Endoprosthesis coating

Information

  • Patent Grant
  • 8216632
  • Patent Number
    8,216,632
  • Date Filed
    Friday, November 2, 2007
    17 years ago
  • Date Issued
    Tuesday, July 10, 2012
    12 years ago
Abstract
A method includes: providing a tubular substrate in a chamber, the tubular substrate having a lumen, an a luminal surface and a luminal surface; providing a target in the lumen; depositing a first coating onto the abluminal surface and a second coating onto the luminal surface while keeping the tubular substrate in the chamber. An endoprosthesis, such as a stent, including a first coating on at least one portion of its abluminal surface and a second coating on at least one portion of its luminal surface is also disclosed.
Description
TECHNICAL FIELD

This invention relates to medical devices, such as endoprostheses, and methods of making and using the same.


BACKGROUND

The body includes various passageways including blood vessels such as arteries, and other body lumens. These passageways sometimes become occluded or weakened. For example, they can be occluded by a tumor, restricted by plaque, or weakened by an aneurysm. When this occurs, the passageway can be reopened or reinforced, or even replaced, with a medical endoprosthesis. An endoprosthesis is an artificial implant that is typically placed in a passageway or lumen in the body. Many endoprostheses are tubular members, examples of which include stents, stent-grafts, and covered stents.


Many endoprostheses can be delivered inside the body by a catheter. Typically the catheter supports a reduced-size or compacted form of the endoprosthesis as it is transported to a desired site in the body, for example the site of weakening or occlusion in a body lumen. Upon reaching the desired site the endoprosthesis is installed so that it can contact the walls of the lumen. Stent delivery is further discussed in Heath, U.S. Pat. No. 6,290,721, the entire disclosure of which is hereby incorporated by reference herein.


The expansion mechanism may include forcing the endoprosthesis to expand radially. For example, the expansion mechanism can include the catheter carrying a balloon, which carries a balloon-expandable endoprosthesis. The balloon can be inflated to deform and to fix the expanded endoprosthesis at a predetermined position in contact with the lumen wall. The balloon can then be deflated, and the catheter withdrawn from the lumen.


SUMMARY

In an aspect, the invention features a method of forming an endoprosthesis that includes providing in a deposition chamber a substrate having a first surface and a second, opposing surface; providing a first target and a second target, in the chamber; depositing material from the first target onto the first surface and material from the second target onto the second surface without removing the substrate from the chamber, and utilizing the substrate in an endoprosthesis.


In an aspect, the invention features a system for forming an endoprosthesis that includes a tubular stent or pre-stent substrate, a deposition chamber having a first metal or ceramic target concentrically arranged about a second metal or ceramic target, where the second target is positioned within the tubular stent or pre-stent substrate, and the first target is positioned outside the tubular stent or pre-stent substrate.


In an aspect, the invention features that in the manufacture of a stent, a tubular substrate having simultaneously within its lumen a first plasma for depositing a first ceramic and extension to the tubular a second plasma for depositing a second ceramic having a different composition or morphology than the first ceramic.


Embodiments may include one or more of the following features. The substrate can be tubular, the first surface can be the abluminal surface, and the second surface can be the luminal surface. The second target can be in the lumen of the tubular substrate and the first target can be outside the lumen of the tubular substrate. The deposition can be physical vapor deposition. The power on the substrate and the first target can be controlled. The deposition can be done simultaneously to the first surface and the second surface. Ceramic coatings can be formed by deposition on the first surface and the second surface. The ceramics deposited on the first surface and the second surface can have different morphologies. The first coating can have a defined grain morphology. The second coating can have a globular morphology. The ceramic can be selected from oxides and nitrides of iridium, zirconium, titanium, hafnium, niobium, tantalum, ruthenium, platinum and aluminum. The ceramic can be iridium oxide. The first target can have a different composition than the second target. The second target can have different compositions in different regions. The second target can extend along the axis of the lumen and the different regions can be at different axial locations. The second target can extend along the axis of the lumen and the second target can have a variable shape along its axial extension. The second target can be wider near the end regions of the tubular substrate. An endoprosthesis can be made by the method of providing in a deposition chamber a substrate having a first surface and a second, opposing surface; providing a first target and a second target, in the chamber; depositing material from the first target onto the first surface and material from the second target onto the second surface without removing the substrate from the chamber, and utilizing the substrate in an endoprosthesis.


Embodiments may include one or more of the following features. The first, second and third power can supply connections respectively to the first target, second target and stent or pre-stent substrate. The first target can have a different composition than the second target. The second target can have different compositions in different regions. The second target can extend along the axis of the lumen, and the second target can have a variable shape along its axial extension.


Embodiments may include one or more of the following advantages. Stents can be formed with ceramic coatings that have morphologies and/or compositions that enhance therapeutic performance. In particular, the ceramics are tuned to enhance mechanical performance and physiologic effect. Enhanced mechanical performance provides particular advantages during the challenging operations encountered in stent use, which typically includes collapsing the stent to a small diameter for insertion into the body, delivery though a tortuous lumen, and then expansion at a treatment site. Enhancing mechanical properties of the ceramic reduces the likelihood of cracking or flaking of the ceramic, and enhanced adhesion of the ceramic to the stent body and to overcoatings, such as drug eluting materials. Improved physiologic effects include discouraging restenosis and encouraging endothelialization. The ceramics are tuned by controlling ceramic morphology and composition. For example, the ceramic can have a morphology that enhances endothelial growth, a morphology that enhances the adhesion of overcoatings such as polymers, e.g. drug eluting coatings, a morphology that reduces delamination, cracking or peeling, and/or a morphology that enhances catalytic activity to reduce inflammation, proliferation and restenosis. The ceramic coatings can be tuned along a continuum of their physical characteristics, chemistries, and roughness parameters to optimize function for a particular application. Different coating morphologies can be applied in different locations to enhance different functions at different locations. For example, a high roughness, low coverage, defined-grain morphology can be provided on abluminal surfaces to enhance adhesion of a drug-eluting polymer coating and a low roughness, high coverage, globular morphology can be provided on the luminal surface to enhance endothelialization. The composition is tuned to control hydrophobicity to enhance adhesion to a stent body or a polymer and/or control catalytic effects. The morphologies and composition can be formed by physical vapor deposition using methodologies that allow fine tuning of the morphology characteristics and permit highly uniform, predictable coatings across a desired region of the stent. Further, the two morphologies can be provided to different locations simultaneously or sequentially without taking the stent out of the deposition system, therefore, potential contamination due to vacuum breakdown and long operation time can be reduced or avoided.


Still further aspects, features, embodiments, and advantages follow.





DESCRIPTION OF DRAWINGS


FIGS. 1A-1C are longitudinal cross-sectional views illustrating delivery of a stent in a collapsed state, expansion of the stent, and deployment of the stent.



FIG. 2 is a perspective view of a stent.



FIG. 3 is a cross-sectional view of a stent wall.



FIGS. 4A-4B are enlarged plan views of surface morphologies.



FIGS. 5A-5C are schematic views of ceramic morphologies.



FIG. 6 is a schematic of an inverted cylindrical magnetron deposition system.



FIG. 7 is a schematic of a modified inverted cylindrical magnetron deposition system.



FIGS. 8A and 8B are schematic views of a sputter target.





DETAILED DESCRIPTION

Referring to FIGS. 1A-1C, a stent 20 is placed over a balloon 12 carried near a distal end of a catheter 14, and is directed through the lumen 16 (FIG. 1A) until the portion carrying the balloon and stent reaches the region of an occlusion 18. The stent 20 is then radially expanded by inflating the balloon 12 and compressed against the vessel wall with the result that occlusion 18 is compressed, and the vessel wall surrounding it undergoes a radial expansion (FIG. 1B). The pressure is then released from the balloon and the catheter is withdrawn from the vessel (FIG. 1C).


Referring to FIG. 2, the stent 20 includes a plurality of fenestrations 22 defined in a wall 23. Stent 20 includes several surface regions, including an outer, or abluminal, surface 24, an inner, luminal, surface 26, and a plurality of cut-face surfaces 28. The stent can be balloon expandable, as illustrated above, or self-expanding stent. Examples of stents are further described in Heath '721, supra.


Referring to FIG. 3, a greatly enlarged axial cross-sectional view, a stent wall 23 includes a stent body 25 formed, e.g. of a metal, and includes a first ceramic coating 32 on one side, e.g. the abluminal side 24, and a second ceramic coating 34 on the other side, e.g. the luminal side 26. As illustrated, the coatings 32, 34 have different morphologies and roughnesses. The thickness of each coating, 32 or 34 is represented as T32 or T34, respectively.


Referring as well to FIG. 4A, the coating 32 on the abluminal side includes a morphology characterized by defined grains and high roughness. The defined grain, high roughness morphology of the coating 32 provides a high surface area characterized by crevices between and around spaced grains into which, e.g., a polymer coating can be deposited and interlock to the surface, enhancing adhesion.


Referring as well to FIG. 4B, the coating 34 on the luminal side has a morphology characterized by a higher coverage, globular surface of generally lower roughness. The smoother globular morphology provides a surface tuned to facilitate endothelial growth by selection of its chemical composition and/or morphological features.


The morphology and composition of the ceramic is selected for its mechanical characteristics, to enhance adhesion to the stent body and enhance adhesion of a polymer coating, for example, and/or to enhance therapeutic function such as reducing restenosis and enhancing endothelialization. Certain ceramics, e.g. oxides, can reduce restenosis through the catalytic reduction of hydrogen peroxide and other precursors to smooth muscle cell proliferation. The oxides can also encourage endothelial growth to enhance endothelialization of the stent. When a stent is introduced into a biological environment (e.g., in vivo), one of the initial responses of the human body to the implantation of a stent, particularly into the blood vessels, is the activation of leukocytes, white blood cells which are one of the constituent elements of the circulating blood system. This activation causes a release of reactive oxygen compound production. One of the species released in this process is hydrogen peroxide, H2O2, which is released by neutrophil granulocytes, which constitute one of the many types of leukocytes. The presence of H2O2 may increase proliferation of smooth muscle cells and compromise endothelial cell function, stimulating the expression of surface binding proteins which enhance the attachment of more inflammatory cells. A ceramic such as iridium oxide (IROX) can catalytically reduce H2O2. The morphology of the ceramic can enhance the catalytic effect and reduce growth of smooth muscle cells. Iridium oxide (IROX) is discussed further in Alt, U.S. Pat. No. 5,980,566. Defined grain morphologies may also allow for greater freedom of motion and are less likely to fracture as the stent is flexed in use and thus the coating resists delamination of the ceramic from an underlying surface and reduces delamination of an overlaying polymer coating. The stresses caused by flexure of the stent, during expansion or contraction of the stent or as the stent is delivered through a tortuously curved body lumen increase as a function of the distance from the stent axis. As a result, in embodiments, a morphology with defined grains is particularly desirable on abluminal regions of the stent or at other high stress points, such as the regions adjacent fenestrations which undergo greater flexure during expansion or contraction.


The morphology of the surface of the ceramic is characterized by its visual appearance, the size and arrangement of particular morphological features such as local maxima, and/or its roughness. In embodiments, the surface is characterized by definable sub-micron sized grains. Referring particularly to FIG. 4A, for example, in embodiments, the grains have a length, L, of about 50 to about 500 nm, e.g. about 100-300 nm, and a width, W, of about 5 nm to 50 nm, e.g. about 10-15 nm. The grains have an aspect ratio (length to width) of about 5:1 or more, e.g. 10:1 to 20:1. The grains overlap in one or more layers. The separation between grains can be about 1-50 nm. In particular embodiments, the grains resemble rice grains.


Referring particularly to FIG. 4B, in embodiments, the surface is characterized by a more continuous surface having a series of shallow globular features. The globular features are closely adjacent with a narrow minimum between features. In embodiments, the surface resembles an orange peel. The diameter of the globular features is about 100 nm or less, and the depth of the minima, or the height of the maxima of the globular function is e.g. about 50 nm or less, e.g. about 20 nm or less.


Referring to FIGS. 5A-5C, morphologies are also characterized by the size and arrangement of morphological features such as the spacing, height and width of local morphological maxima. Referring particularly to FIG. 5A, a coating 40 on a substrate 42 is characterized by the center-to-center distance and/or height, and/or diameter and/or density of local maxima. In particular embodiments, the average height, distance and diameter are in the range of about 400 nm or less, e.g. about 20-200 nm. In particular, the average center-to-center distance is about 0.5 to 2× the diameter.


Referring to FIG. 5B, in particular embodiments, the morphology type is a globular morphology, the width of local maxima is in the range of about 100 nm or less and the peak height is about 20 nm or less. In particular embodiments, the ceramic has a peak height of less than about 5 nm, e.g., about 1-5 nm, and/or a peak distance less than about 15 nm, e.g., about 10-15 nm. Referring to FIG. 5C, in embodiments, the morphology is defined as a grain type morphology. The width of local maxima is about 400 nm or less, e.g. about 100-400 nm, and the height of local maxima is about 400 nm or less, e.g. about 100-400 nm. As illustrated in FIGS. 5B and 5C, the select morphologies of the ceramic can be formed on a thin layer of substantially uniform, generally amorphous IROX, which is in turn formed on a layer of iridium metal, which is in turn deposited on a metal substrate, such as titanium or stainless steel. The spacing, height and width parameters can be calculated from AFM data. A suitable computational technique is provided below.


The roughness of the surface is characterized by the average roughness, Sa, the root mean square roughness, Sq, and/or the developed interfacial area ratio, Sdr. The Sa and Sq parameters represent an overall measure of the texture of the surface. Sa and Sq are relatively insensitive in differentiating peaks, valleys and the spacing of the various texture features. Surfaces with different visual morphologies can have similar Sa and Sq values. For a surface type, the Sa and Sq parameters indicate significant deviations in the texture characteristics. Sdr is expressed as the percentage of additional surface area contributed by the texture as compared to an ideal plane the size of the measurement region. Sdr further differentiates surfaces of similar amplitudes and average roughness. Typically Sdr will increase with the spatial intricacy of the texture whether or not Sa changes.


In embodiments, the ceramic has a defined grain type morphology. The Sdr is about 100 or more, e.g. about 120 to 200. In addition or in the alternative, the morphology has an Sq of about 20 or more, e.g. about 20 to 30. In particular embodiments, the ceramic has an Sdr of 150 or more, e.g., 180-300. In other embodiments, the ceramic has a globular type surface morphology. The Sdr is about 10 or less, e.g. about 1 to 8. The Sq is about 10 or less, e.g. about less than 3 or 1 to 5. In still other embodiments, the ceramic has a morphology between the defined grain and the globular surface, and Sdr and Sq values between the ranges above, e.g. an Sdr of about 1 to 200 and/or an Sq of about 1 to 30. The Sa, Sq, and Sdr can be calculated from AFM data. A suitable computation scheme is provided below.


The morphology of the ceramic coating can exhibit high uniformity. The uniformity provides predictable, tuned therapeutic and mechanical performance of the ceramic. The uniformity of the morphology as characterized by Sa, Sq or Sdr and/or average peak spacing parameters can be within about +/−20% or less, e.g. +/−10% or less within a 1 μm square. In a given stent region, the uniformity is within about +/−10%, e.g. about +/−1%. For example, in embodiments, the ceramic exhibits high uniformity over an entire surface region of stent, such as the entire abluminal or luminal surface, or a portion of a surface region, such as the center 25% or 50% of the surface region. The uniformity is expressed as standard deviation. Uniformity in a region of a stent can be determined by determining the average in five randomly chosen 1 μm square regions and calculating the standard deviation. Uniformity of visual morphology type in a region is determined by inspection of FESEM data at 50 KX.


The ceramics are also characterized by surface composition, composition as a function of depth, and crystallinity. In particular, the amounts of oxygen or nitride in the ceramic is selected for a desired catalytic effect on, e.g., the reduction of H2O2 in biological processes. The composition of metal oxide or nitride ceramics can be determined as a ratio of the oxide or nitride to the base metal. In particular embodiments, the ratio is about 2 to 1 or greater, e.g. about 3 to 1 or greater, indicating high oxygen content of the surface. In other embodiments, the ratio is about 1 to 1 or less, e.g. about 1 to 2 or less, indicating a relatively low oxygen composition. In particular embodiments, low oxygen content globular morphologies are formed to enhance endothelialization. In other embodiments, high oxygen content defined grain morphologies are formed, e.g., to enhance adhesion and catalytic reduction. Composition can be determined by x-ray photoelectron spectroscopy (XPS). Depth studies are conducted by XPS after argon sputtering. The crystalline nature of the ceramic can be characterized by crystal shapes as viewed in FESEM images, or Miller indices as determined by x-ray diffraction. In embodiments, defined grain morphologies have a Miller index of <101>. Globular materials have blended amorphous and crystalline phases that vary with oxygen content. Higher oxygen content typically indicates greater crystallinity.


In some embodiments, a stent with different ceramic coatings (e.g., coatings 32, 34 in FIG. 3 with different morphologies) on different portions of the stent can be formed through sequential steps. For example, in a first step, a stent can be coated on all surfaces with a globular morphology in e.g. an inverted cylindrical physical vapor deposition system, as illustrated in FIG. 6. In a second step, a mandrel is inserted into the stent to mask the luminal surface. In a third step, a defined grain morphology is coated on the abluminal and cutface surfaces over the previously deposited globular morphology. The deposition is usually carried out under vacuum, therefore, between the first and second steps, when the stent is taken out of the deposition system to apply a mask (e.g., a mandrel), the system needs to be brought to normal atmospheric pressure.


Referring to FIG. 6, the coatings can be formed using an inverted cylindrical physical vapor deposition arrangement 50 including a cathode 52 within which resides a target material 54, such as a ceramic (e.g. IROX) or a ceramic precursor metal (e.g. Ir). A stent 56 (or precursor component of a stent) is disposed within the cylinder. The cylinder also includes a gas, such as argon and oxygen. A plasma formed in the cylinder accelerates charged species toward the target. Target material is sputtered from the target and is deposited onto the stent (arrow 58). The sputtered species, e.g., atoms can travel along random directions. Some of the sputtered species strike the stent including all the stent surfaces and form a sputter coating thereon.


The operating parameters of the deposition system are selected to tune the morphology and/or composition of the ceramic. In particular, the power, total pressure, oxygen/argon ratio and sputter time are controlled. By increasing the power and/or total pressure the morphology becomes more defined grain, rougher and crystalline. By decreasing these parameters the coating becomes more globular and less rough. In embodiments, the power is within about 340 to 700 watts, e.g. about 400 to 600 watts and the total pressure is about 10 to 30 mTorr. In other embodiments the power is about 100 to 350 watts, e.g. about 150 to 300 watts, and the total pressure is about 1 to 10 mTorr, e.g. about 2 to 6 mTorr. The oxygen partial pressure is in the range of about 10 to 90%. Particular ranges are about 80-90%, e.g. for defined grain morphologies, and 10 to 40%, e.g. for globular morphologies. The deposition time controls the thickness of the ceramic and the stacking of morphological features. In embodiments, the deposition time is about 0.5 to 10 minutes, e.g. about 1 to 3 minutes. The overall thickness of the ceramic is about 50-500 nm, e.g. about 100 to 300 nm. The oxygen content is increased at higher power, higher total pressure and high oxygen to oxygen ratios.


Inverted cylindrical physical vapor deposition is described further in Siegfried et al., Society of Vacuum Coaters, 39th Annual Technical Conference Proceedings (1996), p. 97; Glocker et al., Society of Vacuum Coaters, 43rd Annual Technical Conference Proceedings-Denver, Apr. 15-20, 2000, p. 81; and SVC: Society of Vacuum Coatings: C-103, An Introduction to Physical Vapor Deposition (PVD) Processes and C-248—Sputter Deposition in Manufacturing, available from SVC 71 Pinion Hill, Nebr., Albequeque, N. Mex. 87122-6726. A suitable cathode system is the Model 514, available from Isoflux, Inc., Rochester, N.Y. Other sputtering techniques include closed loop cathode magnetron sputtering. PVD is also described in co-pending application U.S. Ser. No. 11/752,772, filed May 23, 2007. Pulsed laser deposition is described in co-pending application U.S. Ser. No. 11/752,736, filed May 23, 2007. Formation of IROX is also described in Cho et al., Jpn. J. Appl. Phys. 36(I)3B: 1722-1727 (1997), and Wessling et al., J. Micromech. Microeng. 16:5142-5148 (2006).


In some embodiments, a stent with different ceramic coatings (e.g., coatings 32, 34 in FIG. 3 with different morphologies) on different portions of the stent can be formed simultaneously via PVD. Referring to FIG. 7, an embodiment of a modified inverted cylindrical physical vapor deposition system is shown. System 70 includes a sputter chamber 71, a primary target 78 along the interior wall of the chamber, a connection 82 from a substrate power source to a substrate 72, e.g., a stent or a precursor component of a stent (“pre-stent”) such as a metal tube, a connection 84 from a second power source 84 to a secondary target 76, a magnetron 80, and a third power source (not shown) to power the cylindrical magnetron 80. The secondary target 76 is placed in the lumen of the substrate 72 at a distance from the stent luminal surface and is electrically insulated from the stent by an insulating material 74. The primary target 78 is close to the magnetron 80, which can create a magnetic field adjacent and lying principally parallel to the target and increase deposition rate.


Generally, a first power source, e.g., a negative DC voltage (not shown) is connected or applied to the primary target 78 (as a cathode in this circumstance) of magnitude sufficient to ionize the working gas, e.g., argon, into a plasma, while, e.g., the substrate is connected to an earth ground. The positive argon ions are attracted to the negatively charged target 78 with sufficient energy to sputter atoms of the primary target material, e.g., iridium oxide. The second power source 84 connected to the secondary target 76, e.g., iridium oxide rod, can provide a different potential difference between the target 76 and the substrate 72 (e.g., a stent), compared to the potential difference between the primary target 78 and the stent 72. This arrangement provides different interaction of the plasma gas with the secondary target and different amounts of energy in the luminal and abluminal coating process, therefore codeposition of different morphologies on the luminal and abluminal surfaces of the stent can be realized.


In some embodiments, forming a coating with the defined grain morphology requires higher power or energy then formation of a coating with the globular morphology. Accordingly, for example, the second power source 84 can provide a smaller negative DC voltage than the first power source to reduce the energy of sputtered species from the secondary target 76 as well as the plasma energy interaction with the coating in the process of codepositing the coating with the globular morphology onto the luminal surface and the coating with the defined grain morphology onto the abluminal surface. In some embodiments, when the substrate 72, e.g., a stent or pre-stent is metallic, the stent can function as a faraday cage that can at least partially shield the electromagnetic energy from getting in the stent lumen, and when the energy difference in and out of the stent lumen is sufficient to cause formation of coatings with different morphologies, the second power source 84 may not be necessary. In some embodiments, the energy of the sputtered species in the stent lumen can be reduced by controlling the power settings such that only the abluminal surface of the stent is coated with target material while no coating is formed on the luminal surface. In some embodiments, if forming a coating with the defined grain morphology requires higher power or energy then formation of a coating with the globular morphology, the second power source 84 can provide a larger negative DC voltage and therefore higher energy to the sputtered species.


In some embodiments, to further control the energy of sputtered material, the substrate electrical potential can also be tuned by controlling the energy supplied by the substrate power source 82. For example, a positive voltage can be applied to the substrate, e.g. to increase the potential difference between the substrate and the targets and thus to increase plasma interaction with the target. As another example, a negative voltage can be applied to the substrate e.g. to decrease the energy of the sputtered materials. In yet some embodiments, the secondary target 76 has a different target material than the primary target 78, therefore codeposition of coatings of different composition on different portions of the stent is allowed.


Alternatively or additionally, a stent with different ceramic coatings (e.g., coatings with different morphologies and/or different compositions) on different portions of the stent can also be formed sequentially via PVD using the system illustrated in FIG. 7 without breaking its vacuum. For example, in a first step, the substrate 72, e.g., a stent or pre-stent is coated with materials from the primary target 78 on all its surfaces, or as discussed above, by introducing the second power source 84 to the secondary target 76 and/or through faraday cage effect of a metallic stent, the energy of the sputtered species in the stent lumen can be reduced to a degree such that only the abluminal surface of the stent is coated with material from the primary target 78 while no coating is formed on the luminal surface of the stent. In a second step, enough power is provided to the secondary target 76 via the second power source to coat the luminal and cut-face surfaces, either on top of the coatings formed in the first step or on top of bare stent surfaces. As another example, the luminal surface can be coated with material from the secondary target in a first step, and the abluminal surface can later be coated with material from the primary target in a second step while the luminal surface is shielded from sputtered species by applying a potential to the secondary target.


To further control the compositions and/or morphologies of coatings on the luminal and cut-face surfaces of the stent or pre-stent, the secondary target 76 can be predetermined to have selected composition profile and/or shape. Referring particularly to FIG. 8A, in embodiments, the secondary target can have varying compositions along its longitudinal axis 76a. The phantom cylinder indicates the relative position of the secondary target inside the substrate 72 (e.g., a stent). For example, the two ends 81 of the secondary target can be an alloy of iridium while the center 83 can be pure iridium. As a result, the luminal surface of the stent can have different compositions along the longitudinal axis of the stent. Referring particularly to FIG. 8B, the secondary target 76 can have a dumbbell shape. The phantom cylinder indicates the relative position of the secondary target inside the substrate 72 (e.g., a stent). As illustrated, the two end regions of the target 76 are at a closer distance from the stent luminal surface than the central region of the target. Without wishing to be bound by theory, it is believed that the speed thus the energy of the sputtered species increases while the distance of the target to the substrate decreases. In particular embodiments, the higher energy leads to defined grain morphology and the low energy leads to globular morphology. As a result, the two terminal regions of the luminal surface can be coated with defined grain morphology while the central region of the luminal surface can be coated with globular morphology. The substrate 72, e.g., a stent or a present, can have some selected regions shielded by a mask before it is positioned in the deposition system in order to have some regions free of ceramic coatings. The substrate may be positioned in the center or an off-center location of the deposition system, e.g., to have a uniform or non-uniform coating on the abluminal surface. In other embodiments, the target 78 can be formed of different material or shape along the axial extension of the substrate to deposit different ceramics on select regions of the abluminal surfaces.


In embodiments, the stent can be formed of metal. Stent metal can be stainless steel, chrome, nickel, cobalt, tantalum, superelastic alloys such as nitinol, cobalt chromium, MP35N, and other metals. Suitable stent materials and stent designs are described in Heath '721, supra. In embodiments, the morphology and composition of the ceramic are selected to enhance adhesion to a particular metal. For example, in embodiments, the ceramic is deposited directly onto the metal surface of a stent body, e.g. a stainless steel, without the presence of an intermediate metal layer. In other embodiments, a layer of metal common to the ceramic is deposited onto the stent body before deposition to the ceramic. For example, a layer of iridium may be deposited onto the stent body, followed by deposition of IROX onto the iridium layer. Other suitable ceramics include metal oxides and nitrides, such as of iridium, zirconium, titanium, hafnium, niobium, tantalum, ruthenium, platinum and aluminum. The ceramic can be crystalline, partly crystalline or amorphous. The ceramic can be formed entirely of inorganic materials or a blend of inorganic and organic material (e.g. a polymer). The target can be formed of the ceramic to be deposited. A metal target (e.g. Ti, Ta, etc.) can also be provided and a ceramic formed through reactive sputtering by introducing e.g., O2 or N2 into the plasma to form a metal oxide or nitride.


In embodiments, a polymer, e.g., a drug eluting polymer, may be applied to the ceramic coatings of the stent. The ceramic can therefore also be selected for compatibility with a particular polymer coating to, e.g. enhance adhesion. For example, for a hydrophilic polymer, the surface chemistry of the ceramic is made more hydrophilic by e.g., increasing the oxygen content, which increases polar oxygen moieties, such as OH groups. Suitable drug eluting polymers may be hydrophilic or hydrophobic, and may be selected, without limitation, from polymers including, for example, polycarboxylic acids, cellulosic polymers, including cellulose acetate and cellulose nitrate, gelatin, polyvinylpyrrolidone, cross-linked polyvinylpyrrolidone, polyanhydrides including maleic anhydride polymers, polyamides, polyvinyl alcohols, copolymers of vinyl monomers such as EVA, polyvinyl ethers, polyvinyl aromatics such as polystyrene and copolymers thereof with other vinyl monomers such as isobutylene, isoprene and butadiene, for example, styrene-isobutylene-styrene (SIBS), styrene-isoprene-styrene (SIS) copolymers, styrene-butadiene-styrene (SBS) copolymers, polyethylene oxides, glycosaminoglycans, polysaccharides, polyesters including polyethylene terephthalate, polyacrylamides, polyethers, polyether sulfone, polycarbonate, polyalkylenes including polypropylene, polyethylene and high molecular weight polyethylene, halogenerated polyalkylenes including polytetrafluoroethylene, natural and synthetic rubbers including polyisoprene, polybutadiene, polyisobutylene and copolymers thereof with other vinyl monomers such as styrene, polyurethanes, polyorthoesters, proteins, polypeptides, silicones, siloxane polymers, polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate valerate and blends and copolymers thereof as well as other biodegradable, bioabsorbable and biostable polymers and copolymers. Coatings from polymer dispersions such as polyurethane dispersions (BAYHDROL®, etc.) and acrylic latex dispersions are also within the scope of the present disclosure. The polymer may be a protein polymer, fibrin, collagen and derivatives thereof, polysaccharides such as celluloses, starches, dextrans, alginates and derivatives of these polysaccharides, an extracellular matrix component, hyaluronic acid, or another biologic agent or a suitable mixture of any of these, for example. In one embodiment, the suitable polymer is polyacrylic acid, available as HYDROPLUS®. (Boston Scientific Corporation, Natick, Mass.), and described in U.S. Pat. No. 5,091,205, the disclosure of which is hereby incorporated herein by reference. U.S. Pat. No. 5,091,205 describes medical devices coated with one or more polyiocyanates such that the devices become instantly lubricious when exposed to body fluids. Another suitable polymer is a copolymer of polylactic acid and polycaprolactone. Suitable polymers are discussed in U.S. Publication No. 2006/0038027.


The polymer is preferably capable of absorbing a substantial amount of drug solution. When applied as a coating on a medical device in accordance with the present disclosure, the dry polymer is typically on the order of from about 1 to about 50 microns thick. In the case of a balloon catheter, the thickness is preferably about 1 to 10 microns thick, and more preferably about 2 to 5 microns. Very thin polymer coatings, e.g., of about 0.2-0.3 microns and much thicker coatings, e.g., more than 10 microns, are also possible. It is also within the scope of the present disclosure to apply multiple layers of polymer coating onto a medical device. Such multiple layers are of the same or different polymer materials.


The terms “therapeutic agent”, “pharmaceutically active agent”, “pharmaceutically active material”, “pharmaceutically active ingredient”, “drug” and other related terms may be used interchangeably herein and include, but are not limited to, small organic molecules, peptides, oligopeptides, proteins, nucleic acids, oligonucleotides, genetic therapeutic agents, non-genetic therapeutic agents, vectors for delivery of genetic therapeutic agents, cells, and therapeutic agents identified as candidates for vascular treatment regimens, for example, as agents that reduce or inhibit restenosis. By small organic molecule is meant an organic molecule having 50 or fewer carbon atoms, and fewer than 100 non-hydrogen atoms in total.


Exemplary therapeutic agents include, e.g., anti-thrombogenic agents (e.g., heparin); anti-proliferative/anti-mitotic agents (e.g., paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, inhibitors of smooth muscle cell proliferation (e.g., monoclonal antibodies), and thymidine kinase inhibitors); antioxidants; anti-inflammatory agents (e.g., dexamethasone, prednisolone, corticosterone); anesthetic agents (e.g., lidocaine, bupivacaine and ropivacaine); anti-coagulants; antibiotics (e.g., erythromycin, triclosan, cephalosporins, and aminoglycosides); agents that stimulate endothelial cell growth and/or attachment. Therapeutic agents can be nonionic, or they can be anionic and/or cationic in nature. Therapeutic agents can be used singularly, or in combination. Preferred therapeutic agents include inhibitors of restenosis (e.g., paclitaxel), anti-proliferative agents (e.g., cisplatin), and antibiotics (e.g., erythromycin). Additional examples of therapeutic agents are described in U.S. Published Patent Application No. 2005/0216074. Polymers for drug elution coatings are also disclosed in U.S. Published Patent Application No. 2005/019265A.


Any stent described herein can be dyed or rendered radiopaque by addition of, e.g., radiopaque materials such as barium sulfate, platinum or gold, or by coating with a radiopaque material. The stent can include (e.g., be manufactured from) metallic materials, such as stainless steel (e.g., 316L, BioDur® 108 (UNS S29108), and 304L stainless steel, and an alloy including stainless steel and 5-60% by weight of one or more radiopaque elements (e.g., Pt, Ir, Au, W) (PERSS®) as described in US-2003-0018380-A1, US-2002-0144757-A1, and US-2003-0077200-A1), Nitinol (a nickel-titanium alloy), cobalt alloys such as Elgiloy, L605 alloys, MP35N, titanium, titanium alloys (e.g., Ti-6A1-4V, Ti-50Ta, Ti-10Ir), platinum, platinum alloys, niobium, niobium alloys (e.g., Nb-1Zr) Co-28Cr-6Mo, tantalum, and tantalum alloys. Other examples of materials are described in commonly assigned U.S. application Ser. No. 10/672,891, filed Sep. 26, 2003; and U.S. application Ser. No. 11/035,316, filed Jan. 3, 2005. Other materials include elastic biocompatible metal such as a superelastic or pseudo-elastic metal alloy, as described, for example, in Schetsky, L. McDonald, “Shape Memory Alloys”, Encyclopedia of Chemical Technology (3rd ed.), John Wiley & Sons, 1982, vol. 20. pp. 726-736; and commonly assigned U.S. application Ser. No. 10/346,487, filed Jan. 17, 2003.


The stents described herein can be configured for vascular, e.g. coronary and peripheral vasculature or non-vascular lumens. For example, they can be configured for use in the esophagus or the prostate. Other lumens include biliary lumens, hepatic lumens, pancreatic lumens, and urethral lumens.


The stent can be of a desired shape and size (e.g., coronary stents, aortic stents, peripheral vascular stents, gastrointestinal stents, urology stents, tracheal/bronchial stents, and neurology stents). Depending on the application, the stent can have a diameter of between, e.g., about 1 mm to about 46 mm. In certain embodiments, a coronary stent can have an expanded diameter of from about 2 mm to about 6 mm. In some embodiments, a peripheral stent can have an expanded diameter of from about 4 mm to about 24 mm. In certain embodiments, a gastrointestinal and/or urology stent can have an expanded diameter of from about 6 mm to about 30 mm. In some embodiments, a neurology stent can have an expanded diameter of from about 1 mm to about 12 mm. An abdominal aortic aneurysm (AAA) stent and a thoracic aortic aneurysm (TAA) stent can have a diameter from about 20 mm to about 46 mm. The stent can be balloon-expandable, self-expandable, or a combination of both (e.g., Heath, U.S. Pat. No. 6,290,721). The ceramics can be used with other endoprostheses or medical devices, such as catheters, guide wires, and filters.


In embodiments, the drug-eluting polymer layer are provided only on the ceramic coating of the stent abluminal surface. In other embodiments, the polymer layer is provided as well or only on the ceramic coatings of luminal surface and/or cut-face surfaces.


All publications, patent applications, patents, and other references mentioned herein are incorporated by reference herein in their entirety.


Still further embodiments are in the following claims.

Claims
  • 1. A method of forming an endoprosthesis, comprising: providing in a deposition chamber a substrate having a first surface and a second surface opposite the first surface, the substrate being a tubular substrate, the first surface being an abluminal surface of the tubular substrate, and the second surface being a luminal surface of the tubular substrate;providing a first target and a second target in the chamber, the second target being in a lumen of the tubular substrate and the first target being outside the lumen of the tubular substrate;depositing material from the first target onto the first surface and material from the second target onto the second surface without removing the substrate from the chamber, andutilizing the substrate in an endoprosthesis.
  • 2. The method of claim 1 wherein the material from the first target and the material from the second target are deposited by physical vapor deposition.
  • 3. The method of claim 1 wherein the first target has a different composition than the second target.
  • 4. The method of claim 1 wherein the second target has different compositions in different regions.
  • 5. The method of claim 1 wherein the second target extends along an axis of the lumen, and the second target has a variable shape along its axial extension.
  • 6. The method of claim 2 wherein depositing by the physical vapor deposition comprises controlling a power on the substrate and first target.
  • 7. The method of claim 6 wherein depositing the material from the first target and the material from the second target comprises simultaneously depositing the material from the first target and the material from the second target onto the first surface and the second surface.
  • 8. The method of claim 6 or 7 wherein the deposited material from the first target and the deposited material from the second target form ceramic coatings on the first surface and the second surface.
  • 9. The method of claim 8 wherein the ceramic coating on the first surface and the ceramic coating on the second surface have different morphologies.
  • 10. The method of claim 9 wherein the ceramic coating on the first surface has a defined grain morphology.
  • 11. The method of claim 10 wherein the ceramic coating on the second surface has a globular morphology.
  • 12. The method of claim 11 wherein the ceramic coatings comprise a ceramic material selected from oxides and nitrides of iridium, zirconium, titanium, hafnium, niobium, tantalum, ruthenium, platinum and aluminum.
  • 13. The method of claim 12 wherein the ceramic material is iridium oxide.
  • 14. The method of claim 4 wherein the second target extends along an axis of the lumen and the different regions are at different axial locations.
  • 15. The method of claim 5 wherein the second target is wider near the end regions of the tubular substrate.
US Referenced Citations (1009)
Number Name Date Kind
3751283 Dawson Aug 1973 A
3758396 Vieth et al. Sep 1973 A
3910819 Rembaum et al. Oct 1975 A
3948254 Zaffaroni Apr 1976 A
3952334 Bokros et al. Apr 1976 A
3970445 Gale et al. Jul 1976 A
3993072 Zaffaroni Nov 1976 A
4044404 Martin et al. Aug 1977 A
4101984 MacGregor Jul 1978 A
4143661 LaForge et al. Mar 1979 A
4202055 Reiner et al. May 1980 A
4237559 Borom Dec 1980 A
4308868 Jhabvala Jan 1982 A
4309996 Theeuwes Jan 1982 A
4321311 Strangman Mar 1982 A
4330891 Branemark et al. May 1982 A
4334327 Lyman et al. Jun 1982 A
4401546 Nakamura et al. Aug 1983 A
4407695 Deckman et al. Oct 1983 A
4475972 Wong Oct 1984 A
4565744 Walter et al. Jan 1986 A
4585652 Miller et al. Apr 1986 A
4655771 Wallsten Apr 1987 A
4657544 Pinchuk Apr 1987 A
4665896 LaForge et al. May 1987 A
4705502 Patel Nov 1987 A
4733665 Palmaz Mar 1988 A
4738740 Pinchuk et al. Apr 1988 A
4743252 Martin et al. May 1988 A
4784659 Fleckenstein et al. Nov 1988 A
4800882 Gianturco Jan 1989 A
4842505 Annis et al. Jun 1989 A
4886062 Wiktor Dec 1989 A
4902290 Fleckenstein et al. Feb 1990 A
4954126 Wallsten Sep 1990 A
4976692 Atad Dec 1990 A
4994071 MacGregor Feb 1991 A
5061275 Wallsten et al. Oct 1991 A
5061914 Busch et al. Oct 1991 A
5073365 Katz et al. Dec 1991 A
5091205 Fan Feb 1992 A
5102403 Alt Apr 1992 A
5120322 Davis et al. Jun 1992 A
5125971 Nonami et al. Jun 1992 A
5147370 McNamara et al. Sep 1992 A
5163958 Pinchuk Nov 1992 A
5171607 Cumbo Dec 1992 A
5195969 Wang et al. Mar 1993 A
5205921 Shirkanzadeh Apr 1993 A
5219611 Giannelis et al. Jun 1993 A
5232444 Just et al. Aug 1993 A
5236413 Feiring Aug 1993 A
5242706 Cotell et al. Sep 1993 A
5250242 Nishio et al. Oct 1993 A
5270086 Hamlin Dec 1993 A
5279292 Baumann et al. Jan 1994 A
5290585 Elton Mar 1994 A
5302414 Alkhimov et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5314453 Jeutter May 1994 A
5322520 Milder Jun 1994 A
5326354 Kwarteng Jul 1994 A
5348553 Whitney Sep 1994 A
5366504 Andersen et al. Nov 1994 A
5368881 Kelman et al. Nov 1994 A
5378146 Sterrett Jan 1995 A
5380298 Zabetakis et al. Jan 1995 A
5383935 Shirkhanzadeh Jan 1995 A
5397307 Goodin Mar 1995 A
5405367 Schulman et al. Apr 1995 A
5439446 Barry Aug 1995 A
5443496 Schwartz et al. Aug 1995 A
5447724 Helmus et al. Sep 1995 A
5449373 Pinchasik et al. Sep 1995 A
5449382 Dayton Sep 1995 A
5464450 Buscemi et al. Nov 1995 A
5464650 Berg et al. Nov 1995 A
5474797 Sioshansi et al. Dec 1995 A
5500013 Buscemi et al. Mar 1996 A
5527337 Stack et al. Jun 1996 A
5545208 Wolff et al. Aug 1996 A
5551954 Buscemi et al. Sep 1996 A
5569463 Helmus et al. Oct 1996 A
5578075 Dayton Nov 1996 A
5587507 Kohn et al. Dec 1996 A
5591224 Schwartz et al. Jan 1997 A
5603556 Klink Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607463 Schwartz et al. Mar 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5614549 Greenwald et al. Mar 1997 A
5624411 Tuch Apr 1997 A
5649951 Davidson Jul 1997 A
5649977 Campbell Jul 1997 A
5672242 Jen Sep 1997 A
5674192 Sahatjian et al. Oct 1997 A
5674242 Phan et al. Oct 1997 A
5679440 Kubota Oct 1997 A
5681196 Jin et al. Oct 1997 A
5690670 Davidson Nov 1997 A
5693085 Buirge et al. Dec 1997 A
5693928 Egitto et al. Dec 1997 A
5711866 Lashmore et al. Jan 1998 A
5733924 Kanda et al. Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5741331 Pinchuk Apr 1998 A
5744515 Clapper Apr 1998 A
5749809 Lin May 1998 A
5758562 Thompson Jun 1998 A
5761775 Legome et al. Jun 1998 A
5769883 Buscemi et al. Jun 1998 A
5772864 Moller et al. Jun 1998 A
5776184 Tuch Jul 1998 A
5780807 Saunders Jul 1998 A
5788687 Batich et al. Aug 1998 A
5788979 Alt et al. Aug 1998 A
5795626 Gabel et al. Aug 1998 A
5797898 Santini, Jr. et al. Aug 1998 A
5807407 England et al. Sep 1998 A
5817046 Glickman Oct 1998 A
5824045 Alt Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5824077 Mayer Oct 1998 A
5830480 Ducheyne et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5843089 Sahatjian et al. Dec 1998 A
5843172 Yan Dec 1998 A
5852088 Dismukes et al. Dec 1998 A
5858556 Eckert et al. Jan 1999 A
5873904 Ragheb et al. Feb 1999 A
5874134 Rao et al. Feb 1999 A
5879697 Ding et al. Mar 1999 A
5882335 Leone et al. Mar 1999 A
5888591 Gleason et al. Mar 1999 A
5891108 Leone et al. Apr 1999 A
5891192 Murayama et al. Apr 1999 A
5902266 Leone et al. May 1999 A
5922021 Jang Jul 1999 A
5928247 Barry et al. Jul 1999 A
5951881 Rogers et al. Sep 1999 A
5954706 Sahatjian Sep 1999 A
5962136 Dewez et al. Oct 1999 A
5968091 Pinchuk et al. Oct 1999 A
5968092 Buscemi et al. Oct 1999 A
5968640 Lubowitz et al. Oct 1999 A
5972027 Johnson Oct 1999 A
5977204 Boyan et al. Nov 1999 A
5980551 Summers et al. Nov 1999 A
5980564 Stinson Nov 1999 A
5980566 Alt et al. Nov 1999 A
6013591 Ying et al. Jan 2000 A
6017577 Hostettler et al. Jan 2000 A
6022812 Smith et al. Feb 2000 A
6025036 McGill et al. Feb 2000 A
6034295 Rehberg et al. Mar 2000 A
6045877 Gleason et al. Apr 2000 A
6063101 Jacobsen et al. May 2000 A
6071305 Brown et al. Jun 2000 A
6074135 Tapphorn et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099561 Alt Aug 2000 A
6099562 Ding et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6110204 Lazarov et al. Aug 2000 A
6120536 Ding et al. Sep 2000 A
6120660 Chu et al. Sep 2000 A
6122564 Koch et al. Sep 2000 A
6139573 Sogard et al. Oct 2000 A
6139913 Van Steenkiste et al. Oct 2000 A
6153252 Hossainy et al. Nov 2000 A
6156435 Gleason et al. Dec 2000 A
6159142 Alt Dec 2000 A
6171609 Kunz Jan 2001 B1
6174329 Callol et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6180184 Gray et al. Jan 2001 B1
6187037 Satz Feb 2001 B1
6190404 Palmaz et al. Feb 2001 B1
6193761 Treacy Feb 2001 B1
6200685 Davidson Mar 2001 B1
6203536 Berg et al. Mar 2001 B1
6206915 Fagan et al. Mar 2001 B1
6206916 Furst Mar 2001 B1
6210715 Starling et al. Apr 2001 B1
6212434 Scheiner et al. Apr 2001 B1
6214042 Jacobsen et al. Apr 2001 B1
6217607 Alt Apr 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6241762 Shanley Jun 2001 B1
6245104 Alt Jun 2001 B1
6249952 Ding Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6253443 Johnson Jul 2001 B1
6254632 Wu et al. Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273908 Ndondo-Lay Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6280411 Lennox Aug 2001 B1
6283386 Van Steenkiste et al. Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287331 Heath Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6290721 Heath Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306144 Sydney et al. Oct 2001 B1
6315708 Salmon et al. Nov 2001 B1
6315794 Richter Nov 2001 B1
6323146 Pugh et al. Nov 2001 B1
6325825 Kula et al. Dec 2001 B1
6327504 Dolgin et al. Dec 2001 B1
6331330 Choy et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6337076 Studin Jan 2002 B1
6342507 Naicker et al. Jan 2002 B1
6348960 Etori et al. Feb 2002 B1
6358532 Starling et al. Mar 2002 B2
6358556 Ding et al. Mar 2002 B1
6361780 Ley et al. Mar 2002 B1
6364856 Ding et al. Apr 2002 B1
6365222 Wagner et al. Apr 2002 B1
6367412 Ramaswamy et al. Apr 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6387121 Alt May 2002 B1
6387124 Buscemi et al. May 2002 B1
6390967 Forman et al. May 2002 B1
6391052 Bulrge et al. May 2002 B2
6395325 Hedge et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6398806 You Jun 2002 B1
6413271 Hafeli et al. Jul 2002 B1
6416820 Yamada et al. Jul 2002 B1
6419692 Yang et al. Jul 2002 B1
6436133 Furst et al. Aug 2002 B1
6440503 Merdan et al. Aug 2002 B1
6458153 Bailey et al. Oct 2002 B1
6465052 Wu Oct 2002 B1
6468304 Dubois-Rande et al. Oct 2002 B1
6471721 Dang Oct 2002 B1
6471980 Sirhan et al. Oct 2002 B2
6475477 Kohn et al. Nov 2002 B1
6478815 Alt Nov 2002 B1
6479418 Li et al. Nov 2002 B2
6488715 Pope et al. Dec 2002 B1
6491666 Santini, Jr. et al. Dec 2002 B1
6491720 Vallana et al. Dec 2002 B1
6503921 Naicker et al. Jan 2003 B2
6504292 Choi et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6506972 Wang Jan 2003 B1
6514283 DiMatteo et al. Feb 2003 B2
6514289 Pope et al. Feb 2003 B1
6517888 Weber Feb 2003 B1
6524274 Rosenthal et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527938 Bales et al. Mar 2003 B2
6530951 Bates et al. Mar 2003 B1
6537310 Palmaz et al. Mar 2003 B1
6544582 Yoe Apr 2003 B1
6545097 Pinchuk et al. Apr 2003 B2
6558422 Baker et al. May 2003 B1
6558733 Hossainy et al. May 2003 B1
6565602 Rolando et al. May 2003 B2
6569489 Li May 2003 B1
6585765 Hossainy et al. Jul 2003 B1
6599558 Al-Lamee et al. Jul 2003 B1
6607598 Schwarz et al. Aug 2003 B2
6613083 Alt Sep 2003 B2
6613432 Zamora et al. Sep 2003 B2
6616765 Castro et al. Sep 2003 B1
6620194 Ding et al. Sep 2003 B2
6635082 Hossainy et al. Oct 2003 B1
6638302 Curcio et al. Oct 2003 B1
6641607 Hossainy et al. Nov 2003 B1
6652575 Wang Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6652581 Ding Nov 2003 B1
6652582 Stinson Nov 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6660343 McGill et al. Dec 2003 B2
6663662 Pacetti et al. Dec 2003 B2
6663664 Pacetti Dec 2003 B1
6669980 Hansen Dec 2003 B2
6673105 Chen Jan 2004 B1
6673999 Wang et al. Jan 2004 B1
6676987 Zhong et al. Jan 2004 B2
6676989 Kirkpatrick et al. Jan 2004 B2
6689803 Hunter Feb 2004 B2
6695865 Boyle et al. Feb 2004 B2
6699281 Vallana et al. Mar 2004 B2
6699282 Sceusa Mar 2004 B1
6709379 Brandau et al. Mar 2004 B1
6709397 Taylor Mar 2004 B2
6709451 Noble et al. Mar 2004 B1
6710053 Naicker et al. Mar 2004 B2
6712844 Pacetti Mar 2004 B2
6712845 Hossainy Mar 2004 B2
6713671 Wang et al. Mar 2004 B1
6716444 Castro et al. Apr 2004 B1
6723120 Yan Apr 2004 B2
6725901 Kramer et al. Apr 2004 B1
6726712 Raeder-Devens et al. Apr 2004 B1
6730120 Berg et al. May 2004 B2
6730699 Li et al. May 2004 B2
6733513 Boyle et al. May 2004 B2
6736849 Li et al. May 2004 B2
6740077 Brandau et al. May 2004 B1
6752826 Holloway et al. Jun 2004 B2
6752829 Kocur et al. Jun 2004 B2
6753071 Pacetti Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6761736 Woo et al. Jul 2004 B1
6764505 Hossainy et al. Jul 2004 B1
6764579 Veerasamy et al. Jul 2004 B2
6764709 Flanagan Jul 2004 B2
6765144 Wang et al. Jul 2004 B1
6767360 Alt et al. Jul 2004 B1
6774278 Ragheb et al. Aug 2004 B1
6776022 Kula et al. Aug 2004 B2
6776094 Whitesides et al. Aug 2004 B1
6780424 Claude Aug 2004 B2
6780491 Cathey et al. Aug 2004 B1
6783543 Jang Aug 2004 B2
6790228 Hossainy et al. Sep 2004 B2
6803070 Weber Oct 2004 B2
6805709 Schaldach et al. Oct 2004 B1
6805898 Wu et al. Oct 2004 B1
6807440 Weber Oct 2004 B2
6815609 Wang et al. Nov 2004 B1
6820676 Palmaz et al. Nov 2004 B2
6827737 Hill et al. Dec 2004 B2
6830598 Sung Dec 2004 B1
6833004 Ishii et al. Dec 2004 B2
6846323 Yip et al. Jan 2005 B2
6846841 Hunter et al. Jan 2005 B2
6849085 Marton Feb 2005 B2
6849089 Stoll Feb 2005 B2
6852122 Rush Feb 2005 B2
6861088 Weber et al. Mar 2005 B2
6866805 Hong et al. Mar 2005 B2
6869443 Buscemi et al. Mar 2005 B2
6869701 Aita et al. Mar 2005 B1
6875227 Yoon Apr 2005 B2
6878249 Kouyama et al. Apr 2005 B2
6884429 Koziak et al. Apr 2005 B2
6896697 Yip et al. May 2005 B1
6899914 Schaldach et al. May 2005 B2
6904658 Hines Jun 2005 B2
6908622 Barry et al. Jun 2005 B2
6908624 Hossainy et al. Jun 2005 B2
6913617 Reiss Jul 2005 B1
6915796 Sung Jul 2005 B2
6918927 Bates et al. Jul 2005 B2
6918929 Udipi et al. Jul 2005 B2
6923829 Boyle et al. Aug 2005 B2
6924004 Rao et al. Aug 2005 B2
6932930 DeSimone et al. Aug 2005 B2
6936066 Palmaz et al. Aug 2005 B2
6939320 Lennox Sep 2005 B2
6951053 Padilla et al. Oct 2005 B2
6953560 Castro et al. Oct 2005 B1
6955661 Herweck et al. Oct 2005 B1
6955685 Escamilla et al. Oct 2005 B2
6962822 Hart et al. Nov 2005 B2
6971813 Shekalim et al. Dec 2005 B2
6973718 Sheppard, Jr. et al. Dec 2005 B2
6979346 Hossainy et al. Dec 2005 B1
6979348 Sundar Dec 2005 B2
6984404 Talton et al. Jan 2006 B1
6991804 Helmus et al. Jan 2006 B2
7001421 Cheng et al. Feb 2006 B2
7011680 Alt Mar 2006 B2
7014654 Welsh et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7041130 Santini, Jr. et al. May 2006 B2
7048939 Elkins et al. May 2006 B2
7052488 Uhland May 2006 B2
7056338 Shanley et al. Jun 2006 B2
7056339 Elkins et al. Jun 2006 B2
7056591 Pacetti et al. Jun 2006 B1
7060051 Palasis Jun 2006 B2
7063748 Talton Jun 2006 B2
7066234 Sawitowski Jun 2006 B2
7077859 Sirhan et al. Jul 2006 B2
7078108 Zhang et al. Jul 2006 B2
7083642 Sirhan et al. Aug 2006 B2
7087661 Alberte et al. Aug 2006 B1
7099091 Taniguchi et al. Aug 2006 B2
7101391 Scheuermann et al. Sep 2006 B2
7101394 Hamm et al. Sep 2006 B2
7105018 Yip et al. Sep 2006 B1
7105199 Blinn et al. Sep 2006 B2
7144840 Yeung et al. Dec 2006 B2
7160592 Rypacek et al. Jan 2007 B2
7163715 Kramer Jan 2007 B1
7169177 Obara Jan 2007 B2
7169178 Santos et al. Jan 2007 B1
7195640 Falotico et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7198675 Fox et al. Apr 2007 B2
7208011 Shanley et al. Apr 2007 B2
7208172 Birdsall et al. Apr 2007 B2
7208190 Verlee et al. Apr 2007 B2
7229471 Gale et al. Jun 2007 B2
7235096 Van Tassel et al. Jun 2007 B1
7235098 Palmaz Jun 2007 B2
7238199 Feldman et al. Jul 2007 B2
7244272 Dubson et al. Jul 2007 B2
7247166 Pienknagura Jul 2007 B2
7247338 Pui et al. Jul 2007 B2
7261735 Llanos et al. Aug 2007 B2
7261752 Sung Aug 2007 B2
7273493 Ledergerber Sep 2007 B2
7294409 Lye et al. Nov 2007 B2
7311727 Mazumder et al. Dec 2007 B2
7344563 Vallana et al. Mar 2008 B2
7368065 Yang et al. May 2008 B2
7393589 Aharonov et al. Jul 2008 B2
7396538 Granada et al. Jul 2008 B2
7402173 Scheuermann et al. Jul 2008 B2
7416558 Yip et al. Aug 2008 B2
7435256 Stenzel Oct 2008 B2
7482034 Boulais Jan 2009 B2
7494950 Armitage et al. Feb 2009 B2
7497876 Tuke et al. Mar 2009 B2
7547445 Chudzik et al. Jun 2009 B2
7563324 Chen et al. Jul 2009 B1
7575593 Rea et al. Aug 2009 B2
7575632 Sundar Aug 2009 B2
7635515 Sherman Dec 2009 B1
7638156 Hossainy et al. Dec 2009 B1
7643885 Maschke Jan 2010 B2
7691461 Prabhu Apr 2010 B1
7713297 Alt May 2010 B2
7727275 Betts et al. Jun 2010 B2
7749264 Gregorich et al. Jul 2010 B2
7758636 Shanley et al. Jul 2010 B2
7771773 Namavar Aug 2010 B2
7837726 Von Oepen et al. Nov 2010 B2
7901452 Gale et al. Mar 2011 B2
7914809 Atanasoska et al. Mar 2011 B2
7922756 Lenz et al. Apr 2011 B2
7981441 Pantelidis et al. Jul 2011 B2
8029816 Hossainy et al. Oct 2011 B2
20010001834 Palmaz et al. May 2001 A1
20010002000 Kumar et al. May 2001 A1
20010002435 Berg et al. May 2001 A1
20010013166 Yan Aug 2001 A1
20010014717 Hossainy et al. Aug 2001 A1
20010014821 Juman et al. Aug 2001 A1
20010027299 Yang et al. Oct 2001 A1
20010029660 Johnson Oct 2001 A1
20010032011 Stanford Oct 2001 A1
20010032013 Marton Oct 2001 A1
20010044651 Steinke et al. Nov 2001 A1
20020000175 Hintermaier et al. Jan 2002 A1
20020004060 Heublein et al. Jan 2002 A1
20020007102 Salmon et al. Jan 2002 A1
20020007209 Scheerder et al. Jan 2002 A1
20020009604 Zamora et al. Jan 2002 A1
20020010505 Richter Jan 2002 A1
20020016623 Kula et al. Feb 2002 A1
20020016624 Patterson et al. Feb 2002 A1
20020028827 Naicker et al. Mar 2002 A1
20020032477 Helmus et al. Mar 2002 A1
20020038146 Harry Mar 2002 A1
20020042039 Kim et al. Apr 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020051846 Kirkpatrick et al. May 2002 A1
20020052288 Krell et al. May 2002 A1
20020065553 Weber May 2002 A1
20020072734 Liedtke et al. Jun 2002 A1
20020077520 Segal et al. Jun 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091375 Sahatjian et al. Jul 2002 A1
20020095871 McArdle et al. Jul 2002 A1
20020098278 Bates et al. Jul 2002 A1
20020099359 Santini, Jr. et al. Jul 2002 A1
20020099438 Furst Jul 2002 A1
20020103527 Kocur et al. Aug 2002 A1
20020103528 Schaldach et al. Aug 2002 A1
20020104599 Tillotson et al. Aug 2002 A1
20020121497 Tomonto Sep 2002 A1
20020123801 Pacetti et al. Sep 2002 A1
20020133222 Das Sep 2002 A1
20020133225 Gordon Sep 2002 A1
20020138100 Stoll et al. Sep 2002 A1
20020138136 Chandresekaran et al. Sep 2002 A1
20020140137 Sapieszko et al. Oct 2002 A1
20020142579 Vincent et al. Oct 2002 A1
20020144757 Craig et al. Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020165265 Hunter et al. Nov 2002 A1
20020165600 Banas et al. Nov 2002 A1
20020165607 Alt Nov 2002 A1
20020167118 Billiet et al. Nov 2002 A1
20020168466 Tapphorn et al. Nov 2002 A1
20020169493 Widenhouse et al. Nov 2002 A1
20020178570 Sogard et al. Dec 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020183682 Darvish et al. Dec 2002 A1
20020187260 Sheppard, Jr. et al. Dec 2002 A1
20020193336 Elkins et al. Dec 2002 A1
20020193869 Dang Dec 2002 A1
20020197178 Yan Dec 2002 A1
20020198601 Bales et al. Dec 2002 A1
20030003160 Pugh et al. Jan 2003 A1
20030003220 Zhong et al. Jan 2003 A1
20030004563 Jackson et al. Jan 2003 A1
20030004564 Elkins et al. Jan 2003 A1
20030006250 Tapphorn et al. Jan 2003 A1
20030009214 Shanley Jan 2003 A1
20030009233 Blinn et al. Jan 2003 A1
20030018380 Craig et al. Jan 2003 A1
20030018381 Whitcher et al. Jan 2003 A1
20030021820 Ahola et al. Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030028242 Vallana et al. Feb 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030032892 Erlach et al. Feb 2003 A1
20030033007 Sirhan et al. Feb 2003 A1
20030044446 Moro et al. Mar 2003 A1
20030047028 Kunitake et al. Mar 2003 A1
20030047505 Grimes et al. Mar 2003 A1
20030050687 Schwade et al. Mar 2003 A1
20030059640 Marton et al. Mar 2003 A1
20030060871 Hill et al. Mar 2003 A1
20030060873 Gertner et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030064095 Martin et al. Apr 2003 A1
20030069631 Stoll Apr 2003 A1
20030074053 Palmaz et al. Apr 2003 A1
20030074075 Thomas et al. Apr 2003 A1
20030074081 Ayers Apr 2003 A1
20030077200 Craig et al. Apr 2003 A1
20030083614 Eisert May 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083731 Kramer et al. May 2003 A1
20030087024 Flanagan May 2003 A1
20030088307 Shulze et al. May 2003 A1
20030088312 Kopia et al. May 2003 A1
20030100865 Santini, Jr. et al. May 2003 A1
20030104028 Hossainy et al. Jun 2003 A1
20030105511 Welsh et al. Jun 2003 A1
20030108659 Bales et al. Jun 2003 A1
20030114917 Holloway et al. Jun 2003 A1
20030114921 Yoon Jun 2003 A1
20030118649 Gao et al. Jun 2003 A1
20030125803 Vallana et al. Jul 2003 A1
20030130206 Koziak et al. Jul 2003 A1
20030130718 Palmas et al. Jul 2003 A1
20030138645 Gleason et al. Jul 2003 A1
20030139799 Ley et al. Jul 2003 A1
20030144728 Scheuermann et al. Jul 2003 A1
20030150380 Yoe Aug 2003 A1
20030153901 Herweck et al. Aug 2003 A1
20030153971 Chandrasekaran Aug 2003 A1
20030158598 Ashton et al. Aug 2003 A1
20030167878 Al-Salim et al. Sep 2003 A1
20030170605 Long et al. Sep 2003 A1
20030181975 Ishii et al. Sep 2003 A1
20030185895 Lanphere et al. Oct 2003 A1
20030185964 Weber et al. Oct 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030195613 Curcio et al. Oct 2003 A1
20030203991 Schottman et al. Oct 2003 A1
20030204168 Bosma et al. Oct 2003 A1
20030208256 DiMatteo et al. Nov 2003 A1
20030211135 Greenhalgh et al. Nov 2003 A1
20030216803 Ledergerber Nov 2003 A1
20030216806 Togawa et al. Nov 2003 A1
20030219562 Rypacek et al. Nov 2003 A1
20030225450 Shulze et al. Dec 2003 A1
20030236323 Ratner et al. Dec 2003 A1
20030236514 Schwarz Dec 2003 A1
20040000540 Soboyejo et al. Jan 2004 A1
20040002755 Fischell et al. Jan 2004 A1
20040006382 Sohier Jan 2004 A1
20040013873 Wendorff et al. Jan 2004 A1
20040016651 Windler Jan 2004 A1
20040018296 Castro et al. Jan 2004 A1
20040019376 Alt Jan 2004 A1
20040022824 Li et al. Feb 2004 A1
20040026811 Murphy et al. Feb 2004 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040029303 Hart et al. Feb 2004 A1
20040029706 Barrera et al. Feb 2004 A1
20040030218 Kocur et al. Feb 2004 A1
20040030377 Dubson et al. Feb 2004 A1
20040039438 Alt Feb 2004 A1
20040039441 Rowland et al. Feb 2004 A1
20040044397 Stinson Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040058858 Hu Mar 2004 A1
20040059290 Palasis Mar 2004 A1
20040059407 Escamilla et al. Mar 2004 A1
20040059409 Stenzel Mar 2004 A1
20040067301 Ding Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040073284 Bates et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040078071 Escamilla et al. Apr 2004 A1
20040086674 Holman May 2004 A1
20040088038 Dehnad et al. May 2004 A1
20040088041 Stanford May 2004 A1
20040092653 Ruberti et al. May 2004 A1
20040093071 Jang May 2004 A1
20040093076 White et al. May 2004 A1
20040098089 Weber May 2004 A1
20040098119 Wang May 2004 A1
20040102758 Davila et al. May 2004 A1
20040106984 Stinson Jun 2004 A1
20040106985 Jang Jun 2004 A1
20040106987 Palasis et al. Jun 2004 A1
20040106994 De Maeztus Martinez et al. Jun 2004 A1
20040111150 Berg et al. Jun 2004 A1
20040116999 Ledergerber Jun 2004 A1
20040117005 Nagarada Gadde et al. Jun 2004 A1
20040117008 Wnendt et al. Jun 2004 A1
20040122504 Hogendijk Jun 2004 A1
20040126566 Axen et al. Jul 2004 A1
20040133270 Grandt Jul 2004 A1
20040134886 Wagner et al. Jul 2004 A1
20040142014 Litvack et al. Jul 2004 A1
20040143317 Stinson et al. Jul 2004 A1
20040143321 Litvack et al. Jul 2004 A1
20040148010 Rush Jul 2004 A1
20040148015 Lye et al. Jul 2004 A1
20040158308 Hogendijk et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040167612 Grignani et al. Aug 2004 A1
20040171978 Shalaby Sep 2004 A1
20040172124 Vallana et al. Sep 2004 A1
20040178523 Kim et al. Sep 2004 A1
20040181252 Boyle et al. Sep 2004 A1
20040181275 Noble et al. Sep 2004 A1
20040181276 Brown et al. Sep 2004 A1
20040185168 Weber et al. Sep 2004 A1
20040191293 Claude Sep 2004 A1
20040191404 Hossainy et al. Sep 2004 A1
20040202692 Shanley et al. Oct 2004 A1
20040204750 Dinh Oct 2004 A1
20040211362 Castro et al. Oct 2004 A1
20040215169 Li Oct 2004 A1
20040215313 Cheng Oct 2004 A1
20040219214 Gravett et al. Nov 2004 A1
20040220510 Koullick et al. Nov 2004 A1
20040220662 Dang et al. Nov 2004 A1
20040224001 Pacetti et al. Nov 2004 A1
20040225346 Mazumder et al. Nov 2004 A1
20040225347 Lang Nov 2004 A1
20040228905 Greenspan et al. Nov 2004 A1
20040230176 Shanahan et al. Nov 2004 A1
20040230290 Weber et al. Nov 2004 A1
20040230293 Yip et al. Nov 2004 A1
20040234737 Pacetti Nov 2004 A1
20040234748 Stenzel Nov 2004 A1
20040236399 Sundar Nov 2004 A1
20040236415 Thomas Nov 2004 A1
20040236416 Falotico Nov 2004 A1
20040237282 Hines Dec 2004 A1
20040242106 Rabasco et al. Dec 2004 A1
20040243217 Andersen et al. Dec 2004 A1
20040243241 Istephanous Dec 2004 A1
20040247671 Prescott et al. Dec 2004 A1
20040249444 Reiss Dec 2004 A1
20040249449 Shanley et al. Dec 2004 A1
20040254635 Shanley et al. Dec 2004 A1
20040261702 Grabowy et al. Dec 2004 A1
20050002865 Klaveness et al. Jan 2005 A1
20050004663 Llanos et al. Jan 2005 A1
20050010275 Sahatjian et al. Jan 2005 A1
20050015142 Austin et al. Jan 2005 A1
20050019265 Hammer et al. Jan 2005 A1
20050019371 Anderson et al. Jan 2005 A1
20050020614 Prescott et al. Jan 2005 A1
20050021127 Kawula Jan 2005 A1
20050021128 Nakahama et al. Jan 2005 A1
20050027350 Momma et al. Feb 2005 A1
20050033411 Wu et al. Feb 2005 A1
20050033412 Wu et al. Feb 2005 A1
20050033417 Borges et al. Feb 2005 A1
20050037047 Song Feb 2005 A1
20050038498 Dubrow et al. Feb 2005 A1
20050042288 Koblish et al. Feb 2005 A1
20050055080 Istephanous et al. Mar 2005 A1
20050055085 Rivron et al. Mar 2005 A1
20050060020 Jenson Mar 2005 A1
20050060021 O'Brien et al. Mar 2005 A1
20050069630 Fox et al. Mar 2005 A1
20050070989 Lye et al. Mar 2005 A1
20050070990 Stinson Mar 2005 A1
20050070996 Dinh et al. Mar 2005 A1
20050072544 Palmaz et al. Apr 2005 A1
20050074479 Weber et al. Apr 2005 A1
20050074545 Thomas Apr 2005 A1
20050077305 Guevara Apr 2005 A1
20050079199 Heruth et al. Apr 2005 A1
20050079201 Rathenow et al. Apr 2005 A1
20050079356 Rathenow et al. Apr 2005 A1
20050087520 Wang et al. Apr 2005 A1
20050092615 Birdsall et al. May 2005 A1
20050096731 Looi et al. May 2005 A1
20050100577 Parker et al. May 2005 A1
20050100609 Claude May 2005 A1
20050102025 Laroche et al. May 2005 A1
20050106212 Gertner et al. May 2005 A1
20050107869 Sirhan et al. May 2005 A1
20050107870 Wang et al. May 2005 A1
20050110214 Shank et al. May 2005 A1
20050113798 Slater et al. May 2005 A1
20050113936 Brustad et al. May 2005 A1
20050118229 Boiarski Jun 2005 A1
20050119723 Peacock Jun 2005 A1
20050129727 Weber et al. Jun 2005 A1
20050131509 Atanassoska et al. Jun 2005 A1
20050131521 Marton Jun 2005 A1
20050131522 Stinson et al. Jun 2005 A1
20050136090 Falotico et al. Jun 2005 A1
20050137677 Rush Jun 2005 A1
20050137679 Changelian et al. Jun 2005 A1
20050137684 Changelian et al. Jun 2005 A1
20050149102 Radisch et al. Jul 2005 A1
20050149170 Tassel et al. Jul 2005 A1
20050159804 Lad et al. Jul 2005 A1
20050159805 Weber et al. Jul 2005 A1
20050160600 Bien et al. Jul 2005 A1
20050163954 Shaw Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050165468 Marton Jul 2005 A1
20050165476 Furst et al. Jul 2005 A1
20050171595 Feldman et al. Aug 2005 A1
20050180919 Tedeschi Aug 2005 A1
20050182478 Holman et al. Aug 2005 A1
20050186250 Gertner et al. Aug 2005 A1
20050187608 O'Hara Aug 2005 A1
20050192657 Colen et al. Sep 2005 A1
20050192664 Eisert Sep 2005 A1
20050196424 Chappa Sep 2005 A1
20050196518 Stenzel Sep 2005 A1
20050197687 Molaei et al. Sep 2005 A1
20050197689 Molaei Sep 2005 A1
20050203606 VanCamp Sep 2005 A1
20050208098 Castro et al. Sep 2005 A1
20050208100 Weber et al. Sep 2005 A1
20050209681 Curcio et al. Sep 2005 A1
20050211680 Li et al. Sep 2005 A1
20050214951 Nahm et al. Sep 2005 A1
20050216074 Sahatjian et al. Sep 2005 A1
20050216075 Wang et al. Sep 2005 A1
20050220853 Dao et al. Oct 2005 A1
20050221072 Dubrow et al. Oct 2005 A1
20050228477 Grainger et al. Oct 2005 A1
20050228491 Snyder et al. Oct 2005 A1
20050232968 Palmaz et al. Oct 2005 A1
20050233965 Schwartz et al. Oct 2005 A1
20050244459 DeWitt et al. Nov 2005 A1
20050251245 Sieradzki et al. Nov 2005 A1
20050251249 Sahatjian et al. Nov 2005 A1
20050255707 Hart et al. Nov 2005 A1
20050261760 Weber Nov 2005 A1
20050266039 Weber Dec 2005 A1
20050266040 Gerberding Dec 2005 A1
20050267561 Jones et al. Dec 2005 A1
20050271703 Anderson et al. Dec 2005 A1
20050271706 Anderson et al. Dec 2005 A1
20050276837 Anderson et al. Dec 2005 A1
20050278016 Welsh et al. Dec 2005 A1
20050278021 Bates et al. Dec 2005 A1
20050281863 Anderson et al. Dec 2005 A1
20050285073 Singh et al. Dec 2005 A1
20050287188 Anderson et al. Dec 2005 A1
20060013850 Domb Jan 2006 A1
20060015175 Palmaz et al. Jan 2006 A1
20060015361 Sattler et al. Jan 2006 A1
20060020742 Au et al. Jan 2006 A1
20060025848 Weber et al. Feb 2006 A1
20060034884 Stenzel Feb 2006 A1
20060035026 Atanassoska et al. Feb 2006 A1
20060038027 O'Connor et al. Feb 2006 A1
20060051397 Maier et al. Mar 2006 A1
20060052744 Weber Mar 2006 A1
20060052863 Harder et al. Mar 2006 A1
20060052864 Harder et al. Mar 2006 A1
20060062820 Gertner et al. Mar 2006 A1
20060069427 Savage et al. Mar 2006 A1
20060075044 Fox et al. Apr 2006 A1
20060075092 Kidokoro Apr 2006 A1
20060079863 Burgmeier et al. Apr 2006 A1
20060085062 Lee et al. Apr 2006 A1
20060085065 Krause et al. Apr 2006 A1
20060088561 Eini et al. Apr 2006 A1
20060088566 Parsonage et al. Apr 2006 A1
20060088567 Warner et al. Apr 2006 A1
20060088666 Kobrin et al. Apr 2006 A1
20060093643 Stenzel May 2006 A1
20060093646 Cima et al. May 2006 A1
20060095123 Flanagan May 2006 A1
20060100696 Atanasoska et al. May 2006 A1
20060115512 Peacock et al. Jun 2006 A1
20060121080 Lye et al. Jun 2006 A1
20060122694 Stinson et al. Jun 2006 A1
20060125144 Weber et al. Jun 2006 A1
20060127442 Helmus Jun 2006 A1
20060127443 Helmus Jun 2006 A1
20060129215 Helmus et al. Jun 2006 A1
20060129225 Kopia et al. Jun 2006 A1
20060136048 Pacetti et al. Jun 2006 A1
20060140867 Helfer et al. Jun 2006 A1
20060141156 Viel et al. Jun 2006 A1
20060142853 Wang et al. Jun 2006 A1
20060149365 Fifer et al. Jul 2006 A1
20060153729 Stinson et al. Jul 2006 A1
20060155361 Schomig et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060171985 Richard et al. Aug 2006 A1
20060171990 Asgari Aug 2006 A1
20060178727 Richter Aug 2006 A1
20060184235 Rivron et al. Aug 2006 A1
20060193886 Owens et al. Aug 2006 A1
20060193887 Owens et al. Aug 2006 A1
20060193888 Lye et al. Aug 2006 A1
20060193889 Spradlin et al. Aug 2006 A1
20060193890 Owens et al. Aug 2006 A1
20060199876 Troczynski et al. Sep 2006 A1
20060200229 Burgermeister et al. Sep 2006 A1
20060200231 O'Brien et al. Sep 2006 A1
20060210595 Singhvi et al. Sep 2006 A1
20060212109 Sirhan et al. Sep 2006 A1
20060222679 Shanley et al. Oct 2006 A1
20060222844 Stinson Oct 2006 A1
20060224234 Jayaraman Oct 2006 A1
20060229711 Yan et al. Oct 2006 A1
20060229713 Shanley et al. Oct 2006 A1
20060229715 Istephanous et al. Oct 2006 A1
20060230476 Atanasoska et al. Oct 2006 A1
20060233941 Olson Oct 2006 A1
20060251701 Lynn et al. Nov 2006 A1
20060263512 Glocker Nov 2006 A1
20060263515 Rieck et al. Nov 2006 A1
20060264138 Sowinski et al. Nov 2006 A1
20060271169 Lye et al. Nov 2006 A1
20060275554 Zhao et al. Dec 2006 A1
20060276877 Owens et al. Dec 2006 A1
20060276878 Owens et al. Dec 2006 A1
20060276879 Lye et al. Dec 2006 A1
20060276884 Lye et al. Dec 2006 A1
20060276885 Lye et al. Dec 2006 A1
20060276910 Weber Dec 2006 A1
20060280770 Hossainy et al. Dec 2006 A1
20060292388 Palumbo et al. Dec 2006 A1
20070003589 Astafieva et al. Jan 2007 A1
20070003817 Umeda et al. Jan 2007 A1
20070032858 Santos et al. Feb 2007 A1
20070032864 Furst et al. Feb 2007 A1
20070036905 Kramer Feb 2007 A1
20070038176 Weber et al. Feb 2007 A1
20070038289 Nishide et al. Feb 2007 A1
20070048452 Feng et al. Mar 2007 A1
20070052497 Tada Mar 2007 A1
20070055349 Santos et al. Mar 2007 A1
20070055354 Santos et al. Mar 2007 A1
20070059435 Santos et al. Mar 2007 A1
20070065418 Vallana et al. Mar 2007 A1
20070071789 Pantelidis et al. Mar 2007 A1
20070072978 Zoromski et al. Mar 2007 A1
20070073385 Schaeffer et al. Mar 2007 A1
20070073390 Lee Mar 2007 A1
20070106347 Lin May 2007 A1
20070110888 Radhakrishnan et al. May 2007 A1
20070112421 O'Brien May 2007 A1
20070123973 Roth et al. May 2007 A1
20070128245 Rosenberg et al. Jun 2007 A1
20070129789 Cottone et al. Jun 2007 A1
20070134288 Parsonage et al. Jun 2007 A1
20070135908 Zhao Jun 2007 A1
20070148251 Hossainy et al. Jun 2007 A1
20070151093 Curcio et al. Jul 2007 A1
20070154513 Atanasoska et al. Jul 2007 A1
20070156231 Weber Jul 2007 A1
20070173923 Savage et al. Jul 2007 A1
20070181433 Birdsall et al. Aug 2007 A1
20070190104 Kamath et al. Aug 2007 A1
20070191923 Weber et al. Aug 2007 A1
20070191928 Rolando et al. Aug 2007 A1
20070191931 Weber et al. Aug 2007 A1
20070191943 Shrivastava et al. Aug 2007 A1
20070198081 Castro et al. Aug 2007 A1
20070202466 Schwarz et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208412 Elmaleh Sep 2007 A1
20070212547 Fredrickson et al. Sep 2007 A1
20070213827 Arramon Sep 2007 A1
20070219626 Rolando et al. Sep 2007 A1
20070219642 Richter Sep 2007 A1
20070224116 Chandrasekaran et al. Sep 2007 A1
20070224224 Cordeira Da Silva et al. Sep 2007 A1
20070224235 Tenney et al. Sep 2007 A1
20070224244 Weber et al. Sep 2007 A1
20070244569 Weber et al. Oct 2007 A1
20070254091 Fredrickson et al. Nov 2007 A1
20070255392 Johnson Nov 2007 A1
20070264303 Atanasoska et al. Nov 2007 A1
20070269480 Richard et al. Nov 2007 A1
20070299509 Ding Dec 2007 A1
20080003251 Zhou Jan 2008 A1
20080004691 Weber et al. Jan 2008 A1
20080008654 Clarke et al. Jan 2008 A1
20080038146 Wachter et al. Feb 2008 A1
20080050413 Horvers et al. Feb 2008 A1
20080050415 Atanasoska et al. Feb 2008 A1
20080051881 Feng et al. Feb 2008 A1
20080057103 Roorda Mar 2008 A1
20080058921 Lindquist Mar 2008 A1
20080069854 Xiao et al. Mar 2008 A1
20080071348 Boismier et al. Mar 2008 A1
20080071349 Atanasoska et al. Mar 2008 A1
20080071350 Stinson Mar 2008 A1
20080071351 Flanagan et al. Mar 2008 A1
20080071352 Weber et al. Mar 2008 A1
20080071353 Weber et al. Mar 2008 A1
20080071355 Weber et al. Mar 2008 A1
20080071358 Weber et al. Mar 2008 A1
20080086198 Owens et al. Apr 2008 A1
20080086199 Dave et al. Apr 2008 A1
20080086201 Weber et al. Apr 2008 A1
20080097577 Atanasoska et al. Apr 2008 A1
20080107890 Bureau et al. May 2008 A1
20080124373 Xiao et al. May 2008 A1
20080140186 Grignani et al. Jun 2008 A1
20080145400 Weber et al. Jun 2008 A1
20080147177 Scheuermann et al. Jun 2008 A1
20080152929 Zhao Jun 2008 A1
20080160259 Nielson et al. Jul 2008 A1
20080171929 Katims Jul 2008 A1
20080188836 Weber et al. Aug 2008 A1
20080241218 McMorrow et al. Oct 2008 A1
20080243231 Flanagan et al. Oct 2008 A1
20080243240 Doty et al. Oct 2008 A1
20080249600 Atanasoska et al. Oct 2008 A1
20080249615 Weber Oct 2008 A1
20080255508 Wang Oct 2008 A1
20080255657 Gregorich et al. Oct 2008 A1
20080262607 Fricke Oct 2008 A1
20080275543 Lenz et al. Nov 2008 A1
20080288048 Rolando et al. Nov 2008 A1
20080290467 Shue et al. Nov 2008 A1
20080294236 Anand et al. Nov 2008 A1
20080294246 Scheuermann et al. Nov 2008 A1
20080306584 Kramer-Brown Dec 2008 A1
20090012603 Xu et al. Jan 2009 A1
20090018639 Kuehling Jan 2009 A1
20090018642 Benco Jan 2009 A1
20090018644 Weber et al. Jan 2009 A1
20090018647 Benco et al. Jan 2009 A1
20090028785 Clarke Jan 2009 A1
20090030504 Weber et al. Jan 2009 A1
20090076588 Weber Mar 2009 A1
20090076595 Lindquist et al. Mar 2009 A1
20090081450 Ascher et al. Mar 2009 A1
20090112310 Zhang Apr 2009 A1
20090118809 Scheuermann et al. May 2009 A1
20090118812 Kokate et al. May 2009 A1
20090118813 Scheuermann et al. May 2009 A1
20090118814 Schoenle et al. May 2009 A1
20090118815 Arcand et al. May 2009 A1
20090118818 Foss et al. May 2009 A1
20090118820 Gregorich et al. May 2009 A1
20090118821 Scheuermann et al. May 2009 A1
20090118822 Holman et al. May 2009 A1
20090118823 Atanasoska et al. May 2009 A1
20090123517 Flanagan et al. May 2009 A1
20090123521 Weber et al. May 2009 A1
20090138077 Weber et al. May 2009 A1
20090149942 Edelman et al. Jun 2009 A1
20090157165 Miller et al. Jun 2009 A1
20090157166 Singhal et al. Jun 2009 A1
20090157172 Kokate et al. Jun 2009 A1
20090177273 Piveteau et al. Jul 2009 A1
20090186068 Miller et al. Jul 2009 A1
20090192593 Meyer et al. Jul 2009 A1
20090202610 Wilson Aug 2009 A1
20090208428 Hill et al. Aug 2009 A1
20090220612 Perera Sep 2009 A1
20090259300 Dorogy, Jr. et al. Oct 2009 A1
20090264975 Flanagan et al. Oct 2009 A1
20090281613 Atanasoska et al. Nov 2009 A1
20090287301 Weber Nov 2009 A1
20090306765 Weber Dec 2009 A1
20090317766 Heidenau et al. Dec 2009 A1
20090319032 Weber et al. Dec 2009 A1
20100003904 Duescher Jan 2010 A1
20100008970 O'Brien et al. Jan 2010 A1
20100028403 Scheuermann et al. Feb 2010 A1
20100030326 Radhakrishnan et al. Feb 2010 A1
20100042206 Yadav et al. Feb 2010 A1
20100057197 Weber et al. Mar 2010 A1
20100070022 Kuehling Mar 2010 A1
20100070026 Ito et al. Mar 2010 A1
20100130346 Laine et al. May 2010 A1
20100131050 Zhao May 2010 A1
20110034752 Kessler et al. Feb 2011 A1
Foreign Referenced Citations (522)
Number Date Country
232704 Mar 2003 AT
288234 Feb 2005 AT
4825696 Oct 1996 AU
5588896 Dec 1996 AU
5266698 Jun 1998 AU
6663298 Sep 1998 AU
716005 Feb 2000 AU
5686499 Mar 2000 AU
2587100 May 2000 AU
2153600 Jun 2000 AU
1616201 May 2001 AU
737252 Aug 2001 AU
2317701 Aug 2001 AU
5215401 Sep 2001 AU
5890401 Dec 2001 AU
3597401 Jun 2002 AU
2002353068 Mar 2003 AU
2002365875 Jun 2003 AU
2003220153 Sep 2003 AU
2003250913 Jan 2004 AU
770395 Feb 2004 AU
2003249017 Feb 2004 AU
2003256499 Feb 2004 AU
771367 Mar 2004 AU
2003271633 Apr 2004 AU
2003272710 Apr 2004 AU
2003285195 Jun 2004 AU
2003287633 Jun 2004 AU
2003290675 Jun 2004 AU
2003290676 Jun 2004 AU
2003291470 Jun 2004 AU
2003295419 Jun 2004 AU
2003295535 Jun 2004 AU
2003295763 Jun 2004 AU
2004202073 Jun 2004 AU
2003300323 Jul 2004 AU
2004213021 Sep 2004 AU
2003293557 Jan 2005 AU
780539 Mar 2005 AU
8701135 Jan 1988 BR
0207321 Feb 2004 BR
0016957 Jun 2004 BR
0316065 Sep 2005 BR
0316102 Sep 2005 BR
1283505 Apr 1991 CA
2172187 Oct 1996 CA
2178541 Dec 1996 CA
2234787 Oct 1998 CA
2235031 Oct 1998 CA
2238837 Feb 1999 CA
2340652 Mar 2000 CA
2392006 May 2001 CA
2337565 Aug 2001 CA
2409862 Nov 2001 CA
2353197 Jan 2002 CA
2429356 Aug 2002 CA
2435306 Aug 2002 CA
2436241 Aug 2002 CA
2438095 Aug 2002 CA
2460334 Mar 2003 CA
2425665 Apr 2003 CA
2465704 Apr 2003 CA
2464906 May 2003 CA
2468677 Jun 2003 CA
2469744 Jun 2003 CA
2484383 Jan 2004 CA
2497602 Apr 2004 CA
2499976 Apr 2004 CA
2503625 May 2004 CA
2504524 May 2004 CA
2505576 May 2004 CA
2513721 May 2004 CA
2505080 Jun 2004 CA
2506622 Jun 2004 CA
2455670 Jul 2004 CA
2508247 Jul 2004 CA
2458172 Aug 2004 CA
2467797 Nov 2004 CA
2258898 Jan 2005 CA
2308177 Jan 2005 CA
2475968 Jan 2005 CA
2489668 Jun 2005 CA
2490170 Jun 2005 CA
2474367 Jan 2006 CA
2374090 May 2007 CA
2282748 Nov 2007 CA
2336650 Jan 2008 CA
2304325 May 2008 CA
1430491 Jul 2003 CN
1547490 Nov 2004 CN
1575154 Feb 2005 CN
1585627 Feb 2005 CN
1669537 Sep 2005 CN
3516411 Nov 1986 DE
3608158 Sep 1987 DE
19916086 Oct 1999 DE
19855421 May 2000 DE
19916315 Sep 2000 DE
9422438 Apr 2002 DE
1096902 May 2002 DE
10064596 Jun 2002 DE
10107339 Sep 2002 DE
69712063 Oct 2002 DE
10127011 Dec 2002 DE
10150995 Apr 2003 DE
69807634 May 2003 DE
69431457 Jun 2003 DE
10200387 Aug 2003 DE
69719161 Oct 2003 DE
02704283 Apr 2004 DE
60106962 Apr 2005 DE
60018318 Dec 2005 DE
69732439 Jan 2006 DE
69828798 Jan 2006 DE
102004044738 Mar 2006 DE
69830605 May 2006 DE
102005010100 Sep 2006 DE
602005001867 May 2008 DE
69829015 Mar 2009 DE
127987 Sep 1987 DK
914092 Aug 2002 DK
0222853 May 1987 EP
0129147 Jan 1990 EP
0734721 Oct 1996 EP
0650604 Sep 1998 EP
0865762 Sep 1998 EP
0875217 Nov 1998 EP
0633840 Nov 1999 EP
0953320 Nov 1999 EP
0971644 Jan 2000 EP
0982041 Mar 2000 EP
1105169 Jun 2001 EP
1124594 Aug 2001 EP
1127582 Aug 2001 EP
1131127 Sep 2001 EP
1132058 Sep 2001 EP
1150738 Nov 2001 EP
1172074 Jan 2002 EP
1181943 Feb 2002 EP
0914092 Apr 2002 EP
1216665 Jun 2002 EP
0747069 Sep 2002 EP
0920342 Sep 2002 EP
1242130 Sep 2002 EP
0623354 Oct 2002 EP
0806211 Oct 2002 EP
1275352 Jan 2003 EP
0850604 Feb 2003 EP
1280512 Feb 2003 EP
1280568 Feb 2003 EP
1280569 Feb 2003 EP
1294309 Mar 2003 EP
0824900 Apr 2003 EP
1308179 May 2003 EP
1310242 May 2003 EP
1314405 May 2003 EP
1316323 Jun 2003 EP
1339448 Sep 2003 EP
1347791 Oct 2003 EP
1347792 Oct 2003 EP
1348402 Oct 2003 EP
1348405 Oct 2003 EP
1359864 Nov 2003 EP
1365710 Dec 2003 EP
1379290 Jan 2004 EP
0902666 Feb 2004 EP
1460972 Feb 2004 EP
0815806 Mar 2004 EP
1400219 Mar 2004 EP
0950386 Apr 2004 EP
1461165 Apr 2004 EP
1416884 May 2004 EP
1424957 Jun 2004 EP
1429816 Jun 2004 EP
1448116 Aug 2004 EP
1448118 Aug 2004 EP
1449545 Aug 2004 EP
1449546 Aug 2004 EP
1254674 Sep 2004 EP
1453557 Sep 2004 EP
1457214 Sep 2004 EP
0975340 Oct 2004 EP
1319416 Nov 2004 EP
1476882 Nov 2004 EP
1479402 Nov 2004 EP
1482867 Dec 2004 EP
1011529 Jan 2005 EP
0875218 Feb 2005 EP
1181903 Feb 2005 EP
1504775 Feb 2005 EP
1042997 Mar 2005 EP
1754684 Mar 2005 EP
1520594 Apr 2005 EP
1521603 Apr 2005 EP
1028672 Jun 2005 EP
1539041 Jun 2005 EP
1543798 Jun 2005 EP
1550472 Jun 2005 EP
1328213 Jul 2005 EP
1551569 Jul 2005 EP
1554992 Jul 2005 EP
1560613 Aug 2005 EP
1562519 Aug 2005 EP
1562654 Aug 2005 EP
1570808 Sep 2005 EP
1575631 Sep 2005 EP
1575638 Sep 2005 EP
1575642 Sep 2005 EP
0900059 Oct 2005 EP
1581147 Oct 2005 EP
1586286 Oct 2005 EP
1254673 Nov 2005 EP
1261297 Nov 2005 EP
0927006 Jan 2006 EP
1621603 Feb 2006 EP
1218665 May 2006 EP
1222941 May 2006 EP
1359867 May 2006 EP
1656961 May 2006 EP
1277449 Jun 2006 EP
0836839 Jul 2006 EP
1684817 Aug 2006 EP
1687042 Aug 2006 EP
0907339 Nov 2006 EP
1359865 Nov 2006 EP
1214108 Jan 2007 EP
1416885 Jan 2007 EP
1441667 Jan 2007 EP
1192957 Feb 2007 EP
1236447 Feb 2007 EP
1764116 Mar 2007 EP
1185215 Apr 2007 EP
1442757 Apr 2007 EP
1786363 May 2007 EP
1787602 May 2007 EP
1788973 May 2007 EP
1796754 Jun 2007 EP
1330273 Jul 2007 EP
0900060 Aug 2007 EP
1355588 Aug 2007 EP
1355589 Aug 2007 EP
1561436 Aug 2007 EP
1863408 Dec 2007 EP
1071490 Jan 2008 EP
1096902 Jan 2008 EP
0895762 Feb 2008 EP
0916317 Feb 2008 EP
1891988 Feb 2008 EP
1402849 Apr 2008 EP
1466634 Jul 2008 EP
1572032 Jul 2008 EP
1527754 Aug 2008 EP
1968662 Sep 2008 EP
1980223 Oct 2008 EP
1988943 Nov 2008 EP
1490125 Jan 2009 EP
1829626 Feb 2009 EP
1229901 Mar 2009 EP
1128785 Apr 2009 EP
2051750 Apr 2009 EP
1427353 May 2009 EP
2169012 Jul 2002 ES
2867059 Sep 2005 FR
2397233 Jul 2004 GB
7002180 Jan 1995 JP
3673973 Feb 1996 JP
3249383 Oct 1996 JP
3614652 Nov 1998 JP
10295824 Nov 1998 JP
11188109 Jul 1999 JP
2000312721 Nov 2000 JP
2001098308 Apr 2001 JP
2001522640 Nov 2001 JP
2002065862 Mar 2002 JP
2002519139 Jul 2002 JP
2002523147 Jul 2002 JP
2003024449 Jan 2003 JP
2003521274 Jul 2003 JP
2003290361 Oct 2003 JP
2003533333 Nov 2003 JP
2004500925 Jan 2004 JP
2004188314 Jul 2004 JP
2004522559 Jul 2004 JP
2004223264 Aug 2004 JP
2004267750 Sep 2004 JP
2004275748 Oct 2004 JP
2004305753 Nov 2004 JP
2005501654 Jan 2005 JP
2005502426 Jan 2005 JP
2005040584 Feb 2005 JP
2005503184 Feb 2005 JP
2005503240 Feb 2005 JP
2005507285 Mar 2005 JP
2005511139 Apr 2005 JP
2005511242 Apr 2005 JP
2005131364 May 2005 JP
2005152526 Jun 2005 JP
2005152527 Jun 2005 JP
2005199054 Jul 2005 JP
2005199058 Jul 2005 JP
2008516726 May 2008 JP
20020066996 Aug 2002 KR
20040066409 Jul 2004 KR
20050117361 Dec 2005 KR
331388 Jan 2000 NZ
393044 Dec 1973 SU
WO8606617 Nov 1986 WO
WO9306792 Apr 1993 WO
WO9307934 Apr 1993 WO
WO9316656 Sep 1993 WO
WO9416646 Aug 1994 WO
WO9503083 Feb 1995 WO
WO9604952 Feb 1996 WO
WO9609086 Mar 1996 WO
WO9632907 Oct 1996 WO
WO9741916 Nov 1997 WO
WO9817331 Apr 1998 WO
WO9818408 May 1998 WO
WO9823228 Jun 1998 WO
WO9836784 Aug 1998 WO
WO9838946 Sep 1998 WO
WO9838947 Sep 1998 WO
WO9840033 Sep 1998 WO
WO9857680 Dec 1998 WO
WO9916386 Apr 1999 WO
WO9923977 May 1999 WO
WO99042631 Aug 1999 WO
WO9949928 Oct 1999 WO
WO9952471 Oct 1999 WO
WO9962432 Dec 1999 WO
WO0001322 Jan 2000 WO
WO0010622 Mar 2000 WO
WO0025841 May 2000 WO
WO0027303 May 2000 WO
WO0030710 Jun 2000 WO
WO0048660 Aug 2000 WO
WO0064506 Nov 2000 WO
WO0135928 May 2001 WO
WO0141827 Jun 2001 WO
WO0145862 Jun 2001 WO
WO0145763 Jul 2001 WO
WO0166036 Sep 2001 WO
WO0180920 Nov 2001 WO
WO0187263 Nov 2001 WO
WO0187342 Nov 2001 WO
WO0187374 Nov 2001 WO
WO0189417 Nov 2001 WO
WO0189420 Nov 2001 WO
WO0226162 Apr 2002 WO
WO0230487 Apr 2002 WO
WO0238827 May 2002 WO
WO0242521 May 2002 WO
WO0243796 Jun 2002 WO
WO0247581 Jun 2002 WO
WO02058753 Aug 2002 WO
WO02060349 Aug 2002 WO
WO02060350 Aug 2002 WO
WO02060506 Aug 2002 WO
WO02064019 Aug 2002 WO
WO02065947 Aug 2002 WO
WO02069848 Sep 2002 WO
WO02074431 Sep 2002 WO
WO02076525 Oct 2002 WO
WO02078668 Oct 2002 WO
WO02083039 Oct 2002 WO
WO02085253 Oct 2002 WO
WO02085424 Oct 2002 WO
WO02085532 Oct 2002 WO
WO02096389 Dec 2002 WO
WO03009779 Feb 2003 WO
WO03022178 Mar 2003 WO
WO03024357 Mar 2003 WO
WO03026713 Apr 2003 WO
WO03035131 May 2003 WO
WO03037220 May 2003 WO
WO03037221 May 2003 WO
WO03037223 May 2003 WO
WO03037398 May 2003 WO
WO03039407 May 2003 WO
WO03045582 Jun 2003 WO
WO03047463 Jun 2003 WO
WO03051233 Jun 2003 WO
WO03055414 Jul 2003 WO
WO03061755 Jul 2003 WO
WO03072287 Sep 2003 WO
WO03077802 Sep 2003 WO
WO03083181 Oct 2003 WO
WO03094774 Nov 2003 WO
WO2004004602 Jan 2004 WO
WO2004004603 Jan 2004 WO
WO2004006491 Jan 2004 WO
WO2004006807 Jan 2004 WO
WO2004006976 Jan 2004 WO
WO2004006983 Jan 2004 WO
WO2004010900 Feb 2004 WO
WO2004014554 Feb 2004 WO
WO2004026177 Apr 2004 WO
WO2004028347 Apr 2004 WO
WO2004028587 Apr 2004 WO
WO2004043292 May 2004 WO
WO2004043298 May 2004 WO
WO2004043300 May 2004 WO
WO2004043509 May 2004 WO
WO2004043511 May 2004 WO
WO2004045464 Jun 2004 WO
WO2004045668 Jun 2004 WO
WO2004058100 Jul 2004 WO
WO2004060428 Jul 2004 WO
WO2004064911 Aug 2004 WO
WO2004071548 Aug 2004 WO
WO2004072104 Aug 2004 WO
WO2004073768 Sep 2004 WO
WO2004080579 Sep 2004 WO
WO2004087251 Oct 2004 WO
WO2004096176 Nov 2004 WO
WO2004105639 Dec 2004 WO
WO2004108021 Dec 2004 WO
WO2004108186 Dec 2004 WO
WO2004108346 Dec 2004 WO
WO2004110302 Dec 2004 WO
WO2005004754 Jan 2005 WO
WO2005006325 Jan 2005 WO
WO2005011529 Feb 2005 WO
WO2005014892 Feb 2005 WO
WO2005027794 Mar 2005 WO
WO2005032456 Apr 2005 WO
WO2005034806 Apr 2005 WO
WO2005042049 May 2005 WO
WO2005044361 May 2005 WO
WO2005049520 Jun 2005 WO
WO2005051450 Jun 2005 WO
WO2005053766 Jun 2005 WO
WO2005063318 Jul 2005 WO
WO2005072437 Aug 2005 WO
WO2005082277 Sep 2005 WO
WO2005082283 Sep 2005 WO
WO2005086733 Sep 2005 WO
WO2005089825 Sep 2005 WO
WO2005091834 Oct 2005 WO
WO2005099621 Oct 2005 WO
WO2005099626 Oct 2005 WO
WO2005110285 Nov 2005 WO
WO2005115276 Dec 2005 WO
WO2005115496 Dec 2005 WO
WO2005117752 Dec 2005 WO
WO2006014969 Feb 2006 WO
WO2006015161 Feb 2006 WO
WO2006020742 Feb 2006 WO
WO2006029364 Mar 2006 WO
WO2006029708 Mar 2006 WO
WO2006036801 Apr 2006 WO
WO2006055237 May 2006 WO
WO2006061598 Jun 2006 WO
WO2006063157 Jun 2006 WO
WO2006063158 Jun 2006 WO
WO2006074549 Jul 2006 WO
WO2006083418 Aug 2006 WO
WO2006104644 Oct 2006 WO
WO2006104976 Oct 2006 WO
WO2006105256 Oct 2006 WO
WO2006107677 Oct 2006 WO
WO2006116752 Nov 2006 WO
WO2006124365 Nov 2006 WO
WO2007016961 Feb 2007 WO
WO2007034167 Mar 2007 WO
WO2007070666 Jun 2007 WO
WO2007095167 Aug 2007 WO
WO2007124137 Nov 2007 WO
WO2007126768 Nov 2007 WO
WO2007130786 Nov 2007 WO
WO2007133520 Nov 2007 WO
WO2007143433 Dec 2007 WO
WO2007145961 Dec 2007 WO
WO2007147246 Dec 2007 WO
WO2008002586 Jan 2008 WO
WO2008002778 Jan 2008 WO
WO2008024149 Feb 2008 WO
WO2008024477 Feb 2008 WO
WO2008024669 Feb 2008 WO
WO2008033711 Mar 2008 WO
WO2008034048 Mar 2008 WO
WO2008036549 Mar 2008 WO
WO2008039319 Apr 2008 WO
WO2008045184 Apr 2008 WO
WO2008057991 May 2008 WO
WO2008061017 May 2008 WO
WO2008063539 May 2008 WO
WO2008082698 Jul 2008 WO
WO2008106223 Sep 2008 WO
WO2008108987 Sep 2008 WO
WO2008124513 Oct 2008 WO
WO2008124519 Oct 2008 WO
WO2008134493 Nov 2008 WO
WO2008140482 Nov 2008 WO
WO2008147848 Dec 2008 WO
WO2008147853 Dec 2008 WO
WO2009009627 Jan 2009 WO
WO2009009628 Jan 2009 WO
WO2009012353 Jan 2009 WO
WO2009014692 Jan 2009 WO
WO2009014696 Jan 2009 WO
WO2009020520 Feb 2009 WO
WO2009050168 Apr 2009 WO
WO2009059081 May 2009 WO
WO2009059085 May 2009 WO
WO2009059086 May 2009 WO
WO2009059098 May 2009 WO
WO2009059129 May 2009 WO
WO2009059141 May 2009 WO
WO2009059146 May 2009 WO
WO2009059165 May 2009 WO
WO2009059166 May 2009 WO
WO2009059180 May 2009 WO
WO2009059196 May 2009 WO
WO2009089382 Jul 2009 WO
WO2009091384 Jul 2009 WO
WO2009094270 Jul 2009 WO
WO2009126766 Oct 2009 WO
WO2009135008 Nov 2009 WO
WO2009137786 Nov 2009 WO
WO2010030873 Mar 2010 WO
9710342 Jun 1998 ZA
Related Publications (1)
Number Date Country
20090118814 A1 May 2009 US