Endoscope objective optical system

Information

  • Patent Grant
  • 8786955
  • Patent Number
    8,786,955
  • Date Filed
    Thursday, October 10, 2013
    11 years ago
  • Date Issued
    Tuesday, July 22, 2014
    10 years ago
Abstract
The diameter of an endoscope insertion portion is reduced, and a wide field angle of an endoscope insertion portion is obtained. An endoscope objective optical system includes, from an object side, a first lens formed of a plano-concave lens having a concave surface facing an image side, a second lens formed of a plano-concave lens having a concave surface facing the object side, an aperture stop, and a third lens formed of a plano-convex lens having a plane surface facing the object side, and satisfies 0.7≦|fab/f|0.91.7≦|fe/fab|≦22≦fb/fa≦4where f: focal length of the entire system; fa: focal length of the first lens; fb: focal length of the second lens; fe: represents focal length of the third lens; fab: combined focal length from the first lens to the second lens.
Description
TECHNICAL FIELD

The present invention relates to an endoscope objective optical system.


BACKGROUND ART

Conventionally, in order to obtain a lens system suitable for use of a solid-state imaging element, it is known to use an objective optical system which has a long back focus and a small size and which provides improvements in optical performance, such as an improvement in color reproducibility and a satisfactory correction of the image field curvature (see, for example, PTL 1).


The objective optical system disclosed in PTL 1 is used for forming an object image on a solid-state imaging element arranged on a linear optical axis. Therefore, a prism, and the like, which bends the optical axis, does not need to be arranged between the objective optical system and the solid-state imaging element, and hence a certain length of back focus is sufficient for the formation of the object image.


CITATION LIST
Patent Literature



  • {PTL 1} Japanese Unexamined Patent Application, Publication No. Hei 10-197787



SUMMARY OF INVENTION
Technical Problem

However, in an ultra-thin video-scope type endoscope (whose insertion portion has an outer diameter of, for example, 3 mm), it is dimensionally difficult that a substrate with a solid-state imaging element mounted thereon is arranged perpendicularly to the linearly extending optical axis of the objective optical system. Therefore, it is necessary that the substrate is arranged in parallel with the optical axis of the objective optical system, and that the optical axis is bent by a prism arranged between the objective optical system and the imaging element. When such configuration is adopted, a sufficiently long back focus is needed in order to arrange the prism between objective optical system and the imaging element. Therefore, such configuration is difficult to be realized by the objective optical system disclosed in PTL 1.


The present invention has been made in view of the above described circumstances. An object of the present invention is to provide an endoscope objective optical system capable of reducing the diameter of an endoscope insertion portion and obtaining a wide field angle of the endoscope insertion portion.


Solution to Problem

In order to achieve the above described object, the present invention provides the following solutions.


An aspect of the present invention provides an endoscope objective optical system including, in order from an object side, a first lens formed of a plano-concave lens having a concave surface facing an image side, a second lens formed of a plano-concave lens having a concave surface facing the object side, an aperture stop, and a third lens formed of a plano-convex lens having a plane surface facing the object side, the endoscope objective optical system satisfying the following conditional expressions (1) to (3):

0.7≦|fab/f|≦0.9   (1)
1.7≦|fe/fab|≦2   (2)
2≦fb/fa≦4   (3)


where f represents a focal length of the entire system, fa represents a focal length of the first lens, fb represents a focal length of the second lens, fe represents a focal length of the third lens, and fab represents a combined focal length from the first lens to the second lens.


According to the present aspect, when the endoscope objective optical system satisfies conditional expression (1), a long back focus can be obtained, and when the endoscope objective optical system satisfies conditional expression (2), a wide field angle can be obtained. Further, when the endoscope objective optical system satisfies conditional expression (3), the height of a light beam passing through the first lens can be suppressed low and thereby the diameter of the first lens can be reduced. That is, in the endoscope objective optical system which satisfies these three conditions (1) to (3), a long back focus can be obtained so that an imaging element can be arranged in parallel with the optical axis of the objective optical system and the optical axis can be bent by a prism. Also, the diameter of the endoscope objective optical system can be reduced so as to be applicable to an ultra-thin insertion portion, and the field angle of the endoscope objective optical system can be increased.


In the above-described aspect, the endoscope objective optical system may satisfy the following conditional expression (4):

0.9≦Na/Nb≦1   (4)


where Na represents a refractive index at a d-line of a glass material forming the first lens, and Nb represents a refractive index at a d-line of a glass material forming the second lens.


With this configuration, the curvature of the second lens can be made large, as a result which the total thickness of the second lens can be reduced. Therefore, the distance from the first lens to the brightness diaphragm can be reduced, so that the height of the light beam passing through the first lens can be suppressed low and thereby the diameter of the first lens can be further reduced.


Advantageous Effects of Invention

According to the present invention, it is possible to obtain the effects that the diameter of an endoscope insertion portion is reduced and that a wide field angle of the endoscope insertion portion is obtained.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a view showing an endoscope objective optical system according to an embodiment of the present invention.



FIG. 2 is a view showing an imaging optical system including the endoscope objective optical system of FIG. 1.



FIG. 3 is a view showing a modification of the endoscope objective optical system of FIG. 1.



FIG. 4 is a view showing a lens array of an imaging optical system including a first example of the endoscope objective optical system of FIG. 1.



FIG. 5 is a view showing a lens array of an imaging optical system including a second example of the endoscope objective optical system of FIG. 1.



FIG. 6 is a view showing a lens array of an imaging optical system including a third example of the endoscope objective optical system of FIG. 1.



FIG. 7 is a view showing a lens array of an imaging optical system including a fourth example of the endoscope objective optical system of FIG. 1.





DESCRIPTION OF EMBODIMENT

In the following, an endoscope objective optical system 1 according to an embodiment of the present invention will be described with reference to the accompanying drawings.


As shown in FIG. 1, the endoscope objective optical system 1 according to the present embodiment includes, in order from the object side, a first lens 2, a second lens 3, an infrared cut filter 4, an aperture stop 5, and a third lens 6.


The first lens 2 is a plano-concave lens and is arranged so that the concave surface thereof faces the image side.


The second lens 3 is a plano-concave lens and is arranged so that the concave surface thereof faces the object side.


The third lens 6 is a plano-convex lens and is arranged so that the plane surface thereof faces the object side.


In the present embodiment, each of the lenses 2, 3 and 6 satisfy the following conditional expressions (1) to (4).

0.7≦|fab/f|≦0.9   (1)
1.7≦|fe/fab|≦2   (2)
2≦fb/fa≦4   (3)
0.9≦Na/Nb≦1   (4)


Here, f represents the focal length of the entire system, fa represents the focal length of the first lens 2, fb represents the focal length of the second lens 3, fe represents the focal length of the third lens 6, fab represents the combined focal length from the first lens 2 to the second lens 3, Na represents a refractive index at a d-line of a glass material forming the first lens 2, and Nb represents a refractive index at a d-line of a glass material forming the second lens 3.


The effects of the endoscope objective optical system 1 according to the present embodiment configured in this way are described as follows.


In the endoscope objective optical system 1 according to the present embodiment, each of the first lens 2 and the second lens 3 is configured by a plano-concave lens, so that the negative power can be divided by the two lenses 2 and 3. Therefore, the negative power of each of the first lens 2 and the second lens 3 can be made smaller than the negative power at the time when the portion corresponding to the first and second lenses 2 and 3 is realized by using a single lens. As a result, ease of processing can be improved as compared with the case where a lens having a small diameter and strong negative power is processed.


Further, when the endoscope objective optical system 1 according to the present embodiment satisfies conditional expression (1), a long back focus can be obtained.


That is, as shown in FIG. 2, the endoscope objective optical system 1 according to the present embodiment is used in such a manner that a substrate 7 is arranged in parallel with the optical axis of the endoscope objective optical system 1, and that a parallel plate 9 and a prism 10 are arranged between the endoscope objective optical system 1 and a solid-state imaging element 8 provided on the substrate 7.


The back focus length of the endoscope objective optical system 1 is increased to thereby enable the parallel plate 9 and the prism 10 to be arranged. Even with such arrangement, the size of the substrate 7 does not directly affect the size of the outer diameter of the insertion portion. Therefore, even when the size of the substrate 7 is large, the diameter of the insertion portion can be reduced. In FIG. 2, reference numeral 11 denotes a wiring connected to the substrate 7, and reference numeral 12 denotes an adhesive layer.


Further, when the endoscope objective optical system 1 according to the present embodiment satisfies conditional expression (2), a wide field angle can be obtained.


Further, when the endoscope objective optical system 1 according to the present embodiment satisfies conditional expression (3), the height of the light beam passing through the first lens 2 can be suppressed low. As a result, the outer diameter of the first lens 2 can be reduced, and thereby the outer diameter of the insertion portion can be reduced.


When the endoscope objective optical system 1 according to the present embodiment satisfies the above-described three conditions, the back focus can be made long enough to provide the prism 10, and the like. Therefore, the endoscope objective optical system 1 according to the present embodiment has advantages of reducing the diameter of the insertion portion and of increasing the field angle.


Further, when the endoscope objective optical system 1 according to the present embodiment satisfies conditional expression (4), the curvature of the second lens 3 can be kept large. As a result, the total thickness of the second lens 3 is made small, so that the distance from the first lens 2 to the brightness diaphragm 5 can be reduced. That is, the height of the light beam passing through the first lens 2 can be suppressed low also by this effect. As a result, the outer diameter of the first lens 2 can be made small, and thereby the diameter of the insertion portion can be further reduced.


It should be noted that, in the present embodiment, an example is shown in which the infrared cut filter 4 is arranged between the second lens 3 and the third lens 6, but instead of this arrangement, as shown in FIG. 3, the infrared cut filter 4 may be arranged between the first lens 2 and the second lens 3.


EXAMPLES

Next, examples of the endoscope objective optical system 1 according to the above-described embodiment will be described below.


First Example


FIG. 4 shows a lens array of an imaging optical system 20 including the endoscope objective optical system 1, according to a first example of the present embodiment, and Table 1 shows lens data. The lens data of Table 1 are normalized so that the focal length of the entire system is substantially equal to 1.


In the present example, the field angle is set to 108°.













TABLE 1





Surface number
r
d
n
ν



















Object

56.577




1

0.6506309
1.7682
71.79


2
1.001406
0.4813701


3
−2.944812
0.6223426
1.882997
40.765107


4

0.057


5

0.848649
1.52113
66.5


6

0


STO

0.0282883


8

0


9

1.131532
1.882997
40.765107


10
−1.306919
0.7358551


11

1.131532
1.51633
64.142022


12

0.0565766
1.51
64.14


13

2.480884
1.61061
50.2


14

0









Further, in the present example, the specification values of the lenses are as follows.


fab=−0.849


f=0.988


fa=−3.335


fb=−1.304


fe=1.48


Na=1.7682


Nb=1.882997


Second Example


FIG. 5 shows a lens array of an imaging optical system 20 including the endoscope objective optical system 1, according to a second example of the present embodiment, and Table 2 shows lens data. The lens data of Table 2 are normalized so that the focal length of the entire system is substantially equal to 1.


In the present example, the field angle is set to 100°.













TABLE 2





Surface number
r
d
n
ν



















Object

53.855




1

0.6193284
1.7682
71.79


2
0.9532272
0.373


3

0.8078197
1.52113
66.5


4

0.139


5
−2.803134
0.5924011
1.882997
40.765107


6

0


STO

0.02692732


8

0


9

1.077093
1.882997
40.765107


10
−1.14979
70.7054959


11

1.077093
1.51633
64.142022


12

0.05385465
1.51
64.14


13

2.361526
1.61061
50.2


14

0









Further, in the present example, the specification values of the lenses are as follows.


fab=−0.722


f=0.989


fa=−1.241


fb=−3.175


fe=1.302


Na=1.7682


Nb=1.882997


Third Example


FIG. 6 shows a lens array of an imaging optical system 20 including the endoscope objective optical system 1, according to a third example of the present embodiment, and Table 3 shows lens data. The lens data of Table 3 are normalized so that the focal length of the entire system is substantially equal to 1.


In the present example, the field angle is set to 125°.













TABLE 3





Surface number
r
d
n
ν



















Object

62.893




1

0.7232704
1.882997
40.765107


2
1
0.4865849


3
−4.207973
0.6918239
1.92286
18.896912


4

0.06289308


5

0.9433962
1.52113
66.5


6

0


STO

0.06289308


8

0


9

1.259103
1.882997
40.765107


10
−1.43547
0.8115168


11

1.257862
1.51633
64.142022


12

0.06289308
1.51
64.14


13

2.757862
1.61061
50.2


14

0









Further, in the present example, the specification values of the lenses are as follows.


fab=−0.829


f=0.999


fa=−1.126


fb=−4.504


fe=1.616


Na=1.882997


Nb=1.92286


Fourth Example


FIG. 7 shows a lens array of an imaging optical system 20 including the endoscope objective optical system 1, according to a fourth example of the present embodiment, and Table 4 shows lens data. The lens data of Table 4 are normalized so that the focal length of the entire system is substantially equal to 1.


In the present example, the field angle is set to 134°.













TABLE 4





Surface number
r
d
n
ν



















Object

62.893




1

0.7232704
1.772499
49.598371


2
1.199298
0.6595863


3
−2.887181
0.6918239
1.92286
18.896912


4

0.06289308


5

0.9433962
1.52113
66.5


6

0


STO

0.06289308


8

0


9

1.259103
1.882997
40.765107


10
−1.42779
0.539


11

1.257862
1.51633
64.142022


12

0.06289308
1.51
64.14


13

2.757862
1.61061
50.2


14

0









Further, in the present example, the specification values of the lenses are as follows.


fab=−0.902


f=1.001


fa=−1.545


fb=−3.09


fe=1.608


Na=1.772499


Nb=1.92286


Table 5 shows values of conditional expressions (1) to (4) in the first to fourth examples.


From Table 5, it is seen that each of the first to fourth examples satisfies conditional expressions (1) to (4).


Further, Table 6 shows, as reference examples, values of conditional expressions (1) to (4) in each of the examples of PTL 1. It is seen that all of these examples do not satisfy conditional expressions (1) to (4).













TABLE 5





CONDI-






TIONAL


EXPRES-
FIRST
SECOND
THIRD
FOURTH


SION
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE



















(1)
0.85
0.72
0.83
0.90


(2)
1.74
1.80
1.95
1.78


(3)
2.56
2.56
4.00
2.00


(4)
0.94
0.94
0.98
0.90




















TABLE 6






FIRST
SECOND
THIRD
FOURTH


CONDI-
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE


TIONAL
OF PRE-
OF PRE-
OF PRE-
OF PRE-


EXPRES-
CEDING
CEDING
CEDING
CEDING


SION
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE



















(1)
1.392
1.335
1.334
4.854


(2)
0.84
0.953
0.953
0.277


(3)
0.964
1.524
1.524
−2.629


(4)
1.244
1.244
1.244




















{Reference Signs List}


















1
Endoscope objective optical system



2
First lens



3
Second lens



5
Brightness diaphragm



6
Third lens









Claims
  • 1. An endoscope objective optical system comprising in order from an object side: a first lens formed of a plano-concave lens having a concave surface facing an image side;a second lens formed of a plano-concave lens having a concave surface facing the object side;an aperture stop; anda third lens formed of a plano-convex lens having a plane surface facing the object side,the endoscope objective optical system satisfying the following conditional expressions (1) to (3): 0.7≦|fab/f|≦0.9   (1)1.7≦|fe/fab|≦2   (2)2≦fb/fa≦4   (3)where f represents a focal length of the entire system,fa represents a focal length of the first lens,fb represents a focal length of the second lens,fe represents a focal length of the third lens, andfab represents a combined focal length from the first lens to the second lens.
  • 2. The endoscope objective optical system according to claim 1, satisfying the following conditional expression (4): 0.9≦Na/Nb≦1   (4)where Na represents a refractive index at a d-line of a glass material forming the first lens, andNb represents a refractive index at a d-line of a glass material forming the second lens.
Priority Claims (1)
Number Date Country Kind
2012-113342 May 2012 JP national
US Referenced Citations (6)
Number Name Date Kind
4979808 Yamagata et al. Dec 1990 A
6695775 Watanabe et al. Feb 2004 B2
7027231 Miyano Apr 2006 B2
8243129 Uzawa Aug 2012 B2
8300325 Katahira Oct 2012 B2
8477436 Sasamoto Jul 2013 B2
Foreign Referenced Citations (1)
Number Date Country
10-197787 Jul 1998 JP
Non-Patent Literature Citations (1)
Entry
International Search Report, dated Jun. 18, 2013, issued in corresponding International Application No. PCT/JP2013/063612.
Related Publications (1)
Number Date Country
20140098429 A1 Apr 2014 US
Continuations (1)
Number Date Country
Parent PCT/JP2013/063612 May 2013 US
Child 14050796 US