505 with a level of access to components of a system. Components of a system may include databases, records, fields of records, customer relationship management (CRM) tools, objects, software, etc. For example, permission 1 may provide read access to a field of a database table. Permission 2 may provide access to a certain software program. Permission 5 may provide write capability to a particular field of a database table. Finally, permission 6 may provide access to a particular object. In some implementations, permissions may include create, read, update, and/or delete (CRUD) options. For example, a permission may only include a level of access associated with reading, for example, a field of a record. Another permission may include a level of access associated with reading and updating a field of a record.


Accordingly, users 520 and 525 may be assigned profile 505 and receive permissions 1, 2, 5, and 6. However, if user 525 is promoted to a management position, a system administrator may need to assign a new permission to user 525. For example, permission 7 may provide “view all data” access for a database. Accordingly, the system administrator may need to modify profile 505 to include permission 7. However, by modifying permission 505 with another permission, user 520 will also get permission 7. Therefore, the system administrator may create profile 510, a new type of profile for management employees which includes the same permissions as profile 505 for non-management employees (i.e., permissions 1, 2, 5, and 6) but also includes permission 7. User 525's profile may then be assigned to profile 510.


Additionally, the system administrator may wish to receive all permissions for the components of the system. As such, the system administrator may create a third profile, profile 515, which includes all permissions 1-8.


However, across an organization, different users needing different levels of access to different components of the system may create an unwieldy amount of user profiles for system administrators. A user needing an extra access control, such as management employee user 525 needing access to permission 7 (i.e., “view all data”), requires creating a new profile (i.e., profile 510) and subsequently removing the association between the old profile (i.e., profile 505) and user 525 and assigning the new profile even though profile 510 only includes one extra permission than profile 505. As such, the administrative work load for the system administrator may increase with a cumbersome assignment and multitude of profiles.



FIG. 6 shows a graphical representation of permissions assignments to users via permission sets, in accordance with some implementations. In the implementation of FIG. 6, permission sets 605, 610, and 615 also include a variety of permissions 1-8. For example, permission set 605 includes permissions 1, 2, 5, and 6. Permission set 610 includes permissions 6 and 7. Permission set 615 includes permission 8. The permissions in the permission sets also may include an indication of access, and/or type of access, to particular components or features of a system.


Permission sets 605, 610, and 615 may also be assigned to a variety of users 620, 625, and 630. The permission sets may provide a more modular form of groupings of permissions than profiles. As such, a single user may be assigned multiple permission sets tailored to their particular access needs. For example, permission set 605 is assigned to users 620, 625, and 630. Permission set 610 may be assigned to user 625. Permission set 615 may be assigned to user 630. It may be noted that assignment of a permission set to a user may provide the user the entitlement to access the related resources as long as the assignment is activated. The activation of the assignment may be dependent on the operations of the verification server 410 (shown in FIG. 4). Once the user logs off from the system and logs back in at a later time, the verification server 410 may again perform its verification operations, and there is no guarantee that the user may be able to access the same resources as the user did during a previous user session.


In some implementations, users may be assigned both profiles and permission sets. Some permissions may be associated with a profile assigned to a user, and some permissions may be associated with permission sets. In an implementation, some permissions may be allowed on both profiles and permission sets. Accordingly, some permissions may be enabled on a user's profile and/or assigned permission sets. Alternatively, some permissions may only be assigned to a user's profile rather than through a permission set, and vice versa. For example, as in FIG. 5, profiles may be associated with non-management employees, management employees, and system administrators. The profiles for the non-management and management employees may include a minimum or base amount of permissions. However, the employees may also be assigned permission sets based on the characteristics or attributes of the employees, as discussed below. As such, permission sets may add additional permissions beyond those found in a profile for a user. It may be noted that, even if some permissions may be assigned to a user's profile rather than through a permission set, these permissions may still need to be activated based on successful verification by the verification server 410.


In some implementations, the grouping of permissions into permission sets may be associated with criteria. Criteria may include a geographic location, a level within an organizational hierarchy (e.g., engineer, senior engineer, staff engineer, etc.; manager, senior manager, director, etc.), an industry, a role, level of experience or seniority, and other characteristics of users. For example, permission set 605 may be associated with “engineers.” Permissions within permission set 605 (i.e., permissions 1, 2, 5, and 6) may provide a level of access to components needed for engineers. Accordingly, users 620, 625, and 630 may be assigned permission set 605 because the users are engineers.


Permission set 610 may be associated with a geographic location, such as a continent, region, state, city, etc. For example, permission set 610 may be associated with “California.” As such, permission set 610 may include permissions allowing a level of access needed for employees within California (e.g., permission to edit data associated with business activity in California). In FIG. 6, user 625 is the only user assigned to permission set 610 because user 625 may be the only user within California, and therefore, the only user provided access to permission 7.


Permission set 615 may be associated with an industry, such as “aerospace.” Accordingly, permission set 615 may be assigned to user 630 because user 630 may be an aerospace engineer, and therefore needs the permissions associated with “aerospace” (i.e., permission set 615) and “engineer” (i.e., permission set 605).


Additionally, an assignment of a permission set may be removed or revoked from a user. For example, as discussed above, user 625 may be assigned permission sets 605 (i.e., a permission set associated with “engineers”) and 610 (i.e., a permission set associated with “California”). If user 625 transfers from California to Alabama, a system administrator may desire to revoke the assignment of permission set 610 to user 625.


In some implementations, revoking the assignment of a permission set may not result in the revocation of a particular permission that exists in multiple permission sets. For example, in FIG. 6, permission 6 is associated with permission sets 605 and 610. If permission set 610 is revoked, but permission set 605 is maintained (i.e., not revoked), user 625 may still retain permission 6 because permission set 605 is still assigned and includes permission 6. Therefore, revoking permission set 610 may not necessarily affect the assignment of permission 6 to user 625 due to the assignment of permission set 610.


It may be noted that revoking an assignment of a permission set may be different from revoking an activation of an assignment of a permission set. For instance, if an assignment of a permission set has been activated, then the revoking of the assignment of the permission set may revoke the activation of the same assignment. However, revoking the activation of an assignment of a permission set may not necessarily revoke the assignment of the permission set.



FIG. 7 shows a flowchart of an example of a method 700 for assigning permission sets to one or more users. Method 700 (and other methods described herein) may be implemented by the architectural components of FIG. 4. In various implementations, blocks may be reordered, omitted, combined, or split into additional blocks for method 700, as well as other methods described herein.


In block 705, a server, such as permission server 405 of FIG. 4, receives criteria from a computing device such as user system 12. Criteria may include data such as a geographic location, a level with an organizational hierarchy, an industry, a role, and/or one or more permissions.


In block 710, one or more permission sets associated with the criteria may be selected. For example, as previously discussed with respect to FIG. 6, permission sets may be associated with characteristics of users. For example, an employee may be associated with criteria such as “California” and “engineer.” Accordingly, permission sets associated with the received criteria may be selected.


Additionally, criteria may include a particular permission. In FIG. 6, permission 6 is shared among permission sets 605 and 610. Permission 6 may represent a level of access to a particular component of a system. For example, permission 6 may be associated with delete access to a particular field of a record.


In block 715, one or more users may be selected. For example, a selection of users may be received by permission server 405. In another example, the users may be identified by permission server 405 based on the criteria. For example, criteria can include “California,” “engineer,” and permission 6. Accordingly, users matching the criteria may be selected. That is, users with attributes matching “California” and “engineer” may be selected to be assigned to a permission set associated with permission 6. Users with attributes “California” and “engineer” may also be assigned permission sets with attributes “California” and “engineer.”


In block 720, the permission sets may be assigned to the users. Accordingly, the users may gain access to particular components of a system if and when the assignment is activated based on successful verification by the verification server 410 (shown in FIG. 4).


In block 725, the assignments may be stored, for example, in a database. In some implementations, the assignments may be stored in a permission set assignment object. Additionally, the object may be stored in a database or other storage medium. As previously discussed, the permission set assignment object may include an identifier or identification for the user and permission set. In some implementations, the permission set assignment itself may also have an identifier.



FIG. 8 shows a flowchart of an example of a method 800 for assigning permission sets to one or more users in accordance with some implementations.


In block 805, criteria may be received, as previously discussed with respect to block 705. In block 810, a permission set based on the criteria may be selected, as discussed in regard to block 710.


Additionally, in some implementations, all permission sets associated with the criteria may be selected. In other implementations, a subset of the identified permission sets matching the criteria may be selected. For example, only a single permission set may be selected to be assigned to users. Accordingly, permission sets may be analyzed to determine the selected permission set. Alternatively, the available permission sets may be provided to user system 12 and permission server 405 may receive an indication of a particular permission set to assign to a user.


In an implementation, the selected permission set may be determined based upon the permission set with the most or least amount of users assigned to it. For example, if permission 6 is received as criteria, then permission sets 605 or 610 may be selected. In an implementation, permission set 605 may be selected if the number of users it has been assigned to is lower than the number of users assigned to permission set 610. Alternatively, permission set 605 may be selected if the number of users it has been assigned to is higher than the number of users assigned to permission set 610.


In an implementation, the permission set with the least amount of permissions may be selected. For example, a permission set with two permissions may be selected over a permission set with three permissions. As such, the least amount of privileges or access may be provided to a user. Alternatively, the permission set with the highest amount of permissions may be selected.


In block 815, users based on the criteria may be identified, as discussed previously for block 715.


In block 820, the numbers of users identified may be used to determine to permission set to select to be assigned to the users. Permission sets may have a limit of users that they may be assigned to. For example, permission set 610 may have a maximum assignment limit of two users. If permission set 610 has already reached its limit of being assigned to two users, then the permission set may not be selected. That is, permission set 610 may be selected instead.


In block 825, permission sets may be assigned to users. In some implementations, all the users may be assigned the same permission set. Alternatively, users may be assigned different permission sets. For example, a subset of the users may be assigned a first permission set until the first permission set has reached its limit of users it may be assigned to. Accordingly, the rest of the users may be assigned to a second permission set that includes the desired permissions to be assigned to users.


In block 830, an audit trail may be created. In some implementations, an audit trail may be a recordation of the assignments (or removal of assignments) of permission sets, the included permissions, and users. Additionally, who made a change to a permission set or an assignment of a permission to a permission set and changes to may be recorded in the audit trail. The audit trial may be used by a system administrator to log activity of assignments of permission sets to the users. In some implementations, the audit trail may also include data regarding the permission sets that were identified but not selected in block 810. The audit trial may also include the list of criteria received in block 805.


In block 835, user identifiers and permission set identifiers may be stored together to create a permission set assignment object. For example, an object including a user identifier associated with a user and a permission set identifier associated with the selected permission set in block 810 may be created. In some implementations, the object may be stored in a database or other storage medium. A record may be created for each intersection of a user and a permission set. The record may be stored as a row of a database table. For example, a first column of the database may include user identifiers and a second column may include permission set identifiers for the permission set assignment object. Accordingly, in some implementations, an assignment of every permission set to a user may include a permission set assignment object.


In some scenarios, a system administrator may desire to receive information on which users have been assigned permissions and why the user may have the assigned permission. FIG. 9 shows a flowchart of an example of a method 900 for determining users with a permission in accordance with some implementations.


In block 905, a permission may be received, for example, by permission server 405 in FIG. 4. As previously discussed, the permission may include an indication of access, and/or type of access, to a particular component or feature of a system. For example, the permission may be a “view all data” permission which allows a user to view data of all records of a system. In some implementations, multiple permissions may be received.


In block 910, permission sets associated with the permissions may be identified. For example, as in FIG. 6, permission sets 605 and 610 are associated with permission 6 (i.e., permission 6 is included in permission sets 605 and 610). Accordingly, the received permission is found in two permission sets.


In block 915, users associated with the permission sets are identified. For example, users may be identified from the permission set assignment object, as previously discussed. Additionally, in block 920, criteria may be determined, and therefore provide reasons why the user may have access to the particular permissions. For example, if a permission set is associated with “engineer” then the user is determined to have access to permission 6 because the user is an engineer. As another example, a permission set may be associated with “California,” and thus the user may be assigned the permission because they are located in California. Accordingly, which users have a permission, and why they have the permission may be determined.



FIG. 10 shows a flowchart of an example of a method 1000 for determining users with a permission as well as assigning permissions to users in accordance with some implementations.


In block 1005, a permission may be received, as previously discussed with respect to FIG. 9. In block 1010, a scope of a search may be received or determined. As previously discussed, permissions may be associated with permission sets and/or profiles. Accordingly, permission server 405 may receive an indication whether to search only profiles, permission sets, or both profiles and permission sets.


In block 1015, permission sets and/or profiles with the permission are identified. In block 1020, users associated with the permission sets and/or profiles may be identified, as previously discussed with respect to block 915. In block 1025, criteria associated with the users and permission sets are identified, as discussed with respect to block 920.


In block 1030, differences in the criteria of the users may be determined. In some implementations, two users may share a permission, such as read all data for all records. However, the users may have access to other types of permissions. For example, one user may have an assigned permission allowing the ability to delete all data for all records. However, the second user may not have the same assigned permission. Accordingly, the two users share one permission, but the overall permissions assigned to the users are not the same.


In block 1035, the missing permission may be assigned to the second user. In some implementations, the permission set associated with the permission for the first user may also be assigned to the second user. As such, both users may be “level set,” or have the same permissions. In an implementation, another permission set with the same permission may be assigned to the second user.



FIG. 11 shows a flowchart of an example of a method 1100 for activating the assignment of permission sets to one or more users. Method 1100 may be implemented by the architectural components of FIG. 4. In various implementations, blocks may be reordered, omitted, combined, or split into additional blocks for method 1100, as well as other methods described herein. As discussed above, a permission set assigned to a user may not enable the user to access the associated resources until the assignment of the permission set is activated.


In block 1105, a server, such as verification server 410 of FIG. 4, detects a user logging in and be associated with a user session. The detection may trigger the verification server 410 to verify if the user satisfies the qualification requirements, as shown in block 1110. As discussed above, the qualification requirements may be determined by the administrator and may vary depending on the implementation. In some implementations, the qualification requirements may be updated by the administrator at any time. It may be noted that a user who has satisfied the qualification requirements at time t1 may not necessarily satisfy the same qualification requirements at time t2. It may also be noted that the verification of the qualification requirements may be performed at any time during a user session. If the user fails the verification during a user session, a permission set that has previously been activated may be revoked.


In block 1115, the system determines whether the qualification requirements are satisfied. If they are satisfied, the process may flow to block 1120 where the assignment of permission sets may be activated. If they are not satisfied, the process may flow to block 1125 where the assignment of the permission sets may not be activated or revoked.


The specific details of the specific aspects of implementations disclosed herein may be combined in any suitable manner without departing from the spirit and scope of the disclosed implementations. However, other implementations may be directed to specific implementations relating to each individual aspect, or specific combinations of these individual aspects.


While the disclosed examples are often described herein with reference to an implementation in which an on-demand database service environment is implemented in a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants, the present implementations are not limited to multi-tenant databases nor deployment on application servers. Implementations may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the implementations claimed.


It should be understood that some of the disclosed implementations can be embodied in the form of control logic using hardware and/or using computer software in a modular or integrated manner. Other ways and/or methods are possible using hardware and a combination of hardware and software.


Any of the software components or functions described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions or commands on a computer-readable medium for storage and/or transmission, suitable media include random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a compact disk (CD) or DVD (digital versatile disk), flash memory, and the like. The computer-readable medium may be any combination of such storage or transmission devices. Computer-readable media encoded with the software/program code may be packaged with a compatible device or provided separately from other devices (e.g., via Internet download). Any such computer-readable medium may reside on or within a single computing device or an entire computer system, and may be among other computer-readable media within a system or network. A computer system, or other computing device, may include a monitor, printer, or other suitable display for providing any of the results mentioned herein to a user.


While various implementations have been described herein, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present application should not be limited by any of the implementations described herein, but should be defined only in accordance with the following and later-submitted claims and their equivalents.

Claims
  • 1. A computer implemented method for providing permissions to users of a database system, the method comprising: enabling, by the database system, assignment of one or more permission sets to a user, wherein access to a computing resource associated with the one or more permission sets is blocked until the assignment of the one or more permission sets is activated;detecting, by the database system, a start of a first user session associated with the user; andactivating, by the database system, the assignment of the one or more permission sets based on the detecting of the start of the first user session and based on the user satisfying one or more qualification requirements.
  • 2. The method of claim 1, further comprising activating an assignment of a first permission set and not a second permission set.
  • 3. The method of claim 1, further comprising revoking an activation of the assignment of the one or more permission sets based on detecting a termination of the first user session.
  • 4. The method of claim 3, further comprising revoking an activation of the assignment of the one or more permission sets based on the user failing to continue to satisfy the one or more qualification requirements during the first user session.
  • 5. The method of claim 4, further comprising revoking an activation of an assignment of a first permission set and not a second permission set.
  • 6. The method of claim 5, wherein the one or more qualification requirements are updatable during the first user session.
  • 7. The method of claim 6, wherein the activating the assignment of the one or more permission sets is further based on the first user session satisfying the one or more qualification requirements.
  • 8. The method of claim 7, further comprising activating the assignment of the one or more permission sets based on detecting of a start of a second user session and based on the second user session satisfying the one or more qualification requirements.
  • 9. A computer program product comprising computer-readable program code to be executed by one or more processors when retrieved from a non-transitory computer-readable medium, the program code including instructions to: enable, by a database system, assignment of one or more permission sets to a user, wherein access to a computing resource associated with the one or more permission sets is blocked until the assignment of the one or more permission sets is activated;detect, by the database system, a start of a first user session associated with the user; andactivate, by the database system, the assignment of the one or more permission sets based on the detecting of the start of the first user session and based on the user satisfying one or more qualification requirements.
  • 10. The computer program product of claim 9, wherein the program code further includes instructions to activate an assignment of a first permission set and not a second permission set.
  • 11. The computer program product of claim 9, wherein the program code further includes instructions to revoke an activation of the assignment of the one or more permission sets based on detecting a termination of the first user session.
  • 12. The computer program product of claim 11, wherein the program code further includes instructions to revoke an activation of the assignment of the one or more permission sets based on the user failing to continue to satisfy the one or more qualification requirements during the first user session.
  • 13. The computer program product of claim 12, wherein the program code further includes instructions to revoke an activation of an assignment of a first permission set and not a second permission set.
  • 14. The computer program product of claim 3, wherein the one or more qualification requirements are updatable during the first user session.
  • 15. The computer program product of claim 14, wherein the activating the assignment of the one or more permission sets is further based on the first user session satisfying the one or more qualification requirements.
  • 16. The computer program product of claim 15, further comprising activating, by the server computing system, the assignment of the one or more permission sets based on detecting of a start of a second user session and based on the second user session satisfying the one or more qualification requirements.
  • 17. An apparatus for activating assignments of permission sets, the apparatus comprising: one or more processors; anda non-transitory computer readable medium storing a plurality of instructions, which when executed, cause the one or more processors to: enabling, by a server computing system, assignment of one or more permission sets to a user, wherein access to a computing resource associated with the one or more permission sets is blocked until the assignment of the one or more permission sets is activated;detecting, by the server computing system, a start of a first user session associated with the user; andactivating, by the server computing system, the assignment of the one or more permission sets based on the detecting of the start of the first user session and based on one or more of the user and the first user session satisfying one or more qualification requirements.
  • 18. The apparatus of claim 17, wherein the plurality of instructions, when executed, further cause the one or more processors to revoke an activation of the assignment of the one or more permission sets based on detecting a termination of the first user session.
  • 19. The apparatus of claim 18, wherein the plurality of instructions, when executed, further cause the one or more processors to revoke an activation of the assignment of the one or more permission sets based on failing to continue to satisfy the one or more qualification requirements during the first user session.
  • 20. The apparatus of claim 19, wherein the plurality of instructions, when executed, further cause the one or more processors to revoke the assignment of the one or more permission sets based on detecting of a start of a second user session and based on the second user session satisfying the one or more qualification requirements.
RELATED APPLICATIONS

This application is related to commonly-assigned U.S. application Ser. No. 13/886,848, filed on May 3, 2013 and titled “Computer Implemented Methods and Apparatus for Providing Permissions to Users in an On-Demand Service Environment,” and issued as U.S. Pat. No. 8,973,106, incorporated herein by reference in its entirety.