The invention relates to an end effector for a riveting device according to the preamble of claim 1, a riveting device with an end effector according to the preamble of claim 2 as well as a method for operating a riveting device according to claim 14.
End effectors for riveting devices for the placement of rivet elements in structural parts are known from the prior art in various configurations.
For example, DE 10 2005 028 055 A1 describes a riveting device for the riveting of aircraft structural components. The riveting device comprises a rivet magazine, from which the rivets are delivered directly into an interim magazine. The interim magazine is in the form of a turret and has a number of grippers, in which the rivet elements are stored in the meantime. By rotating the interim magazine, the rivet elements are delivered as needed to the riveting finger and pushed from the gripper by a tongue into the riveting finger. The rivet element is not guided in this process and it may become canted and therefore may not be picked up by the riveting finger securely or so as to be correctly aligned. If this occurs, an interruption in the manufacturing process may be needed so that a worker can manually remove the rivet element from the riveting finger.
Furthermore, the rivet interim magazine described in DE 10 2005 028 055 A1 is relatively elaborate and thus costly. It has many moving parts, for example each gripper and therefore each storage location for a rivet element has its own drive unit.
Finally, the interim magazine occupies a relatively large amount of space at the end effector of the riveting device, due to its turret shape.
The invention proposes to solve the problem of designing and modifying the known end effector as well as the known riveting device such that the manufacturing process becomes more robust and a variety of different rivet elements can be supplied in simple, cost-effective and space-saving manner to the riveting module.
This problem is solved by an end effector with the features of claim 1.
Specifically, it is proposed for this that the end effector comprises a riveting module for placing a rivet element in a structural part, a rivet dispenser for dispensing rivet elements from a rivet magazine and a handling device for delivering a rivet element from the rivet dispenser to the riveting module.
According to the proposal, the handling device comprises an adjustment kinematics and a gripper arranged thereon for grabbing the rivet element, wherein the adjustment kinematics has a( least two adjustment axes for positioning the at least one gripper. In this way, rivet elements can be securely handed off to the riveting module, since the movement range of the gripper for the handoff to the riveting module is enlarged by the at least two adjustment axes of the adjustment kinematics.
Furthermore, a more flexible arrangement of rivet dispenser and riveting module relative to each other is made possible, so that overall a more compact structure results. Moreover, the costs can be reduced by the use of traditional handling devices as opposed to the interim magazines to be manufactured individually in the above-described prior art.
Moreover, the stated problem is solved by a riveting device with an end effector having the features of claim 2. Here as well, the rivet dispenser and/or the handling device are preferably arranged on the end effector, but in addition or alternatively the rivet dispenser and/or the handling device may also be arranged on the riveting device. The same benefits are created as described above in connection with the end effector.
In one modification of the invention, the adjustment kinematics for the positioning of the at least one gripper comprises at least three adjustment axes, and further preferably the adjustment kinematics for the positioning of the at least one gripper comprises at least four adjustment axes. Thanks to further adjustment axes, a more flexible arrangement of riveting module and rivet dispenser relative to each other is accomplished. In this way, structural space can be better utilized and on the whole a more compact construction is achieved.
Further preferably, the adjustment axes of the adjustment kinematics are arranged kinematically sequentially and/or kinematic-ally parallel. In this way, compact designs can be achieved, depending on the configuration and arrangement of rivet dispenser and riveting module.
In one modification of the invention it is proposed that the riveting device, especially the end effector, comprises an interim magazine, especially one with no actuator, for the storing of rivet elements. This makes possible a lightweight, simple interim storage of rivet elements near the riveting module.
Furthermore, according to another independent teaching, an end effector is claimed for a riveting device, wherein the end effector comprises a riveting module for placing a rivet element in a structural part, a rivet dispenser for dispensing rivet elements from a rivet magazine, and an actuator-free interim magazine for storing rivet elements. This creates an economical interim magazine, making possible a lightweight, simple interim storage of rivet elements near the riveting module. This end effector may also be designed in particular without a handling device for delivery of a rivet element from the rivet dispenser to the riveting module, where the handling device has an adjustment kinematics and a gripper arranged thereon for the grabbing of the rivet element, and in particular without the adjustment kinematics having at least two adjustment axes for the positioning of the gripper.
According to another independent teaching, a riveting device with an end effector is claimed, w herein the end effector comprises a riveting module for placing a rivet element in a structural part, wherein the riveting device, especially the end effector, comprises a rivet dispenser for dispensing rivet elements from a rivet magazine and wherein the riveting device, especially the end effector, comprises an actuator-free interim magazine for storing rivet elements. This creates an economical interim magazine, making possible a lightweight, simple interim storage of rivet elements near the riveting module. This end effector may also be designed in particular without a handling device for delivery of a rivet element from the rivet dispenser to the riveting module, where the handling device has an adjustment kinematics and a gripper arranged thereon for the grabbing of the rivet element, and in particular without the adjustment kinematics having at least two adjustment axes for the positioning of the gripper.
Preferably, however, the aforementioned end effector and the aforementioned riveting device have a handling device, especially with an adjustment kinematics for delivering a rivet element from the rivet dispenser and/or the interim magazine to the riveting module and/or to the interim magazine. For the preferred embodiment of the handling device, reference is made to the specification.
Preferably, the interim magazine is designed to receive rivet elements of different type and/or different size.
The handling device may preferably load the rivet magazine with rivet elements from the rivet dispenser and or the riveting module. In addition or alternatively, the riveting module may be supplied with rivet elements from the interim magazine by the handling device.
According to the method, the problem stated at the outset is solved by the features of claim 14.
In an end effector as proposed or a riveting device as proposed, the fact that the gripper of the handling device grabs a rivet element at the rivet dispenser and the handling device delivers the rivet element to the riveting module via a movement of the adjustment kinematics and passes it on to the riveting module achieves the same advantages as described above in connection with the end effector and the riveting device.
In one modification of the method, the gripper takes up the rivet element at the rivet dispenser and or the interim magazine in position-defined manner and/or passes on the rivet element in position-defined manner to the riveting module and/or the interim magazine. In this way, the process quality can be further improved, since the rivet cannot get jammed or slip during the handoff.
In the following, the invention shall be explained more closely with the aid of a drawing representing merely one sample embodiment. In the drawing:
Furthermore, the end effector 2 may have a drilling module (not shown) for the drilling of rivet holes, and/or a measurement module (not shown) for measuring the holes drilled.
The riveting device 1 here preferably has a robot, which carries the end effector 2. Especially preferably the robot is designed as a gantry robot. The end effector 2 may be carried as a machining tool, in particular by a riveting device or otherwise a boring and riveting device, as is described in the German utility model application DE 20 2015 104 273. In this respect, reference is made to DE 20 2015 104 273.
The structural pan 5 here and preferably has two parts 5a, 5b to be joined together. Here and preferably, they form a subassembly after being riveted. Here and preferably, the structural part 5 or the subassembly is an aircraft structural part.
The placement of rivet elements 4 in structural parts 5 is generally done in the following sequence. The structural part 5, or the parts 5a, 5b to be joined together, is at first drilled and the borehole is then measured. Depending on the measurement result for the borehole, the type and/or the size, especially the diameter and length, of the rivet element 4 is then determined, especially by means of a measurement module (not shown). As a result, there are a variety of rivet elements 4 which need to be supplied to the riveting module 3, depending on the measurement result.
Usually it cannot be determined prior to the drilling which precise rivet element 4 will be needed for the borehole being made. This can only be determined from the actual geometry of the borehole. Therefore, various rivet elements 4 must be kept on hand, preferably in proximity to the riveting module 3. If the rivet element 4 to be used is known according to the measurement, it can be supplied to the riveting module 1.
The proposed riveting device 1, here and preferably the end effector 2, comprises a rivet dispenser 6 for dispensing rivet elements 4 from a rivet magazine 7. The rivet magazine 7 may be arranged at the end effector 2 and/or at the robot carrying the end effector 2. Preferably, it is arranged separately from the end effector 2, especially separately from the riveting device 1.
Further rivet dispensers 6 may be provided, especially for rivet elements 4 of different type and/or different size, as is shown in
The proposed riveting device 1, here and preferably the end effector 2, comprises a handling device 8 for delivering a rivet element 4 from the rivet dispenser 6 to the riveting module 3.
The handling device 8 comprises an adjustment kinematics 9 and a gripper 10 arranged thereon for grabbing the rivet element 4. The adjustment kinematics 9, in turn, has per the proposal at least two adjustment axes A1, A2, A3, A4, A5, A6, A7 for positioning the gripper 10. In this way, the rivet elements 4 can be securely passed on to the riveting module 3. A canting or skewed insertion can be reliably prevented.
Furthermore, a more flexible arrangement of rivet dispenser 6 and riveting module 3 relative to each other becomes possible, so that on the whole a more compact construction results. Moreover, the costs can be reduced through the use of customary handling devices 8.
Preferably the rivet dispenser 6 is arranged at the end effector 2, but in the proposed riveting device 1 the rivet dispenser 6 may also be arranged separately from the end effector 2 on the riveting device 1.
This holds likewise for the handling device 8. The handling device 8 in the proposed end effector 2 is arranged on the latter, but alternatively the handling device 8 in the proposed riveting device 1 may also be arranged separately from the end effector 2 on the riveting device 1.
In particular, the rivet dispenser 6 and/or the handling device 8 may be arranged on the robot carrying the end effector 2.
The adjustment kinematics 9 for the positioning of the gripper 10 preferably has not only at least two adjustment axes A1, A2, A3, A4, A5, A6, A7, as is shown in
The adjustment axes A1, A2, A3, A4, A5, A6, A7 of the handling device 8 here preferably each have their own independent drive unit. In this way, the most flexible possible motion control system is achieved. Alternatively, however, individual adjustment axes A1, A2, A3, A4, A5, A6, A7 may also be driven jointly and indirectly via a driven force transmitting element.
Preferably, the adjustment axes A1, A2, A3, A4, A5, A6, A7 of the adjustment kinematics 9 are arranged kinematically sequentially and/or kinematically parallel. Depending on the disposition of the rivet dispenser 6 relative to the riveting module 3, a kinematically sequential and/or a kinematically parallel arrangement of the adjustment axes A1, A2, A3, A4, A5, A6, A7 may make possible a compact layout.
In addition or alternatively, at least one adjustment axis A1, A2, A3, A4, A5, A6, A7 of the handling device 8 is a rotation axis and/or a linear axis. Further preferably, at least two adjustment axes A1, A2, A3, A4, A5, A6, A7 of the handling device 8 are rotation axes and/or linear axes. In the sample embodiment of
In the sample embodiment of
For further increasing the flexibility of the handling device 8, the adjustment kinematics 9 for the positioning of the gripper 10 may have at least five, preferably at least six, further preferably at least seven adjustment axes A1, A2, A3, A4, A5, A6, A7. In such an embodiment, a design of the handling device 8 as an industrial robot has proven to be especially expedient. In the sample embodiment of
For the grabbing of the rivet elements 4, here and preferably the gripper 10 comprises at least two gripping fingers 11. In the delivery process, the gripper 10 holds the rivet element 4 preferably with non-positive fit and/or positive fit. Preferably, the gripper 10 can grab rivet elements 4 of different type and/or different size. In this way, different rivet elements 4 can be delivered to the riveting module 3 with the gripper 10. Preferably, the gripper 10 grabs precisely one rivet element 4. Here and preferably, it is not designed to deliver several rivet elements 4 at the same time.
In addition or alternatively, a further gripper 10 can be arranged at the adjustment kinematics 9. Preferably, the two grippers 10 are arranged opposite each oilier and can turn as a unit. In this case, a rivet element 4 can be removed in simple fashion for example from the riveting module 3 with a gripper 10 and after an adjustment movement with the further gripper 10 a rivet element 4 already held by the latter can be handed off to the riveting module 3. In addition, further grippers 10 may be arranged at the adjustment kinematics 9. These will then be arranged like a magazine, especially in the form of a turret.
The riveting module 3 preferably comprises a riveting tool 12 and at least one riveting linger 13. The riveting finger 13 here and preferably extends along a geometrical longitudinal axis A. Preferably, the riveting module 3 can move, especially in linear manner, to receive a rivet element 4. For the receiving of a rivet element 4, it is preferably moved from a working position in which the riveting module 3 places the rivet element 4 in the structural part 5 to a handoff position in order to receive the rivet element 6. Then, for the placing of the rivet element 6 in the structural part 5, the riveting module preferably moves with the received rivet element 4 back to the working position.
In addition or alternatively, the rivet dispenser 6 may comprise a stopper 14 for stopping and position-defined holding of a rivet element 4 fed from a rivet magazine 7. By “position-defined” is meant preferably that it is determined in position and orientation. The stopper 14 brings about a defined position of the rivet element 4 in the rivet dispenser 6. This facilitates the grabbing of the rivet element 4 by the gripper 10 of the handling device 8.
In addition or alternatively, the riveting device 1, especially the end effector 2, comprises an interim magazine 15, especially one with no actuator, for the storing of rivet elements 4. As explained in the general part of the specification, an end effector 2 or a riveting device 1 with an actuator-free interim magazine 15 is also claimed, especially one without a handling device or with a handling device other than the one described.
The interim magazine 15 here and preferably is designed to take up rivet elements 4 of different type and or different size. Furthermore preferably, the interim magazine 15 has storage places 16 for rivet elements 4. Some and especially all storage places 16 are designed preferably to take up rivet elements 4 of different type and/or different size. This increases the flexibility when loading the interim magazine 15 with rivet elements 4. Preferably, the interim magazine 15 is designed such that the rivet elements 4 can be removed one at a time from each storage place 16.
Here and preferably, the interim magazine 15 can be arranged interchangeably, especially by a clamping device, on the riveting device 1, especially the end effector 2. In addition or alternatively, the interim magazine 15 or one magazine may also be arranged on the robot of the riveting device 1. The interim magazine 15 may have a plurality of interim magazine elements 17, which are arranged interchangeably, especially by a clamping device, on the riveting device 1, especially the end effector 2 and/or the robot. In this way, the riveting device 1 or the end effector 2 may be outfitted with different preloaded interim magazines 15 or interim magazine elements 17 depending on the processing job.
The interim magazine 15 here and preferably may have the shape of a turret or strip. Preferably, the interim magazine 15, as shown in
In addition or alternatively, the interim magazine 15 may have several storage levels 18, which here and preferably are formed by separate comb structures. Preferably, a storage level 18 may be formed by an interim magazine element 17.
Preferably, the interim magazine 15 has guide slots 19, in which the rivet elements 4 are taken up. Each guide slot 19 preferably forms one storage place 16 for a rivet element 4. These guide slots 19 preferably enable a position-defined holding of the rivet elements 4.
In addition or alternatively, the interim magazine 15 may have spring elements 20, preferably tension spring clips, for holding the rivet elements 4. These can hold the rivet elements 4 received in the interim magazine 15 in position-designed manner. Here and preferably, the guide slot 19 and/or the storage place 16, especially the spring element 20, can have an inlet opening.
Preferably, the spring element 20 clamps the rivet element 4 on both sides, as shown in
The interim magazine 15 or an interim magazine element 17 is preferably built up in layers, as is shown in
Preferably, at least one layer 15a is fashioned as a stamped part, especially a stamped steel plate. In addition or alternatively, at least one layer 15b may be formed as a milled part.
For the holding of the spring elements 20, especially in exact position, at least one layer 15a, 15b preferably has an especially round holding contour 15c, along which further preferably the spring element 20 runs at least for a portion. The holding contour 15c is preferably formed corresponding to the round section of the spring element 20. The holding contour 15c extends, further preferably, along a smaller are section than the round section of the spring element 20.
According to one preferred sample embodiment, the robot and/or the end effector has an inspecting unit (not shown) for the detecting of predetermined properties of the rivet elements 4 which are relevant to the drilling process and/or the riveting process.
For the inspecting of the rivet elements 4, the handling device 8 may deliver the rivet elements 4 from the rivet dispenser 6 and/or from the interim magazine 15 and/or from the riveting module 3 to the inspecting unit and detect, in particular measure, relevant properties of the rivet elements 4 for the drilling process and or the riveting process. The rivet elements 4 here and preferably may be rivets 4a and/or rivet collars 4b. Preferably, the gripper 10 holds the rivet elements 4 during the detecting process.
After this, the riveting device 1 on the basis of the detected, especially measured, relevant properties of the rivet elements 4 may adapt the drilling process and/or the riveting process to the rivet element 4 and or select a rivet element 4 suitable to a borehole for a borehole produced and possibly measured.
Here and preferably, the inspecting unit measures and detects, as predetermined properties relevant for the drilling process and/or the riveting process, a rivet head diameter DK and/or a rivet head length LK and/or an angle of a countersunk rivet head W and/or a transition radius R. Here and preferably, a transition radius R is a radius between two sections of a rivet element 4, especially between head 4c and shaft 4d of a rivet. In addition, the shaft diameter Ds may optionally also be determined. Preferably, the inspecting unit detects or measures preferably only one section of a rivet element 4.
Of special importance is in particular the measuring of the heads 4c of the rivet elements 4 and the adapting of the borehole, especially the countersink, to the head 4c of the rivet element 4 or the selection of a rivet element 4 with a matching head 4c for a borehole, especially the countersink of a borehole.
Thus, according to one especially preferred embodiment, the inspecting unit detects, for example as predetermined properties of the rivet elements 4 relevant to the drilling process and/or the riveting process, the rivet head diameter and/or the rivet head length prior to the feeding to the riveting module 3 and the riveting module 3 then produces the borehole on the basis of the rivet head diameter and/or the rivet head length, in particular, it determines the countersink depth for the borehole and performs the drilling.
Here and preferably, the inspecting unit has an optical sensor. With the optical sensor of the inspecting unit, predetermined properties relevant to the drilling process and/or the riveting process are detected. Preferably a control system 21 detects, in particular measures, these properties by means of the optical sensor.
In addition or alternatively, the inspecting unit may have a light for the measuring of the predetermined properties relevant to the drilling process and/or the riveting process, which illuminates the rivet element 4 during the detection. The light, here and preferably, is arranged opposite the sensor of the inspecting unit. The axis of illumination and the axis of viewing of the optical sensor are preferably arranged coaxially in this case. The viewing direction of the sensor and the light should be oriented to each other here.
In the sample embodiment, the inspecting unit is designed as a bilaterally telocentric system. This enables a precise measurement without a precise positioning of the rivet element 4 between the light and the optical sensor.
Here and preferably the measurement tolerance with the inspecting unit is less than +/−5 μm, preferably less than +/−3 μm, further preferably it is substantially+/−2 μm.
In addition or alternatively, the riveting device 1, especially the end effector 2 or the robot, may have a collecting container (not shown) to hold unneeded rivet elements 4. Preferably, the handling device 8 delivers the rivet elements 4 from rivet dispenser 6 and or the interim magazine 15 and/or the riveting module 3 to the collecting container. Preferably, the collecting container has an opening, especially one with a rosette, through which the gripper 10 can introduce rivet elements 4 into the collecting container In this way, rivet elements 4 no longer needed for the next processing steps can be taken from the interim magazine 15 and/or the rivet dispenser 6 and/or the riveting module 3 to the collecting container. The delivering of rivet elements 4 occurs preferably during the movement of the end effector 2 from one processing station to another processing station.
Here and preferably the riveting device 1 comprises a control system 21, preferably an NC-control system. Further preferably, the handling device 8 comprises its own control system 22, especially an NC-control system, which communicates via an interface 23 with the control system of the riveting device 1. In this way, a handling device 8 available on the market can be easily and cost-effectively used for the proposed riveting device 1 or the proposed end effector 2.
The feeding of a rivet element 4 to the riveting module 3 occurs preferably in that the gripper 10 of the handling device 8 grabs a rivet element 4 at the rivet dispenser 6, see
Preferably, however, the gripper 11 even after the grabbing or taking up of the rivet element 4 may deliver it by a movement of the adjustment kinematics 9 to the interim magazine 15 and pass it on to the interim magazine 15. From the interim magazine 15, if it is required, it may then be grabbed by the gripper 10 of the handling device 8 and be delivered via a movement of the adjustment kinematics 9 to the riveting module 3 and handed off to it.
In
After this, the handling device 8 may deliver the received rivet element 4 either to the interim magazine 15 and/or to the riveting module 3.
When the rivet element 4 has been taken up by the interim magazine 15. especially in defined position, the gripper 10 opens and releases the rivet element 10. The gripper 10 may now approach another storage place 20 of the interim magazine 15 and take up another rivet element 4 in defined position or take up another rivet element 4 from the rivet dispenser 6.
For the loading of the riveting module 3 with a rivet element 4, the gripper 10 here and preferably grabs a rivet element 4 from the rivet dispenser 6, as shown in
Here and preferably, the gripper 10 passes off the rivet element 4, especially in defined position, to the riveting module 6, especially the riveting finger 13. Preferably, during the handoff from the gripper 10, the longitudinal axis of the rivet element 4 is brought coaxially into alignment with the longitudinal axis of the riveting finger 13. Only after this, here and preferably, does the gripper 10 open in order to pass off the rivet element 4 to the riveting finger 13.
These steps of the method are shown in
At the end effector 2 and or the riveting device 1, especially the robot, further handling devices 8 may be provided for delivery of a rivet element 4 in the above-described manner, especially from the rivet dispenser 6 to the riveting module 3. The preceding remarks on the handling device 8 hold analogously for the further handling device 8, so that in this regard one may refer to the preceding remarks.
The end effector 2 and/or the riveting device 1 are preferably designed and set up so that the end effector 2 or the riveting device 1 can carry out the above-described steps of the method.
Finally,
For the rivet elements 4 shown in
For the rivet collar 3b, relevant properties for the riveting process are shown here as being the rivet collar length LC and the rivet collar inner diameter DCI and the rivet collar outer diameter DCA.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 120 239.5 | Nov 2015 | DE | national |
10 2016 110 914.2 | Jun 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/078588 | 11/23/2016 | WO | 00 |