The apparatuses (including systems and devices) described herein may be related to steerable elongate devices. In particular, described herein are tendon-steerable elongate members suitable for medical applications in which tension and/or breakage of one or more tendons used to steer the device may be sensed.
Bending of elongate members such as steerable catheters allows these devices to be used in many beneficial ways, including when performing surgical procedures. For a catheter (and similar elongate, bendable members), articulation may be achieved by tensioning a tendon (also referred to herein as pull wire) which runs the length of the device, and is typically attached at the distal end, so that it can be actuated proximally. In a device with free floating tendons, wherein the tendons are not pre-tensioned, a certain level of slack within the catheter will likely exist. To remove the slack consistently, a tensioning algorithm based on measured force on the wire may be used. However, sensor size and placement can result in noise or inaccurate readings. Likewise, in the event of a wire breakage, external force sensors may detect a drop of tension on a wire, but may be unreliable, and may increase the complexity, size, and cost for the catheter.
One alternative to a traditional strain gauge is a resistance wire tension measuring gauge, such as described in U.S. Pat. No. 4,803,888, in which the electrical resistance of a wire was found to be related to the strain on the wire. To date, however, adapting such resistance measuring wires as part of a steerable guidewire has not been descried and/or successfully achieved. This may be due to the relative complexity of the tendon-drive elongate members, including the need for small diameters and the difficulty in accurately delivering power to the wire(s) acting as a strain gauge and the uncertainty associated with detecting a robust change in resistance with materials useful as tendons (wires) in steerable elongate members useful for medical applications.
Thus, it would be useful to provide tendon-steerable elongate devices such as catheters in which the tension on the tendon may be easily and accurately detected. Described herein are elongate, steerable devices, such as catheters, that are configured to directly measure the wire tension, as well as reliably detect wire breakage.
In general, described herein are tendon-steerable elongate apparatuses, and particularly medical apparatuses, that may be configured to easily and accurately detect strain on the tendons. Although the examples of tendon-steerable elongate devices provided herein are primarily elongate catheters for medical use, the features, principles and methods described herein may generally be adapted for use with any elongate tendon-steerable member, including steerable guidewires, sleeves, probes, or the like. Thus, the term “catheter” recited herein may refer to any type of elongate and tendon-steerable apparatus, including guidewires, sleeves, probes, etc.
Any of the apparatuses described herein may be a device and/or system (e.g., a related or interaction set of devices). For example, described herein are elongate catheter apparatuses having a plurality of tendons that are configured to be tensioned (e.g., pulled, and/or in some variations, pushed) to steer the apparatus, e.g., by bending the distal tip region (or an intermediate region) of the apparatus. The tendons may be electrically conductive (e.g., may comprise an electrically conductive material, such as steel and other alloys, including shape memory alloys (e.g., Nitinol). The apparatus may include, or may be configured to interact with, a sensing circuitry that can be put into electrical communication with the electrically conductive tendons of the apparatus, so that the sensing circuitry may detect, and in some cases respond to, tension on any of the tendons to which it is connected. The sensing circuitry may be on the elongate medical device (e.g., catheter), or it may be on a separate device that is placed in electrical contract/communication with the elongate medical device. For example, described herein are driving units, such as catheter steering units, that include sensing circuitry, to detect tension on one or more tendons (wires) of an elongate medical device when the driving unit/device is connected to a steerable elongate member such as a steerable catheter.
For example, described herein are steerable catheter systems that include: a plurality of electrically conductive tendons extending along a length of a steerable catheter; and a sensing circuit configured to be in electrical connection with the plurality of tendons, wherein the sensing circuit is configured to measure an electrical resistance of one or more tendon of the plurality of tendons.
Any of these steerable catheter systems may include: a steerable catheter, the steerable catheter comprising a body having an elongate length, a lumen extending through the elongate length, an electrically conductive outer member extending along the elongate length of the body, and a plurality of electrically conductive tendons each extending along the length of the catheter and having a proximal end region and a distal end region, wherein the distal end region of each tendon is coupled to a distal portion of the body so that applying tension to a tendon of the plurality of tendons actuates bending of the catheter, wherein the plurality of tendons are electrically connected to the electrically conductive outer member at their distal end regions; and a sensing circuit configured to be in electrical connection with the plurality of tendons, wherein the sensing circuit detects an electrical resistance of one or more tendon of the plurality of tendons.
In some variations, the sensing circuit is configured to detect a change in the electrical resistance of the one or more tendons of the plurality of tendons. For example, the sensing circuit may be configured to identify a baseline electrical resistance for each tendon; this baseline may be used to automatically and/or manually adjust the tension of a tendon in the device.
The catheter may have any appropriate shape and/or additional features. For example, the catheter may comprise a body having an elongate length and one or more lumen extending through the elongate length. The catheter may include an electrically conductive outer member extending along the length of the steerable catheter.
The electrically conductive outer member may comprise a dedicated conductor (e.g., wire) for delivering voltage. In some variations the conductive outer member is all or a portion of the housing of the catheter, including a woven and/or braided outer layer of the braidwire. For example, in some variations, the catheter may include an electrically conductive outer braided member extending along the length of the steerable catheter in electrical contact with a distal end of the plurality of electrically conductive tendons. In some variations the conductive outer member is an electrically conductive tendon configured to deliver an electrical potential to a distal end of each tendon of the (other) plurality of tendons. In some variations, the electrically conductive outer member comprises an electrically conductive outer braid configured to deliver an electrical potential to a distal end of each tendon of the plurality of tendons.
As mentioned above, the tendons described herein may be used to actuate the elongate (e.g., catheter) member. A tendon may be a wire that is linear and/or coiled, flat, round, helical, or the like. The tendon is generally formed of a conductive material (in whole or in part) that changes resistance as it is placed under tension, and has a reasonable hysteresis property so that after the release of tension, the shape and electrical properties will return to pre-tensioned levels without undue delay (e.g., within 5 seconds, 2 seconds, 1 second, less than 1 second, 0.9 sec., 0.8 sec., 0.7 sec., 0.6 sec., 0.5 sec., 0.4 sec., 0.3 sec., 0.2 sec., 0.1 sec., etc.)
The tendons described herein may include a distal end region that may be mechanically coupled to a distal end region of the catheter so that applying tension to a tendon of the plurality of tendons bends the catheter. Further, the distal end regions of each of the tendons of the plurality of electrically conductive tendons may be electrically connected to each other, e.g., so that the same stimulation energy (e.g., applied voltage) may be applied across all of the tendons.
In general, a sensing circuit used with the tendon-articulating devices may be integrated into the tendon-driven, e.g., at a distal end region of the catheter. Alternatively or additionally, a sensing circuit may be included as part of a separate or separable driver. For example, the system may include a robotic driver unit configured to couple with the plurality of tendons and apply a proximal tension to the each of the tendons of the plurality of tendons; the sensing circuitry may be integrated into the robotic driver unit.
For example, described herein are robotic driver devices configured to couple with a plurality of tendons of a steerable catheter and apply a proximal tension to the each of the tendons of the plurality of tendons, the device comprising: a plurality of individually controllable drivers each configured to mechanically actuate a tendon of the plurality of tendons when the device is coupled with a catheter; a plurality of electrical contacts each configured to make an electrical connection with a tendon of the plurality of tendons when the device is coupled with a catheter; and a sensing circuit connected to the plurality of electrical contacts and configured to detect an electrical resistance of each of the one or more tendons of the plurality of tendons. These devices may include a voltage source configured to apply a bias voltage to an electrically conductive member of a catheter when the device is coupled with the catheter. These devices may include a plurality of sensing resistors of predetermined value, wherein each sensing resistor is in electrical communication with one of the plurality of electrical contacts and further wherein the sensing circuit is configured to measure the voltage drop across the sensing resistors to detect the electrical resistance of each of the one or more tendons of the plurality of tendons.
Any of the devices having a sensing circuit described herein may be configured to provide or evoke feedback when applying stimulation using the apparatus, e.g., to eliminate slack in the tendon. For example, a feedback circuit may be configured to control the tension applied to each of the plurality of individually controllable drivers based on the detected electrical resistance of each of the one or more tendons of the plurality of tendons when the device is coupled with a catheter.
Also described herein are steerable catheter devices configured to allow electrical detection of tension or breakage of a steering tendon. For example, a steerable catheter device may include: a body having an elongate length extending proximally to distally; at least one lumen extending through the elongate length; an electrically conductive member extending along the elongate length of the body; and a plurality of electrically conductive tendons each extending along the elongate length of the body and having a proximal end region and a distal end region, wherein the distal end region of each tendon is coupled to a distal portion of the elongate body so that applying tension to a tendon of the plurality of tendons actuates bending of the catheter; and wherein the distal end region of each tendon of the plurality of tendons is in electrical communication with the electrically conductive member.
In any of the apparatuses and methods described herein, the plurality of electrically conductive tendons may be electrically insulated.
In some variations, the steerable elongate device (e.g., catheter) may include a wire terminator at the distal portion of the body, wherein the distal end regions of each of the plurality of electrically conductive tendons terminates onto the wire terminator.
Methods of detecting the tension on and/or breakage of a tendon in an elongate and tendon-steerable medical device are also described herein. For example, described herein methods of detecting tension and breakage of a tendon in a steerable, elongate catheter. The method may include: applying an electrical potential along a tendon extending within the catheter; applying proximal tension to the tendon to steer the catheter; sensing an electrical resistance of the tendon; and determining a tension on the tendon or breakage of the tendon based on the electrical resistance of the tendon.
For example, described herein are methods of adjusting tension of a tendon in a steerable, elongate catheter, the method comprising: applying an electrical potential along a tendon extending within the catheter; sensing an electrical resistance of the tendon; and applying proximal tension to the tendon to steer the catheter based on the electrical resistance of the tendon.
In general, sensing an electrical resistance of the tendon may include measuring a voltage drop across a resistor having a predetermined value, wherein the resistor is electrically connected with the tendon.
The step of applying proximal tension may include applying tension based on the electrical resistance of the tendon.
Determining the tension on the tendon or breakage of the tendon based on the electrical resistance of the tendon may include determining the tension on the tendon or breakage of the tendon based on a change in the electrical resistance of the tendon.
The systems and apparatuses for detecting (via resistance of the tendon) tension on the wires/tendons used to steer these apparatuses may be configured to automatically, allow for manually, or both automatically and/or manually allow adjustment of the tendon based on the results of looking at tension (e.g., resistance) of the tendon. For example, the apparatus may be configured to regulate an amount of slack-reducing tension applied to the tendon based on the sensed electrical resistance of the tendon.
As mentioned, in general, any of these methods may include determining a tension on the tendon or breakage of the tendon based on the electrical resistance of the tendon.
A breakage may be detected by the apparatuses herein when, for example, the resistance of the tendon (or a group of tendons) rises steeply (e.g., appearing as an open circuit, with very, e.g., near infinite) resistance. If the sensing circuitry detects a breakage, it may trigger an alert when the sensed electrical resistance indicates that the tendon has broken.
Any of the methods described herein may include connecting the catheter to a robotic driver unit, wherein the robotic driver unit is configured to apply proximal tension to the tendon. For example, the methods may include connecting the catheter to a robotic driver unit, wherein the robotic driver unit is configured to sense the electrical resistance of the tendon.
In general, applying an electrical potential may include applying a voltage, and in particular, applying a voltage to a distal end of the tendon from an electrically conductive outer member extending along a length of the catheter.
Also described herein are methods of detecting tension and breakage of one or more tendon in a steerable, elongate catheter, the method comprising: applying an electrical potential along each of a plurality of tendons extending within the catheter; applying proximal tension to one or more of the tendons of the plurality of tendons to steer the catheter; sensing an electrical resistance of each of the tendons of the plurality of tendons; and determining a tension on at least one of the tendons of the plurality of tendons or breakage of at least one of the tendons of the plurality of tendons based on the electrical resistance of the at least one of the tendons of the plurality of tendons.
For example, described herein are methods of adjusting tension of a tendon in a steerable, elongate catheter, the method comprising: applying an electrical potential along a tendon extending within the catheter; sensing an electrical resistance of the tendon; and applying proximal tension to the tendon to steer the catheter based on the electrical resistance of the tendon.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Described herein are methods and apparatuses for detecting tension on a tendon (e.g., wire, pull wire, or cable). In particular, these apparatuses are steerable elongate apparatuses (generically, “flexible articulating devices”) having one or more tendons that are/is electrically conductive and configured to bend (steer) the apparatus when tension is applied to the proximal end of the tendon. For example, described herein are methods and apparatuses for determining tension and/or breakage of one or more tendons by monitoring the electrical resistance of the tendon.
As used herein, determining and/or measuring and/or monitoring tension of a tendon (also referred to herein as wires or pull wires) includes monitoring stress/strain on a tendon. In particular, the apparatus may be configured to detect and reduce slack on the tendon by applying electrical energy through the tendon and detecting a corresponding resistance, where the resistance of the tendon is reflective of the mechanical load (tension, or stress/strain) on the tendon. For example, an apparatus as described herein may detect tension or monitor the stress/strain on the tendons (e.g., pull wires) by detecting the change in tendon resistance as tension is applied.
As will be described in greater detail below, this may include treating the tendon as a resistor of a circuit. When tension increases on the tendon, such as when the catheter is articulated or pushed against anatomy, the tendon stretches and thus increases in electrical resistance. To determine whether a tendon is broken or not, continuity in the circuit is examined. If the circuit is closed, in which a signal can pass through from the positive to negative terminal of the pull wire, then the tendon is intact. If the circuit is open, then a tendon has broken.
For example,
In general, the apparatuses described herein may include a metal tendon (pull wire), and a sensing circuit, as shown in
This is illustrated in different configurations in
Another example of a configuration that may be used to determine tension and/or breakage of a tendon is shown in
Any of the sensing circuits described herein may be configured to continuously or periodically monitor the resistance through one or more of the tendons 201, 202, 203, 204 when connected to the sensing circuitry. For example, any of the sensing circuits described herein may include a data acquisition card. The sensing circuit may be embedded and/or integrated into the catheter or into the driver, e.g., in the robot-side of the catheter/robot interface. The connection from the tendon to the system may be made through a tendon (pull wire) pulley and motor shaft, as illustrated in
For example,
In one example, as shown in graphs 600a, 600b in
Using existing tendons (pull wires) in a catheter to monitor the health and performance of the device as described herein may be highly advantageous. For example, current state of the art tension sensing for catheters require expensive strain gauges, motor current estimation, or torque sensors. The methods and apparatuses described herein provide a cost-effective way of obtaining the same information. The methods and apparatuses also utilize existing catheter features, and only require a small modification to the catheter-to-system interface. In contrast, a piezoelectric strain gauge placed in-line with the pull wires would require additional wiring to the gauge.
In general, if a tendon underdoes excessive strain, it will exhibit permanent deformation. This may be detected by large changes in the resistance-to-tension calibration, and can be used as an indicator for compromised pull wire integrity, as illustrated above. In contrast, external sensors may only be able to estimate pull wire integrity. In addition, the methods and apparatuses described herein provide fast detection and computation, and do not require algorithms to filter data, while still allowing constant monitoring.
As mentioned above, in some variations, the sensing circuit may be within the apparatus (e.g., catheter). Such system may then pass a signal, including a digital signal, to the driver or other processor, indicating the tension and/or breakage (deformation, etc.) of the tendon.
As illustrated above in
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application is a continuation U.S. patent application Ser. No. 17/071,816, filed Oct. 15, 2020, which is a continuation of U.S. patent application Ser. No. 16/696,906, filed Nov. 26, 2019, which is a continuation of U.S. patent application Ser. No. 15/660,736, filed Jul. 26, 2017, which is a continuation of U.S. patent application Ser. No. 15/084,984, filed Mar. 30, 2016, which claims the benefit of U.S. Provisional Application No. 62/140,344, filed Mar. 30, 2015, the disclosures of which are hereby incorporated herein by reference in their entirety. The present invention relates to medical instruments, tools, and methods that may be incorporated into a robotic system, such as those disclosed in U.S. patent application Ser. No. 14/523,760, filed Oct. 24, 2014, U.S. Provisional Patent Application No. 62/019,816, filed Jul. 1, 2014, U.S. Provisional Patent Application No. 62/037,520, filed Aug. 14, 2014, U.S. Provisional Patent Application No. 62/057,936, filed Sep. 30, 2014, U.S. Provisional Patent Application No. 62/096,825, filed Dec. 24, 2014, and U.S. Provisional Patent Application No. 62/134,366, filed Mar. 17, 2015, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3572325 | Bazell et al. | Mar 1971 | A |
3892228 | Mitsui | Jul 1975 | A |
3913565 | Kawahara | Oct 1975 | A |
4294234 | Matsuo | Oct 1981 | A |
4392485 | Hiltebrandt | Jul 1983 | A |
4607619 | Seike et al. | Aug 1986 | A |
4690175 | Ouchi et al. | Sep 1987 | A |
4706656 | Kuboto | Nov 1987 | A |
4741326 | Sidall et al. | May 1988 | A |
4745908 | Wardle | May 1988 | A |
4748969 | Wardle | Jun 1988 | A |
4750475 | Yoshihashi | Jun 1988 | A |
4771766 | Aoshiro et al. | Sep 1988 | A |
4846791 | Hattler et al. | Jul 1989 | A |
4869238 | Opie et al. | Sep 1989 | A |
4906496 | Hosono et al. | Mar 1990 | A |
4907168 | Boggs | Mar 1990 | A |
4967732 | Inoue | Nov 1990 | A |
5050585 | Takahashi | Sep 1991 | A |
5083549 | Cho et al. | Jan 1992 | A |
5106387 | Kittrell et al. | Apr 1992 | A |
5108800 | Koo | Apr 1992 | A |
5125909 | Heimberger | Jun 1992 | A |
5168864 | Shockey | Dec 1992 | A |
5217002 | Katsurada et al. | Jun 1993 | A |
5238005 | Imran | Aug 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5257617 | Takahashi | Nov 1993 | A |
5261391 | Inoue | Nov 1993 | A |
5287861 | Wilk | Feb 1994 | A |
5313934 | Wiita et al. | May 1994 | A |
5386818 | Schneebaum et al. | Feb 1995 | A |
5448988 | Watanabe | Sep 1995 | A |
5478330 | Imran et al. | Dec 1995 | A |
5482029 | Sekiguchi et al. | Jan 1996 | A |
5489270 | Erp | Feb 1996 | A |
5507725 | Savage et al. | Apr 1996 | A |
5533985 | Wang | Jul 1996 | A |
5580200 | Fullerton | Dec 1996 | A |
5681296 | Ishida | Oct 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5720775 | Larnard | Feb 1998 | A |
5741429 | Donadio, III et al. | Apr 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5873817 | Kokish et al. | Feb 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5879287 | Yoshihashi | Mar 1999 | A |
5882347 | Mouris-Laan et al. | Mar 1999 | A |
5888191 | Akiba et al. | Mar 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5938586 | Wilk et al. | Aug 1999 | A |
5938587 | Taylor et al. | Aug 1999 | A |
6012494 | Balazs | Jan 2000 | A |
6066125 | Webster, Jr. | May 2000 | A |
6102926 | Tartaglia et al. | Aug 2000 | A |
6143013 | Samson et al. | Nov 2000 | A |
6157853 | Blume et al. | Dec 2000 | A |
6174280 | Oneda et al. | Jan 2001 | B1 |
6197015 | Wilson | Mar 2001 | B1 |
6198974 | Webster, Jr. | Mar 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6234958 | Snoke et al. | May 2001 | B1 |
6315715 | Taylor et al. | Nov 2001 | B1 |
6404497 | Backman et al. | Jun 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6464632 | Taylor | Oct 2002 | B1 |
6485411 | Konstorum et al. | Nov 2002 | B1 |
6491626 | Stone et al. | Dec 2002 | B1 |
6537205 | Smith | Mar 2003 | B1 |
6554793 | Pauker et al. | Apr 2003 | B1 |
6716178 | Lee et al. | Apr 2004 | B1 |
6746422 | Noriega et al. | Jun 2004 | B1 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6827710 | Mooney et al. | Dec 2004 | B1 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6908428 | Aizenfeld et al. | Jun 2005 | B2 |
6921362 | Ouchi | Jul 2005 | B2 |
6958035 | Friedman et al. | Oct 2005 | B2 |
7008401 | Thompson et al. | Mar 2006 | B2 |
7130700 | Gardeski et al. | Oct 2006 | B2 |
7594903 | Webler et al. | Sep 2009 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7645231 | Akiba | Jan 2010 | B2 |
7771416 | Spivey et al. | Aug 2010 | B2 |
7781724 | Childers et al. | Aug 2010 | B2 |
7789827 | Landry | Sep 2010 | B2 |
7930065 | Larkin et al. | Apr 2011 | B2 |
8046049 | Govari et al. | Oct 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8246536 | Ochi et al. | Aug 2012 | B2 |
8444637 | Podmore et al. | May 2013 | B2 |
8460236 | Roelle et al. | Jun 2013 | B2 |
8498691 | Moll et al. | Jul 2013 | B2 |
8515215 | Younge et al. | Aug 2013 | B2 |
8652030 | Matsuura et al. | Feb 2014 | B2 |
8686747 | Berner et al. | Apr 2014 | B2 |
8758231 | Bunch et al. | Jun 2014 | B2 |
8827947 | Bosman et al. | Sep 2014 | B2 |
8911471 | Spivey et al. | Dec 2014 | B2 |
9186046 | Ramamurthy et al. | Nov 2015 | B2 |
9314953 | Lauer et al. | Apr 2016 | B2 |
9427551 | Leeflang et al. | Aug 2016 | B2 |
9504604 | Alvarez | Nov 2016 | B2 |
9561083 | Yu et al. | Feb 2017 | B2 |
9591990 | Chen et al. | Mar 2017 | B2 |
9622827 | Yu et al. | Apr 2017 | B2 |
9636184 | Lee et al. | May 2017 | B2 |
9713509 | Schuh et al. | Jul 2017 | B2 |
9726476 | Ramamurthy et al. | Aug 2017 | B2 |
9727963 | Mintz et al. | Aug 2017 | B2 |
9737371 | Romo et al. | Aug 2017 | B2 |
9737373 | Schuh | Aug 2017 | B2 |
9744335 | Jiang | Aug 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9788910 | Schuh | Oct 2017 | B2 |
9844353 | Walker et al. | Dec 2017 | B2 |
9844412 | Bogusky et al. | Dec 2017 | B2 |
9867635 | Alvarez et al. | Jan 2018 | B2 |
9918659 | Chopra et al. | Mar 2018 | B2 |
9918681 | Wallace et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
9949749 | Noonan et al. | Apr 2018 | B2 |
9955986 | Shah | May 2018 | B2 |
9962228 | Schuh et al. | May 2018 | B2 |
9980785 | Schuh | May 2018 | B2 |
9993313 | Schuh et al. | Jun 2018 | B2 |
10016900 | Meyer et al. | Jul 2018 | B1 |
10022192 | Ummalaneni | Jul 2018 | B1 |
10080576 | Romo et al. | Sep 2018 | B2 |
10130427 | Tanner et al. | Nov 2018 | B2 |
10136959 | Mintz et al. | Nov 2018 | B2 |
10145747 | Lin et al. | Dec 2018 | B1 |
10149720 | Romo | Dec 2018 | B2 |
10159532 | Ummalaneni | Dec 2018 | B1 |
10159533 | Moll et al. | Dec 2018 | B2 |
10169875 | Mintz et al. | Jan 2019 | B2 |
10219874 | Yu et al. | Mar 2019 | B2 |
10231793 | Romo | Mar 2019 | B2 |
10231867 | Alvarez et al. | Mar 2019 | B2 |
10244926 | Noonan et al. | Apr 2019 | B2 |
10271915 | Diolaiti et al. | Apr 2019 | B2 |
10285574 | Landey et al. | May 2019 | B2 |
10299870 | Connolly et al. | May 2019 | B2 |
10314463 | Agrawal et al. | Jun 2019 | B2 |
10363103 | Alvarez et al. | Jul 2019 | B2 |
10376672 | Yu | Aug 2019 | B2 |
10383765 | Alvarez et al. | Aug 2019 | B2 |
10398518 | Yu et al. | Sep 2019 | B2 |
10405908 | Redmond | Sep 2019 | B2 |
10405939 | Romo | Sep 2019 | B2 |
10405940 | Romo | Sep 2019 | B2 |
10426559 | Graetzel et al. | Oct 2019 | B2 |
10426661 | Kintz | Oct 2019 | B2 |
10434660 | Meyer et al. | Oct 2019 | B2 |
10463439 | Joseph et al. | Nov 2019 | B2 |
10464209 | Ho et al. | Nov 2019 | B2 |
10470830 | Hill et al. | Nov 2019 | B2 |
10482599 | Mintz et al. | Nov 2019 | B2 |
10493241 | Jiang | Dec 2019 | B2 |
10500001 | Yu et al. | Dec 2019 | B2 |
10517692 | Eyre et al. | Dec 2019 | B2 |
10524866 | Srinivasan et al. | Jan 2020 | B2 |
10539478 | Lin et al. | Jan 2020 | B2 |
10543048 | Noonan | Jan 2020 | B2 |
10555778 | Ummalaneni | Feb 2020 | B2 |
10555780 | Tanner et al. | Feb 2020 | B2 |
10631949 | Schuh et al. | Apr 2020 | B2 |
10639108 | Romo et al. | May 2020 | B2 |
10639109 | Bovay et al. | May 2020 | B2 |
10639114 | Schuh et al. | May 2020 | B2 |
10667720 | Wong et al. | Jun 2020 | B2 |
10667871 | Romo et al. | Jun 2020 | B2 |
10667875 | DeFonzo et al. | Jun 2020 | B2 |
10682189 | Schuh et al. | Jun 2020 | B2 |
10702348 | Moll et al. | Jul 2020 | B2 |
10716461 | Jenkins | Jul 2020 | B2 |
10743751 | Landey et al. | Aug 2020 | B2 |
10744035 | Alvarez et al. | Aug 2020 | B2 |
10751140 | Wallace et al. | Aug 2020 | B2 |
10765303 | Graetzel et al. | Sep 2020 | B2 |
10765487 | Ho et al. | Sep 2020 | B2 |
10779898 | Hill et al. | Sep 2020 | B2 |
10786329 | Schuh et al. | Sep 2020 | B2 |
10786432 | Jornitz et al. | Sep 2020 | B2 |
10792464 | Romo et al. | Oct 2020 | B2 |
10792466 | Landey et al. | Oct 2020 | B2 |
10813539 | Graetzel et al. | Oct 2020 | B2 |
10814101 | Jiang | Oct 2020 | B2 |
10820947 | Julian | Nov 2020 | B2 |
10827913 | Ummalaneni et al. | Nov 2020 | B2 |
10828118 | Schuh et al. | Nov 2020 | B2 |
20010004676 | Ouchi | Jun 2001 | A1 |
20030036748 | Cooper et al. | Feb 2003 | A1 |
20030130564 | Martone et al. | Jul 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030163199 | Boehm et al. | Aug 2003 | A1 |
20030195664 | Nowlin et al. | Oct 2003 | A1 |
20040015122 | Zhang et al. | Jan 2004 | A1 |
20040054322 | Vargas | Mar 2004 | A1 |
20040072066 | Cho et al. | Apr 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040193013 | Iwasaka et al. | Sep 2004 | A1 |
20040249246 | Campos | Dec 2004 | A1 |
20040254566 | Plicchi et al. | Dec 2004 | A1 |
20040257021 | Chang et al. | Dec 2004 | A1 |
20050004515 | Hart et al. | Jan 2005 | A1 |
20050125005 | Fujikura | Jun 2005 | A1 |
20050131279 | Boulais et al. | Jun 2005 | A1 |
20050154262 | Banik et al. | Jul 2005 | A1 |
20050159646 | Nordstrom et al. | Jul 2005 | A1 |
20050165366 | Brustad et al. | Jul 2005 | A1 |
20050222581 | Fischer et al. | Oct 2005 | A1 |
20050234293 | Yamamoto et al. | Oct 2005 | A1 |
20050256452 | DeMarchi et al. | Nov 2005 | A1 |
20050272975 | McWeeney et al. | Dec 2005 | A1 |
20050273085 | Hinman et al. | Dec 2005 | A1 |
20050288549 | Mathis | Dec 2005 | A1 |
20060041188 | Dirusso et al. | Feb 2006 | A1 |
20060111692 | Hlavka et al. | May 2006 | A1 |
20060241368 | Fichtinger et al. | Oct 2006 | A1 |
20060264708 | Horne | Nov 2006 | A1 |
20060276827 | Mitelberg et al. | Dec 2006 | A1 |
20060287769 | Yanagita et al. | Dec 2006 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070112355 | Salahieh et al. | May 2007 | A1 |
20070135733 | Soukup et al. | Jun 2007 | A1 |
20070135763 | Musbach et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070270645 | Ikeda | Nov 2007 | A1 |
20070270679 | Nguyen et al. | Nov 2007 | A1 |
20070282167 | Barenboym et al. | Dec 2007 | A1 |
20070287886 | Saadat | Dec 2007 | A1 |
20080039255 | Jinno et al. | Feb 2008 | A1 |
20080051629 | Sugiyama et al. | Feb 2008 | A1 |
20080065103 | Cooper et al. | Mar 2008 | A1 |
20080097293 | Chin et al. | Apr 2008 | A1 |
20080108869 | Sanders et al. | May 2008 | A1 |
20080139887 | Fitzpatrick | Jun 2008 | A1 |
20080146874 | Chen | Jun 2008 | A1 |
20080147089 | Loh et al. | Jun 2008 | A1 |
20080177285 | Brock et al. | Jul 2008 | A1 |
20080208001 | Hadani | Aug 2008 | A1 |
20080212082 | Froggatt et al. | Sep 2008 | A1 |
20080218770 | Moll et al. | Sep 2008 | A1 |
20080255470 | Hauck et al. | Oct 2008 | A1 |
20090099420 | Woodley et al. | Apr 2009 | A1 |
20090163851 | Holloway et al. | Jun 2009 | A1 |
20090247880 | Naruse et al. | Oct 2009 | A1 |
20090254083 | Wallace et al. | Oct 2009 | A1 |
20090262109 | Markowitz et al. | Oct 2009 | A1 |
20090299344 | Lee et al. | Dec 2009 | A1 |
20090306587 | Milijasevic et al. | Dec 2009 | A1 |
20100030023 | Yoshie | Feb 2010 | A1 |
20100073150 | Olson et al. | Mar 2010 | A1 |
20100114115 | Schlesinger et al. | May 2010 | A1 |
20100130823 | Ando | May 2010 | A1 |
20100168918 | Zhao et al. | Jul 2010 | A1 |
20100217184 | Koblish et al. | Aug 2010 | A1 |
20100249497 | Peine et al. | Sep 2010 | A1 |
20100249506 | Prisco | Sep 2010 | A1 |
20110009863 | Marczyk et al. | Jan 2011 | A1 |
20110046441 | Wiltshire et al. | Feb 2011 | A1 |
20110077681 | Nagano et al. | Mar 2011 | A1 |
20110098533 | Onoda et al. | Apr 2011 | A1 |
20110130718 | Kidd et al. | Jun 2011 | A1 |
20110148442 | Berner et al. | Jun 2011 | A1 |
20110152880 | Alvarez et al. | Jun 2011 | A1 |
20110196199 | Donhowe et al. | Aug 2011 | A1 |
20110245844 | Jinno | Oct 2011 | A1 |
20110261183 | Ma et al. | Oct 2011 | A1 |
20110270084 | Choi et al. | Nov 2011 | A1 |
20110306836 | Ohline et al. | Dec 2011 | A1 |
20120071894 | Tanner et al. | Mar 2012 | A1 |
20120071895 | Stahler et al. | Mar 2012 | A1 |
20120123327 | Miller | May 2012 | A1 |
20120136372 | Girbau et al. | May 2012 | A1 |
20120136419 | Zarembo et al. | May 2012 | A1 |
20120143226 | Belson et al. | Jun 2012 | A1 |
20120190976 | Kleinstreuer | Jul 2012 | A1 |
20120191107 | Tanner et al. | Jul 2012 | A1 |
20120239012 | Laurent et al. | Sep 2012 | A1 |
20120259244 | Roberts et al. | Oct 2012 | A1 |
20120283747 | Popovic | Nov 2012 | A1 |
20120289777 | Chopra et al. | Nov 2012 | A1 |
20130018400 | Milton et al. | Jan 2013 | A1 |
20130030519 | Tran et al. | Jan 2013 | A1 |
20130035537 | Wallace et al. | Feb 2013 | A1 |
20130090552 | Ramamurthy et al. | Apr 2013 | A1 |
20130109957 | Hooft et al. | May 2013 | A1 |
20130144116 | Cooper et al. | Jun 2013 | A1 |
20130165854 | Sandhu et al. | Jun 2013 | A1 |
20130165908 | Purdy et al. | Jun 2013 | A1 |
20130197556 | Shelton, IV et al. | Aug 2013 | A1 |
20130204124 | Duindam et al. | Aug 2013 | A1 |
20130226151 | Suehara | Aug 2013 | A1 |
20130303892 | Zhao et al. | Nov 2013 | A1 |
20130304091 | Straehnz et al. | Nov 2013 | A1 |
20130317276 | D'Andrea | Nov 2013 | A1 |
20130317519 | Romo et al. | Nov 2013 | A1 |
20130345519 | Piskun et al. | Dec 2013 | A1 |
20140012288 | Darisse et al. | Jan 2014 | A1 |
20140046313 | Pederson et al. | Feb 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140171943 | Weitzner | Jun 2014 | A1 |
20140200402 | Snoke et al. | Jul 2014 | A1 |
20140235943 | Paris et al. | Aug 2014 | A1 |
20140251042 | Asselin et al. | Sep 2014 | A1 |
20140276594 | Tanner et al. | Sep 2014 | A1 |
20140316397 | Brown | Oct 2014 | A1 |
20140343416 | Panescu et al. | Nov 2014 | A1 |
20140357984 | Wallace et al. | Dec 2014 | A1 |
20150031950 | Drontle et al. | Jan 2015 | A1 |
20150032151 | Ishida et al. | Jan 2015 | A1 |
20150255782 | Kim et al. | Sep 2015 | A1 |
20160000414 | Brown et al. | Jan 2016 | A1 |
20160007881 | Wong et al. | Jan 2016 | A1 |
20160067450 | Kowshik | Mar 2016 | A1 |
20160183841 | Duindam et al. | Jun 2016 | A1 |
20160227982 | Takahashi et al. | Aug 2016 | A1 |
20160270865 | Landey et al. | Sep 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160287346 | Hyodo et al. | Oct 2016 | A1 |
20160287840 | Jiang | Oct 2016 | A1 |
20160346049 | Allen et al. | Dec 2016 | A1 |
20160372743 | Cho et al. | Dec 2016 | A1 |
20170007337 | Dan | Jan 2017 | A1 |
20170197060 | Houck | Jul 2017 | A1 |
20170202627 | Sramek et al. | Jul 2017 | A1 |
20170209073 | Sramek et al. | Jul 2017 | A1 |
20170281218 | Timm | Oct 2017 | A1 |
20170290631 | Lee et al. | Oct 2017 | A1 |
20180025666 | Ho et al. | Jan 2018 | A1 |
20180221038 | Noonan et al. | Aug 2018 | A1 |
20180221039 | Shah | Aug 2018 | A1 |
20180279852 | Rafii-Tari et al. | Oct 2018 | A1 |
20180289431 | Draper et al. | Oct 2018 | A1 |
20180325499 | Landey et al. | Nov 2018 | A1 |
20180360435 | Romo | Dec 2018 | A1 |
20190000559 | Berman et al. | Jan 2019 | A1 |
20190000560 | Berman et al. | Jan 2019 | A1 |
20190000576 | Mintz et al. | Jan 2019 | A1 |
20190110839 | Rafii-Tari et al. | Apr 2019 | A1 |
20190151148 | Alvarez et al. | May 2019 | A1 |
20190167366 | Ummalaneni et al. | Jun 2019 | A1 |
20190175009 | Mintz et al. | Jun 2019 | A1 |
20190175062 | Rafii-Tari et al. | Jun 2019 | A1 |
20190175799 | Hsu et al. | Jun 2019 | A1 |
20190183585 | Rafii-Tari et al. | Jun 2019 | A1 |
20190183587 | Rafii-Tari et al. | Jun 2019 | A1 |
20190216548 | Ummalaneni | Jul 2019 | A1 |
20190216576 | Eyre et al. | Jul 2019 | A1 |
20190223974 | Romo et al. | Jul 2019 | A1 |
20190262086 | Connolly et al. | Aug 2019 | A1 |
20190269468 | Hsu et al. | Sep 2019 | A1 |
20190274764 | Romo | Sep 2019 | A1 |
20190290109 | Agrawal et al. | Sep 2019 | A1 |
20190298460 | Al-Jadda et al. | Oct 2019 | A1 |
20190298465 | Chin et al. | Oct 2019 | A1 |
20190307987 | Yu | Oct 2019 | A1 |
20190336238 | Yu et al. | Nov 2019 | A1 |
20190365201 | Noonan et al. | Dec 2019 | A1 |
20190365209 | Ye et al. | Dec 2019 | A1 |
20190365479 | Rafii-Tari | Dec 2019 | A1 |
20190365486 | Srinivasan et al. | Dec 2019 | A1 |
20190365491 | Yu | Dec 2019 | A1 |
20190375383 | Auer | Dec 2019 | A1 |
20190380787 | Ye et al. | Dec 2019 | A1 |
20190380797 | Yu et al. | Dec 2019 | A1 |
20200000533 | Schuh et al. | Jan 2020 | A1 |
20200038123 | Graetzel et al. | Feb 2020 | A1 |
20200038128 | Joseph et al. | Feb 2020 | A1 |
20200039086 | Meyer et al. | Feb 2020 | A1 |
20200046434 | Graetzel et al. | Feb 2020 | A1 |
20200046942 | Alvarez et al. | Feb 2020 | A1 |
20200060516 | Baez, Jr. | Feb 2020 | A1 |
20200085516 | DeFonzo et al. | Mar 2020 | A1 |
20200093549 | Chin et al. | Mar 2020 | A1 |
20200093554 | Schuh et al. | Mar 2020 | A1 |
20200100855 | Leparmentier et al. | Apr 2020 | A1 |
20200101264 | Jiang | Apr 2020 | A1 |
20200107894 | Wallace et al. | Apr 2020 | A1 |
20200121502 | Kintz | Apr 2020 | A1 |
20200138334 | Hill et al. | May 2020 | A1 |
20200146769 | Eyre et al. | May 2020 | A1 |
20200170720 | Ummalaneni | Jun 2020 | A1 |
20200171660 | Ho et al. | Jun 2020 | A1 |
20200188043 | Yu et al. | Jun 2020 | A1 |
20200197112 | Chin et al. | Jun 2020 | A1 |
20200206472 | Ma et al. | Jul 2020 | A1 |
20200217733 | Lin et al. | Jul 2020 | A1 |
20200222134 | Schuh et al. | Jul 2020 | A1 |
20200237458 | DeFonzo et al. | Jul 2020 | A1 |
20200261172 | Romo et al. | Aug 2020 | A1 |
20200268459 | Noonan | Aug 2020 | A1 |
20200268460 | Tse et al. | Aug 2020 | A1 |
20200281787 | Ruiz | Sep 2020 | A1 |
20200297437 | Schuh et al. | Sep 2020 | A1 |
20200305922 | Yan et al. | Oct 2020 | A1 |
20200305983 | Yampolsky et al. | Oct 2020 | A1 |
20200305989 | Schuh et al. | Oct 2020 | A1 |
20200315717 | Bovay et al. | Oct 2020 | A1 |
20200315723 | Hassan et al. | Oct 2020 | A1 |
20200323596 | Moll et al. | Oct 2020 | A1 |
20200330167 | Romo et al. | Oct 2020 | A1 |
20200337593 | Wong et al. | Oct 2020 | A1 |
20200345216 | Jenkins | Nov 2020 | A1 |
20200352420 | Graetzel et al. | Nov 2020 | A1 |
20210023340 | Jiang | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
1846181 | Oct 2006 | CN |
1857877 | Nov 2006 | CN |
102316817 | Jan 2012 | CN |
102458295 | May 2012 | CN |
102665590 | Sep 2012 | CN |
102711586 | Oct 2012 | CN |
102973317 | Mar 2013 | CN |
103767659 | May 2014 | CN |
103930063 | Jul 2014 | CN |
0543539 | May 1993 | EP |
0776739 | Jun 1997 | EP |
0904796 | Mar 1999 | EP |
1442720 | Aug 2004 | EP |
2006525087 | Nov 2006 | JP |
2007511247 | May 2007 | JP |
2010046384 | Mar 2010 | JP |
2011015992 | Jan 2011 | JP |
2012105793 | Jun 2012 | JP |
9414494 | Jul 1994 | WO |
0067640 | Nov 2000 | WO |
2002074178 | Sep 2002 | WO |
2004039273 | May 2004 | WO |
2004096015 | Nov 2004 | WO |
2004103430 | Dec 2004 | WO |
2004105849 | Dec 2004 | WO |
2005081202 | Nov 2005 | WO |
2007146987 | Dec 2007 | WO |
2008097540 | Aug 2008 | WO |
2009092059 | Jul 2009 | WO |
2009097461 | Aug 2009 | WO |
2010081187 | Jul 2010 | WO |
2011005335 | Jan 2011 | WO |
2013107468 | Jul 2013 | WO |
2015093602 | Jun 2015 | WO |
2016003052 | Jan 2016 | WO |
Entry |
---|
Final Rejection for U.S. Appl. No. 17/071,816, dated Jan. 27, 2022, 7 pages. |
Non-Final Rejection for U.S. Appl. No. 17/071,816, dated Apr. 15, 2022, 9 pages. |
Notice of Allowance for U.S. Appl. No. 17/071,816, dated Aug. 2, 2022, 8 pages. |
Office action for U.S. Appl. No. 17/071,816, dated Sep. 28, 2021, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20230065020 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
62140344 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17071816 | Oct 2020 | US |
Child | 17982297 | US | |
Parent | 16696906 | Nov 2019 | US |
Child | 17071816 | US | |
Parent | 15660736 | Jul 2017 | US |
Child | 16696906 | US | |
Parent | 15084984 | Mar 2016 | US |
Child | 15660736 | US |