The present invention relates to encoder-switch assemblies such as electromechanical roller-key assemblies that comprise an encoder part and an actuator switch. The encoder part may operate according to magnetic, optical and/or electromechanical principles and may provide one or several electrical output signals indicating the instantaneous change of angular position of a rotating roller or tuning wheel of the encoder part of the encoder-switch assembly.
The encoder-switch assemblies according to the present invention are particularly well adapted for use in mobile phones or, generally, in any type of electronic equipment that will benefit from the very small outer dimensions and simple construction of the encoder-switch assemblies.
Electromechanical roller-key assemblies may be used to generate digital control signals in response to a rotation of a roller or tuning knob and to generate an actuator switch signal in response to a depression. Such rollers are known from e.g. mobile phones. However, the mechanical constructions of these known devices have certain drawbacks due to a large number of miniature movable and stationary parts, often including a tiny detent spring element. This large number of separate parts requires a quite complex and labour intensive assembly procedure to assure that all parts are carefully aligned with respect to each other.
Accordingly, there is a need for an encoder-switch assembly of simplified construction with fewer parts compared to prior art assemblies so as to simplify the assembly procedure, reduce the assembly time and, consequently, lower the costs of integrating such encoder-switch assemblies in today's mobile phones and similar compact electronic equipment.
It is an object of the present invention to provide an electromechanical roller-key assembly of simple and robust construction. The assembly may be integrated in electronic equipment and generate digital control signals in response to the instantaneous change in angular position of a user-operated roller.
It is a further object of the present invention to provide an electromechanical roller-key assembly suitable for being manufactured with very small outer dimensions. Such miniaturisation is a key requirement for applications in e.g. hearing aids, compact mobile phones pagers, medical dispensing devices and similar handheld or body-worn devices, etc.
It is a further object of the present invention to provide an electromechanical roller-key assembly comprising fewer and simpler mechanical parts compared to prior art roller-key assemblies, thereby making the present electromechanical roller-key assembly suitable for a simplified and automated factory assembly.
In a first aspect, the present invention relates to an encoder-switch assembly comprising,
Accordingly, a roller-key assembly according to the present invention may be provided with a coding member operating by different sensing principles, such as electromechanical, optical, inductive, capacitive etc. principles.
The frame may be provided in a plate-shaped resilient material e.g. a metallic material of suitable thickness. The first part and the second part of the frame may be separated by one or more indentations to provide regions with higher resiliency compared to regions of the frame abutting the one or more indentations. By attaching the second part to a housing of an apparatus, the frame functions as a torsion bar element when a user depresses the first member in order to activate the switching means. Accordingly, the frame provides a built-in detent spring functionality.
The switching means may be adapted to indicate the displaced position of the first member by forming an electrical connection between a protrusion of the first part of the frame and an electrical conductor or pad positioned in a fixed manner relative to the second part of the frame and/or relative to the external housing or casing or frame. This has the advantage that it provides a much simpler actuator switch element compared to prior art membrane switches.
The coding member may be integrated with a substantially cylindrically shaped first member by forming a part of the coding member. Said part may be provided by arranging between 5 and 25 protrusions along a substantially axially oriented surface path on an end surface of the cylindrically shaped member.
A disc-shaped metal plate comprising between 5 and 25 hours of dimensions corresponding to th dimensions of the protrusions may be fitted onto the end surface of the first member so as to form a circular and plane encoding disc. The protrusions thus provide a number of non-conducting pads on the encoding disc while the metal areas constitute electrically conducting pads. In this configuration, the intermittently arranged conducting and non-conducting pads may be electrically interconnected by a circular area of the metal plate. The pads and the circular area may be contacted by scanning means comprising a first, a second and a third contact member. The circular area thus provides a conducting path without the intermittent pattern of conduction and non-conducting pads and may be used as an electrical contact path for the third contact member during rotation of the disk.
Each of the contact members may be electrically connected to a corresponding externally accessible pin or terminal. The pins associated with the first and second contact members may each be connected, through a predetermined pull-up resistor, to a voltage supply provided by an electronic apparatus into which the electromechanical encoder is to be integrated. The leg part or pin associated with the third contact member may be directly connected to a ground terminal in the apparatus so that by rotating the encoder disk short circuits and open circuits are intermittently generated between the first pin and the third pin and between the second pin and the third pin. Consequently, on each of the first and the second pin a pulse train is generated that comprises a number of pulses per revolution of the encoding disk proportional to the number of conducting pads arranged on the encoding disk.
The rotatably mounted cylindrically shaped first member may function as a user operated roller. The roller may comprise corrugated grooves disposed along a substantially axially oriented surface path on the end of the cylindrically shaped member opposite to the end that comprises the encoding disc. The grooves may be in contact with a spring member formed in the frame and provide a biasing force against the corrugated grooves, thereby providing a user op rating the roller with tactile feedback to assist the user in determining the angular rotation of the roller.
In a second aspect, th present invention relates to an encoder-switch assembly comprising,
The transferring means may comprise a substantially rigid shaft, a first end of said substantially rigid shaft being connected to the first member in a manner so that the shaft is rotatable in relation the first member in a plane not being parallel to the first plane, a second and of said substantially rigid shaft being connected to the coding member in a manner so that the shaft is rotatable in relation the first member in a plan not being parallel to the first plane.
Part of the shaft at thirst end may have a predetermined geometrical shape. The first member may have a corresponding inverse geometrical shape being adapted to receive and engage part of the shaft in a manner so that a rotation of the first member is transferred from the first member to the shaft, when the first member is rotated in the first plane.
The dimensions of the corresponding inverse geometrical shape of the first member may be larger than the corresponding outer dimensions of the predetermined geometrical shape of the shaft.
In the following, preferred embodiments of electromechanical roller-key assemblies according to the present invention are described with reference to the accompanying drawings, wherein
The metal frame 320 is preferably manufactured in a single piece of plate-shaped material as illustrated in FIG. 4. The metal frame 320 is divided into a first part (403 and 404) which is adapted to support the roller at its end surfaces, and a second part 322 which can be rigidly mounted in a casing or housing of an apparatus (not shown) in which the roller key assembly is to be integrated.
By providing two indentations, 400 and 401 in
The displacement of the first part may bring an actuator contact 330 which is integrated with the first part of the metal frame 320 in electrical contact with a electrically conducting pad arranged on e.g. a printed circuit board and positioned below the actuator contact 330. Thereby an actuator switch element is integrated together with the electromechanical roller-key assembly 350 and this switch element may provide two level switching signals to a detection circuit in response to a user depressing and releasing the roller.
The first and second contact members 335 and 340 are preferably provided as an integrated part of the metal frame 320. By utilising an insert moulding process, two plastic bearing elements 341 and 342 are attached to the first part of the metal frame. The first and second contact members 335 and 340 must be mechanically and electrically separated from each other and from the metal frame 320 before or after the insert moulding process so as to provide 3 electrically separate contact members. The plastic bearing elements are utilised to mount the roller in a precise predetermined and rotatable manner relative to the metal frame 320 and to the first, second and third contact members.
A mechanical connection in the form of a cross-bar or shaft may be added between elements 403, 404 (
A first electrical conductive terminal or leg part 507 comprises the second contact member (not shown) and a corresponding externally accessible pin 510. Terminal 507, 508 and 509 are, preferably, provided in a solderable material and/or corrosion-resistant material such as copper, silver, gold-coated steel, palladium-nickel, gold-platinum, gold-nickel alloys, etc. Each of the terminals 508 and 509 are also provided with contact members (not shown) and an externally accessible terminal.
Number | Date | Country | Kind |
---|---|---|---|
1999 00824 | Jun 1999 | DK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK00/00298 | 5/31/2000 | WO | 00 | 7/18/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO00/77806 | 12/21/2000 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5446481 | Gillick et al. | Aug 1995 | A |
5448240 | Morito | Sep 1995 | A |
5987336 | Sudo et al. | Nov 1999 | A |
6097964 | Nuovo et al. | Aug 2000 | A |
6211474 | Takahashi | Apr 2001 | B1 |
6218635 | Shigemoto et al. | Apr 2001 | B1 |
6333473 | Sawada et al. | Dec 2001 | B1 |
Number | Date | Country |
---|---|---|
0 531 829 | Mar 1993 | EP |
0 874 382 | Oct 1998 | EP |
0 901 262 | Mar 1999 | EP |
1014410 | Jun 2000 | EP |
2 260 598 | Apr 1993 | GB |
2329070 | Mar 1999 | GB |
2329083 | Mar 1999 | GB |
2329094 | Mar 1999 | GB |
10-312728 | Nov 1998 | JP |
WO 9919861 | Apr 1999 | WO |