The present invention relates generally to endoscopes and endoscopic procedures. More particularly, it relates to a method and apparatus to facilitate insertion of a flexible endoscope along a tortuous path, such as for colonoscopic examination and treatment.
An endoscope is a medical instrument for visualizing the interior of a patient's body. Endoscopes can be used for a variety of different diagnostic and interventional procedures, including colonoscopy, bronchoscopy, thoracoscopy, laparoscopy and video endoscopy.
Colonoscopy is a medical procedure in which a flexible endoscope, or colonoscope, is inserted into a patient's colon for diagnostic examination and/or surgical treatment of the colon. A standard colonoscope is typically 135-185 cm in length and 12-19 mm in diameter, and includes a fiberoptic imaging bundle or a miniature camera located at the instrument's tip, illumination fibers, one or two instrument channels that may also be used for insufflation or irrigation, air and water channels, and vacuum channels. The colonoscope is inserted via the patient's anus and is advanced through the colon, allowing direct visual examination of the colon, the ileocecal valve and portions of the terminal ileum.
Insertion of the colonoscope is complicated by the fact that the colon represents a tortuous and convoluted path. Considerable manipulation of the colonoscope is often necessary to advance the colonoscope through the colon, making the procedure more difficult and time consuming and adding to the potential for complications, such as intestinal perforation. Steerable colonoscopes have been devised to facilitate selection of the correct path though the curves of the colon. However, as the colonoscope is inserted farther and farther into the colon, it becomes more difficult to advance the colonoscope along the selected path. At each turn, the wall of the colon must maintain the curve in the colonoscope. The colonoscope rubs against the mucosal surface of the colon along the outside of each turn. Friction and slack in the colonoscope build up at each turn, making it more and more difficult to advance, withdraw, and loop the colonoscope. In addition, the force against the wall of the colon increases with the buildup of friction. In cases of extreme tortuosity, it may become impossible to advance the colonoscope all of the way through the colon.
Steerable endoscopes, catheters and insertion devices for medical examination or treatment of internal body structures are described in the following U.S. patents, the disclosures of which are hereby incorporated by reference in their entirety: U.S. Pat. Nos. 4,543,090; 4,753,223; 5,337,732; 5,337,733; 5,383,852; 5,487,757; 5,624,381; 5,662,587; and 5,759,151.
Accordingly, an improved endoscopic apparatus is disclosed herein for the examination of a patient's colon, other internal bodily cavities, and any other spaces within the body with minimal impingement upon bodily cavities or upon the walls of the organs. The disclosed apparatus may also be employed for various surgical treatments of those regions, e.g., insufflation, drug delivery, biopsies, etc. A steerable endoscope having an elongate body with a manually or selectively steerable distal portion, an automatically controlled portion, which may be optionally omitted from the device, a flexible and passively manipulated proximal portion, and an externally controlled and manipulatable tracking rod or guide is described below. The tracking rod or guide may be slidably positioned within a guide channel or lumen within the endoscope or it may be externally positionable such that the guide and the endoscope may slide relative to one another along a rail or channel located along an external surface of the endoscope.
In operation, the steerable distal portion of the endoscope may be first advanced into a patient's rectum via the anus. The endoscope may be simply advanced, either manually or automatically by a motor, until the first curvature is reached. At this point, the steerable distal portion may be actively controlled by the physician or surgeon to attain an optimal curvature or shape for advancement of the endoscope. The optimal curvature or shape is considered to be the path which presents the least amount of contact or interference from the walls of the colon. In one variation, once the desired curvature has been determined, the endoscope may be advanced further into the colon such that the automatically controlled segments of controllable portion follow the distal portion while transmitting the optimal curvature or shape proximally down the remaining segments of the controllable portion. The operation of the controllable segments will be described in further detail below.
In one variation, the guide is shorter than the full length of the endoscope, e.g., approximately the length of the controllable portion, and this shortened guide can be preloaded through the proximal end of the endoscope or through the handle of the endoscope. Once the guide is inserted, it may be advanced distally through the endoscope to the distal tip of the endoscope. As the user advances the endoscope distally, the automatically controlled segments of the proximal controllable portion propagate the selected curves down the endoscope, and the guide, in its flexible state, passively conforms to the shape of the desired pathway. Once the endoscope has advanced to a desired position, e.g. to a depth less than the length of the controllable portion of the endoscope, the user can rigidize the guide and maintain it at that depth (or axial position). The endoscope can then be further advanced relative to the rigidized guide, sliding over the rigid guide and along the selected pathway. Thus, the surgeon or physician only needs to lock the guide in position once. If the controllable region of the endoscope and the guide are each at least half of the length of the endoscope, the entire endoscope can conform to a selected pathway in this manner. It is also possible to reposition the guide easily by relaxing and/or unlocking it from its rigidized axial position and then moving the guide into its new position.
In an alternative variation, once the steerable distal portion has been steered or positioned for advancement, the guide may be advanced distally in its flexible state along or within the endoscope until it reaches a distal position, i.e., preferably some point distal of the flexible proximal portion. Regardless whether the optional controllable portion is omitted or not from the device, the guide may be advanced near or to the end of the distal portion. Once the guide has been advanced, it may directly attain and conform to the curvature or shape defined by the steerable distal portion.
Preferably, the guide is advanced to the distal end of steerable distal portion or, if the controllable portion is included in the device, the guide may be advanced to the distal end of the controllable portion, or to some point between the two portions. The guide may be advanced to any distal position as long as a portion of guide attains and conforms to the optimal curvature or shape. Prior to advancing the endoscope over the guide, the guide may be left in its flexible state or it may be optionally rigidized, as discussed further below. If left in its flexible state, the guide may possibly provide desirable column strength to the endoscope as it is advanced through the colon over the guide. It is preferable, however, that the guide is rigidized once it has attained and conformed to the curvature. This allows the flexible proximal portion, i.e., the passive portion, to remain flexible and lightweight in structure. As the position of the guide is preferably rigidized and maintained, the endoscope may then be advanced over the guide in a monorail or “piggy-back” fashion so that the flexible proximal portion follows the curve held by the guide until the endoscope reaches the next point of curvature.
In some variations, the process of alternately advancing the guide and the endoscope may be repeated to advance the entire endoscope through the colon while the guide may be alternatively rigidized and relaxed while being advanced distally. While the endoscope is advanced through the colon, the physician or surgeon may stop the advancement to examine various areas along the colon wall using, e.g., an imaging bundle located at the distal end of the endoscope. During such examinations, the guide may be temporarily withdrawn from the endoscope to allow for the insertion of other tools through the guide channel if there is no separate channel defined within the endoscope for the guide. The guide may also be withdrawn through the instrument to any location within the body of the endoscope. In other words, the guide may be withdrawn partially or removed entirely from the endoscope at any time, if desired, because there are no constraints which may limit the travel of the guide through the body of the endoscope. After a procedure has been completed on the colon wall, the tool may be withdrawn from the guide channel and the guide may be reintroduced into the endoscope so that the endoscope may optionally be advanced once again into the colon.
A further variation on advancing the endoscope may use multiple guides which are alternately rigidized while being advanced distally along a path. Although multiple guides may be used, two guides are preferably utilized. As the endoscopic device approaches a curvature, a first guide may be advanced in a relaxed and flexible state towards the steerable distal end of the device. While being advanced, the first guide preferably conforms to the shape defined by the distal end and the first guide may be subsequently rigidized to maintain this shape. The device may then be advanced further distally along the pathway while riding over the rigidized first guide.
After the device has been advanced to its new position, a second guide may also be advanced distally in its relaxed state through the device up to the distal end while the first guide is maintained in its rigidized state. The second guide may then conform to the new shape defined by the distal end of the device and become rigidized to maintain this new shape. At this point, the first guide is also preferably maintained in its rigid state until the distal end of the device has been advanced further distally. The first guide may then be relaxed and advanced while the rigidity of the second guide provides the strength for advancing the guide. This procedure may be repeated as necessary for negotiating the pathway.
To withdraw the endoscope from within the colon, the procedure above may be reversed such that the withdrawal minimally contacts the walls of the colon. Alternatively, the guide may simply be removed from the endoscope while leaving the endoscope within the colon. Alternatively, the guide may be left inside the endoscope in the relaxed mode. The endoscope may then be simply withdrawn by pulling the proximal portion to remove the device. This method may rub or contact the endoscope upon the walls of the colon, but any impingement would be minimal.
The selectively steerable distal portion can be selectively steered or bent up to a full 180° bend in any direction. A fiberoptic imaging bundle and one or more illumination fibers may extend through the body from the proximal portion to the distal portion. The illumination fibers are preferably in communication with a light source, i.e., conventional light sources, which may be positioned at some external location, or other sources such as LEDs. Alternatively, the endoscope may be configured as a video endoscope with a miniaturized video camera, such as a CCD camera, positioned at the distal portion of the endoscope body. The video camera may be used in combination with the illumination fibers. Optionally, the body of the endoscope may also include one or two access lumens that may optionally be used for insufflation or irrigation, air and water channels, and vacuum channels, etc. Generally, the body of the endoscope is highly flexible so that it is able to bend around small diameter curves without buckling or kinking while maintaining the various channels intact. The endoscope can be made in a variety of other sizes and configurations for other medical and industrial applications.
In some variations the endoscope may optionally include a suction device that can withdraw air or other gases, e.g. gases used for insufflating the interior of a colon. In the example of insufflating a colon, the insufflated gas may be trapped within regions of the colon due to the sacculation and movement of the colon walls. To facilitate removal of these gases, the suction device may be utilized to withdraw these trapped gases as the endoscope is advanced or withdrawn through the colon.
The suction device may comprise a suction tube positioned within the endoscope and connected to a suction port defined along the endoscope outer surface at a location proximal of the distal tip. The suction port can apply suction at some distance from the tip of the endoscope so that the suction does not interfere with insufflation or other activities at the distal end of the endoscope. In one variation, the suction port is located in the distal half of the endoscope, approximately one-quarter down the length of the insertable portion of the endoscope, e.g., 40 to 50 cm from the steerable tip. Some variations may apply suction continuously, while others allow the user to selectively control application of the suction.
The optional controllable portion is composed of at least one segment and preferably several segments which may be controllable via a computer and/or controller located at a distance from the endoscope. In one variation, approximately half of the length of the endoscope is comprised of controllable segments. Each of the segments preferably have an actuator mechanically connecting adjacent segments to allow for the controlled motion of the segments in space. The actuators driving the segments may include a variety of different types of mechanisms, e.g., pneumatic, vacuum, hydraulic, electromechanical motors, drive shafts, etc. If a mechanism such as a flexible drive shaft were utilized, the power for actuating the segments would preferably be developed by a generator located at a distance from the segments, i.e., outside of a patient during use, and in electrical and mechanical communication with the drive shaft. Alternatively, segments could be actuated by push-pull wires or tendons, e.g. Bowden cables, that bend segments by distributing force across a segment, as described in “Tendon-Driven Endoscope and Methods of Insertion” filed Aug. 27, 2002 (Ser. No. 10/229,557), which is incorporated in its entirety by reference.
A proximal portion comprises the rest of the endoscope and preferably a majority of the overall length of the device. The proximal portion is preferably a flexible tubing member that may conform to an infinite variety of shapes. It may also be covered by a polymeric covering optionally extendable over the controllable portion and the steerable distal portion as well to provide a smooth transition between the controllable segments and the flexible tubing of the proximal portion. The controllable portion may be optionally omitted from the endoscope. A more detailed description on the construction and operation of the segments may be found in U.S. patent application Ser. No. 09/969,927 entitled “Steerable Segmented Endoscope and Method of Insertion” filed Oct. 2, 2001, which has been incorporated by reference in its entirety.
A proximal handle may be attached to the proximal end of the proximal portion and may include imaging devices connected to the fiberoptic imaging bundle for direct viewing and/or for connection to a video camera or a recording device. The handle may be connected to other devices, e.g., illumination sources and one or several luer lock fittings for connection to various instrument channels. The handle may also be connected to a steering control mechanism for controlling the steerable distal portion. The handle may optionally have the steering control mechanism integrated directly into the handle, e.g., in the form of a joystick, conventional disk controller using dials or wheels, etc. An axial motion transducer may also be provided for measuring the axial motion, i.e., the depth change, of the endoscope body as it is advanced and withdrawn. The axial motion transducer can be made in many possible configurations. As the body of the endoscope slides through the transducer, it may produce a signal indicative of the axial position of the endoscope body with respect to the fixed point of reference. The transducer may use various methods for measuring the axial position of the endoscope body.
The guide is generally used to impart a desired curvature initially defined by the steerable portion and/or by the optional controllable portion to the passive proximal portion when the endoscope is advanced. If held or advanced into the steerable portion, the guide is preferably advanced to or near the distal tip of the portion. It is also used to impart some column strength to the proximal portion in order to maintain its shape and to prevent any buckling when axially loaded. Preferably, the guide is slidably disposed within the length of the endoscope body and may freely slide entirely through the passive proximal portion, through the controllable portion, and the steerable distal portion. The extent to which the guide may traverse through the endoscope body may be varied and adjusted according to the application, as described above. Furthermore, the proximal end of the guide may be routed through a separate channel to a guide controller which may be used to control the advancement and/or withdrawal of the guide and which may also be used to selectively control the rigidity of the guide as controlled by the physician.
The structure of the guide may be varied according to the desired application. The following descriptions of the guide are presented as possible variations and are not intended to be limiting in their structure. For instance, the guide may be comprised of two coaxially positioned tubes separated by a gap. Once the guide has been placed and has assumed the desirable shape or curve, a vacuum force may be applied to draw out the air within the gap, thereby radially deforming one or both tubes such that they come into contact with one another and lock their relative positions.
Another variation on the guide is one which is rigidizable by a tensioning member. Such a guide may be comprised of a series of individual segments which are rotatably interlocked with one another in series. Each segment may further define a common channel through which a tensioning member may be positioned while being held between a proximal and a distal segment. During use, the tensioning member may be slackened or loosened enough such that the guide becomes flexible enough to assume a shape or curve defined by the endoscope. When the guide is desirably situated and has assumed a desired shape, the tensioning member may then be tensioned, thereby drawing each segment tightly against one another to hold the desired shape.
Another variation may use a guide which is comprised of interlocking ball-and-socket type joints which are gasketed at their interfaces. Such a design may utilize a vacuum pump to selectively tighten and relax the individual segments against one another. Other variations may include alternating cupped segments and ball segments, a series of collinear sleeve-hemisphere segments, as well as other designs which may interfit with one another in series. Such a guide may be tightened and relaxed either by tensioning members or vacuum forces.
A further variation on the guide is a coaxially aligned stiffening member. This assembly may include a first subassembly comprising a number of collinearly nested segments which may be held by a tensioning member passing through each segment. The first subassembly may be rigidized from a flexible or flaccid state by pulling on this tensioning member. A second subassembly may comprise a number of annular segments also collinearly held relative to one another with one or more tensioning members passing through each annular segment. The second subassembly preferably defines a central area in which the first nested subassembly may be situated coaxially within the second subassembly. The first subassembly is preferably slidably disposed relative to the second subassembly thereby allowing each subassembly to be alternately advanced in a flexible state and alternately rigidized to allow the other subassembly to be advanced. This design presents a small cross-section relative to the endoscope or device through which it may be advanced.
The selectively steerable distal portion 24 can be selectively steered or bent up to a full 180° bend in any direction 26, as shown in the figure. A fiberoptic imaging bundle 40 and one or more illumination fibers 42 may extend through the body 21 from the proximal portion 22 to the distal portion 24. Alternatively, the endoscope 20 may be configured as a video endoscope with a miniaturized video camera, such as a CCD camera, positioned at the distal portion 24 of the endoscope body 21. The images from the video camera can be transmitted to a video monitor by a transmission cable or by wireless transmission where images may be viewed in real-time or recorded by a recording device onto analog recording medium, e.g., magnetic tape, or digital recording medium, e.g., compact disc, digital tape, etc. Optionally, the body 21 of the endoscope 20 may include one or two access lumens 38 that may optionally be used for illumination fibers for providing a light source, insufflation or irrigation, air and water channels, and vacuum channels. Generally, the body 21 of the endoscope 20 is highly flexible so that it is able to bend around small diameter curves without buckling or kinking while maintaining the various channels intact. When configured for use as a colonoscope, the body 21 of the endoscope 20 may range typically from 135 to 185 cm in length and about 13-21 mm in diameter. The endoscope 20 can be made in a variety of other sizes and configurations for other medical and industrial applications.
The optional controllable portion 28 is composed of at least one segment 30, and preferably several segments 30, which may be controllable via a computer and/or controller located at a distance from the endoscope 20. Each of the segments 30 preferably has an actuator mechanically connecting adjacent segments 30 to allow for the controlled motion of the segments 30 in space. The actuators driving the segments 30 may include a variety of different types of mechanisms, e.g., pneumatic, hydraulic, electromechanical motors, “off board” powered drive shafts, tendons, etc. A proximal portion 22 comprises the rest of the endoscope 20 and preferably a majority of the overall length of the device 20. Proximal portion 20 is preferably a flexible tubing member which may conform to an infinite variety of shapes. It may also be covered by a polymeric covering 39 optionally extendable over controllable portion 28 and steerable distal portion 24 as well to provide a smooth transition between the controllable segments 30 and the flexible tubing of proximal portion 22. The proximal portion 22 may be made from a variety of materials such as thermoset and thermoplastic polymers which are used for fabricating the tubing of conventional endoscopes.
A proximal handle 32 may be attached to the proximal end of the proximal portion 22. The handle 32 may include an ocular 33 connected to the fiberoptic imaging bundle 42 for direct viewing. The handle 32 may otherwise have a connector for connection to a video camera, e.g., a CCD camera, or a recording device. The handle 32 may be connected to an illumination source 43 by an illumination cable 44 that is connected to or continuous with the illumination fibers 42. One or several luer lock fittings 34 may be located on the handle 32 and connected to the various instrument channels.
The handle 32 is connected to an electronic motion controller 45 by way of a controller cable 46. A steering control 47 may be connected to the electronic motion controller 45 by way of a second cable 48 or it may optionally be connected directly to the handle 32. Alternatively, the handle may have the steering control mechanism integrated directly into the handle, e.g., in the form of a joystick, conventional disk controllers such as dials or wheels, etc. The steering control 47 allows the user to selectively steer or bend the selectively steerable distal portion 26 of the body 21 in the desired direction. The steering control 47 may be a joystick controller as shown, or other known steering control mechanism. The electronic motion controller 45 controls the motion of the automatically controlled proximal portion 28 of the body 21. The electronic motion controller 45 may be implemented using a motion control program running on a microcomputer or using an application-specific motion controller. Alternatively, the electronic motion controller 45 may be implemented using, e.g., a neural network controller.
An axial motion transducer 49 may be provided for measuring the axial motion, i.e., the depth change, of the endoscope body 21 as it is advanced and withdrawn. The axial motion transducer 49 can be made in many possible configurations. For example, the axial motion transducer 49 in
Similarly, when the endoscope body 21 is withdrawn proximally, each time the endoscope body 21 is moved proximally by one unit, each section in the automatically controlled proximal portion 28 is signaled to assume the shape of the section that previously occupied the space that it is now in. The curve propagates distally along the length of the automatically controlled proximal portion 28 of the endoscope body 21, and the shaped curve appears to be fixed in space, as the endoscope body 21 withdraws proximally. Alternatively, the segments of controlled portion 28 could be made to become flaccid and the withdrawal would then be passive.
Whenever the endoscope body 21 is advanced or withdrawn, the axial motion transducer 49 detects the change in position and the electronic motion controller 45 propagates the selected curves proximally or distally along the controllable portion 28 of the endoscope body 21 to maintain the curves in a spatially fixed position. The axial motion transducer 49 also allows for the incrementing of a current depth within the colon C by the measured change in depth. This allows the endoscope body 21 to be guided through tortuous curves without putting unnecessary force on the wall of the colon C. As mentioned above, such a segmented body 30 within the controllable portion 28 may be actuated by a variety of methods. One method involves the use of electromechanical motors which may be individually mounted on each segment 30 to move the segments 30 relative to one another. Each segment 30 preferably defines at least one lumen running through it to provide an access channel through which wires, optical fibers, air and/or water channels, various endoscopic tools, or any variety of devices and wires may be routed through.
A more detailed description on the construction and operation of the segments may be found in U.S. patent application Ser. No. 09/969,927 entitled “Steerable Segmented Endoscope and Method of Insertion” filed Oct. 2, 2001, which has been incorporated by reference in its entirety.
The guide 36 is generally used to impart a desired curvature initially defined by the steerable distal portion 24 and/or by the optional controllable portion 28 to the passive proximal portion 22 when the endoscope 20 is advanced. If the guide 36 is advanced into the steerable distal portion 24, guide 36 is preferably advanced to or near the distal tip of the portion 24. The guide 36 may also be used partly to impart some column strength to the proximal portion 22 in order to maintain its shape and to prevent any buckling when axially loaded, such as when the endoscope 20 is advanced through a patient's colon. Construction of an endoscope 20 with the use of the guide 36 not only simplifies the control systems involved but it also represents a cost efficient device. Operation of the endoscope 20 with guide 36 will be discussed in detail below.
Preferably, the guide 36 is slidably disposed within the length of the endoscope body 21 and may freely slide entirely through the passive proximal portion 22, through the optional controllable portion 28, if utilized in the endoscope, and the steerable distal portion 24. Guide 36 may also be withdrawn through the instrument to any location within the body of endoscope 20. Moreover, guide 36 may be removed entirely from endoscope 20, if desired e.g., to accommodate additional working tools. In other words, there are preferably no constraints which may limit the travel of guide 36 within the body of endoscope 20.
Guide 36 may be advanced through proximal handle 32; alternatively, guide 36 may also be routed through a separate channel 37 dedicated to the guide 36. Channel 37 is preferably attached to endoscope 20 near a proximal end of the instrument, such as a location off the proximal portion 22, and leads to a guide controller 41 which may be used to advance and/or withdraw guide 36 through endoscope 20. Guide controller 41 may also be used to selectively rigidize and relax guide 36 during use within a patient. Having guide controller 41 and proximal handle 32 separated may allow for the ease of use for the physician manipulating the endoscope 20. To aid in advancing guide 36 through endoscope 20, a pulley mechanism may be affixed within the steerable distal portion 24 through which a pull wire may extend over to connect the distal end of the guide 36 to a location outside the endoscope 20 for manipulation by the physician.
To facilitate the movement of guide 36 through endoscope body 21, a lubricious covering or coating may be applied over at least a majority of the length of guide 36 or onto the inner surface of the lumen through which guide 36 traverse, or both. Such coverings may include various polymers and plastics, e.g., PTFE, etc., which may simply cover the guide 36 length or which may be heatshrunk, coated, or bonded onto guide 36, depending upon the material used. The extent to which guide 36 traverses through the endoscope body 21 may be varied and adjusted according to the application.
If guide 36 is located within a dedicated channel, such as lumen 50, the distal end of this channel is preferably closed or blocked at some distal location, e.g., within steerable distal portion 24 or within optional controllable portion 28, to prevent the influx of bodily fluids within lumen 50. Because an enclosed lumen 50 would further prevent contact of bodily fluids with guide 36, the amount of cleaning or sterilization of guide 36 is reduced.
If lumen 50 were left as an open channel, additional sterilization or cleaning and disinfecting of guide 36 and lumen 50 may be necessary. Alternatively, lumen 50 may be left as an open channel but configured to have optional closing mechanisms, as shown in the examples of
The structure of the guide may be varied according to the desired application. The following description on the guide is presented as possible variations and are not intended to be limiting in their structure.
Guide 60 may be comprised of two coaxially positioned tubes, outer tube 62 and inner tube 64, which are separated by a gap 66 between the two tubes. Inner tube 64 may define an access lumen 68 throughout the length of the tube to provide a channel for additional tools or other access devices. Both tubes 62, 64 are preferably flexible enough to be bent over a wide range of angles and may be made from a variety of materials such as polymers and plastics. They are also preferably flexible enough such that either the outer tube 62, inner tube 64, or both tubes are radially deformable. Once guide 60 has been placed and has assumed the desirable shape or curve, a vacuum force may be applied to draw out the air within gap 66. This vacuum force may radially deform inner tube 64 and bring it into contact with the inner surface of outer tube 62 if inner tube 64 is made to be relatively more flexible than outer tube 62. Alternatively, if outer tube 62 is made to be relatively more flexible than inner tube 64, outer tube 62 may be brought into contact with the outer surface of inner tube 64.
In another variation, tubes 62, 64 may both be made to be flexible such that they are drawn towards one another. In yet another variation, which may be less preferable, a positive force of air pressure or a liquid, e.g., water or saline, may be pumped into access lumen 68. The positive pressure from the gas or liquid may force the walls of inner tube 64 radially into contact with the inner surface of outer tube 62. In any of these variations, contact between the two tubular surfaces will lock the tubes 62, 64 together by frictional force and make them less flexible. An elastomeric outer covering 69, or similar material, may optionally be placed upon the outer surface of outer tube 62 to provide a lubricious surface to facilitate the movement of guide 60 within the endoscopic device. An example of a device similar to guide 60 is discussed in further detail in U.S. Pat. No. 5,337,733, which has been incorporated herein by reference in its entirety.
Another variation on the guide is shown in
Proximal and distal segments of guide 70 may hold respective ends of, tensioning member 76, which is preferably disposed within common channel 74 through guide 70. Tensioning member 76 may be connected to a tensioning housing located externally of a patient. During use when the guide is advanced distally through an endoscope of the present invention, tensioning member 76 is preferably slackened or loosened enough such that guide 70 is flexible enough to assume a shape or curve defined by the endoscope. When guide 70 is desirably situated and has assumed a desired shape, tensioning member 76 may be tensioned. This tightening or tensioning of member 76 will draw each segment 72 tightly against one another along each respective contacting lip 78 such that the guide 70 becomes rigid in assuming the desired shape. A lubricious covering, e.g., elastomers, etc., may be optionally placed over at least a majority of guide 70 to facilitate movement of the guide 70 relative to the endoscopic device. A similar concept and design is discussed in further detail in U.S. Pat. No. 5,624,381, which has been incorporated herein by reference in its entirety.
An alternative variation on the rigidizable guide is illustrated in
After rigidizing the guide, the user can continue to steer the distal end 24 as it is advanced, and the curves of the selected pathway are propagated proximally down the controllable segments 30 as the endoscope moves forward. This variation of the device is capable of conforming to a selected pathway over the entire length of the endoscope, despite having a shorter guide 51 and controllable portion 28, since the combined length of the guide 51 and the controllable portion is preferably equal to the length of the endoscope.
In operation, any of the guiding apparatus as described above or one recognized by a person of skill in the art to be suitable for such use as described herein may be utilized.
Alternatively, once steerable distal portion 24 has been steered or positioned for advancement 160, guide 36 may be advanced distally in its flexible state along or within device 20 until it reaches a distal position, i.e., some point distal of the flexible proximal portion 22 and preferably to the distal end of the device 20, as shown in FIG. 13B. Preferably, guide 36 is advanced to the distal end of steerable distal portion 24 or to the distal end of the optional controllable portion 28, if utilized, or to some point therebetween. Guide 36 may be advanced to any distal position as long as a portion of guide 36 attains the optimal curvature or shape. Prior to advancing the device 20 over guide 36, the guide 36 may be left in its flexible state or it may be optionally rigidized, as discussed above. If left in its flexible state, guide 36 will still provide desirable column strength to the device 20 as it is advanced through colon C over the guide 36. It is preferable, however, that guide 36 is rigidized once it has attained and conformed to the curvature. As the position of guide 36 is preferably rigidized and maintained, the device 20 may then be advanced over the guide 20 in a monorail or “piggy-back” fashion so that the flexible proximal portion 22 follows the curve held by guide 36 until the device 20 reaches the next point of curvature. The following description discusses the use of the optional controllable portion 28; however, this portion 28 may be omitted from the device 20.
As shown from
Having attained a new curvature, guide 36 may again be rigidized to maintain this shape. While the guide 36 maintains this shape, the device 20 may be advanced further distally along the descending colon D with the help of the rigidized guide 36 in the piggy-back manner described above to define the path for the flexible proximal portion 22 and to prevent excessive contact with the walls of colon C. As shown in
After guide 36 has assumed the desired curvature defined by the distal portion 24 and/or controllable portion 28, as shown in
While the device 20 is advanced through the colon C, the physician or surgeon may stop the advancement to examine various areas along the colon wall using, e.g., the imaging bundle 40. During such examinations, the guide 36 may be temporarily withdrawn manually or automatically from the device 20 to allow for the insertion of other tools through the guide channel 50. After a procedure has been completed on the colon wall, the tool may be withdrawn from guide channel 50 and guide 36 may be reintroduced into the device 20 so that the device may optionally be advanced once again into colon C.
To withdraw device 20 from within the colon C, the procedure above may be reversed, as shown in
An alternative method of advancing an endoscope through a tortuous path may be seen in
Once the curve has been selected, nested assembly 130 may be stiffened to maintain its shape. At this point, annular stiffening assembly 140 may be advanced over nested assembly 130 towards distal end 174. Once assembly 140 has assumed the curve defined by assembly 130, annular assembly 140 may then be rigidized and nested assembly 130 may be relaxed into its flexible state, as shown in FIG. 15B. Then the distal end 174 may be further advanced with or without assembly 130 while being pushed along the curve defined by rigidized annular assembly 140, as shown in FIG. 15C. Once distal end 174 of device 172 has negotiated the curve, nested assembly 130, after being advanced to distal end 174, may then be rigidized again and annular assembly 140 may be relaxed and advanced again over assembly 130 and so on until the desired treatment location has been reached within the body.
Another alternative variation on advancing an endoscope through a tortuous path may be seen in
As device 180 approaches a curvature of colon 170, first guide 184 may be advanced towards the steerable distal end 182. While being advanced, first guide 184 is in a relaxed and flexible state allowing it to conform to the shape defined by the distal end 182. Having been advanced to distal end 182, as shown in
After device 180 has been further advanced to a new position, second guide 186 may also be advanced distally in its relaxed state through device 180 up to the distal end 182 while first guide 184 is preferably still rigidized, as shown in FIG. 16C. As second guide 186 advances, it may conform to a new shape defined by device 180. Second guide 186 may then be rigidized to hold its shape. First guide 184 may be relaxed but its rigid shape is preferably also maintained while the distal end 182 of device 180 is further advanced distally through colon 170, as shown in FIG. 16D.
After device 180 has been advanced distally, first guide 184 may be relaxed and advanced through device 180 up to distal end 182 while the rigidity of second guide 186 is maintained, as shown in FIG. 16E. Second guide 186 may be relaxed and then advanced in its flexible state distally through device 180 and so on. This process may be repeated as device 180 is required to negotiate arbitrarily tortuous paths.
Although the endoscope of the present invention has been described for use as a colonoscope, the endoscope can be configured for a number of other medical and industrial applications. In addition, the present invention can also be configured as a catheter, cannula, surgical instrument or introducer sheath that uses the principles of the invention for navigating through tortuous body channels. The present invention may also be used for industrial applications such as inspection and exploratory applications within tortuous regions, e.g., machinery, pipes, etc.
In a variation of the method that is particularly applicable to laparoscopy or thoracoscopy procedures, the steerable endoscope can be selectively maneuvered along a desired path around and between organs in a patient's body cavity. The distal end of the endoscope may be inserted into the patient's body cavity through a natural opening, through a surgical incision or through a surgical cannula, introducer, or trocar. The selectively steerable distal portion can be used to explore and examine the patient's body cavity and to select a path around and between the patient's organs. The electronic motion controller in conjunction with the tracking rod can be used to control the automatically controlled proximal portion to follow the selected path and allow the rest of the body to follow the tracking rod and, if necessary, to return to a desired location using the three-dimensional model in the electronic memory of the electronic motion controller. Modification of the above-described assemblies and methods for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/087,100 entitled “Endoscope with Guiding Apparatus” filed Mar. 1, 2002, now U.S. Pat. No. 6,800,056 which is a continuation-in-part of U.S. patent application Ser. No. 09/969,927 entitled “Steerable Segmented Endoscope and Method of Insertion” filed Oct. 2, 2001, now U.S. Pat. No. 6,610,007 which is a continuation-in-part of U.S. patent application Ser. No. 09/790,204 entitled “Steerable Endoscope and Improved Method of Insertion” filed Feb. 20, 2001, now U.S. Pat. No. 6,468,203 which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 60/194,140 entitled the same and filed Apr. 3, 2000, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
616672 | Kelling | Dec 1898 | A |
2510198 | Tesmer | Jun 1950 | A |
2533494 | Mitchell, Jr. | Dec 1950 | A |
2767705 | Moore | Oct 1956 | A |
3060972 | Sheldon | Oct 1962 | A |
3096962 | Meijs | Jul 1963 | A |
3162214 | Bazinet, Jr. | Dec 1964 | A |
3168274 | Street | Feb 1965 | A |
3430662 | Guarnaschelli | Mar 1969 | A |
3546961 | Marton | Dec 1970 | A |
3610231 | Takahashi et al. | Oct 1971 | A |
3643653 | Takahashi et al. | Feb 1972 | A |
3739770 | Mori | Jun 1973 | A |
3773034 | Burns et al. | Nov 1973 | A |
3858578 | Milo | Jan 1975 | A |
3897775 | Furihata | Aug 1975 | A |
3913565 | Kawahara | Oct 1975 | A |
3946727 | Okada et al. | Mar 1976 | A |
4054128 | Seufert et al. | Oct 1977 | A |
4176662 | Frazer | Dec 1979 | A |
4236509 | Takahashi et al. | Dec 1980 | A |
4240435 | Yazawa et al. | Dec 1980 | A |
4273111 | Tsukaya | Jun 1981 | A |
4327711 | Takagi | May 1982 | A |
4366810 | Slanetz, Jr. | Jan 1983 | A |
4432349 | Oshiro | Feb 1984 | A |
4499895 | Takayama | Feb 1985 | A |
4503842 | Takayama | Mar 1985 | A |
4543090 | McCoy | Sep 1985 | A |
4559928 | Takayama | Dec 1985 | A |
4577621 | Patel | Mar 1986 | A |
4592341 | Omagari et al. | Jun 1986 | A |
4601283 | Chikama | Jul 1986 | A |
4621618 | Omagari | Nov 1986 | A |
4624243 | Lowery et al. | Nov 1986 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4648733 | Merkt | Mar 1987 | A |
4651718 | Collins et al. | Mar 1987 | A |
4655257 | Iwashita | Apr 1987 | A |
4686963 | Cohen et al. | Aug 1987 | A |
4753223 | Bremer | Jun 1988 | A |
4788967 | Ueda | Dec 1988 | A |
4793326 | Shishido | Dec 1988 | A |
4799474 | Ueda | Jan 1989 | A |
4815450 | Patel | Mar 1989 | A |
4832473 | Ueda | May 1989 | A |
4834068 | Gottesman | May 1989 | A |
4873965 | Danieli | Oct 1989 | A |
4873990 | Holmes et al. | Oct 1989 | A |
4879991 | Ogiu | Nov 1989 | A |
4884557 | Takehana et al. | Dec 1989 | A |
4890602 | Hake | Jan 1990 | A |
4895431 | Tsujiuchi et al. | Jan 1990 | A |
4899731 | Takayama et al. | Feb 1990 | A |
4904048 | Sogawa et al. | Feb 1990 | A |
4930494 | Takehana et al. | Jun 1990 | A |
4949927 | Madocks et al. | Aug 1990 | A |
4957486 | Davis | Sep 1990 | A |
4969709 | Sogawa et al. | Nov 1990 | A |
4971035 | Ito | Nov 1990 | A |
4977887 | Gouda | Dec 1990 | A |
4987314 | Gotanda et al. | Jan 1991 | A |
5018509 | Suzuki et al. | May 1991 | A |
5060632 | Hibino et al. | Oct 1991 | A |
5092901 | Hunter et al. | Mar 1992 | A |
5125395 | Adair | Jun 1992 | A |
5127393 | McFarlin et al. | Jul 1992 | A |
5159446 | Hibino et al. | Oct 1992 | A |
5174276 | Crockard | Dec 1992 | A |
5174277 | Matsumaru | Dec 1992 | A |
5188111 | Yates et al. | Feb 1993 | A |
5217001 | Nakao et al. | Jun 1993 | A |
5220911 | Tamura | Jun 1993 | A |
5243967 | Hibino | Sep 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5257617 | Takahashi | Nov 1993 | A |
5271381 | Ailinger et al. | Dec 1993 | A |
5325845 | Adair | Jul 1994 | A |
5337732 | Grundfest et al. | Aug 1994 | A |
5337733 | Bauerfeind et al. | Aug 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5370108 | Miura et al. | Dec 1994 | A |
5383852 | Stevens-Wright | Jan 1995 | A |
5389222 | Shahinpoor | Feb 1995 | A |
5394864 | Kobayashi et al. | Mar 1995 | A |
5400769 | Tanii et al. | Mar 1995 | A |
5402768 | Adair | Apr 1995 | A |
5429118 | Cole et al. | Jul 1995 | A |
5460166 | Yabe et al. | Oct 1995 | A |
5460168 | Masubuchi et al. | Oct 1995 | A |
5469840 | Tanii et al. | Nov 1995 | A |
5482029 | Sekiguchi et al. | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5507717 | Kura et al. | Apr 1996 | A |
5531664 | Adachi et al. | Jul 1996 | A |
5551945 | Yabe et al. | Sep 1996 | A |
5558619 | Kami et al. | Sep 1996 | A |
5558665 | Kieturakis | Sep 1996 | A |
5577992 | Chiba et al. | Nov 1996 | A |
5620408 | Vennes et al. | Apr 1997 | A |
5624380 | Takayama et al. | Apr 1997 | A |
5624381 | Kieturakis | Apr 1997 | A |
5626553 | Frassica et al. | May 1997 | A |
5645520 | Nakamura et al. | Jul 1997 | A |
5658238 | Suzuki et al. | Aug 1997 | A |
5662587 | Grundfest et al. | Sep 1997 | A |
5665050 | Benecke | Sep 1997 | A |
5667476 | Frassica et al. | Sep 1997 | A |
5679216 | Takayama et al. | Oct 1997 | A |
5728044 | Shan | Mar 1998 | A |
5733245 | Kawano | Mar 1998 | A |
5749828 | Solomon et al. | May 1998 | A |
5752912 | Takahashi et al. | May 1998 | A |
5759151 | Sturges | Jun 1998 | A |
5779624 | Chang | Jul 1998 | A |
5807241 | Heimberger | Sep 1998 | A |
5810715 | Moriyama | Sep 1998 | A |
5842973 | Bullard | Dec 1998 | A |
5860914 | Chiba et al. | Jan 1999 | A |
5876329 | Harhen | Mar 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5885208 | Moriyama | Mar 1999 | A |
5897417 | Grey | Apr 1999 | A |
5897488 | Ueda | Apr 1999 | A |
5902254 | Magram | May 1999 | A |
5906591 | Dario et al. | May 1999 | A |
5908381 | Aznoian et al. | Jun 1999 | A |
5911715 | Berg et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5921915 | Aznoian et al. | Jul 1999 | A |
5928136 | Barry | Jul 1999 | A |
5941815 | Chang | Aug 1999 | A |
5957833 | Shan | Sep 1999 | A |
5976074 | Moriyama | Nov 1999 | A |
5989182 | Hori et al. | Nov 1999 | A |
5989230 | Frassica | Nov 1999 | A |
5993381 | Ito | Nov 1999 | A |
5996346 | Maynard | Dec 1999 | A |
6036636 | Motoki et al. | Mar 2000 | A |
6042155 | Lockwood | Mar 2000 | A |
6048307 | Grundl et al. | Apr 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6099464 | Shimizu et al. | Aug 2000 | A |
6099485 | Patterson | Aug 2000 | A |
6106510 | Lunn et al. | Aug 2000 | A |
6149581 | Klingenstein | Nov 2000 | A |
6162171 | Ng et al. | Dec 2000 | A |
6174280 | Oneda et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6210337 | Dunham et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6270453 | Sakai | Aug 2001 | B1 |
6306081 | Ishikawa et al. | Oct 2001 | B1 |
6309346 | Farhadi | Oct 2001 | B1 |
6315714 | Akiba | Nov 2001 | B1 |
6327492 | Lemelson | Dec 2001 | B1 |
6402687 | Ouchi | Jun 2002 | B1 |
6408889 | Komachi | Jun 2002 | B1 |
6468203 | Belson | Oct 2002 | B2 |
6482149 | Torii | Nov 2002 | B1 |
6527706 | Ide | Mar 2003 | B2 |
6554793 | Pauker et al. | Apr 2003 | B1 |
6610007 | Tartaglia et al. | Aug 2003 | B2 |
6616600 | Pauker | Sep 2003 | B2 |
6638213 | Ogura et al. | Oct 2003 | B2 |
6641528 | Torii | Nov 2003 | B2 |
6699183 | Wimmer | Mar 2004 | B1 |
6761685 | Adams et al. | Jul 2004 | B2 |
6783491 | Saadat et al. | Aug 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6800056 | Tartaglia et al. | Oct 2004 | B2 |
20010000040 | Adams et al. | Mar 2001 | A1 |
20020022765 | Belson | Feb 2002 | A1 |
20020062062 | Belson et al. | May 2002 | A1 |
20020120178 | Tartaglia et al. | Aug 2002 | A1 |
20020147385 | Butler et al. | Oct 2002 | A1 |
20020161281 | Jaffe et al. | Oct 2002 | A1 |
20020193661 | Belson | Dec 2002 | A1 |
20020193662 | Belson | Dec 2002 | A1 |
20030083550 | Miyagi | May 2003 | A1 |
20030130598 | Manning et al. | Jul 2003 | A1 |
20030149338 | Francois et al. | Aug 2003 | A1 |
20030195387 | Kortenbach et al. | Oct 2003 | A1 |
20030233027 | Ewers et al. | Dec 2003 | A1 |
20030233056 | Saadat et al. | Dec 2003 | A1 |
20030233057 | Saadat et al. | Dec 2003 | A1 |
20030233058 | Ewers et al. | Dec 2003 | A1 |
20030233066 | Ewers et al. | Dec 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040044270 | Barry | Mar 2004 | A1 |
20040106852 | Windheuser et al. | Jun 2004 | A1 |
20040193008 | Jaffe et al. | Sep 2004 | A1 |
20040193009 | Jaffe et al. | Sep 2004 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
28 23 025 | Dec 1979 | DE |
37 07 787 | Sep 1988 | DE |
0 497 781 | Aug 1992 | EP |
2732225 | Oct 1996 | FR |
63 136014 | Jun 1988 | JP |
111458 | May 1993 | JP |
5-1999 | Oct 1993 | JP |
WO 9317751 | Mar 1993 | WO |
WO 9419051 | Sep 1994 | WO |
WO 9504556 | Mar 1995 | WO |
WO 9710746 | Mar 1997 | WO |
WO 9933392 | Jul 1999 | WO |
WO 9951283 | Oct 1999 | WO |
WO 9959664 | Nov 1999 | WO |
WO 0054653 | Sep 2000 | WO |
WO 0149353 | Jul 2001 | WO |
WO 0167964 | Sep 2001 | WO |
WO 0170096 | Sep 2001 | WO |
WO 0170097 | Sep 2001 | WO |
WO 0174235 | Oct 2001 | WO |
WO 0180935 | Nov 2001 | WO |
WO 02024058 | Mar 2002 | WO |
WO 0239909 | May 2002 | WO |
WO 02064028 | Aug 2002 | WO |
WO 02068988 | Sep 2002 | WO |
WO 02069841 | Sep 2002 | WO |
WO 02096276 | Dec 2002 | WO |
WO 03028547 | Apr 2003 | WO |
WO 03028547 | Apr 2003 | WO |
WO 03092476 | Nov 2003 | WO |
WO 03092476 | Nov 2003 | WO |
WO 2004006980 | Jan 2004 | WO |
WO 2004049905 | Jun 2004 | WO |
WO 2004071284 | Aug 2004 | WO |
WO 2004080313 | Sep 2004 | WO |
WO 2004084702 | Oct 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20030032859 A1 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
60194140 | Apr 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10087100 | Mar 2002 | US |
Child | 10229814 | US | |
Parent | 09969927 | Oct 2001 | US |
Child | 10087100 | US | |
Parent | 09790204 | Feb 2001 | US |
Child | 09969927 | US |