Energy storage devices and methods of production thereof

Information

  • Patent Grant
  • 9916931
  • Patent Number
    9,916,931
  • Date Filed
    Tuesday, November 3, 2015
    9 years ago
  • Date Issued
    Tuesday, March 13, 2018
    6 years ago
Abstract
The present disclosure provides an energy storage device comprising a first electrode, a second electrode, and a solid multilayer structure disposed between said first and second electrodes. The solid multilayer structure can be in contact with said first and second electrodes. The solid multilayer structure can include layers disposed parallel to said electrodes, the layers have a sequence (A-B)m-A, wherein, A is an insulating layer and B is a polarization layer comprising a colloidal composite with a micro-dispersion of electro-conductive nano-particles in an insulator matrix, and ‘m’ is a number greater than or equal to 1. Layer A can have a breakdown voltage of at least about 0.05 volts per nanometer (nm), and layer B can have a dielectric permittivity of at least about 100.
Description
BACKGROUND

A capacitor is a passive electronic component that is used to store energy in the form of an electrostatic field, and comprises a pair of electrodes separated by a dielectric layer. When a potential difference exists between two electrodes, an electric field is present in the dielectric layer. This field stores energy and an ideal capacitor is characterized by a single constant value of capacitance which is a ratio of the electric charge on each electrode to the potential difference between them. In practice, the dielectric layer between electrodes passes a small amount of leakage current. Electrodes and leads introduce an equivalent series resistance, and dielectric layer has limitation to an electric field strength which results in a breakdown voltage. The simplest capacitor consists of two parallel electrodes separated by a dielectric layer of permittivity ∈, each of the electrodes has an area S and is placed on a distance d from each other. Electrodes are considered to extend uniformly over an area S, and a surface charge density can be expressed by the equation: ±ρ=±Q/S. As the width of the electrodes is much greater than the separation (distance) d, an electrical field near the centre of the capacitor will be uniform with the magnitude E=ρ/∈. Voltage is defined as a line integral of the electric field between electrodes. An ideal capacitor is characterized by a constant capacitance C defined by the formula (1)

C=Q/V,   (1)

which shows that capacitance increases with area and decreases with distance. Therefore the capacitance is largest in devices made of materials of high permittivity.


A characteristic electric field known as the breakdown strength Ebd, is an electric field in which the dielectric layer in a capacitor becomes conductive. Voltage at which this occurs is called the breakdown voltage of the device, and is given by the product of dielectric strength and separation between the electrodes,

Vbd=Ebdd  (2)


The maximal volumetric energy density stored in the capacitor is limited by the value proportional to ˜∈·E2bd, where ∈ is dielectric permittivity and Ebd is breakdown strength. Thus, in order to increase the stored energy of the capacitor it is necessary to increase dielectric permeability ∈ and breakdown strength Ebd of the dielectric.


For high voltage applications much larger capacitors have to be used. There are a number of factors that can dramatically reduce the breakdown voltage. Geometry of the conductive electrodes is important for these applications. In particular, sharp edges or points hugely increase the electric field strength locally and can lead to a local breakdown. Once a local breakdown starts at any point, the breakdown will quickly “trace” through the dielectric layer till it reaches the opposite electrode and causes a short circuit.


Breakdown of the dielectric layer usually occurs as follows. Intensity of an electric field becomes high enough free electrons from atoms of the dielectric material and make them conduct an electric current from one electrode to another. Presence of impurities in the dielectric or imperfections of the crystal structure can result in an avalanche breakdown as observed in semiconductor devices.


Other important characteristic of a dielectric material is its dielectric permittivity. Different types of dielectric materials are used for capacitors and include ceramics, polymer film, paper, and electrolytic capacitors of different kinds. The most widely used polymer film materials are polypropylene and polyester. Increase of dielectric permittivity allows increasing of volumetric energy density which makes it an important technical task.


An ultra-high dielectric constant composite of polyaniline, PANI-DBSA/PAA, was synthesized using in situ polymerization of aniline in an aqueous dispersion of poly-acrylic acid (PAA) in the presence of dodecylbenzene sulfonate (DBSA) (see, Chao-Hsien Hoa et al., “High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization”, Synthetic Metals 158 (2008), pp. 630-637). The water-soluble PAA served as a polymeric stabilizer, protecting the PANI particles from macroscopic aggregation. A very high dielectric constant of ca. 2.0*105 (at 1 kHz) was obtained for the composite containing 30% PANI by weight. Influence of the PANI content on the morphological, dielectric and electrical properties of the composites was investigated. Frequency dependence of dielectric permittivity, dielectric loss, loss tangent and electric modulus were analyzed in the frequency range from 0.5 kHz to 10 MHz. SEM micrograph revealed that composites with high PANI content (i.e., 20 wt. %) consisted of numerous nano-scale PANI particles that were evenly distributed within the PAA matrix. High dielectric constants were attributed to the sum of the small capacitors of the PANI particles. The drawback of this material is a possible occurrence of percolation and formation of at least one continuous conductive path under electric field with probability of such an event increasing with an increase of the electric field. When at least one continuous path (track) through the neighboring conducting PANI particles is formed between electrodes of the capacitor, it decreases a breakdown voltage of such capacitor.


Colloidal polyaniline particles stabilized with a water-soluble polymer, poly(N-vinylpyrrolidone) [poly(1-vinylpyrrolidin-2-one)], have been prepared by dispersion polymerization. The average particle size, 241±50 nm, have been determined by dynamic light scattering (see, Jaroslav Stejskal and Irina Sapurina, “Polyaniline: Thin Films and Colloidal Dispersions (IUPAC Technical Report)”, Pure and Applied Chemistry, Vol. 77, No. 5, pp. 815-826 (2005).


Single crystals of doped aniline oligomers are produced via a simple solution-based self-assembly method (see, Yue Wang, et. al., “Morphological and Dimensional Control via Hierarchical Assembly of Doped Oligoaniline Single Crystals”, J. Am. Chem. Soc. 2012, 134, pp. 9251-9262). Detailed mechanistic studies reveal that crystals of different morphologies and dimensions can be produced by a “bottom-up” hierarchical assembly where structures such as one-dimensional (1-D) nanofibers can be aggregated into higher order architectures. A large variety of crystalline nanostructures, including 1-D nanofibers and nanowires, 2-D nanoribbons and nanosheets, 3-D nanoplates, stacked sheets, nanoflowers, porous networks, hollow spheres, and twisted coils, can be obtained by controlling the nucleation of the crystals and the non-covalent interactions between the doped oligomers. These nanoscale crystals exhibit enhanced conductivity compared to their bulk counterparts as well as interesting structure-property relationships such as shape-dependent crystallinity. Furthermore, the morphology and dimension of these structures can be largely rationalized and predicted by monitoring molecule-solvent interactions via absorption studies. Using doped tetra-aniline as a model system, the results and strategies presented in this article provide insight into the general scheme of shape and size control for organic materials.


There is a known energy storage device (capacitor) based on a multilayer structure. The energy storage device includes first and second electrodes, and a multilayer structure comprising blocking and dielectric layers. The first blocking layer is disposed between the first electrode and a dielectric layer, and the second blocking layer is disposed between the second electrode and a dielectric layer. Dielectric constants of the first and second blocking layers are both independently greater than the dielectric constant of the dielectric layer. A drawback of this device is that blocking layers of high dielectric permittivity located directly in contact with electrodes can lead to destruction of the energy storage device. Materials with high dielectric permittivity which are based on composite materials and containing polarized particles (such as PANI particles) may demonstrate a percolation phenomenon. The formed polycrystalline structure of layers has multiple tangling chemical bonds on borders between crystallites. When the used material with high dielectric permittivity possesses polycrystalline structure, a percolation may occur along the borders of crystal grains. Another drawback of the known device is an expensive manufacturing procedure which is vacuum deposition of all layers.


Capacitors as energy storage device have well-known advantages versus electrochemical energy storage, e.g. a battery. Compared to batteries, capacitors are able to store energy with very high power density, i.e. charge/recharge rates, have long shelf life with little degradation, and can be charged and discharged (cycled) hundreds of thousands or millions of times. However, capacitors often do not store energy in small volume or weight as in case of a battery, or at low energy storage cost, which makes capacitors impractical for some applications, for example electric vehicles. Accordingly, it may be an advance in energy storage technology to provide capacitors of higher volumetric and mass energy storage density and lower cost.


SUMMARY

The present disclosure provides energy storage devices (e.g., capacitors) and methods of production thereof. Energy storage devices of the present disclosure may solve a problem of the further increase of volumetric and mass density of reserved energy associated with some energy storage devices, and at the same time reduce cost of materials and manufacturing process.


In an aspect, a capacitor comprises a first electrode, a second electrode, and a solid multilayer structure disposed between said first and second electrodes. Said electrodes are planar and positioned parallel to each other, and said solid multilayer structure comprises layers disposed parallel to said electrodes and has following sequence: (A-B)m-A, where A is an insulating layer; B is a polarization layer comprising a micro-dispersion of electro-conductive nano-particles in an insulator matrix, and number m≥1. In some situations, m can be greater than or equal to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, or 1000. In some examples, m is from 1 to 1000, 1 to 100, or 1 to 50. The electrodes can be nearly or substantially parallel to each other. The electrodes can be off-set from a parallel configuration.


In another aspect, a method of producing a capacitor comprises (a) preparation of a conducting substrate serving as one of the electrodes, (b) formation of a solid multilayer structure, and (c) formation of the second electrode on the multilayer structure, wherein formation of the multilayer structure comprises alternating steps of the application of insulating and polarization layers or a step of coextrusion of the layers.


In another aspect, a method of producing a capacitor comprises coating of insulating layers on both electrodes, and coating of a multilayer structure on one of electrodes with lamination of second electrode to multilayer structure.


Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 schematically shows an energy storage device, in accordance with some embodiments of the present disclosure; and



FIG. 2 schematically shows another energy storage device, in accordance with some embodiments of the present disclosure.





DETAILED DESCRIPTION

While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.


The present disclosure provides energy storage devices, such as capacitors. In one embodiment of the present invention, the insulating layers are crystalline. The insulating layers can be fabricated from any suitable crystalline material including a single crystal material, a batch crystal material, or amorphous material. Depending on the application, dielectric permittivity of the insulating dielectric material ∈ins may be in the broad range. The insulating layer comprises a material characterized by a band gap of greater than 4 eV and by breakdown field strength of greater than about 0.001 volts (V)/nanometer (nm), 0.01 V/nm, 0.05 V/nm, 0.1 V/nm, 0.2 V/nm, 0.3 V/nm, 0.4 V/nm, 0.5 V/nm, 1 V/nm, or 10 V/nm. The material of the polarization layers possesses dielectric permittivity ∈pol which may be in the broad range. In some cases, ∈pol is at least about 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, or 100,000.


For the present invention the solid insulating dielectric layers may possess a different structure in the range between an amorphous and crystalline solid layer, depending on the material and manufacturing procedure used. In one embodiment of the disclosed capacitor, the insulating layers comprise a material selected from oxides, nitrides, oxynitrides and fluorides. In another embodiment of the disclosed capacitor, the insulating layers comprise a material selected from SiO2, HfO2, Al2O3 or Si3N4. In one embodiment of the disclosed capacitor, the insulating layers comprise modified organic compounds of the general structural formula I: {Cor}(M)n, (I) where Cor is a polycyclic organic compound with conjugated π-system, M are modifying functional groups; and n is the number of the modifying functional groups, where n is equal or more than 1. In another embodiment of the present invention, the polycyclic organic compound is selected from the list comprising oligophenyl, imidazole, pyrazole, acenaphthene, triaizine, indanthrone and having a general structural formula selected from structures 1-43 as given in Table 1.









TABLE 1





Examples of the polycyclic organic compound for the insulating layers


















embedded image


1







embedded image


2







embedded image


3







embedded image


4







embedded image


5







embedded image


6







embedded image


7







embedded image


8







embedded image


9







embedded image


10







embedded image


11







embedded image


12







embedded image


13







embedded image


14







embedded image


15







embedded image


16







embedded image


17







embedded image


18







embedded image


19







embedded image


20







embedded image


21







embedded image


22







embedded image


23







embedded image


24







embedded image


25







embedded image


26







embedded image


27







embedded image


28







embedded image


29







embedded image


30







embedded image


31







embedded image


32







embedded image


33







embedded image


34







embedded image


35







embedded image


36







embedded image


37







embedded image


38







embedded image


39







embedded image


40







embedded image


41







embedded image


41







embedded image


42







embedded image


43









In another embodiment of the present invention, the modifying functional groups are selected from the list comprising alkyl, aryl, substituted alkyl, substituted aryl, and any combination thereof. The modifying functional groups provide solubility of organic compounds at the stage of manufacturing and additional insulating properties to the solid insulating layer of the capacitor. In yet another embodiment of the present invention, the insulating layers comprise polymeric materials selected from the list comprising fluorinated alkyls, polyethylene, kevlar, poly(vinylidene fluoride-hexafluoropropylene), polypropylene, fluorinated polypropylene, polydimethylsiloxane. In still another embodiment of the present invention, the insulating layers comprise a polymeric material formed on the basis of water-soluble polymers which are selected from the structures 44 to 49 as given in Table 2.









TABLE 2





Examples of the water-soluble polymers for the insulating layers


















embedded image


44





poly(2,2′-disulfo-4,4′-benzidine terephthalamide)








embedded image


45





poly(2,2′-disulfo-4,4′-benzidine isophthalamide)








embedded image


46





poly(2,2′-disulfo-4,4′-benzidine 1,3-dioxo-isoindoline-5-carboxamide)








embedded image


47





poly(2,2′-disulfo-4,4′-benzidine 1H-benzimidazole-2,5-dicarboxamide)








embedded image


48





poly(2,2′-disulfo-4,4′-benzidine 3,3′,4,4′-biphenyl tetracarboxylic acid diimide)








embedded image


49





poly(2,2′disulpho-4,4′benzidine 1,4,5,8-naphtalen tetracarboxylic acid diimide)










In another embodiment of the present invention, the insulating layers comprise a polymeric material formed on the basis of polymers soluble in organic solvents which are selected from the structures 50 to 55 as given in Table 3.









TABLE 3





Examples of the polymers soluble in organic solvents for the insulating layers


















embedded image


50







embedded image


51







embedded image


52







embedded image


53







embedded image


54







embedded image


55










wherein the modifying functional groups R1 and R2 are independently selected from the list comprising alkyl, aryl, substituted alkyl, substituted aryl, and any combination thereof.


In one embodiment of the present invention the polarization layers are crystalline. In one embodiment of the present invention, the polarization layers comprise the nano-particles of electro-conductive oligomers. In another embodiment of the present invention, the longitudinal axes of the electroconductive oligomers are directed predominantly perpendicularly in relation to the electrode surface. In one embodiment of the present invention, the electroconductive oligomers are selected from the list comprising following structural formulas corresponding to one of structures 57 to 63 as given in Table 4.









TABLE 4





Examples of the electroconductive oligomers for the polarization layers


















embedded image


57







embedded image


58







embedded image


59







embedded image


60







embedded image


61







embedded image


62







embedded image


63










where X=2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. In another embodiment of the capacitor of the present invention, the polarization layers comprise the electro-conductive nano-particles of low-molecular weight electro-conductive polymers. In another embodiment of the present invention, the low-molecular weight electroconductive polymer contains moieties selected from the structures 57 to 63 as given in Table 4. In another embodiment of the disclosed capacitor, the electroconductive oligomers further comprise substitute groups and are described by the following general structural formula II:

(electroconductive oligomer)-Rq,  (II)

where Rq is a set of substitute groups, and q is a number of the substitute groups R in the set Rq, q can be equal to 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. In yet another embodiment of the capacitor, the substitute groups R are independently selected from the list comprising alkyl, aryl, substituted alkyl, substituted aryl, and any combination thereof. In still another embodiment of the capacitor, a material of the insulator matrix is selected from the list comprising poly (acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)], ethylene propylene polymers, which include ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM), and silicone rubber (PDMSO) such as dimethyldicloro siloxane, dimethylsilane diol, and polydimethyl siloxane. These compounds serve also as a stabilizer, protecting the electro-conductive nano-particles from macroscopic aggregation. Electrodes of the disclosed energy storage device may be made of any suitable material, including but not limited to Pt, Cu, Al, Ag, Au, Ti, W, Zn, Ni or low melting temperature alloys. In one embodiment of the present invention, the thickness of the insulating layer (dins) and thickness of the polarization layer (dpol) and breakdown field strength of the insulating layers Eins and breakdown field strength of the polarization layers Epol satisfy the following relations: dins<dpol, and Eins>Epol.


In another embodiment of the present invention, the electrodes are made of copper, number m is equal to 1, a dielectric material of the insulating layers A is polyethylene, a material of the polarization layer B is a micro-dispersion PANI-DBSA/PAA, which synthesized using in situ polymerization of aniline in an aqueous dispersion of poly-acrylic acid (PAA) in the presence of dodecylbenzene sulfonate (DBSA), the ratio of PANI to PAA in the composite is equal to 20 wt %, or higher, thickness of the insulating layer is dins=25 nm, and thickness of the polarization layer dpol=10 mm. In still another embodiment of the present invention, the electrodes are made of copper, number m is equal to 1, a dielectric material of the insulating layers A is polyethylene, a material of the polarization layer B is colloidal PANI dispersions stabilized with poly(N-vinylpyrrolidone) (PVP), thickness of the insulating layer is dins=25 nm, and thickness of the polarization layer dcond=50 μm. In another embodiment of the present invention, polarization layers comprise surfactants which are selected from the list comprising dodecylbenzene sulfonate (DBSA), polyoxyethylene glycol alkyl ethers, polyoxypropylene glycol alkyl ethers, polyoxyethylene glycol octylphenol ethers, polyoxyethylene glycol sorbitan alkyl esters, sorbitan alkyl esters, dobecyldimethylamine oxide.


The present invention also provides a method of producing the capacitor as disclosed hereinabove. In one embodiment of the disclosed method, the step b) of formation of the multilayer structure comprises alternating steps of the application of a solution of an insulating material and the application of a solution of the polarization material, wherein both application steps are followed with a step of drying to form a solid insulating and polarization layers, the alternating steps are recurred until a formation of the multilayer structure is completed, and the insulating layer is formed as the first and the last layer being in direct contact with the electrodes. In another embodiment of the disclosed method, the step b) of formation of the multilayer structure comprises alternating steps of the application of a melt of an insulating material and the application of a melt of the polarization material, wherein both application steps are followed with a step of cooling down to form a solid insulating and polarization layers, the alternating steps are recurred until a formation of the multilayer structure is completed, and the insulating layers are formed as the first and the last layers being in direct contact with the electrodes. In yet another embodiment of the disclosed method, the step b) of formation of the solid multilayer structure comprises a step of coextrusion of set of the layers successively containing alternating polarization materials and insulating dielectric materials onto the substrate, followed by drying to form the solid multilayer structure. In still another embodiment of the disclosed method, the step b) of formation of the solid multilayer structure comprises a step of coextrusion of set of the layers successively containing alternating melts of polarization materials and insulating dielectric materials, followed with the step of cooling down to form the solid multilayer structure. The present invention also provides a method of producing the capacitor as disclosed hereinabove, which comprises the steps of d) coating of insulating layers on both electrodes, and e) coating of a multilayer structure on one of electrodes with lamination of second electrode to multilayer structure.


EXAMPLE 1


FIG. 2 shows an embodiment of the disclosed energy storage device that includes electrodes 1 and 2 and the solid multilayer structure comprising two insulating layers of an insulating dielectric material (3 and 4) separated with one polarization layer (5). In this embodiment of the present invention, composite of polyaniline, PANI-DBSA/PAA, synthesized using in situ polymerization of aniline in an aqueous dispersion of poly-acrylic acid (PAA) in the presence of dodecylbenzene sulfonate (DBSA) is used as the material of the polarization layer, and polyethylene is used as the insulating dielectric material. Thickness of the insulating layer dins=2.5 nm. The electrodes 10 and 11 are made of copper. Dielectric permittivity of polyethylene is equal to 2.2 (i.e. ∈ins=2.2). The composite of polyaniline, PANI-DBSA/PAA has the dielectric permittivity ∈pol equal to 100,000 and thickness of the conductive layer possessing molecular conductivity is dpol=1.0 mm.


EXAMPLE 2


FIG. 3 shows an embodiment of the disclosed energy storage device that includes electrodes 6 and 7 and the solid multilayer structure comprising alternating insulating and polarization layers, and wherein layers of an insulating dielectric material (11, 12, 13, 14) are separated by polarization layers (8, 9, 10). In this embodiment of the present invention, PANI-DBSA/PAA composite is used as a material of the polarization layers and polyethylene is used as an insulating dielectric material. Thickness of the insulating layer dins=2.5-1000 nm. Electrodes 6 and 7 are made of copper. The dielectric permittivity of polyethylene is equal to 2.2 (i.e. ∈ins=2.2) and breakdown voltage Vbd=40 kilovolt on thickness of 1 millimeter. In one embodiment the a material of the polarization layer is polyaniline (PANI)/poly(acrylic acid) (PAA) composite which has the dielectric permittivity ∈pol equal to 100,000. In this example the thickness of the polarization layer dpol=1.0-5.0 mm.


Although the present invention has been described in detail with reference to a particular preferred embodiment, persons possessing ordinary skill in the art to which this invention pertains will appreciate that various modifications and enhancements may be made without departing from the spirit and scope of the claims that follow.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A capacitor comprising a first electrode;a second electrode; anda solid multilayer structure disposed between said first and second electrodes,wherein the solid multilayer structure is in contact with said first and second electrodes and comprises layers disposed parallel to said electrodes, wherein the solid multilayer structure has a sequence of layers (A-B)m-A, wherein A is an insulating layer and B is a polarization layer comprising a colloidal composite with a micro-dispersion of electro-conductive nano-particles in an insulator matrix, and m is a number greater than or equal to 1,wherein A has a breakdown voltage of at least about 0.05 volts (V) per nanometer (nm), andwherein B has dielectric permittivity of at least about 100.
  • 2. A capacitor according to claim 1, wherein at least one of the insulating layers is crystalline.
  • 3. A capacitor according to claim 1, wherein A has a breakdown voltage of at least about 0.5 V/nm.
  • 4. A capacitor according to claim 1, wherein at least one of the insulating layers comprises a material selected from oxides, nitrides, oxynitrides and fluorides.
  • 5. A capacitor according to claim 4, wherein at least one of the insulating layers comprises a material selected from SiO2, HfO2, Al2O3 or Si3N4.
  • 6. A capacitor according to claim 1, wherein at least one of the insulating layers comprises a modified organic compounds of the general structural formula I: {Cor}(M)n,  (I)wherein Cor is a polycyclic organic compound, each M is independently a modifying functional group; and n is a number of the modifying functional groups that is greater than or equal to zero.
  • 7. A capacitor according to claim 6, wherein the polycyclic organic compound is selected from the group consisting of oligophenyl, imidazole, pyrazole, acenaphthene, triaizine, indanthrone and structures 1-43:
  • 8. A capacitor according to claim 6 or 7, wherein the modifying functional groups are selected from the group consisting of alkyl, aryl, substituted alkyl, and substituted aryl.
  • 9. A capacitor according to claim 1, wherein at least one of the insulating layers comprises a compound selected from the group consisting of fluorinated alkyls, polyethylene, kevlar, poly(vinylidene fluoride-hexafluoropropylene), polypropylene, fluorinated polypropylene, and polydimethylsiloxane.
  • 10. A capacitor according to claim 1, wherein at least one of the insulating layers comprises a material having a structure selected from the structures 44 to 49:
  • 11. A capacitor according to claim 1, wherein at least one of the insulating layers comprises a material having a structure selected from the structures 50 to 55:
  • 12. A capacitor according to claim 1, wherein at least one of the polarization layers is crystalline.
  • 13. A capacitor according to claim 1, wherein the electro-conductive nano-particles comprise an electro-conductive oligomer.
  • 14. A capacitor according to claim 13, wherein longitudinal axis of the electro-conductive oligomer is directed perpendicularly in relation to an electrode surface.
  • 15. A capacitor according to claim 13, wherein the electro-conductive oligomer is one of structures 57 to 63:
  • 16. A capacitor according to claim 1, wherein the electro-conductive nano-particles comprise a low-molecular weight electro-conductive polymer.
  • 17. A capacitor according to claim 16, wherein the low-molecular weight electro-conductive polymer comprises a monomer corresponding to one of structures 57 to 63:
  • 18. A capacitor according to claim 13, wherein the electro-conductive oligomer is of formula: (electroconductive oligomer)-Rq  (II)wherein Rq is a substitute group, and q is a number that is greater than or equal to zero.
  • 19. A capacitor according to claim 18, wherein each R is independently an alkyl, aryl, substituted alkyl, or substituted aryl.
  • 20. A capacitor according to claim 1, wherein a material of the insulator matrix is selected from the group consisting of poly (acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)], ethylene propylene polymers, which include ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM), and silicone rubber (PDMSO) such as dimethyldicloro siloxane, dimethylsilane diol, and polydimethyl siloxane.
  • 21. A capacitor according to claim 1, wherein at least one of the electrodes comprises Pt, Cu, Al, Ag, Au, Ti, W, Zn, Ni or a low-melting temperature alloy.
  • 22. A capacitor according to claim 1, wherein the thickness of the insulating layer (dins) and thickness of the polarization layer (dpol) and breakdown field strength of the insulating layers Eins and breakdown field strength of the polarization layers Epol satisfy the following relations: dins <dpol, and Eins >Epol.
  • 23. A capacitor according to claim 1, wherein the electrodes comprise copper, m is greater than or equal to 1, a dielectric material of the insulating layers A is polyethylene, a material of the polarization layer B is a micro-dispersion PANI-DBSA/PAA, the ratio of PANI to PAA in the composite is greater than or equal to about 20wt %, a thickness of the insulating layer (dins) is at least about 2.5 nm, and a thickness of the polarization layer (dpol) is at least about 1.0 mm.
  • 24. A capacitor according to claim 1, wherein the electrodes comprise copper, m is greater than or equal to 1, a dielectric material of the insulating layers A is polyethylene, a material of the polarization layer B is colloidal PANI dispersions stabilized with poly(N-vinylpyrrolidone) (PVP), a thickness of the insulating layer (dins) is from 2.5 nm to 1000 nm, and a thickness of the polarization layer (dcond) is from 10 micrometer (μm) to 50 μm.
  • 25. A capacitor according to claim 1, wherein said polarization layers comprise a surfactant selected from: dodecylbenzene sulfonate (DBSA), polyoxyethylene glycol alkyl ethers, polyoxypropylene glycol alkyl ethers, polyoxyethylene glycol octylphenol ethers, polyoxyethylene glycol sorbitan alkyl esters, sorbitan alkyl esters, and dobecyldimethylamine oxide.
  • 26. A method of producing a capacitor, comprising: a) preparing a conducting substrate serving as a first electrode;b) forming a solid multilayer structure adjacent to the first electrode; andc) forming a second electrode adjacent to the multilayer structure, wherein formation of the multilayer structure comprises alternating operations of the application of insulating and polarization layers or an operation of coextrusion of the insulating and polarization layers, wherein the polarization layer is a colloidal composite with a micro-dispersion of electro-conductive nano-particles in an insulator matrix, wherein an individual insulating layer has a breakdown voltage of at least about 0.05 volts per nanometer (nm) and an individual polarization layer has dielectric permittivity of at least about 100.
  • 27. A method according to claim 26, wherein forming the solid multilayer structure comprises alternating operations of the application of a solution of an insulating material and the application of a solution of the polarization material, wherein both application operations are followed with an operation of drying to form a solid insulating and polarization layers, the alternating operations are recurred until a formation of the multilayer structure is completed, and the insulating layer is formed as the first and the last layer being in direct contact with the electrodes.
  • 28. A method according to claim 26, wherein forming the solid multilayer structure comprises alternating operations of the application of a melt of an insulating material and the application of a melt of the polarization material, wherein both application operations are followed with an operation of cooling down to form a solid insulating and polarization layers, and wherein the alternating operations are recurred until a formation of the multilayer structure is completed, and the insulating layers are formed as the first and the last layers being in direct contact with the electrodes.
  • 29. A method according to claim 26, wherein forming the solid multilayer structure comprises an operation of coextrusion of at least one set of the layers successively containing alternating polarization materials and insulating dielectric materials onto the substrate, followed by drying to form the solid multilayer structure.
  • 30. A method according to claim 26, wherein forming the solid multilayer structure comprises an operation of coextrusion of set of the layers successively containing alternating melts of polarization materials and insulating dielectric materials, followed with the step of cooling down to form the solid multilayer structure.
  • 31. A method of producing a capacitor, which comprises: a) coating insulating layers on first and second electrodes; andb) coating a multilayer structure on an insulating layer on one of the first and second electrodes with the lamination of the other of the first and second electrodes to the multilayer structure,wherein an individual insulating layer has a breakdown voltage of at least about 0.05 volts per nanometer (nm) and the multilayer structure comprises a polarization layer having a dielectric permittivity of at least about 100,wherein the polarization layer is a colloidal composite with a micro-dispersion of electro-conductive nano-particles in an insulator matrix.
US Referenced Citations (128)
Number Name Date Kind
3407394 Hartke Oct 1968 A
4694377 MacDougall et al. Sep 1987 A
4702562 Scheuble et al. Oct 1987 A
4894186 Gordon et al. Jan 1990 A
5187639 Ogawa et al. Feb 1993 A
5248774 Dietz et al. Sep 1993 A
5312896 Bhardwaj et al. May 1994 A
5384521 Coe Jan 1995 A
5395556 Drost et al. Mar 1995 A
5466807 Dietz et al. Nov 1995 A
5514799 Varanasi et al. May 1996 A
5581437 Sebillotte et al. Dec 1996 A
5583359 Ng et al. Dec 1996 A
5679763 Jen et al. Oct 1997 A
5742471 Barbee et al. Apr 1998 A
5840906 Zoltewicz et al. Nov 1998 A
5880951 Inaba Mar 1999 A
6282081 Takabayashi et al. Aug 2001 B1
6294593 Jeng et al. Sep 2001 B1
6341056 Allman et al. Jan 2002 B1
6391104 Schulz May 2002 B1
6426861 Munshi Jul 2002 B1
6501093 Marks Dec 2002 B1
6617830 Nozu et al. Sep 2003 B2
6798642 Decker et al. Sep 2004 B2
7025900 Sidorenko et al. Apr 2006 B2
7033406 Weir et al. Apr 2006 B2
7211824 Lazarev May 2007 B2
7460352 Jamison et al. Dec 2008 B2
7466536 Weir et al. Dec 2008 B1
7498689 Mitani et al. Mar 2009 B2
7579709 Goetz et al. Aug 2009 B2
7625497 Iverson et al. Dec 2009 B2
7750505 Ichikawa Jul 2010 B2
7808771 Nguyen et al. Oct 2010 B2
7837902 Hsu et al. Nov 2010 B2
7888505 Doutova et al. Feb 2011 B2
7893265 Facchetti et al. Feb 2011 B2
7910736 Koenemann et al. Mar 2011 B2
7947199 Wessling May 2011 B2
8143853 Jestin et al. Mar 2012 B2
8222074 Lazarev Jul 2012 B2
8231809 Pschirer et al. Jul 2012 B2
8236998 Nagata et al. Aug 2012 B2
8344142 Marder et al. Jan 2013 B2
8404844 Kastler et al. Mar 2013 B2
8527126 Yamamoto et al. Sep 2013 B2
8552179 Lazarev Oct 2013 B2
8818601 G V et al. Aug 2014 B1
8929054 Felten et al. Jan 2015 B2
8938160 Wang Jan 2015 B2
9056676 Wang Jun 2015 B1
9293260 Schmid et al. Mar 2016 B2
9733406 Doutova et al. Aug 2017 B2
20020027220 Wang et al. Mar 2002 A1
20020048140 Gallay et al. Apr 2002 A1
20030026063 Munshi Feb 2003 A1
20030102502 Togashi Jun 2003 A1
20030142461 Decker et al. Jul 2003 A1
20030219647 Wariishi Nov 2003 A1
20040222413 Hsu Nov 2004 A1
20050118083 Tabuchi Jun 2005 A1
20060120014 Nakamura et al. Jun 2006 A1
20060120020 Dowgiallo Jun 2006 A1
20070001258 Aihara Jan 2007 A1
20070108940 Sainomoto et al. May 2007 A1
20070159767 Jamison et al. Jul 2007 A1
20080002329 Pohm et al. Jan 2008 A1
20080150484 Kimball et al. Jun 2008 A1
20080266750 Wu et al. Oct 2008 A1
20080283283 Abe et al. Nov 2008 A1
20090034073 Lazarev Feb 2009 A1
20090040685 Hiemer et al. Feb 2009 A1
20090184355 Brederlow et al. Jul 2009 A1
20090191394 Lazarev et al. Jul 2009 A1
20100038629 Lazarev Feb 2010 A1
20100178728 Zheng et al. Jul 2010 A1
20100183919 Holme et al. Jul 2010 A1
20100190015 Kasianova Jul 2010 A1
20100193777 Takahashi et al. Aug 2010 A1
20100214719 Kim et al. Aug 2010 A1
20100233491 Nokel et al. Sep 2010 A1
20100255381 Holme et al. Oct 2010 A1
20100269731 Jespersen et al. Oct 2010 A1
20100279122 Nokel et al. Nov 2010 A1
20100309696 Guillot et al. Dec 2010 A1
20100315043 Chau Dec 2010 A1
20110006393 Cui Jan 2011 A1
20110042649 Duvall et al. Feb 2011 A1
20110064892 Nokel et al. Mar 2011 A1
20110079733 Langhals et al. Apr 2011 A1
20110079773 Wasielewski et al. Apr 2011 A1
20110110015 Zhang et al. May 2011 A1
20110228442 Zhang et al. Sep 2011 A1
20120008251 Yu et al. Jan 2012 A1
20120033342 Ito et al. Feb 2012 A1
20120053288 Morishita et al. Mar 2012 A1
20120056600 Nevin Mar 2012 A1
20120113380 Geivandov et al. May 2012 A1
20120122274 Lazarev May 2012 A1
20120244330 Sun et al. Sep 2012 A1
20120268862 Song et al. Oct 2012 A1
20120274145 Taddeo Nov 2012 A1
20120302489 Rodrigues et al. Nov 2012 A1
20130056720 Kim et al. Mar 2013 A1
20130187475 Vendik et al. Jul 2013 A1
20130194716 Holme et al. Aug 2013 A1
20130215535 Bellomo Aug 2013 A1
20130314839 Terashima et al. Nov 2013 A1
20130342967 Lai et al. Dec 2013 A1
20140035100 Cho Feb 2014 A1
20140036410 Okamatsu et al. Feb 2014 A1
20140098458 Almadhoun et al. Apr 2014 A1
20140158340 Dixler et al. Jun 2014 A1
20140185260 Chen et al. Jul 2014 A1
20140268490 Tsai et al. Sep 2014 A1
20140347787 Fathi et al. Nov 2014 A1
20150008735 Mizoguchi Jan 2015 A1
20150158392 Zhao Jun 2015 A1
20150162131 Felten et al. Jun 2015 A1
20150249401 Eriksen et al. Sep 2015 A1
20150302990 Ghosh et al. Oct 2015 A1
20160020026 Lazarev Jan 2016 A1
20160020027 Lazarev Jan 2016 A1
20160254092 Lazarev et al. Sep 2016 A1
20160314901 Lazarev Oct 2016 A1
20160340368 Lazarev Nov 2016 A1
20160379757 Robinson et al. Dec 2016 A1
Foreign Referenced Citations (48)
Number Date Country
203118781 Aug 2013 CN
203377785 Jan 2014 CN
103986224 Aug 2014 CN
10203918 Aug 2003 DE
102010012949 Sep 2011 DE
102011101304 Nov 2012 DE
102012016438 Feb 2014 DE
0493716 Jul 1992 EP
0585999 Mar 1994 EP
0602654 Jun 1994 EP
0729056 Aug 1996 EP
0791849 Aug 1997 EP
0986080 Jan 2004 EP
0865142 May 2008 EP
2062944 May 2009 EP
2260035 Dec 2010 EP
2415543 Feb 2012 EP
1486590 Dec 2013 EP
2759480 Jul 2014 EP
547853 Sep 1942 GB
323148 Apr 1963 GB
2084585 Nov 1983 GB
2786298 Nov 1991 JP
H03253014 Nov 1991 JP
2786298 Aug 1998 JP
2007287829 Nov 2007 JP
2010106225 May 2010 JP
2010160989 Jul 2010 JP
2011029442 Feb 2011 JP
2014139296 Jul 2014 JP
2199450 Feb 2003 RU
2512880 Apr 2014 RU
1990009616 Aug 1990 WO
0139305 May 2001 WO
0226774 Apr 2002 WO
2007078916 Jul 2007 WO
2008038047 Apr 2008 WO
2009158553 Dec 2009 WO
2011056903 May 2011 WO
2012012672 Jan 2012 WO
2012084536 Jun 2012 WO
2012122312 Sep 2012 WO
2012162500 Nov 2012 WO
2013009772 Jan 2013 WO
20130854 Jun 2013 WO
2014009686 Jan 2014 WO
2015003725 Jan 2015 WO
2015175522 Nov 2015 WO
Non-Patent Literature Citations (92)
Entry
International Search Report and Written Opinion for International Application No. PCT/US2016/019641, dated Jul. 12, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/033628, dated Sep. 1, 2016.
Non-Final Office Action for U.S. Appl. No. 14/752,600, dated Jan. 23, 2017.
Non-Final Office Action for U.S. Appl. No. 14/919,337, dated Jan. 4, 2017.
Notice of Allowance for U.S. Appl. No. 14/710,491, dated Oct. 24, 2016.
PUBCHEM Open Chemistry Database, Compound Summary for CID 91001799. Mar. 17, 2015. pp. 1-10.
International Search Reprot and Written Opinion for International Application No. PCT/US2016/039395, dated Oct. 20, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/039395, dated Jul. 1, 2016.
Final Office Action for U.S. Appl. No. 14/919,337, dated May 1, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/017146, dated May 11, 2017.
Non-Final Office Action for U.S. Appl. No. 15/053,943, dated Apr. 19, 2017.
Center for Dielectric Studies, Janosik, et al., “Ultra-High Energy Density Capacitors Through Improved Glass Technology”, pp. 1-5 Center for Dielectric Studies Penn State University, dated 2004.
Congressional Research Service, Paul W. Parfomak, “Energy Storage for Power Grids and Electric Transportation: A Technology Assessment”, pp. 87-94; Members and Committees of Congress; Mar. 27, 2012.
Department of Chemistry and Biochemistry, Hardy, et al. “Converting an Electrical Insulator into a Dielectric Capacitor: End-Capping Polystyrene with Oligoaniline”; pp. 799-807, Rensselaer Polytechnic Institute, Troy, New York 12180; Feb. 17, 2013.
Department of Chemistry, Ho et al., “High dielectric constant polyanilinelpoly(acrylic acid) composites prepared by in situ polymerization”, pp. 630-637; National Taiwan University, Taipei, Taiwan, ROC, Apr. 15, 2008.
Hindawi Publishing Corporation, Chávez-Castillo et al, “Third-Order Nonlinear Optical Behavior of Novel Polythiophene Derivatives Functionalized with Disperse Red 19 Chromophore”, pp. 1-11, International Journal of Polymer Science vol. 2015, Article ID 219361, Mar. 12, 2015.
Hindawi Publishing Corporation, González-Espasandin et al., “Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion”, pp. 1-13, Torrefon de Ardoz, 28850 Madrid, Spain Jan. 30, 2014.
Hindawi Publishing Corporation, Khalil Ahmed et al., “High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization”, pp. 630-637, University of the Punjab, New Campus, Lahore 54590, Oct. 17, 2015.
Institute of Transportation Studies, Burke, et al. “Review of the Present and Future Applications of Supercapacitors in Electric and Hybrid Vehicles”, pp. 2-23 UC Davis ITS; Dec. 2014.
International Search Report and Written Opinion for International Application No. PCT/US2015/058890, dated Feb. 25, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2015/030356, dated Jul. 28, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2015/030415, dated Nov. 4, 2015.
International Union of Pure and Applied Chemistry Polymer Divison Stejskal et al., “Polyaniline: Thin Films and Colloidal Dispersions (IUPAC Technical Report)”, vol. 77, No. 5, pp. 815-826, Russian Academy of Sciences, St. Petersburg 199004, Russia; 2005.
JACS Articles, Kang et. al., “Ultralarge Hyperpolarizability Twisted π-Electron System Electro-Optic Chromophores: Synthesis, Solid-State and Solution-Phase Structural Characteristics, Electronic Structures, Linear and Nonlinear Optical Properties, and Computational Studies”, pp. 3267-3286; Perugia, Italy Feb. 20, 2007.
Yue Wang, et. al., “Morphological and Dimensional Control via Hierarchical Assembly of Doped Oligoaniline Single Crystals”, J. Am. Chem. Soc. 2012, 134, pp. 9251-9262.
Microelectronics Research and Communications Institute, Founders et al., “High-Voltage Switching Circuit for Manometer Scale CMOS Technologies”, pp. 1-4, University of Idaho, Moscow, ID 83843 USA, Apr. 30, 2007.
Molecular Diversity Preservation International, Barber, et al. “Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage” pp. 1-32; 29 University of South Carolina, Columbia, SC 29208 Oct. 2009.
Optical Society of America, Kuzyk et al, “Theory of Molecular Nonlinear Optics”, pp. 5, 4-82, Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA, Mar. 26, 2013.
Philosophical Transactions of the Royal Society, Simon, “Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors” pp. 3457-3467; Drexel University, Philadelphia, PA 19104, 2010.
R. J. Baker and B. P. Johnson, “stacking power MOSFETs for use in high speed instrumentation”, Department of Electrical Engineering, University of Nevada, Reno, Reno. Nevada 89557-0030; pp. 5799-5801 Aug. 3, 1992.
RSC Publishing, Akl et al., “Molecular materials for switchable nonlinear optics in the solid state, based on ruthenium-nitrosyl complexes”, pp. 3518-3527, Porto Alegre, Brazil; May 24, 2013.
U.S. Appl. No. 15/053,943, to Pavel Ivan Lazarev, et al., filed Mar. 14, 2016.
U.S. Appl. No. 15/090,509, to Pavel Ivan Lazarev, et al., filed Mar. 4, 2016.
U.S. Appl. No. 14/752,600, to Matthew R. Robinson, et al., filed Jun. 26, 2015.
U.S. Appl. No. 14/919,337, to Paul T. Furuta, et al., filed Oct. 21, 2015.
U.S. Appl. No. 14/931,757, to Pavel Ivan Lazarev, et al., filed Nov. 3, 2015.
U.S. Appl. No. 15/043,186, to Paul T. Furuta, et al., filed Feb. 12, 2016.
U.S. Appl. No. 15/043,209, to Paul T. Furuta, et al., filed Feb. 12, 2016.
U.S. Appl. No. 15/043,247, to Barry K Sharp, et al., filed Feb. 12, 2016.
U.S. Appl. No. 14/719,072, to Pavel Ivan Lazarev, filed May 21, 2015.
U.S. Appl. No. 15/043,315, to Ivan S.G. Kelley-Morgan, filed Feb. 12, 2016.
U.S. Appl. No. 62/318,134, to Pavel Ivan Lazarev, et al., filed Mar. 4, 2016.
U.S. Appl. No. 62/294,964, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016.
U.S. Appl. No. 62/121,328, to Pavel Ivan Lazarev et al., filed Feb. 26, 2015.
U.S. Appl. No. 62/294,949, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016.
U.S. Appl. No. 62/294,955, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016.
Deily, Dielectric and Optical Characterization of Polar Polymeric Materials: Chromophore Entrained PMMA Thin Films, Thesis, 2008.
Deruiter, J. Resonance and Induction Tutorial. Auburn University-Principles of Drug Action 1 Course Material. Spring 2005, 19 pages.
Handy, Scott T. “Ionic Liquids-Classes and Properties” Published Sep. 2011, Accessed Aug. 28, 2017, InTechweb.org.
International Search Report and Written Opinion for International Application No. PCT/US2016/57765 dated Jan. 5, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/017150, dated May 18, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/24150, dated Jun. 21, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/24371, dated Aug. 2, 2017.
Isoda, Kyosuke et al. “Truxene-Based Columnar Liquid Crystals: Self-Assembled Structures and Electro-Active Properties.” Chemistry—An Asian Journal (2009), vol. 4, No. 10, pp. 1619-1625.
Johnson, Kieth E. “What's an Ionic Liquid?” The Electrochemical Society Interface, Published Spring 2007, pp. 38-41, Accessed Aug. 28, 2017.
Li, Li-Li et al. “Synthesis and Mesomorphism of Ether-ester Mixed Tail C3-symmetrical Truxene discotic liquid crystals.” Liquid Crystals(2010), vol. 37, No. 5, pp. 499-506.
Liang, Mao et al. “Synthesis and Photovoltaic Performance of Two Triarylamine Organic Dyes Based on Truxene.” Yinyong Huaxue (2011) vol. 28 No. 12, pp. 1387-1392.
Lu, Meng et al. “Organic Dyes Incorporating Bis-hexapropyltruxeneamino Moiety for efficient Dye-sensitized Solar Cells.” Journal of Physical Chemistry C (2011) vol. 115, No. 1, pp. 274-281.
Maddalena, Francesco “Why are Ionic Liquids, Liquids?” http://www.quora.com/why-are-ionic-liquids-liquids?, Published Jan. 26, 2017, Accessed Aug. 28, 2017.
Manukian, BK. 216. IR.-spektroskopische Untersuchungen in der Imidazol-Reihe. Helvetica Chimica Acta. 1965, vol. 48, p. 2001.
Ni, Hai-Lang et al. “Truxene Discotic Liquid Crystals with Two Different Ring Substituents: Synthesis, Metamorphosis and High Charged Carrier Mobility.” Liquid Crystals, vol. 40, No. 3, pp. 411-420.
Non-Final Office Action dated Jun. 13, 2017 for U.S. Appl. No. 15/163,595.
Non-Final Office Action for U.S. Appl. No. 14/719,072, dated Aug. 2, 2017.
Non-Final Office Action for U.S. Appl. No. 15/043,247, dated Jun. 22, 2017.
Non-Final Office Action for U.S. Appl. No. 14/710,480, dated May 8, 2017.
Non-Final Office Action for U.S. Appl. No. 15/043,186, dated Jun. 2, 2017.
Notice of Allowance for U.S. Appl. No. 14/710,491, dated Jan. 19, 2017.
Notice of Allowance for U.S. Appl. No. 14/752,600, dated Jul. 27, 2017.
Notice of Allowance for U.S. Appl. No. 14/919,337, dated Jul. 19, 2017.
Notice of Allowance of U.S. Appl. No. 14/931,757, dated Jul. 17, 2017.
Notice of Allowance for U.S. Appl. No. 15/053,943, dated Aug. 14, 2017.
Trevethan, Thomas et al. “Organic Molecules Reconstruct Nanostructures on Ionic Surfaces.” Small (2011), vol. 7, No. 9, pp. 1264-1270.
Warmerdam, T. W. et al. “Discotic Liquid Crystals. Physical Parameters of some 2, 3, 7, 8, 12, 13-hexa(alkanoyloxy) truxenes: Observation of a Reentrant Isotropic Phase in a Pure Disk-like mesogen.” Liquid Crystals (1988), vol. 3, No. 8, pp. 1087-1104.
International Search Report and Written Opinion for International Application No. PCT/US2017/016862, dated Aug. 14, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/24600, dated Aug. 14, 2017.
Nagabrahmandachari et al. “Synthesis and Spectral Analysis of Tin Tetracarboxylates and Phosphinates” Indian Journal of Chemistry-Section A, 1995, vol. 34A, pp. 658-660.
Non-Final Office Action for U.S. Appl. No. 15/194,224, dated Sep. 27, 2017.
Notice of Allowance for U.S. Appl. No. 14/710,480, dated Oct. 6, 2017.
Final Office Action for U.S. Appl. No. 15/043,247, dated Oct. 4, 2017.
Extended European Search Report for Application No. 15792405.1, dated Nov. 10, 2017.
Hsing-Yang Tsai et al, “1,6- and 1,7-Regioisomers of Asymmetric and Symmetric Perylene Bisimides: Synthesis, Characterization and Optical Properties” Molecules, 2014, vol. 19, pp. 327-341.
Hsing-Yang Tsai et al, “Synthesis and optical properties of novel asymmetric perylene bisimides”, Journal of Luminescence, vol. 149, pp. 103-111 (2014).
Notice of Allowance for U.S. Appl. No. 14/919,337, dated Nov. 8, 2017.
Notice of Allowance for U.S. Appl. No. 14/710,480, dated Nov. 24, 2017.
Office Action dated Oct. 19, 2017 for Taiwan patent Application No. 106104501.
Notice of Allowance for U.S. Appl. No. 14/719,072, dated Nov. 16, 2017.
Non-Final Office Action for U.S. Appl. No. 15/043,315, dated Dec. 26 2017.
Office Action dated Dec. 13, 2017 for Taiwan Patent Application No. 106104499.
Office Action dated Dec. 13, 2017 for Taiwan Patent Application No. 106104500.
Notice of Allowance for U.S. Appl. No. 14/710,480, dated Jan. 11, 2018.
Non-Final Office Action for U.S. Appl. No. 15/163,595, dated Jan. 17, 2018.
Notice of Allowance for U.S. Appl. No. 15/090,509, dated Jan. 24, 2018.
Related Publications (1)
Number Date Country
20160314901 A1 Oct 2016 US
Provisional Applications (1)
Number Date Country
62075145 Nov 2014 US