Energy storage device and method of production thereof

Information

  • Patent Grant
  • 9899150
  • Patent Number
    9,899,150
  • Date Filed
    Tuesday, May 12, 2015
    9 years ago
  • Date Issued
    Tuesday, February 20, 2018
    6 years ago
Abstract
The present invention relates generally to the fields of electrical engineering and electronics. More specifically, the present invention relates to passive components of electrical circuitry and more particularly to energy storage devices and method of production thereof.
Description
FIELD OF THE INVENTION

The present invention relates generally to passive components of electrical circuit and more particularly to energy storage devices and method of production thereof.


BACKGROUND OF THE INVENTION

A capacitor is a passive electronic component that is used to store energy in the form of an electrostatic field, and comprises a pair of electrodes separated by a dielectric layer. When a potential difference exists between two electrodes, an electric field is present in the dielectric layer. This field stores energy and an ideal capacitor is characterized by a single constant value of capacitance which is a ratio of the electric charge on each electrode to the potential difference between them. In practice, the dielectric layer between electrodes passes a small amount of leakage current. Electrodes and leads introduce an equivalent series resistance, and dielectric layer has limitation to an electric field strength which results in a breakdown voltage. The simplest energy storage device consists of two parallel electrodes separated by a dielectric layer of permittivity ∈, each of the electrodes has an area S and is placed on a distance d from each other. Electrodes are considered to extend uniformly over an area S, and a surface charge density can be expressed by the equation: ±ρ=±Q/S. As the width of the electrodes is much greater than the separation (distance) d, an electrical field near the centre of the capacitor will be uniform with the magnitude E=ρ/∈. Voltage is defined as a line integral of the electric field between electrodes. An ideal capacitor is characterized by a constant capacitance C defined by the formula (1)

C=Q/V,  (1)

which shows that capacitance increases with area and decreases with distance. Therefore the capacitance is largest in devices made of materials of high permittivity.


A characteristic electric field known as the breakdown strength Ebd, is an electric field in which the dielectric layer in a capacitor becomes conductive. Voltage at which this occurs is called the breakdown voltage of the device, and is given by the product of dielectric strength and separation between the electrodes,

Vbd=Ebdd  (2)


The maximal volumetric energy density stored in the capacitor is limited by the value proportional to ˜∈·E2bd, where ∈ is dielectric permittivity and Ebd is breakdown strength. Thus, in order to increase the stored energy of the capacitor it is necessary to increase dielectric permeability ∈ and breakdown strength Ebd of the dielectric.


For high voltage applications much larger capacitors have to be used. There are a number of factors that can dramatically reduce the breakdown voltage. Geometry of the conductive electrodes is important for these applications. In particular, sharp edges or points hugely increase the electric field strength locally and can lead to a local breakdown. Once a local breakdown starts at any point, the breakdown will quickly “trace” through the dielectric layer till it reaches the opposite electrode and causes a short circuit.


Breakdown of the dielectric layer usually occurs as follows. Intensity of an electric field becomes high enough free electrons from atoms of the dielectric material and make them conduct an electric current from one electrode to another. Presence of impurities in the dielectric or imperfections of the crystal structure can result in an avalanche breakdown as observed in semiconductor devices.


Other important characteristic of a dielectric material is its dielectric permittivity. Different types of dielectric materials are used for capacitors and include ceramics, polymer film, paper, and electrolytic capacitors of different kinds. The most widely used polymer film materials are polypropylene and polyester. Increase of dielectric permittivity allows increasing of volumetric energy density which makes it an important technical task.


An ultra-high dielectric constant composite of polyaniline, PANI-DBSA/PAA, was synthesized using in situ polymerization of aniline in an aqueous dispersion of poly-acrylic acid (PAA) in the presence of dodecylbenzene sulfonate (DBSA) (see, Chao-Hsien Hoa et al., “High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization”, Synthetic Metals 158 (2008), pp. 630-637). The water-soluble PAA served as a polymeric stabilizer, protecting the PANI particles from macroscopic aggregation. A very high dielectric constant of ca. 2.0*105 (at 1 kHz) was obtained for the composite containing 30% PANI by weight. Influence of the PANI content on the morphological, dielectric and electrical properties of the composites was investigated. Frequency dependence of dielectric permittivity, dielectric loss, loss tangent and electric modulus were analyzed in the frequency range from 0.5 kHz to 10 MHz. SEM micrograph revealed that composites with high PANI content (i.e., 20 wt. %) consisted of numerous nano-scale PANI particles that were evenly distributed within the PAA matrix. High dielectric constants were attributed to the sum of the small capacitors of the PANI particles. The drawback of this material is a possible occurrence of percolation and formation of at least one continuous conductive path under electric field with probability of such an event increasing with an increase of the electric field. When at least one continuous path (track) through the neighboring conducting PANI particles is formed between electrodes of the capacitor, it decreases a breakdown voltage of such a capacitor.


Single crystals of doped aniline oligomers are produced via a simple solution-based self-assembly method (see, Yue Wang, et. al., “Morphological and Dimensional Control via Hierarchical Assembly of Doped Oligoaniline Single Crystals”, J. Am. Chem. Soc. 2012, 134, pp. 9251-9262). Detailed mechanistic studies reveal that crystals of different morphologies and dimensions can be produced by a “bottom-up” hierarchical assembly where structures such as one-dimensional (1-D) nanofibers can be aggregated into higher order architectures. A large variety of crystalline nanostructures, including 1-D nanofibers and nanowires, 2-D nanoribbons and nanosheets, 3-D nanoplates, stacked sheets, nanoflowers, porous networks, hollow spheres, and twisted coils, can be obtained by controlling the nucleation of the crystals and the non-covalent interactions between the doped oligomers. These nanoscale crystals exhibit enhanced conductivity compared to their bulk counterparts as well as interesting structure-property relationships such as shape-dependent crystallinity. Furthermore, the morphology and dimension of these structures can be largely rationalized and predicted by monitoring molecule-solvent interactions via absorption studies. Using doped tetra-aniline as a model system, the results and strategies presented in this article provide insight into the general scheme of shape and size control for organic materials.


There is a known energy storage device based on a multilayer structure. The energy storage device includes first and second electrodes, and a multilayer structure comprising blocking and dielectric layers. The first blocking layer is disposed between the first electrode and a dielectric layer, and the second blocking layer is disposed between the second electrode and a dielectric layer. Dielectric constants of the first and second blocking layers are both independently greater than the dielectric constant of the dielectric layer. FIG. 1 shows one exemplary design that includes electrodes 1 and 2, and multilayer structure comprising layers made of dielectric material (3, 4, 5) which are separated by layers of blocking material (6, 7, 8, 9). The blocking layers 6 and 9 are disposed in the neighborhood of the electrodes 1 and 2 accordingly and characterized by higher dielectric constant than dielectric constant of the dielectric material. A drawback of this device is that blocking layers of high dielectric permittivity located directly in contact with electrodes can lead to destruction of the energy storage device. Materials with high dielectric permittivity which are based on composite materials and containing polarized particles (such as PANI particles) might demonstrate a percolation phenomenon. The formed polycrystalline structure of layers has multiple tangling chemical bonds on borders between crystallites. When the used material with high dielectric permittivity possesses polycrystalline structure a percolation might occur along the borders of crystal grains. Another drawback of the known device is an expensive manufacturing procedure which is vacuum deposition of all layers.


Capacitors as energy storage device have well-known advantages versus electrochemical energy storage, e.g. a battery. Compared to batteries, capacitors are able to store energy with very high power density, i.e. charge/recharge rates, have long shelf life with little degradation, and can be charged and discharged (cycled) hundreds of thousands or millions of times. However, capacitors often do not store energy in small volume or weight as in case of a battery, or at low energy storage cost, which makes capacitors impractical for some applications, for example electric vehicles. Accordingly, it would be an advance in energy storage technology to provide capacitors of higher volumetric and mass energy storage density and lower cost.


The present invention solves a problem of the further increase of volumetric and mass density of reserved energy of the energy storage device, and at the same time reduces cost of materials and manufacturing process.


SUMMARY OF THE INVENTION

The present invention provides an energy storage device comprising a first electrode, a second electrode, and a solid multilayer structure disposed between said first and second electrodes. Said electrodes are flat and planar and positioned parallel to each other, and said solid multilayer structure comprises m homogeneous insulating and conductive layers. Said layers are disposed parallel to said electrodes, and said layers has following sequence: A-B-(A-B- . . . A-B-)A, where A is an insulating layer which comprises an insulating dielectric material, B is a conductive layer, and number of layers m is equal or more than 3.


In a yet further aspect, the present invention provides a method of producing an energy storage device, which comprises the steps of (a) preparation of a conducting substrate serving as one of the electrodes, (b) formation of a solid multilayer structure, and (c) formation of the second electrode on the multilayer structure, wherein formation of the multilayer structure comprises alternating steps of the application of insulating and conductive layers or a step of coextrusion of layers.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration that shows an energy storage device.



FIG. 2 is a schematic illustration that shows an energy storage device according to an embodiment of the invention.



FIG. 3 is a schematic illustration that shows an energy storage device according to another embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The general description of the embodiments of the present invention having been made, a further understanding can be obtained by reference to the specific preferred embodiments, which are given herein only for the purpose of illustration and are not intended to limit the scope of the appended claims.


An energy storage device is disclosed herein. Depending on the application, dielectric permittivity of the insulating dielectric material ∈ins may be in the broad range; for most applications it will be in the range between about 2 and 25. The insulating layer comprises a material characterized by a band gap of greater than 4 eV and by breakdown field strength in the range between about of 0.01 V/nm and greater than 2.5 V/nm. Due to high polarizability, the conductive material possesses relatively high dielectric permittivity ∈cond in comparison with dielectric permittivity of the insulating dielectric material. Thus, the layer comprising the conductive material possesses dielectric permittivity ∈cond, which 10-100,000 times greater than dielectric permittivity ∈ins of the material of the insulating layer. Therefore the electric field intensity of the insulating layer Eins and electric field intensity of the conductive layer Econd satisfy the following ratio: Econd=(∈ins/∈cond)·Eins. Therefore electric field intensity Econd is much smaller than electric field intensity Eins. Therefore in order to increase a working voltage of the energy storage device it is required to increase number of the insulating layers.


Capacitor of the energy storage device according to the present invention is determined by the following expression:

C=[dins·nins/(∈0insS)+dcond·(nins−1)/(∈0cond·S)]−1==∈0·S·[dins·nins/∈ins+dcond·(nins−1)/∈cond]−1,  (3)

where dins is thickness of the insulating layer, dcond is thickness of the conductive layer, nins is number of the insulating layers, ∈0 is dielectric permittivity of vacuum.


According to the formula (3), value of the capacitor of the energy storage device is determined by the layers with high dielectric permittivity if the following inequality is carried out:

dcond>>(nins/(nins−1)·(∈cond/∈insdins or
dcond=p·(nins/(nins−1)·(∈cond/∈insdins, where p≧3,  (4)
if nins>>1 than dcond=p·(∈cond/∈insdins,  (5)


Thus, insulating layers provide a high breakdown voltage of the capacitor, and conductive layers provide high dielectric permittivity of the multilayered structure.


In some embodiments of the invention, the solid insulating dielectric layers may possess a different structure in the range between an amorphous and crystalline solid layer, depending on the material and manufacturing procedure used.


In one embodiment of the disclosed energy storage device, the insulating layers comprise modified organic compounds of the general structural formula I:

{Cor}(M)n,  (I)

where Cor is a polycyclic organic compound with conjugated π-system, M are modifying functional groups; and n is the number of the modifying functional groups, where n is ≧1. In one embodiment of the present invention, the polycyclic organic compound is selected from the list comprising oligophenyl, imidazole, pyrazole, acenaphthene, triaizine, indanthrone and having a general structural formula selected from structures 1-43 as given in Table 1.









TABLE 1





Examples of polycyclic organic compounds for the insulating layers


















embedded image


1







embedded image


2







embedded image


3







embedded image


4







embedded image


5







embedded image


6







embedded image


7







embedded image


8







embedded image


9







embedded image


10







embedded image


11







embedded image


12







embedded image


13







embedded image


14







embedded image


15







embedded image


16







embedded image


17







embedded image


18







embedded image


19







embedded image


20







embedded image


21







embedded image


22







embedded image


23







embedded image


24







embedded image


25







embedded image


26







embedded image


27







embedded image


28







embedded image


29







embedded image


30







embedded image


31







embedded image


32







embedded image


33







embedded image


34







embedded image


35







embedded image


36







embedded image


37







embedded image


38







embedded image


39







embedded image


40







embedded image


41







embedded image


41







embedded image


42







embedded image


43









In another embodiment of the present invention, the modifying functional groups are selected from the list comprising alkyl, aryl, substituted alkyl, substituted aryl, and any combination thereof. The modifying functional groups provide solubility of organic compounds at the stage of manufacturing and additional insulating properties to the solid insulating layer of the capacitor. In yet another embodiment of the present invention, the insulating layers comprise polymeric materials selected from the list comprising fluorinated alkyls, polyethylene, poly(vinylidene fluoride-hexafluoropropylene), polypropylene, fluorinated polypropylene, polydimethylsiloxane. In still another embodiment of the present invention, the insulating layers comprise a polymeric material formed on the basis of polymers which are selected from the structures 44 to 49 as given in Table 2.









TABLE 2





Examples of polymers for the insulating layers


















embedded image


44





poly(2,2′-disulfo-4,4′-benzidine terephthalamide)








embedded image


45





poly(2,2′-disulfo-4,4′-benzidine isophthalamide)








embedded image


46





poly(2,2′-disulfo-4,4′-benzidine 1,3-dioxo-isoindoline-5-



carboxamide)








embedded image


47





poly(2,2′-disulfo-4,4′-benzidine 1H-benzimidazole-2,5-



dicarboxamide)








embedded image


48





poly(2,2′-disulfo-4,4′-benzidine 3,3′,4,4′-biphenyl



tetracarboxylic acid diimide)








embedded image


49





poly(2,2′disulpho-4,4′benzidine 1,4,5,8-naphtalen



tetracarboxylic acid diimide)









The listed materials intended for the insulating layers provide a high intensity of an electric field which is not less than 0.1 Volt per nanometer.


A wide variety of conducting and semiconducting (conjugated) polymers can be used as conductive layers of the present invention. This variety of polymers have a unique set of properties, combining the electronic properties of metals and semiconductors with the processing advantages and mechanical properties of polymers, see A. J. Heeger, et al., “Semiconducting and Metallic Polymers.”, Oxford Graduate Texts, Oxford Press, 2010.


For the disclosed energy storage device the solid conductive layer may possess a different structure in the range between an amorphous and crystalline solid layer, depending on the material and manufacturing procedure used.


In one embodiment of the present invention the conductive layer is crystalline.


In another embodiment of the present invention, the conductive layer comprises material possessing molecular conductivity. A conductive material possessing molecular conductivity refers to a material containing organic molecules wherein electric charges are moved under action of an external electric field within the limits of these molecules. As a result of displacement of mobile charges inside of this molecule, an electric dipole oriented along the electric field is formed (Jean-Pierre Farges, Organic Conductors, Fundamentals and applications, Marcell-Dekker Inc. NY. 1994).


In one embodiment of the present invention, the conductive layers comprise electroconductive oligomers. In another embodiment of the present invention, the longitudinal axes of the electroconductive oligomers are directed predominantly perpendicularly in relation to the electrode surface. In yet another embodiment of the present invention, the longitudinal axes of the electroconductive oligomers are directed predominantly parallel in relation to the electrode surface.


In still another embodiment of the present invention, the conductive layer comprising the electroconductive oligomers predominantly possesses lateral translational symmetry. Translational symmetry of the object means that a shift on a certain vector does not change the object.


In one embodiment of the present invention, the electroconductive oligomers are selected from the list comprising following structural formulas corresponding to one of structures 50 to 56 as given in Table 3.









TABLE 3





Examples of polymers for the conductive layers




















embedded image


50









embedded image


51









embedded image


52









embedded image


53









embedded image


54









embedded image


55









embedded image


56











where X=2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12


In another embodiment of the energy storage device of the present invention, the conductive layer comprises low-molecular weight electroconductive polymers. In another embodiment of the present invention, the low-molecular weight electroconductive polymer contains monomers selected from the structures 50 to 56 as given in Table 3. In another embodiment of the disclosed energy storage device, the electroconductive oligomers further comprise substitute groups and are described by the following general structural formula II:

(electroconductive oligomer)-Rq  (II)

where Rq is a set of substitute groups, q is a number of the substitute groups R in the set Rq, and q=1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. In yet another embodiment of the present invention, the substituents R are independently selected from the list comprising alkyl, aryl, substituted alkyl, substituted aryl, and any combination thereof


In still another embodiment of the present invention, thickness of the insulating layer (dins), thickness of the conductive layer (dcond), number of the insulating layers (nins≧2), dielectric permittivity of the insulating dielectric material (∈ins) and dielectric permittivity of the conductive layer (∈cond) satisfy the following relation:

dcond=p·(nins/(nins−1)·(∈cond/∈insdins, where p≧3.  (6)


Electrodes of the disclosed energy storage device may be made of any suitable material, including but not limited to Pt, Cu, Al, Ag or Au.


The disclosed energy storage device can be produced by a variety of manufacturing methods, which in general comprise the steps of a) preparation of a conducting substrate serving as one of the electrodes, b) formation of a multilayer structure, and c) formation of the second electrode on the multilayer structure. Formation of the multilayer structure comprises either alternating steps of the application of insulating and conductive layers or a step of coextrusion of layers.


In one embodiment of the present invention the alternating steps of the multilayer structure formation comprise successive alternating applications of solutions of liquid insulating and conductive layers, wherein each application is followed with a step of drying to form a solid insulating and conductive layers. Depending on the required design of the energy storage device, in particular on the number of layers in the multilayer structure, the alternating application steps are recurred until a formation of the multilayer structure is completed. In this embodiment the insulating layer is formed as the first and the last layer of the multilayer structure, being in direct contact with the electrodes.


In one embodiment of the present invention the alternating steps of the multilayer structure formation comprise successive alternating applications of melts of insulating and conductive layers, wherein each application is followed with a step of cooling down to form a solid insulating and conductive layers. Depending on the required design of the energy storage device, in particular on the number of layers in the multilayer structure, the alternating application steps are recurred until a formation of the multilayer structure is completed. In this embodiment the insulating layer is formed as the first and the last layer of the multilayer structure, being in direct contact with the electrodes.


In another embodiment of the present invention a step of coextrusion of layers comprises a step of coextrusion of set of liquid layers successively containing alternating conductive materials and insulating dielectric materials onto the substrate, and followed by drying to form the solid multilayer structure.


In another embodiment of the present invention a step of coextrusion of layers comprises a step of coextrusion of set of layers successively containing alternating melts of conductive materials and insulating dielectric materials onto the substrate, and followed by drying to form the solid multilayer structure.


Depending on the design of the energy storage device, in particular on the number of layers in the multilayer structure, the extrusion may be completed in one step or recurred until a formation of the multilayer structure is completed. The insulating layer is formed in direct contact with the electrodes.


In order that the invention may be more readily understood, reference is made to the following examples, which is intended to be illustrative of the invention, but is not intended to be limiting in scope.


EXAMPLE 1

Example 1 describes an energy storage device comprising a solid multilayer structure of two insulating and one conductive layer.


The design of the energy storage device is shown in FIG. 2 and includes electrodes 10 and 11 and a solid multilayer structure comprising two layers of an insulating dielectric material (13 and 14) separated with one layer made of a conductive material (12). Polyaniline (PANI) was used as a conductive material, and polyethylene was used as an insulating dielectric material. Thickness of the insulating layer was dins=25 nm. Electrodes 10 and 11 were made of copper. Dielectric permittivity of polyethylene is equal to 2.2 (i.e. ∈ins=2.2). Breakdown voltage is Vbd=40 kilovolt on thickness of 1 millimeter (0.04 v/nm); thus, a polyethylene film of 25-nm thickness had a breakdown voltage equal to 1 volt. Therefore a working voltage of the capacitor did not exceed the breakdown voltage Vbd of two insulating layers with thickness 25 nm each which is approximately equal to 2 V. The conductive polymer material (polyaniline (PANI)) had dielectric permittivity ∈cond equal to 1000 and thickness of dcond=50 μm.


EXAMPLE 2

Example 2 describes an energy storage device comprising a solid multilayer structure of alternating insulating and conductive layers.


The design of the energy storage device is shown in FIG. 3 and includes electrodes 15 and 16 and a solid multilayer structure comprising alternating layers of insulating and conductive materials, wherein layers of an insulating dielectric material (20, 21, 22, 23) were separated by layers made of a conductive material (17, 18, 19). Polyaniline (PANI) was used as a conductive material and polyethylene was used as an insulating dielectric material. Thickness of the insulating layer was dins=25 nm. Electrodes 15 and 16 were made of copper. Dielectric permittivity of polyethylene is equal to 2.2 (i.e. ∈ins=2.2) and breakdown voltage is Vbd=40 kilovolt on thickness of 1 millimeter. Thus, a polyethylene film of 25-nm thickness has a breakdown voltage equal to 1 volt. Therefore the working voltage of the capacitor did not exceed breakdown voltage Vbd which was approximately equal to 4 V. The conductive polymer material possessing (polyaniline (PANI)) had dielectric permittivity ∈cond equal to 1000. In this example thickness of the layer comprising a conductive material was selected as dcond=50 μm.


EXAMPLE 3

Example 3 describes calculation of number and thickness of insulating layers depending on value of working voltage of the capacitor. For manufacturing of energy storage device with a working voltage of 100 volt a number of 25-nm thick the insulating layers shall be increased and/or thickness of layers needs to be higher in order to create total thickness of insulating material about 2500 nm. For industrial applications manufacturing of the energy storage device with polyethylene used as an insulating layer with 25-nm thickness of each layer, a desired working voltage will require more than 100 layers. This estimation is based on a breakdown voltage of Vbd=40 kilovolt on thickness of 1 millimeter. Dielectric permittivity of a conductive material in this example is equal to one hundred thousand (100,000). Thickness of each conductive layer is approximately equal to 300 microns. At increasing of target working voltage up to 1000 volt, a required number of the insulating layers and their thickness is increased up to the D=N*d=25000 nm where D is total thickness of all layers, N—is number of layers, and d—is thickness of each layer.


Although the present invention has been described in detail with reference to a particular preferred embodiment, persons possessing ordinary skill in the art to which this invention pertains will appreciate that various modifications and enhancements may be made without departing from the spirit and scope of the claims that follow.

Claims
  • 1. An energy storage device comprising a first electrode,a second electrode, anda solid multilayer structure disposed between said first and second electrodes, wherein said electrodes are flat and planar and positioned parallel to each other, andwherein said solid multilayer structure comprises m insulating and conductive layers,said layers are disposed parallel to said electrodes, andsaid layers have the following sequence: A-B-(A-B- . . . A-B-)A, where A is a homogeneous insulating layer which comprises an insulating dielectric material, B is a homogeneous conductive layer, andm is equal to 3 or more,
  • 2. An energy storage device according to claim 1, wherein said insulating layers are crystalline.
  • 3. An energy storage device according to claim 1, wherein said insulating layers comprise modified organic compounds of the general structural formula I: {Cor}(M)n,  (I)where Cor is a polycyclic organic compound with conjugated π-system, M are modifying functional groups; and n is the number of the modifying functional groups, where n is equal to 1 or more.
  • 4. An energy storage device according to claim 3, wherein the polycyclic organic compound is selected from the group consisting of oligophenyl, imidazole, pyrazole, acenaphthene, triaizine, and indanthrone, and the polycyclic organic compound has a general structural formula selected from the group consisting of structures 1-43 as follows:
  • 5. An energy storage device according to claim 3, wherein the modifying functional groups are selected from the group consisting of alkyl, aryl, substituted alkyl, substituted aryl, and any combination thereof.
  • 6. An energy storage device according to claim 1, wherein said insulating layers comprise polymeric materials selected from the group consisting of fluorinated alkyls, polyethylene, kevlar, poly(vinylidene fluoride-hexafluoropropylene), polypropylene, fluorinated polypropylene, polydimethylsiloxane.
  • 7. An energy storage device according to claim 1, wherein the insulating layers comprise a polymeric material formed with units selected from structures 44 to 49 as follows:
  • 8. An energy storage device according to claim 1, wherein the conductive layers are crystalline.
  • 9. An energy storage device according to claim 1, wherein the conductive layers comprise material possessing molecular conductivity.
  • 10. An energy storage device according to claim 1, wherein said conductive layers comprise electroconductive oligomers.
  • 11. An energy storage device according to claim 10, wherein longitudinal axes of the electroconductive oligomers are directed predominantly perpendicularly to the electrodes.
  • 12. An energy storage device according to claim 10, wherein longitudinal axes of the electroconductive oligomers are directed predominantly parallel to the electrodes.
  • 13. An energy storage device according to claim 10, wherein the electroconductive oligomers predominantly possess lateral translational symmetry.
  • 14. An energy storage device according to claim 10, wherein the electroconductive oligomers are selected from the group consisting of structures 50 to 56 as follows:
  • 15. An energy storage device according to claim 1, wherein said conductive layers comprise low-molecular weight electroconductive polymers.
  • 16. An energy storage device according to claim 15, wherein the low-molecular weight electroconductive polymers have monomers selected from the group consisting of structures 50 to 56 as follows:
  • 17. An energy storage device according to claim 10, wherein the electroconductive oligomers further comprise substitute groups and are described by the following general structural formula II: (electroconductive oligomer)-Rq  (II)
  • 18. An energy storage device according to claim 17, wherein the substitute groups R are independently selected from the group consisting of alkyl, aryl, substituted alkyl, substituted aryl, and any combination thereof.
  • 19. An energy storage device according to claim 1, wherein the electrodes comprise Pt, Cu, Al, Ag and/or Au.
  • 20. An energy storage device according to claim 1, wherein the electrodes comprise copper, m is equal to 3, the insulating dielectric material A comprises polyethylene, the conductive material B comprises polyaniline (PANI), insulating layer thickness is dins=25 nm, conductive layer thickness dcond=50 μm, and a breakdown voltage Vbd is approximately 2 V.
  • 21. An energy storage device according to claim 1, wherein said electrodes comprise copper, m is equal to 7, the insulating dielectric material comprises polyethylene, the conductive material comprises polyaniline (PANI), insulating layer thickness is dins=25 nm, conductive layer thickness is dcond=50 μm, and a breakdown voltage Vbd is approximately 4 V.
CROSS-REFERENCE

This application claims the benefit of U.S. Provisional Application No. 61/991,861, filed May 12, 2014, which is entirely incorporated herein by reference.

US Referenced Citations (123)
Number Name Date Kind
3407394 Hartke Oct 1968 A
4694377 MacDougall et al. Sep 1987 A
4702562 Scheuble et al. Oct 1987 A
4894186 Gordon et al. Jan 1990 A
5187639 Ogawa et al. Feb 1993 A
5248774 Dietz et al. Sep 1993 A
5312896 Bhardwaj et al. May 1994 A
5384521 Coe Jan 1995 A
5395556 Drost et al. Mar 1995 A
5466807 Dietz et al. Nov 1995 A
5514799 Varanasi et al. May 1996 A
5581437 Sebillotte et al. Dec 1996 A
5583359 Ng et al. Dec 1996 A
5679763 Jen et al. Oct 1997 A
5742471 Barbee et al. Apr 1998 A
5840906 Zoltewicz et al. Nov 1998 A
5880951 Inaba Mar 1999 A
6282081 Takabayashi et al. Aug 2001 B1
6294593 Jeng et al. Sep 2001 B1
6341056 Allman Jan 2002 B1
6391104 Schulz May 2002 B1
6426861 Munshi Jul 2002 B1
6501093 Marks Dec 2002 B1
6617830 Nozu et al. Sep 2003 B2
6798642 Decker et al. Sep 2004 B2
7025900 Sidorenko et al. Apr 2006 B2
7033406 Weir et al. Apr 2006 B2
7211824 Lazarev May 2007 B2
7460352 Jamison et al. Dec 2008 B2
7466536 Weir et al. Dec 2008 B1
7498689 Mitani et al. Mar 2009 B2
7579709 Goetz et al. Aug 2009 B2
7625497 Iverson et al. Dec 2009 B2
7750505 Ichikawa Jul 2010 B2
7808771 Nguyen et al. Oct 2010 B2
7837902 Hsu et al. Nov 2010 B2
7893265 Facchetti et al. Feb 2011 B2
7947199 Wessling May 2011 B2
8143853 Jestin et al. Mar 2012 B2
8222074 Lazarev Jul 2012 B2
8231809 Pschirer et al. Jul 2012 B2
8236998 Nagata et al. Aug 2012 B2
8344142 Marder et al. Jan 2013 B2
8404844 Kastler et al. Mar 2013 B2
8527126 Yamamoto et al. Sep 2013 B2
8552179 Lazarev Oct 2013 B2
8818601 V et al. Aug 2014 B1
8929054 Felten et al. Jan 2015 B2
8938160 Wang Jan 2015 B2
9056676 Wang Jun 2015 B1
20020027220 Wang et al. Mar 2002 A1
20020048140 Gallay et al. Apr 2002 A1
20030026063 Munshi Feb 2003 A1
20030102502 Togashi Jun 2003 A1
20030142461 Decker et al. Jul 2003 A1
20030219647 Wariishi Nov 2003 A1
20040173873 Kumar et al. Sep 2004 A1
20040222413 Hsu et al. Nov 2004 A1
20050118083 Tabuchi Jun 2005 A1
20060120014 Nakamura Jun 2006 A1
20060120020 Dowgiallo, Jr. Jun 2006 A1
20070001258 Aihara Jan 2007 A1
20070108490 Tan May 2007 A1
20070108940 Sainomoto et al. May 2007 A1
20070159767 Jamison et al. Jul 2007 A1
20080002329 Pohm et al. Jan 2008 A1
20080150484 Kimball et al. Jun 2008 A1
20080266750 Wu Oct 2008 A1
20080283283 Abe et al. Nov 2008 A1
20090040685 Hiemer et al. Feb 2009 A1
20090184355 Brederlow et al. Jul 2009 A1
20100038629 Lazarev Feb 2010 A1
20100085521 Kasianova et al. Apr 2010 A1
20100178728 Zheng et al. Jul 2010 A1
20100183919 Holme et al. Jul 2010 A1
20100193777 Takahashi et al. Aug 2010 A1
20100214719 Kim Aug 2010 A1
20100233491 Nokel et al. Sep 2010 A1
20100255381 Holme et al. Oct 2010 A1
20100269731 Jespersen et al. Oct 2010 A1
20100309606 Allers Dec 2010 A1
20100309696 Guillot et al. Dec 2010 A1
20100315043 Chau Dec 2010 A1
20110006393 Cui Jan 2011 A1
20110042649 Duvall et al. Feb 2011 A1
20110079733 Langhals et al. Apr 2011 A1
20110079773 Wasielewski et al. Apr 2011 A1
20110110015 Zhang May 2011 A1
20110228442 Zhang et al. Sep 2011 A1
20120008251 Yu et al. Jan 2012 A1
20120033342 Ito Feb 2012 A1
20120053288 Morishita et al. Mar 2012 A1
20120056600 Nevin Mar 2012 A1
20120113380 Geivandov et al. May 2012 A1
20120122274 Lazarev May 2012 A1
20120244330 Sun et al. Sep 2012 A1
20120268862 Song Oct 2012 A1
20120274145 Taddeo Nov 2012 A1
20120302489 Rodrigues et al. Nov 2012 A1
20130056720 Kim et al. Mar 2013 A1
20130187475 Vendik et al. Jul 2013 A1
20130194716 Holme et al. Aug 2013 A1
20130215535 Bellomo Aug 2013 A1
20130314839 Terashima et al. Nov 2013 A1
20130342967 Lai Dec 2013 A1
20140035100 Cho Feb 2014 A1
20140036410 Okamatsu Feb 2014 A1
20140098458 Almadhoun et al. Apr 2014 A1
20140158340 Dixler et al. Jun 2014 A1
20140185260 Chen et al. Jul 2014 A1
20140268490 Tsai et al. Sep 2014 A1
20140347787 Fathi et al. Nov 2014 A1
20150008735 Mizoguchi Jan 2015 A1
20150158392 Zhao Jun 2015 A1
20150162131 Felten et al. Jun 2015 A1
20150249401 Eriksen et al. Sep 2015 A1
20150302990 Ghosh Oct 2015 A1
20160020026 Lazarev Jan 2016 A1
20160020027 Lazarev Jan 2016 A1
20160254092 Lazarev et al. Sep 2016 A1
20160314901 Lazarev Oct 2016 A1
20160340368 Lazarev Nov 2016 A1
20160379757 Robinson et al. Dec 2016 A1
Foreign Referenced Citations (48)
Number Date Country
203118781 Aug 2013 CN
203377785 Jan 2014 CN
103986224 Aug 2014 CN
10203918 Aug 2003 DE
102010012949 Sep 2011 DE
102011101304 Nov 2012 DE
102012016438 Feb 2014 DE
0493716 Jul 1992 EP
0585999 Mar 1994 EP
0602654 Jun 1994 EP
0729056 Aug 1996 EP
0791849 Aug 1997 EP
0986080 Jan 2004 EP
0865142 May 2008 EP
2062944 May 2009 EP
2415543 Feb 2012 EP
1486590 Dec 2013 EP
2759480 Jul 2014 EP
547853 Sep 1942 GB
923148 Apr 1963 GB
2084585 Nov 1983 GB
S6386731 Apr 1988 JP
H03253014 Nov 1991 JP
2786298 Aug 1998 JP
2007287829 Nov 2007 JP
2010106225 May 2010 JP
2010160989 Jul 2010 JP
2011029442 Feb 2011 JP
2014139296 Jul 2014 JP
2199450 Feb 2003 RU
2512880 Apr 2014 RU
1990009616 Aug 1990 WO
0139305 May 2001 WO
2002026774 Apr 2002 WO
2007078916 Jul 2007 WO
WO 2007078916 Jul 2007 WO
2008038047 Apr 2008 WO
2009158553 Dec 2009 WO
2011056903 May 2011 WO
2012012672 Jan 2012 WO
2012084536 Jun 2012 WO
2012122312 Sep 2012 WO
2012162500 Nov 2012 WO
2013009772 Jan 2013 WO
2013085467 Jun 2013 WO
2014009686 Jan 2014 WO
2015003725 Jan 2015 WO
2015175558 Nov 2015 WO
Non-Patent Literature Citations (101)
Entry
Hardy, et al. Converting an Electrical Insulator into a Dielectric Capacitor: End-Capping Polystyrene with Oligoaniline. DOI: 10.1021/cm304057f. Chem. Mater., 2013, 25 (5), pp. 799-807.
Ho, et al. High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization. Synthetic Metals 158 (2008) 630-637.
Solar PV Power Cheaper than Natural Gas. Energy Materials Corporation. PowerPoint. Aug. 10, 2010.
Center for Dielectric Studies, Janosik, et al., “Ultra-High Energy Density Capacitors Through Improved Glass Technology”, pp. 1-5 Center for Dielectric Studies Penn State University, dated 2004.
Congressional Research Service, Paul W. Parfomak, “Energy Storage for Power Grids and Electric Transportation: A Technology Assessment”, pp. 87-94; Members and Committees of Congress; Mar. 27, 2012.
Hindawi Publishing Corporation, Chávez-Castillo et al, “Third-Order Nonlinear Optical Behavior of Novel Polythiophene Derivatives Functionalized with Disperse Red 19 Chromophore”, pp. 1-11, International Journal of Polymer Science vol. 2015, Article ID 219361, Mar. 12, 2015.
Hindawi Publishing Corporation, González-Espasandin et al., “Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion”, pp. 1-13, Torrej'on de Ardoz, 28850 Madrid, Spain Jan. 30, 2014.
Hindawi Publishing Corporation, Khalil Ahmed et al., “High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization”, pp. 630-637, University of the Punjab, New Campus, Lahore 54590, Oct. 17, 2015.
Institute of Transportation Studies, Burke, et al. “Review of the Present and Future Applications of Supercapacitors in Electric and Hybrid Vehicles”, pp. 2-23 UC Davis ITS; Dec. 2014.
International Application No. PCT/US/15/58890, to Pavel Ivan Lazarev, et al., filed Nov. 3, 2015.
International Application No. PCT/US2016/019641, to Pavel Ivan Lazarev, filed Feb. 25, 2016.
International Application No. PCT/US2016/033628, to Pavel Ivan Lazarev, filed May 20, 2016.
International Application No. PCT/US2016/039395, to Matthew R. Robinson, et al., filed Jun. 24, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2015/030415, dated Nov. 4, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2015/058890, dated Feb. 25, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/019641, dated Jul. 12, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/033628, dated Sep. 1, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/039395, dated Oct. 20, 2016.
International Union of Pure and Applied Chemistry Polymer Divison Stejskal et al., “Polyaniline: Thin Films and Colloidal Dispersions (IUPAC Technical Report)”, vol. 77, No. 5, pp. 815-826, Russian Academy of Sciences, St. Petersburg 199004, Russia; 2005.
Kontrakt Technology Limited, Alla Sakharova, PhD., “Cryscade Solar Limited: Intellectual Property Portfolio summary”, pp. 1-3, Cryscade Solar Limited; Apr. 9, 2015.
Molecular Diversity Preservation International, Barber, et al. “Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage” pp. 1-32; 29 University of South Carolina, Columbia, SC 29208 Oct. 2009.
Non-Final Office Action for U.S. Appl. No. 14/752,600, dated Jan. 23, 2017.
Non-Final Office Action for U.S. Appl. No. 14/919,337, dated Jan. 4, 2017.
Notice of Allowance for U.S. Appl. No. 14/710,491, dated Oct. 24, 2016.
Philosophical Transactions of the Royal Society, SIMON, “Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors” pp. 3457-3467; Drexel University, Philadelphia, PA 19104, 2010.
Pubchem Open Chemistry Database, Compound Summary for CID 91001799. Mar. 17, 2015. pp. 1-10.
Yue Wang, et. al., “Morphological and Dimensional Control via Hierarchical Assembly of Doped Oligoaniline Single Crystals”, J. Am. Chem. Soc. 2012, 134, pp. 9251-9262.
U.S. Appl. No. 14/719,072, to Pavel Ivan Lazarev, filed May 21, 2015.
U.S. Appl. No. 14/752,600, to Matthew R. Robinson, et al., filed Jun. 26, 2015.
U.S. Appl. No. 14/919,337, to Paul T. Furuta, et al., filed Oct. 21, 2015.
U.S. Appl. No. 14/931,757, to Pavel Ivan Lazarev, et al., filed Nov. 3, 2015.
U.S. Appl. No. 15/043,186, to Paul T. Furuta, et al., filed Feb. 12, 2016.
U.S. Appl. No. 15/043,209, to Paul T. Furuta, et al., filed Feb. 12, 2016.
U.S. Appl. No. 15/043,247, to Barry K Sharp, et al., filed Feb. 12, 2016.
U.S. Appl. No. 15/043,315, to Ian S.G. Kelly-Morgan, filed Feb. 12, 2014.
U.S. Appl. No. 15/043,315, to Ivan S.G. Kelley-Morgan, filed Feb. 12, 2016.
U.S. Appl. No. 15/053,943, to Pavel Ivan Lazarev, et al., filed Mar. 14, 2016.
U.S. Appl. No. 15/090,509, to Pavel Ivan Lazarev, et al., filed Mar. 4, 2016.
U.S. Appl. No. 62/121,328, to Pavel Ivan Lazarev et al., filed Feb. 26, 2015.
U.S. Appl. No. 62/294,949, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016.
U.S. Appl. No. 62/294,955, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016.
U.S. Appl. No. 62/294,964, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016.
U.S. Appl. No. 62/318,134, to Pavel Ivan Lazarev, et al., filed Mar. 4, 2016.
Notice of Allowance for U.S. Appl. No. 14/919,337, dated Jul. 19, 2017.
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Jul. 17, 2017.
Notice of Allowance for U.S. Appl. No. 14/752,600, dated Jul. 27, 2017.
Ni, Hai-Lang et al. “Truxene Discotic Liquid Crystals with Two Different Ring Substituents: Synthesis, Metamorphosis and High Charged Carrier Mobility.” Liquid Crystals (2013), vol. 40, No. 3, pp. 411-420.
Liang, Mao et al. “Synthesis and Photovoltaic Performance of Two Triarylamine Organic Dyes Based on Truxene.” Yinyong Huaxue (2011) vol. 28 No. 12, pp. 1387-1392.
Trevethan, Thomas et al. “Organic Molecules Reconstruct Nanostructures on Ionic Surfaces.” Small (2011), vol. 7, No. 9, pp. 1264-1270.
Lu,Meng et al. “Organic Dyes Incorporating Bis-hexapropyltruxeneamino Moiety for efficient Dye-sensitized Solar Cells.” Journal of Physical Chemistry C (2011) vol. 115, No. 1, pp. 274-281.
Li, Li-Li et al. “Synthesis and Mesomorphism of Ether-ester Mixed Tail C3-symmetrical Truxene discotic liquid crystals.” Liquid Crystals(2010), vol. 37, No. 5, pp. 499-506.
Isoda, Kyosuke et al. “Truxene-Based Columnar Liquid Crystals: Self-Assembled Structures and Electro-Active Properties.” Chemistry—An Asian Journal (2009), vol. 4, No. 10, pp. 1619-1625.
Warmerdam, T. W. et al. “Discotic Liquid Crystals. Physical Parameters of some 2, 3, 7, 8, 12, 13-hexa(alkanoyloxy)truxenes: Observation of a Reentrant Isotropic Phase in a Pure-Disk-like mesogen.” Liquid Crystals (1988), vol. 3, No. 8, pp. 1087-1104.
Non-Final Office Action for U.S. Appl. No. 14/719,072, dated Aug. 2, 2017.
Deily, Dielectric and Optical Characterization of Polar Polymeric Materials: Chromophore Entrained PMMA Thin Films, Thesis, 2008.
Department of Chemistry and Biochemistry, Hardy, et al. “Converting an Electrical Insulator into a Dielectric Capacitor: End-Capping Polystyrene with Oligoaniline”; pp. 799-807, Rensselaer Polytechnic Institute, Troy, New York 12180; Feb. 17, 2013.
Deruiter, J. Resonance and Induction Tutorial. Auburn University—Principles of Drug Action 1 Course Material. Spring 2005, 19 pages.
Final Office Action for U.S. Appl. No. 14/919,337, dated May 1, 2017.
Henna Ruuska et al., “A Density Functional Study on Dielectric Properties of Acrylic Acid Crafted Polypropylene”, The Journal of Chemical Physics, vol. 134, p. 134904 (2011).
International Search Report and Written Opinion for International Application No. PCT/US2015/030356, dated Jul. 28, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2016/57765, dated Jan. 5, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/017146, dated May 11, 2017.
International Search Report and Written Opinion for the International Applicaiton No. PCT/US2017/017150, dated May 18, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/24150, dated Jun. 21, 2017.
JACS Articles, Kang et. al., “Ultralarge Hyperpolarizability Twisted -Electron System Electro-Optic Chromophores: Synthesis, Solid-State and Solution-Phase Structural Characteristics, Electronic Structures, Linear and Nonlinear Optical Properties, and Computational Studies”, pp. 3267-3286; Perugia, Italy Feb. 20, 2007.
Manukian, BK. 216. IR.-spektroskopische Untersuchungen in der Imidazol-Reihe. Helvetica Chimica Acta. 1965, vol. 48, p. 2001.
Microelectronics Research and Communications Institute, Founders et al., “High-Voltage Switching Circuit for Nanometer Scale CMOS Technologies”, pp. 1-4, University of Idaho, Moscow, ID 83843 USA, Apr. 30, 2007.
Non-Final Office Action dated Jun. 13, 2017 for U.S. Appl. No. 15/163,595.
Non-Final Office Action for U.S. Appl. No. 15/053,943, dated Apr. 19, 2017.
Non-Final Office Action for U.S. Appl. No. 15/043,186, dated Jun. 2, 2017.
Non-Final/Final Office Action for U.S. Appl. No. 15/043,247, dated Jun. 22, 2017.
Notice of Allowance for U.S. Appl. No. 14/710,491, dated Jan. 19, 2017.
Optical Society of America, Kuzyk et al, “Theory of Molecular Nonlinear Optics”, pp. 5, 4-82, Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA, Mar. 26, 2013.
R. J. Baker and B. P. Johnson, “Stacking power MOSFETs for use in high speed instrumentation”, Department of Electrical Engineering, University of Nevada, Reno, Reno. Nevada 89557-0030; pp. 5799-5801 Aug. 3, 1992.
Roger D. Hartman and Herbert A. Pohl, “Hyper-electronic Polarization in Macromolecular Solids”, Journal of Polymer Science: Part A-1, vol. 6, pp. 1135-1152 (1968).
RSC Publishing, Akl et al., “Molecular materials for switchable nonlinear optics in the solid state, based on ruthenium-nitrosyl complexes”, pp. 3518-3527, Porto Alegre, Brazil; May 24, 2013.
Final Office Action for U.S. Appl. No. 15/043,247, dated Oct. 4, 2017.
Handy, Scott T. “Ionic Liquids-Classes and Properties” Published Sep. 2011, Accessed Aug. 28, 2017, InTechweb.org.
Hsing-Yang Tsai et al, “1,6- and 1,7-Regioisomers of Asymmetric and Symmetric Perylene Bisimides: Synthesis, characterization and Optical Properties” Molecules, 2014, vol. 19, pp. 327-341.
Hsing-Yang Tsai et al, “Synthesis and optical properties of novel asymmetric perylene bisimides”, Journal of Luminescence, vol. 49, pp. 103-111 (2014).
International Search Report and Written Opinion for International Application No. PCT/US2017/24600, dated Aug. 14, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/016862, dated Aug. 14, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/24371, dated Aug. 29, 2017.
Johnson, Kieth E. “What's an Ionic Liquid?” The Electrochemical Society Interface, Published Spring 2007, pp. 38-41, Accessed Aug. 28 2017.
Maddalena, Francesco “Why are Ionic Liquids, Liquids?” http://www.quora.com/why-are-ionic-liquids-liquids?, Published Jan. 26, 2017, Accessed Aug. 28, 2017.
Nagabrahmandachari et al. “Synthesis and Spectral Analysis of Tin Tetracarboxylates and Phosphinates” Indian Journal of Chemistry-Section A, 1995, vol. 34A, pp. 658-660.
Non-Final Office Action for U.S. Appl. No. 15/194,224, dated Sep. 27, 2017.
Notice of Allowance for U.S. Appl. No. 14/919,337, dated Nov. 8, 2017.
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Oct. 31, 2017.
Notice of Allowance for U.S. Appl. No. 15/053,943, dated Aug. 14, 2017.
Taiwan Office Action for TW Application No. 106104501, dated Oct. 19, 2017.
Extended European Search Report for Application No. 15792405.1, dated Nov. 10, 2017.
Notice of Allowance for U.S. Appl. No. 14/719,072, dated Nov. 16, 2017.
Notice of Allowance for U.S. Appl. No. 14/752,600, dated Nov. 24, 2017.
Notice of Allowance for U.S. Appl. No. 14/752,600, dated Dec. 4, 2017.
D C Tiwari, et al: “Temperature dependent studies of electric and dielectric properties of polythiophene based nano composite”, Indian Journal of Pure & Applied Physics vol. 50, Jan. 2012. pp. 49-56.
Extended European Search Report for Application No. 15792494.5, dated Dec. 11, 2017.
Non-Final Office Action for U.S. Appl. No. 15/043,315, dated Dec, 26, 2017.
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Dec. 29, 2017.
Office Action dated Dec. 13, 2017 for Taiwan Patent Application No. 106104499.
Office Action dated Dec. 13, 2017 for Taiwan Patent Application No. 106104500.
Related Publications (1)
Number Date Country
20160020026 A1 Jan 2016 US
Provisional Applications (1)
Number Date Country
61991861 May 2014 US