The present invention relates to upper airway tubes and in particular, to an endobronchial tube with an integrated image sensor and light source having a cleaning nozzle arrangement.
Respiratory tubes for example endobronchial tubes, endotracheal tubes, tracheostomy tubes are used to ventilate at least a portion of the respiratory system or lungs of a subject. Such respiratory tubes may be inserted in a number of ways via a non-invasive approach through an orifice or cavity such as the oral or nasal cavity. Alternatively such tubes may be introduced to a body via a minimally invasive external incision creating a port for tube insertion for example through the trachea in a tracheotomy procedure.
Such respiratory tubes may be provided as double lumen tubes, or single lumen tubes for selectively ventilating a portion of the respiratory system. For example endobronchial tubes, whether, double lumen tubes or a single lumen tube may be utilized for one-lung ventilation procedures or for selective lung ventilation of the left or right bronchi, during one-lung ventilation procedures.
In order to perform one lung ventilation procedures without complications, the position of the respiratory tube placed within either the left or right bronchi and the trachea must be closely monitored or at least confirmed prior to initiating a procedure. Various technologies are available to confirm the tube's placement, for example capnograph, auscultation, bronchoscope and x-ray.
However these procedures take time, technique and skill to perform and therefore it is not feasible to continuously monitor the tube's placement.
In particularly when the subject is moved during a procedure the tube's location may change leading to potentially dangerous displacement of the tube possibly suffocating the subject or inappropriate ventilation of the patient, for example not ventilating the correct portion of the respiratory system.
Verification by means of a bronchoscope is currently the gold standard, but none of the mentioned confirmation techniques provide continuous monitoring of the carina or provide for correct tube positioning. Furthermore, drawbacks with respect to the design and sensitivity of the bronchoscope render its cleaning process elaborate and often inefficient and costly process, that may lead to cross infection between subjects.
There is an unmet need for, and it would be highly useful to have an endobronchial tube capable of continuously and seamlessly inspect the location and implantation of the endobronchial tube relative to the Tracheal Carina. Furthermore it would be advantageous to have an endobronchial tube that is capable of maintaining a clear field of view of the Tracheal Carina.
The present invention overcomes the deficiencies of the background by providing an endobronchial tube having an integrated image sensor with a corresponding light source and integrated means for maintaining the field of view provided by the image sensor, for example in the form of a cleaning nozzle and/or lumen.
A preferred embodiment of the present invention provides for a respiratory tube, preferably in the form of a double lumen endobronchial tube, designed for oral or nasal insertion via the trachea and into a lung to inspect and/or visualize the Carina, to maintain airway patency and/or deliver anesthetic, inhalation agent or other medical gases, and secure ventilation.
Most preferably the endobronchial tube of the present invention may be made of medical grade materials for example including but not limited to plastic, rubber, polymers or silicone or the like materials as is known in the art.
Most preferably the endobronchial tube of the present invention provides for continuous monitoring of the Tracheal Carina (herein “TC”), allowing a user, physician, nurse, or caregiver to verify the correct placement of the endobronchial tube while maintaining a clear field of view of the TC.
Most preferably the endobronchial tube includes an integrated image sensor, optionally and preferably in the form of a charged-coupled device (“CCD”) or a complementary metal-oxide semiconductor (“CMOS”) camera provided for visualizing the carina to confirm the correct placement of the tube within the trachea and bronchi, assuring correct ventilation during procedures for example including but not limited to one lung ventilation procedures, or the like.
Most preferably the integrated camera and light source provide continuous verification of the correct placement of the endobronchial tube. The continuous placement verification allows a caregiver the opportunity to detect any dangerous situation, for example cuff dislodgement, providing sufficient time to react to the situation as is necessary. Moreover blood and secretion accumulation or any other unexpected incidents during surgery, which might cause risk to the patient, may be observed.
A preferred embodiment of the present invention provides for an endobronchial tube with an integrated image sensor, for example including but not limited to a charged-coupled device (“CCD”) or complementary metal-oxide semiconductor (“CMOS”) camera, with a corresponding light source, for example including but not limited to a Light Emitting Diode (‘LED’) while optimizing the lumen patency for both adequate airflow performance through the tube. Most preferably the image sensor and corresponding light source are provided in a dedicated lumen along the length of the endobronchial tube. Most preferably the image sensor is further provided with at least one or more adjacent and integrated cleaning nozzle to ensure an open field of view, for example of the TC, distal to the image sensor. Most preferably the integrated cleaning nozzle may be configured to be wholly embedded within the tube's wall in the form of a dedicated cleaning lumen running the length of the tube. Most preferably the length of the image sensor lumen 150L is provided paralleled with the length of the tracheal lumen, therein both tracheal lumen and image sensor lumen are of essentially the same length. Optionally the length of the image sensor lumen 150L may be provided according to the length of the bronchial lumen.
Optionally the endobronchial tube may be provided with two dedicated image sensor lumen. Optionally a first dedicated image sensor lumen is provided according to the length of the tracheal lumen and a second dedicated image sensor lumen is provided according to the length of the bronchial lumen.
A preferred embodiment of the present invention provides for an endobronchial tube having an integrated image sensor, light source and cleaning nozzle capable of providing a continuously and unobstructed view and illumination of the carina, left bronchi, right bronchi, bronchial cuff and bronchial bifurcations, within a single field of view.
Optionally and preferably the tube of the present invention utilizes at least one or more bronchial cuff. Optionally at least two or more bronchial cuffs may be utilized to provide adequate sealing of the bronchi.
Optionally the bronchial cuff may be provided in varying shapes so as to better fit the bronchi for example include but is not limited to spherical, elliptical, helical, hourglass, trapezoidal, or the like.
Optionally different bronchial cuff configured and shaped according to anatomy and placement location, for example anatomy based on configuration of a cuff for left bronchi placement and for right bronchi placement. Within the context of this application the term endobronchial tube may be used interchangeably with any one of Tracheobronchial tube, double lumen tube, double lumen endobronchial tube, double lumen endotracheal tube, to collectively refer to a tube and/or catheter utilized for selectively ventilating a subject via both lungs, one of the lungs or a portion of one or both of the lungs.
An endobronchial tube comprising an external wall and an internal septum defining at least two ventilation lumen of different lengths for selectively associating with a patient about at least two locations relative to the Tracheal Carina, the tube comprising:
a first ventilation lumen having an open distal end that associates proximally to the Carina within the Trachea, with a first inflatable cuff; and
a second ventilation lumen having an open distal end that extends distally, past the Carina and associates within one of the Left Bronchial branch or Right Bronchial branch with a second inflatable cuff;
the tube further comprising at least two peripheral lumen of different lengths, that are disposed within the tube's external wall and running parallel with the at least the first ventilation lumen;
the first peripheral lumen comprises an image sensor and light source disposed proximal to the distal end of the first ventilation lumen, and configured to provide an image of the Tracheal bifurcation of the Tracheal Carina, the openings of the Left Bronchial branch, and the opening Right Bronchial branch;
the second peripheral lumen defining a dedicated cleaning lumen, having a distal end disposed distally to the distal end of the first peripheral lumen about the image sensor and light source, the second peripheral lumen having a distal end having a plurality of variably sized openings, wherein each opening forms a cleaning nozzle distal to the image sensor, the second peripheral lumen configured to conduct a flowing fluid to maintain a clear field of view distal to the image sensor.
Optionally and preferably the distal end of the second peripheral lumen comprises four openings defining four cleaning nozzles about the image sensor. The four openings are preferably arranged distally to one another in a linear sequential manner. The first opening having an opening of about 0.8 mm defining the first cleaning nozzle directly adjacent to the image sensor. The remaining three openings may be configured to have a nozzle opening of about 0.6 mm.
Optionally the cleaning nozzles may be variably spaced relative to one another and/or may be uniformly spaced relative to one another about the distal end of the second peripheral lumen.
Optionally, the tube may further comprise additional peripheral lumen running along the second ventilation lumen providing for a second image sensor and light source providing an image of the Right bronchi or Left bronchi, and dedicated cleaning lumen.
Optionally the first and second peripheral lumen may run parallel with the second ventilation lumen rather than the first ventilation lumen.
Optionally the image sensor may be a CCD image sensor or CMOS Image sensor.
Optionally, the first peripheral lumen further comprises a light source disposed proximal to the distal end and adjacent to the image sensor.
Optionally the light source may be selected from the group consisting of a LED, optical fiber, waveguide, light guide, and any combination thereof.
Optionally the first peripheral lumen comprising an image sensor and light source may be disposed within a dedicated channel embedded within a wall of the first lumen.
Most preferably the image sensor may be associated with an auxiliary device for example including but not limited to a display and power supply at the proximal end of the tube most preferably about the first lumen, through a single dedicated connector for example including but not limited to a USB connector.
Optionally the endotracheal tube may be adapted for non-invasive insertion through the oral cavity or nasal cavity.
Optionally the endotracheal tube may be adapted for insertion through an external port or incision.
Optionally the endotracheal tube may be adapted for insertion through a surgical procedure or other invasive procedure.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The materials, methods, and examples provided herein are illustrative only and not intended to be limiting.
The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in order to provide what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
The principles and operation of the present invention may be better understood with reference to the drawings and the accompanying description. The following reference labels listed below are used throughout the drawings to refer to objects having similar function, meaning, role, or objective.
Endobronchial tube 100 is a dual lumen tube comprising an external wall 100w, a first tracheal ventilation lumen 110 and a second bronchial ventilation lumen 120. Most preferably wall 100w is a common to both tracheal lumen 110 and bronchial lumen 120 wherein wall 100w most preferably defines the external surface of tube 100. Most preferably an internal septum and/or midline partition 108 defines the individual lumen into tracheal lumen 110 and bronchial lumen 120,
Most preferably each ventilation lumen comprising an inflatable cuff respectfully, tracheal cuff 112 and bronchial cuff 122. Optionally and preferably cuffs 112 and 122 are individually controllable. Tube 100 is places such that the tracheal lumen 110 is placed within the Trachea by way of cuff 112 proximally, above, the tracheal carina (‘TC’). Most preferably the tracheal carina may be continually visualized with an image sensor 150c and light source 150L,
Most preferably wall 100w of tube 100 comprises a plurality of dedicated peripheral lumen dispersed about the periphery of wall 100w,
Most preferably tube 100 according to the present invention is characterized in that it comprises a cleaning nozzle arrangement 162 about distal end 160d,
Optionally and most preferably cleaning nozzle arrangement 162 may comprise at least two or more cleaning nozzles about distal end 160d. Most preferably a cleaning nozzle arrangement 162 comprising a plurality of cleaning nozzles about distal end 160d provides sufficient flushing and/or cleaning power and/or force and/or pressure so as to provide image sensor arrangement 150 with an unobstructed view by evacuating biological debris for example mucus or the like biological builds up in and about distal end 114, 150d and 160d.
Most preferably cleaning nozzle arrangement 162 comprises a four cleaning nozzle arrangement 164 about image sensor arrangement 150. Four cleaning nozzle arrangement 164 includes a first primary cleaning nozzle 166 and at least three secondary cleaning nozzles collectively referred to as 168, as shown in
Most preferably arrangement 164 may be arranged distally to one another in a linear sequential manner for example as shown in
Most preferably secondary cleaning nozzles 168 may be configured to have a nozzle opening of about 0.6 mm, and a disposed distally to primary cleaning nozzle 166.
Optionally secondary cleaning nozzles 168 may optionally be spaced apart equally, for example about 0.5 mm. Optionally secondary cleaning nozzles 168 may be spaced unequally distal to primary cleaning nozzle 164.
Optionally cleaning nozzle arrangement 162 about distal end 160d may be configured in optional geometric arrangements, wherein primary cleaning nozzle 166 is disposed nearest to image sensor arrangement 150 providing a first flushing and/or cleaning activity, while a plurality of secondary cleaning nozzle 168 are arranged distally thereto to provide a secondary flushing and/or cleaning activity,
Optionally cleaning nozzles 166, 168 may be provided with an opening having a diameter from about 0.1 mm to about 2 mm. Optionally primary cleaning nozzle 166 has a larger nozzle opening diameter than do secondary cleaning nozzles 168.
Most preferably image sensor 150c and light source 150l are disposed within a first dedicated peripheral image sensor lumen 150L that is most preferably disposed within wall 110w. Optionally and most preferably image sensor lumen 150L comprising image sensor 150c and light source 150l may be integrated within tracheal lumen 110 about distal end 114, such that the distal end 150d is adjacent to distal end 114. Optionally and most preferably the image sensor arrangement 150 remains within its dedicated peripheral image sensor lumen 150L. Optionally and most preferably image sensor arrangement 150,
Most preferably image sensor arrangement 150 are provided in the form of at least one or more light emitting diode (‘LED’) 150l and image sensor 150c for example including but not limited to a charged-coupled device (“CCD”) or a complementary metal-oxide semiconductor (“CMOS”), (
Optionally auxiliary devices may for example include but are not limited to stylet 10, Y-connector 12, air balance caps 14, and an endobronchial tube connector assembly 20, or the like adjunct device utilized facilitating the use of tube 100 as is known in the art.
Stylet 10 most preferably is utilized to facilitate placement of tube 100, as is known and accepted in the art.
Y-connector 12 most preferably provides for simultaneously connecting both lumens of double lumen tube 100 to a single ventilation source.
Endobronchial Tube connector assembly 20 provides for individually connecting to tracheal lumen 110 and bronchial lumen 120. Connector assembly 20 comprises a proximal end 22, distal end 28, and respective Tracheal lumen connector portion 24 and Bronchial connector portion 26.
Most preferably proximal end 22 provides for connecting and/or otherwise associating the tube 100 at proximal end 102 at about the individual lumen tracheal lumen 110 and bronchial lumen 120 to auxiliary devices for example including but not limited to ventilation sources.
Most preferably distal end 24 provides for coupling and/or otherwise associating with tube 100.
Tube 100 further comprises tracheal cuff 112, shown in its expanded state, provided for securely placing and/or anchoring tube 100 within the trachea while ventilating the lungs through tracheal lumen 110.
Tube 100 further comprises bronchial cuff 122, shown in its expanded and/or inflated state, provided for securely placing and/or anchoring tube 100 within the bronchi, left or right. Most preferably cuff 122 provides for selectively controlling the ventilation to the bronchial arch wherein it is placed (left or right). For example ventilation to either the left or right bronchi may be completely blocked so as to allow a procedure on the respective lung (for example right) while allowing the ventilation of the other lung (for example left) via tracheal lumen 110.
Most preferably tracheal cuff 112 may be inflated and/or deflated via cuff tracheal connector 118.
Most preferably bronchial cuff 122 may be inflated and/or deflated via cuff bronchial connector 128.
Most preferably injection tube connector 130 provides an access point to a dedicated lumen about each of the tracheal tube 110 and bronchial tube 120, preferably for delivering drugs, suctioning liquids about tracheal distal 114 and/or bronchial lumen distal end 124.
Most preferably medial curvature 106a is provided for the ease of accessing and introducing tube 100 within the trachea through the oral cavity and pharynx. Most preferably, curvature 106a, is provided with an angle from about 100 degrees to about 160 degrees.
Most preferably distal curvature 104a is provides for ease of accessing and introducing distal end 104 into one of the bronchi, left or right.
Optionally and preferably distal curvature 104a may be specific for individual left or right endobronchial tubes. Optionally distal curvature may be configured to be from about 25 degrees to about 70 degrees. Optionally and preferably about 35 degrees as shown.
Optionally the length of tube 100 may be provided with a length from about 200 mm to about 550 mm. Optionally and preferably the length of tube 100 may be selected in accordance with a user's anatomy.
Optionally endobronchial tube 100 may be provided with different sizes, length, diameters as known and accepted in the art. Optionally tube 100 may be provided with a gauge from about 26 Fr to about 44 Fr, or from about For example the external diameter of tube 100 may be provided in varying gauges and/or sizes for example including but not limited to 28 Fr, 32 Fr, 35 Fr, 37 Fr, 39 Fr and 41 Fr, within the context of this application the units ‘Fr’ refer to the gauge of the tube 100 in the units French as is a common term of the art. Alternatively the gauge and or size of tube 100 may be provided in the SI units of millimeters ‘mm’. The tube 100 according to the present invention may be provided with an external diameter of about 9.3 mm, 10.7 mm, 11.7 mm, 13 mm and 13.7 mm.
Optionally and preferably the length and diameter (also referred to as gauge) of tube 100 may be correlated with one another.
Most preferably flaring 114f forms a cover and/or cap over the distal end of the dedicated peripheral lumen 150d and 160d adjacent to distal end 114 of ventilation lumen 110.
Most preferably distal end flaring 114f facilitates placement of a cleaning nozzle arrangement 162 about the distal end 160d of cleaning lumen 160, for example as shown in
Optionally cleaning nozzle 156 may be provided with an opening having a diameter from about 0.1 mm to about 2 mm, more preferably from about 0.4 mm to about 0.9 mm, optionally about 0.6 mm or 0.8 mm.
Image sensor arrangement 150 is most preferably provided in image sensor lumen 150L that spans the length of tube 100. Most preferably image sensor lumen 150L is disposed between tracheal lumen 110 and bronchial lumen 120.
Most preferably distal end of image sensor lumen 150L provides for visualizing the carina and the bronchial cuff 122, for example as shown in
Most preferably the diameter of image sensor lumen 150L is variable along the length of tube 100. Most preferably image sensor lumen 150L is smallest at the proximal end 102 and largest at the distal end 104. Optionally and preferably at proximal end 102 image sensor lumen 150L is configured to have an elliptical cross-section. Optionally and preferably at distal end of image sensor lumen 150L is configured to have a circular cross-section.
Most preferably alongside image sensor lumen 150L is a dedicated cleaning lumen 160 that has a distal end defining a cleaning nozzle 156, as shown, providing for cleaning image sensor 150c about its distal end.
Optionally and preferably cleaning nozzle 156 is provided with a curvature and/or angle θ forming angled portion 155 (shown in
While
Optionally cleaning nozzles 166, 168 may be provided with an opening having a diameter from about 0.1 mm to about 2 mm. Optionally primary cleaning nozzle 166 has a larger nozzle opening diameter than do secondary cleaning nozzles 168.
Optionally and preferably the distal end 160d of cleaning lumen 160 may be curved such that the distal end 160d and nozzle arrangements 162, 164 are most preferably directed toward the distal end 150d of image sensor lumen 150L therein providing for forming a cleaning nozzle arrangement 162 that is optionally and preferably directed toward image sensor 150c, for example as shown in
Optionally tube 100 may be provided with at least two or more peripheral cleaning lumen 160 for example as shown in
Optionally a plurality of cleaning lumen 160 may be configured to cooperate with one another, for example a first lumen would flush biological obstructions toward a second cleaning lumen where the obstruction is carried away by suctioning.
Optionally at least two or more cleaning lumen 160 may be utilized concertedly to either suction or flush obstructions distal to image sensors arrangement 150, therein most preferably ensuring an open viewing field.
Optionally a plurality of cleaning lumen may be provided with different diameters and or sizes.
Most preferably tube 100 includes an image sensor lumen 150L provided for image sensor 150c and integrated illumination source 150I. Most preferably image sensor lumen 150L provides for housing the image sensor 150 at its distal end (
Optionally and preferably image sensor lumen 150L is disposed about the anterior portion of tube 100 about the middle of the cross-section of tube 100. Most preferably image sensor lumen 150L is disposed anterior to partition 108. Optionally image sensor lumen 150L may be disposed about the posterior portion of tube 100 therein posterior to partition 108.
Most preferably on both sides of image sensor lumen 150L are dedicated lumen running along the length of tube 100 and most preferably running parallel with image sensor lumen 150L. Optionally and preferably at least one or more of lumen are provided as a dedicated cleaning lumen 160. Optionally both lumen flanking image sensor lumen 150L may be dedicated cleaning lumen 160.
Most preferably tube wall further comprises lumen 112L and 122L respectively corresponding to tracheal lumen 110 and bronchial lumen 120. Optionally and preferably lumen 112L and 122L are provided for inflating and/or deflating cuffs 112 and 122 respectively.
Optionally the image sensor lumen 150L is provided with an notch 150n disposed 22.5 mm from the proximal end 102 of tube 100 and an exit notch having a diameter of about 1.5 mm.
While the invention has been illustrated primarily with reference to a left bronchi endobronchial tube, it will be appreciated that the present invention is not limited to a left bronchi endobronchial tube where the inventive and novel aspects equally covers a right bronchi endobronchial tube.
While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made.
This application is a U.S. Continuation In Part Application of International Application No. PCT/IB2012/052077, filed on Apr. 26, 2012, which claims the benefit of U.S. Provisional Application Ser. No. 61/506,210, filed on Jul. 11, 2011, all of which are hereby incorporated by reference in their entirety. U.S. application Ser. No. 14/151,846, filed on Jan. 10, 2014, which issued on Dec. 11, 2018 as U.S. Pat. No. 10,149,602, is a Continuation In Part of the present application. U.S. application Ser. No. 13/819,743, filed on Feb. 28, 2013, is a National Stage Entry of PCT/IB2012/052077. U.S. application Ser. No. 14/967,048, filed on Dec. 11, 2015, and Ser. No. 15/042,160, filed on Feb. 12, 2016, are continuations of U.S. application Ser. No. 13/819,743.
Number | Name | Date | Kind |
---|---|---|---|
543616 | Dow | Jul 1895 | A |
1246339 | Smit | Nov 1917 | A |
2797683 | Aiken | Jul 1957 | A |
3350553 | Cline | Oct 1967 | A |
3539794 | Rauhut et al. | Nov 1970 | A |
3576987 | Voight et al. | May 1971 | A |
3716047 | Moore et al. | Feb 1973 | A |
3729425 | Andress et al. | Apr 1973 | A |
3776222 | Smiddy | Dec 1973 | A |
3808414 | Roberts | Apr 1974 | A |
3893938 | Rauhut | Jul 1975 | A |
4150676 | Jackson | Apr 1979 | A |
4253447 | Moore | Mar 1981 | A |
4383534 | Peters | May 1983 | A |
4437458 | Upsher | Mar 1984 | A |
4509507 | Yabe | Apr 1985 | A |
4567882 | Heller | Feb 1986 | A |
4602281 | Nagasaki et al. | Jul 1986 | A |
4616631 | Takahashi | Oct 1986 | A |
4635166 | Cameron | Jan 1987 | A |
4643170 | Miyazaki | Feb 1987 | A |
4742819 | George | May 1988 | A |
4759346 | Nakajima | Jul 1988 | A |
4813431 | Brown | Mar 1989 | A |
4814949 | Elliott | Mar 1989 | A |
4846153 | Berci | Jul 1989 | A |
4877016 | Kantor et al. | Oct 1989 | A |
4884133 | Kanno | Nov 1989 | A |
4998972 | Chin et al. | Mar 1991 | A |
5005573 | Buchanan | Apr 1991 | A |
5065755 | Klafta | Nov 1991 | A |
5179938 | Lonky | Jan 1993 | A |
5193544 | Jaffe | Mar 1993 | A |
5207213 | Auhll et al. | May 1993 | A |
5241170 | Field, Jr. | Aug 1993 | A |
5241956 | Brain | Sep 1993 | A |
5249571 | Brain | Oct 1993 | A |
5282464 | Brain | Feb 1994 | A |
5285778 | Mackin | Feb 1994 | A |
5287848 | Cubb et al. | Feb 1994 | A |
5297547 | Brain | Mar 1994 | A |
5305743 | Brain | Apr 1994 | A |
5329938 | Lonky | Jul 1994 | A |
5329940 | Adair | Jul 1994 | A |
5348690 | Cohen et al. | Sep 1994 | A |
5355879 | Brain | Oct 1994 | A |
5363838 | George | Nov 1994 | A |
5373317 | Salvati | Dec 1994 | A |
5400771 | Pirak | Mar 1995 | A |
5457613 | Vandenbelt et al. | Oct 1995 | A |
5488544 | Ladyjensky | Jan 1996 | A |
5499625 | Frass et al. | Mar 1996 | A |
5527261 | Monroe | Jun 1996 | A |
5552968 | Ladyjensky | Sep 1996 | A |
5569300 | Redmon | Oct 1996 | A |
5580147 | Salerno | Dec 1996 | A |
5607386 | Flam | Mar 1997 | A |
5622182 | Jaffe | Apr 1997 | A |
5665052 | Bullard | Sep 1997 | A |
5666222 | Ning | Sep 1997 | A |
5676635 | Levin | Oct 1997 | A |
5702351 | Bar-Or | Dec 1997 | A |
5716329 | Dieter | Feb 1998 | A |
5718666 | Alarcon | Feb 1998 | A |
5725476 | Yasui et al. | Mar 1998 | A |
5735792 | Vanden Hoek | Apr 1998 | A |
5775322 | Silverstein et al. | Jul 1998 | A |
5792053 | Skladnev | Aug 1998 | A |
5800344 | Wood | Sep 1998 | A |
5803898 | Bashour | Sep 1998 | A |
5819727 | Linder | Oct 1998 | A |
5827178 | Berall | Oct 1998 | A |
5873814 | Adair | Feb 1999 | A |
5873818 | Rothfels | Feb 1999 | A |
5879304 | Shuchman | Mar 1999 | A |
5888195 | Schneider | Mar 1999 | A |
5888196 | Bonutti | Mar 1999 | A |
5891013 | Thompson | Apr 1999 | A |
5904648 | Arndt | May 1999 | A |
5908294 | Schick | Jun 1999 | A |
5913816 | Sanders | Jun 1999 | A |
5941816 | Barthel et al. | Aug 1999 | A |
5944654 | Crawford | Aug 1999 | A |
6004265 | Hsu et al. | Dec 1999 | A |
6024697 | Pisarik | Feb 2000 | A |
6050713 | O'Donnell et al. | Apr 2000 | A |
6067985 | Islava | May 2000 | A |
6079409 | Brain | Jun 2000 | A |
6091453 | Coan | Jul 2000 | A |
6115523 | Gravenstein | Sep 2000 | A |
6126592 | Proch et al. | Oct 2000 | A |
6142144 | Pacey | Nov 2000 | A |
6142935 | Flom et al. | Nov 2000 | A |
6161537 | Gravenstein et al. | Dec 2000 | A |
6164277 | Merideth | Dec 2000 | A |
6176824 | Davis | Jan 2001 | B1 |
6186944 | Tsai | Feb 2001 | B1 |
6189533 | Simon et al. | Feb 2001 | B1 |
6228025 | Hipps et al. | May 2001 | B1 |
6248060 | Buess et al. | Jun 2001 | B1 |
6260994 | Matsumoto | Jul 2001 | B1 |
6266547 | Walker | Jul 2001 | B1 |
6318887 | Matsumoto | Nov 2001 | B1 |
6322498 | Gravenstein | Nov 2001 | B1 |
6331156 | Haefele | Dec 2001 | B1 |
6419262 | Fendt et al. | Jul 2002 | B1 |
6419626 | Yoon | Jul 2002 | B1 |
6432042 | Bashour | Aug 2002 | B1 |
6447446 | Smith et al. | Sep 2002 | B1 |
6449006 | Shipp | Sep 2002 | B1 |
6458076 | Pruitt | Oct 2002 | B1 |
6478730 | Bala et al. | Nov 2002 | B1 |
6533722 | Nakashima | Mar 2003 | B2 |
6543447 | Pacey | Apr 2003 | B2 |
6551240 | Henzler | Apr 2003 | B2 |
6616600 | Pauker | Sep 2003 | B2 |
6628335 | Numazaki | Sep 2003 | B1 |
6648816 | Irion | Nov 2003 | B2 |
6655377 | Pacey | Dec 2003 | B2 |
6692431 | Kazakevich | Feb 2004 | B2 |
6712760 | Sano et al. | Mar 2004 | B2 |
6730019 | Irion | May 2004 | B2 |
6741286 | Meek | May 2004 | B2 |
6796939 | Hirata et al. | Sep 2004 | B1 |
6847394 | Hansen | Jan 2005 | B1 |
6923176 | Ranzinger | Aug 2005 | B2 |
6929600 | Hill | Aug 2005 | B2 |
7013899 | Alfery | Mar 2006 | B2 |
7052456 | Simon | May 2006 | B2 |
7057639 | Spoonhower | Jun 2006 | B2 |
7128071 | Brain | Oct 2006 | B2 |
7159590 | Rife | Jan 2007 | B2 |
7297105 | Mackin | Nov 2007 | B2 |
7384308 | Boehnlein | Jun 2008 | B2 |
7458375 | Schwartz | Dec 2008 | B2 |
7530946 | Hartwick | May 2009 | B2 |
7584534 | Pease | Sep 2009 | B2 |
7658708 | Schwartz | Feb 2010 | B2 |
7758495 | Pease | Jul 2010 | B2 |
7862173 | Ellman | Jan 2011 | B1 |
7878973 | Yee | Feb 2011 | B2 |
7938119 | Chen | May 2011 | B2 |
7942813 | Mackin | May 2011 | B2 |
7946981 | Cubb | May 2011 | B1 |
7976459 | Laser | Jul 2011 | B2 |
8038606 | Otawara | Oct 2011 | B2 |
8042545 | Schwartz | Oct 2011 | B2 |
8047215 | Sasaki | Nov 2011 | B1 |
8226571 | Landesberg | Jul 2012 | B2 |
8231524 | Schwartz | Jul 2012 | B2 |
8413658 | Williams | Apr 2013 | B2 |
8458844 | Vazales | Jun 2013 | B2 |
8473033 | Wood et al. | Jun 2013 | B2 |
8479739 | Hirsh | Jul 2013 | B2 |
8534287 | Vazales | Sep 2013 | B2 |
8584678 | Pol | Nov 2013 | B2 |
8696548 | Gilboa | Apr 2014 | B2 |
8696685 | Gilboa | Apr 2014 | B2 |
8790270 | Landesberg | Jul 2014 | B2 |
8863746 | Totz | Oct 2014 | B2 |
8887730 | Wood | Nov 2014 | B2 |
8932207 | Greenburg | Jan 2015 | B2 |
8978657 | Sandmore et al. | Mar 2015 | B2 |
8998798 | Hayman | Apr 2015 | B2 |
9055881 | Gilboa | Jun 2015 | B2 |
9155854 | Hayman | Oct 2015 | B2 |
9204794 | Lisogurski et al. | Dec 2015 | B2 |
9211060 | Waldron et al. | Dec 2015 | B2 |
9242058 | Hayman et al. | Jan 2016 | B2 |
9271803 | Averbuch et al. | Mar 2016 | B2 |
9283342 | Gardner | Mar 2016 | B1 |
9332891 | Vazales | May 2016 | B2 |
9357905 | Molnar | Jun 2016 | B2 |
9415179 | Molnar | Aug 2016 | B2 |
9572946 | Chun | Feb 2017 | B2 |
9579012 | Vazales | Feb 2017 | B2 |
9603515 | Zocca | Mar 2017 | B2 |
9662466 | Gunday | May 2017 | B2 |
9750913 | Schwartz | Sep 2017 | B2 |
9788755 | Hayman | Oct 2017 | B2 |
9801535 | Turnbull | Oct 2017 | B2 |
9820642 | Law | Nov 2017 | B2 |
9826892 | Dresher | Nov 2017 | B2 |
9854962 | McGrail | Jan 2018 | B2 |
9855111 | Vazales | Jan 2018 | B2 |
9888832 | Schwartz | Feb 2018 | B2 |
9907624 | Vazales | Mar 2018 | B2 |
20010023312 | Pacey | Sep 2001 | A1 |
20010028227 | Lys | Oct 2001 | A1 |
20020007110 | Irion | Jan 2002 | A1 |
20020045801 | Niida | Apr 2002 | A1 |
20020062062 | Belson et al. | May 2002 | A1 |
20020072680 | Williams | Jun 2002 | A1 |
20020076280 | Semotiuk | Jun 2002 | A1 |
20020077527 | Aydelotte | Jun 2002 | A1 |
20020108610 | Christopher | Aug 2002 | A1 |
20020120181 | Irion | Aug 2002 | A1 |
20020162557 | Simon et al. | Nov 2002 | A1 |
20020193664 | Ross et al. | Dec 2002 | A1 |
20030011538 | Lys | Jan 2003 | A1 |
20030018237 | Okada | Jan 2003 | A1 |
20030028078 | Glukhovsky | Feb 2003 | A1 |
20030030745 | Meek | Feb 2003 | A1 |
20030035048 | Shipp | Feb 2003 | A1 |
20030042493 | Kazakevich | Mar 2003 | A1 |
20030050534 | Kazakevich | Mar 2003 | A1 |
20030051733 | Kotmel et al. | Mar 2003 | A1 |
20030078476 | Hill | Apr 2003 | A1 |
20040044269 | Shibata | Mar 2004 | A1 |
20040143167 | Branch et al. | Jul 2004 | A1 |
20040210114 | Simon | Oct 2004 | A1 |
20050039754 | Simon | Feb 2005 | A1 |
20050065496 | Simon et al. | Mar 2005 | A1 |
20050090712 | Cubb | Apr 2005 | A1 |
20070215162 | Glassenberg et al. | Sep 2007 | A1 |
20080146879 | Pacey | Jun 2008 | A1 |
20080188715 | Fujimoto | Aug 2008 | A1 |
20080200764 | Okada | Aug 2008 | A1 |
20090227998 | Aljuri | Sep 2009 | A1 |
20090253964 | Miyamoto | Oct 2009 | A1 |
20100113916 | Kumar | May 2010 | A1 |
20100249639 | Bhatt | Sep 2010 | A1 |
20110197888 | Deutsch | Aug 2011 | A1 |
20110282148 | Kase et al. | Nov 2011 | A1 |
20110313347 | Zocca et al. | Dec 2011 | A1 |
20110315147 | Wood et al. | Dec 2011 | A1 |
20120041534 | Clerc et al. | Feb 2012 | A1 |
20120044153 | Clerc | Feb 2012 | A1 |
20120065469 | Allyn | Mar 2012 | A1 |
20120172664 | Hayman et al. | Jul 2012 | A1 |
20120172665 | Allyn | Jul 2012 | A1 |
20120197086 | Morris et al. | Aug 2012 | A1 |
20120226100 | Greenburg | Sep 2012 | A1 |
20120259173 | Waldron et al. | Oct 2012 | A1 |
20120302833 | Hayman et al. | Nov 2012 | A1 |
20130158351 | Daher et al. | Jun 2013 | A1 |
20130269703 | Wood | Oct 2013 | A1 |
20130303849 | Allyn | Nov 2013 | A1 |
20130317339 | Waldstreicher | Nov 2013 | A1 |
20130324798 | Molnar et al. | Dec 2013 | A1 |
20140024893 | Allyn | Jan 2014 | A1 |
20140024895 | Allyn | Jan 2014 | A1 |
20140033455 | Vazales | Feb 2014 | A1 |
20140046142 | Gavriely | Feb 2014 | A1 |
20140094651 | Allyn | Apr 2014 | A1 |
20140094652 | Allyn | Apr 2014 | A1 |
20140094653 | Allyn | Apr 2014 | A1 |
20140128672 | Daher | May 2014 | A1 |
20140150782 | Vazales et al. | Jun 2014 | A1 |
20140221921 | Gilboa | Aug 2014 | A1 |
20140309494 | Molnar | Oct 2014 | A1 |
20150099927 | Ali | Apr 2015 | A1 |
20150126808 | Roze | May 2015 | A1 |
20150133741 | Gill | May 2015 | A1 |
20150174352 | Hayman | Jun 2015 | A1 |
20150190044 | Livnat | Jul 2015 | A1 |
20150223668 | Gilboa | Aug 2015 | A1 |
20150305596 | Oskin et al. | Oct 2015 | A1 |
20150305650 | Hunter et al. | Oct 2015 | A1 |
20160000303 | Klein et al. | Jan 2016 | A1 |
20160030693 | Nakatate | Feb 2016 | A1 |
20160038008 | Molnar | Feb 2016 | A1 |
20160038014 | Molnar | Feb 2016 | A1 |
20160051221 | Dickhans et al. | Feb 2016 | A1 |
20160101253 | Alahmadi | Apr 2016 | A1 |
20160106308 | Field | Apr 2016 | A1 |
20160157708 | Daher | Jun 2016 | A1 |
20160183777 | Daher et al. | Jun 2016 | A1 |
20160206189 | Nearman | Jul 2016 | A1 |
20160227991 | Hayut | Aug 2016 | A1 |
20160256646 | Vazales | Sep 2016 | A1 |
20160287825 | Daher et al. | Oct 2016 | A1 |
20170119494 | Vazales | May 2017 | A1 |
Number | Date | Country |
---|---|---|
201862108 | Jun 2011 | CN |
4132687 | Apr 1993 | DE |
29805624 | Jul 1998 | DE |
0712601 | May 1996 | EP |
2357856 | Jul 2001 | GB |
03258268 | Nov 1991 | JP |
622902 | Feb 1994 | JP |
06217933 | Aug 1994 | JP |
8117184 | May 1996 | JP |
08126603 | May 1996 | JP |
2001501843 | Feb 2001 | JP |
2001128925 | May 2001 | JP |
2002508982 | Mar 2002 | JP |
2002514947 | May 2002 | JP |
2009505721 | Feb 2009 | JP |
2011010685 | Jan 2011 | JP |
WO2004030527 | Apr 1994 | WO |
WO9428784 | Dec 1994 | WO |
WO9729679 | Aug 1997 | WO |
WO9814112 | Apr 1998 | WO |
WO9935960 | Jul 1999 | WO |
1999045990 | Sep 1999 | WO |
WO200054655 | Sep 2000 | WO |
WO0156458 | Aug 2001 | WO |
WO0154565 | Aug 2001 | WO |
2002056951 | Jul 2002 | WO |
WO02085194 | Oct 2002 | WO |
2003075979 | Sep 2003 | WO |
2003101516 | Dec 2003 | WO |
2004093791 | Nov 2004 | WO |
2008103448 | Aug 2008 | WO |
2010011781 | Jan 2010 | WO |
2012091859 | Jul 2012 | WO |
WO 2016004302 | Jan 2016 | WO |
Entry |
---|
ISR for PCT/IL2003/000797 dated Oct. 3, 2003. |
OA for CA 2501300 dated Aug. 30, 2011. |
OA for CA 2501300 dated Dec. 3, 2010. |
OA for JP 2004-541140 dated Aug. 9, 2011. |
OA for JP 2004-541140 dated Jun. 16, 2010. |
OA for EP 03751231.6 dated Feb. 9, 2007. |
“Care of the Mechanically Ventilated Patient With a Tracheotomy”. (1994) Chapter 35 p. 761-774. |
Scanlan et al., “Egan's Fundamenttals of Respiratory Care”, 1999, Mosby. |
Minutes of the oral proceedings for EP03751231.6—dated Jan. 24, 2007. |
Tobin, “Principles and Practice of Mechanical Ventilation”, 1994, Artificial, Airways and Managment. Part X p. 698-729. |
OA for EP 03751231.6 dated Oct. 17, 2006. |
OA for EP 03751231.6 dated Mar. 29, 2007. |
OA for EP 03751231.6 dated Sep. 27, 2005. |
Michael Emmanuel Leventon, “A Registration, Tracking, and Visualization System for Image-Guided Surgery”—Massachusetts Institute of Technology(May 1997). |
OA for JP 2004-541140 dated Jan. 24, 2011. |
ISR for PCT/IB2012/052077 dated Aug. 17, 2012. |
Adair (2001). Macintosh Lighted Stylet, located at <http://www.adair.at/eng/museum/equip/acctracheal/macintoshlighted.html> last visited on Mar. 28, 2003. |
Anonymous (2002). “Intubation-Advances Airway Management (#10102.)” Procedure 2 pages. |
Anonymous (2003). “Anatomic Landmarks,” located at <http://www.rnceus.com/resp/respthoracic.html>. |
Birmingham et al. (1986). “Esophageal Intubation: A Review of Detection Techniques,” Anesth. Analg. 65:886-891. |
Debo, R.F. et al. (1989). “Cricoarytenoid Subluxation: Complication of Blind Intubation With a Lighted Stylet” Ear, Nose, Throat Journal vol. 68. |
Dey, D. et al. (2000). “Mixed Reality of Merging of Endoscopic Images and 3-D Surfaces,” 8 pages. |
Graphic Solutions, Inc. (2003). Thin Flexible Battery product information sheets located at <http://www.graphicsolutionsinc.com/tfb.html> last visited on Mar. 26, 2003. 3 pages. |
Heller, R.M. and Heller, T.W. (1994). “Experience With the Illuminated Endotracheal Tube in the Prevention of Unsafe Intubations in the Premature and Full-Term Newborn,” Pediatrics 93(3):389-391. |
Hudson RCI Brochure (No Date Available). Airway Management product sheets, pp. 1-22. |
King, H.-K. (2002). “Soft-tip Intubating Stylet” Brief Communication: Acta Anaethesiol Sin 40:135-137. |
Lumex, Inc. (1997-2001). T-1.88mm Stove Pipe Lens LED Lamp product sheet, located at <http://www.lumex.com/pls/lumex/subproduct.sub.—galary> last visited on Mar. 31, 2003, 1 page. |
Lumex, Inc. (1997-2001). T-2mm Axial Leaded LED Lamp product sheet, located at <http://www.lumex.com/pls/lumex/subproduct.sub.—galary> last visited on Mar. 31, 2003, 2 pages. |
Luxeon Dental Brochure (2002). “Power Light source” Luxeon Dental Technical Data D535, 10 pages. |
Mercury Medical Catalog (No Date Available). Intubation Products, 24 pages. |
Nellcor Product Brochure (2003). Hi-Lo Tracheal Tube product sheet located at <http://www.nellcor.com/prod/Product.aspx?> last visited on Mar. 27, 2003. 1 page. |
Nellcor Puritan Bennett Inc. (2003). Disposable Cannula Cuffed Tracheostomy Tubes product information sheet located at <http://www.nellcor.com/prod/Product.aspx?> last visited on Mar. 27, 2003. |
Nellcor Puritan Bennett Inc. (2003). Disposable Cannula Cuffless Tracheostomy Tubes Product Information sheet located at <http://www.nellcor.com.prod/Product.aspx?> last visited on Mar. 27, 2003. 1 page. |
Nellcor Puritan Bennett Inc. (2003). EMT Emergency Medicine Tube Product Fact Sheet located at <http://www.nellcor.com/prod/Product.aspx> last visited on Mar. 27, 2003, 1 page. |
Nellcor Puritan Bennett Inc. (2003). Laser-Flex Tracheal Tube Product Fact Sheet located at <http://www.nellcor.com/prod/Product.aspx> last visited on Mar. 27, 2003, 1 page. |
Power Paper Ltd. Brochure (2003). Power Paper, Micro-Powered Devices, Thin and Flexible Batteries located at <http://www.powerpaper.com/3.sub.—technology/advantage.html> last visited on Mar. 27, 2003. 6 pages. |
Quallion, LLC Product Sheet (2002). I Series Product Feature Fact Sheet, located at <http://www.quallion.com/prod.sub.—i.html> last visited on Apr. 2, 2002. 1 page. |
Seiko Instruments, Inc. (2002) Micro Batteries Product Catalogue. 28 pages. |
Tech:Med Brochure: Face Shields and Product Masks, pp. 21-28. (No Date Available). |
ISR for PCT/US2004/011773 dated Apr. 7, 2005. |
EP search report for related EP14150501 dated Jul. 2, 2014. |
Machine translation of JP2011010685. |
Office Action for related JP2014-519648, dated Mar. 1, 2016 (translation). |
Office Action in corresponding EP application 12727168, dated Mar. 3, 2014. |
Office Action for U.S. Appl. No. 14/967,048, dated Oct. 21, 2016. |
Office Action for U.S. Appl. No. 13/819,743, dated Jul. 14, 2016. |
Office Action for U.S. Appl. No. 13/819,743, dated Oct. 7, 2015. |
Office Action for U.S. Appl. No. 13/819,743, dated Feb. 5, 2015. |
Office Action for U.S. Appl. No. 14/151,846, dated Oct. 6, 2016. |
Office Action for U.S. Appl. No. 14/151,846, dated Apr. 4, 2016. |
Office Action for U.S. Appl. No. 14/967,048, dated Jun. 6, 2016. |
Pre-Interview First Office Action for U.S. Appl. No. 13/819,743, dated Sep. 9, 2014. |
Office Action issued by the U.S. Patent and Trademark Office, dated Apr. 27, 2017, for related U.S. Appl. No. 13/819,743; 9 pages. |
Office Action issued by the U.S. Patent and Trademark Office, dated Jul. 7, 2017, for related U.S. Appl. No. 14/967,048; 11 pages. |
Non-Final Office Action issued by the U.S. Patent and Trademark Office, dated Jan. 12, 2018, for related U.S. Appl. No. 13/819,743, 10 pages. |
Non-Final Office Action issued by the U.S. Patent and Trademark Office, dated May 8, 2018, for related U.S. Appl. No. 14/967,048, 12 pages. |
Non-Final Office Action issued by the U.S. Patent and Trademark Office, dated Sep. 21, 2017, for related U.S. Appl. No. 15/042,160, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20140031622 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61506210 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2012/052077 | Apr 2012 | US |
Child | 13737944 | US |