The present disclosure relates to radio frequency (RF) impedance transmission lines and transformers having planar conductors in a coupled configuration.
Transformers are an important component used in radio frequency (RF) circuitry. They can be used in filter circuits, in impedance matching circuits, and in transforming balanced to unbalanced (balun) circuits. Lower RF applications (low hundreds of megahertz (MHz)) traditionally use windings on a ferrite core, with the square of the ratio of primary to secondary windings (Np/Ns)2 representing an impedance ratio (Zp/Zs). Power is transferred through the ferrite core. Higher RF applications (high hundreds of MHz to gigahertz (GHz)) often incorporate transmission line transformers that are constructed from planar conductors arranged on dielectric substrates. Power is generally transferred through the dielectric medium of the transmission line. Characteristic impedance of the transmission line is critical in obtaining a most efficient power transfer performance for the transformer. However, traditional transmission lines suffer from dielectric losses that limit their bandwidth at higher frequencies. Moreover, traditional transmission line geometries do not extend efficient power transmission at lower frequencies in the MHz range.
However, thermal performance of the broadside-coupled transformer 10 of
Enhanced air core transmission lines and transformers are disclosed. The transmission lines and transformers are generally used in radio frequency (RF) circuitry, such as filter circuits, impedance matching circuits, and in balanced to unbalanced (balun) circuits. These transmission lines and transformers may be referred to generally as an impedance transmission line. An impedance transmission line is disposed on a dielectric substrate, with a first planar conductor on the dielectric substrate and a second planar conductor suspended above the first planar conductor. A set of support posts suspends the second planar conductor above the first planar conductor. Thermal performance of the transmission line or transformer is improved by having each of the set of support posts include a width which exceeds any gap between support posts. In some examples, openings are formed in the second planar conductor and may facilitate etching or other processes of forming the transmission line or transformer.
An exemplary aspect of the disclosure provides an impedance transmission line. The impedance transmission line includes a dielectric substrate and a first planar conductor disposed on the dielectric substrate. The impedance transmission line also includes a second planar conductor positioned over and spaced apart from the first planar conductor, the second planar conductor having a first edge and a second edge opposite the first edge. The impedance transmission line also includes a plurality of support posts, each support post thermally coupling the first edge or the second edge of the second planar conductor to the dielectric substrate. Each of the plurality of support posts has a width defined along the first edge or the second edge of the second planar conductor which exceeds any gap between adjacent support posts.
In another aspect, a method of forming an impedance transmission line is provided. The method includes forming a first planar conductor having a first edge and a second edge on a dielectric substrate. The method also includes forming a first set of support posts on the dielectric substrate along and separated from the first edge. The method also includes forming a second set of support posts on the dielectric substrate along and separated from the second edge. The method also includes forming a second planar conductor on the first and second sets of support posts. The second planar conductor defines a plurality of openings positioned between the first set of support posts and the second set of support posts.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Enhanced air core transmission lines and transformers are disclosed. The transmission lines and transformers are generally used in radio frequency (RF) circuitry, such as filter circuits, impedance matching circuits, and in balanced to unbalanced (balun) circuits. These transmission lines and transformers may be referred to generally as an impedance transmission line. An impedance transmission line is disposed on a dielectric substrate, with a first planar conductor on the dielectric substrate and a second planar conductor suspended above the first planar conductor. A set of support posts suspends the second planar conductor above the first planar conductor. Thermal performance of the transmission line or transformer is improved by having each of the set of support posts include a width which exceeds any gap between support posts. In some examples, openings are formed in the second planar conductor and may facilitate etching or other processes of forming the transmission line or transformer.
To assist in understanding aspects of the present disclosure, an exemplary impedance transmission line, which may be an enhanced air core transmission line or transformer, is described below with respect to
In this regard,
The first planar conductor 32 is disposed on the dielectric substrate 36. The second planar conductor 34 is positioned over and spaced apart from the first planar conductor 32 by support posts 38. The second planar conductor 34 has a first edge 40 and an opposite second edge 42. Each support post couples the first edge 40 or the second edge 42 to the dielectric substrate 36. For example, a first set of support posts 44 may be coupled to the first edge 40, while a second set of support posts 46 is coupled to the second edge 42. Generally, the first planar conductor 32 and the second planar conductor 34 are oblong (e.g., a first length of the first edge 40 and a second length of the second edge 42 of the second planar conductor 34 exceed a width between the first edge 40 and the second edge 42). In some cases, the first edge 40 and the second edge 42 may be parallel to one another and form elongated edges of the elongated U-shaped pattern of the second planar conductor 34. In other cases, the first edge 40 and the second edge 42 may be non-parallel opposing edges of the second planar conductor 34.
In contrast to the narrow and widely spaced stakes 18 of the broadside-coupled transformer 10 of
In the exemplary embodiment depicted in
The openings 48 formed in the second planar conductor 34 can be oblong openings which span parallel to the first edge 40 and the second edge 42, and may be positioned (e.g., centered) between a respective one of the first set of support posts 44 and one of the second set of support posts 46. The openings 48 are illustrated as rectangular in shape, but may be another oblong shape, such as an oval, a capsule, or another geometric shape. In addition, each opening 48 is depicted as being centered with one of the support posts 38 along its elongated length, but this is not required. For example, two or more openings 48 may be positioned side by side between the support posts 38. Generally, the openings 48 are formed at regular intervals along a length of the second planar conductor 34, but may be formed at irregular intervals as well.
Space between the first planar conductor 32 and the second planar conductor 34 can be filled with a vacuum or air. In this case, the bottom surface 50 of the second planar conductor 34 is not directly in contact with a solid dielectric. Additionally, a top surface 52 of the second planar conductor 34 may not be directly in contact with a solid dielectric. In alternative embodiments, the space between the first planar conductor 32 and the second planar conductor 34 can be fully or partially occupied by other dielectric materials.
As shown in
Generally, the width W of the support posts 38 is greater than a gap between adjacent support posts 38. In the exemplary impedance transmission line 30, the width W of the support posts 38 is 50 μm, but the width W and the gap between adjacent support posts 38 can be adjusted according to a desired thermal performance. The bottom of each support post 38 is spaced from sidewalls 58 of the first planar conductor 32 by 5 μm. The width of the first planar conductor 32 defined between sidewalls 58 is 27 μm. The width of the second planar conductor 34 defined between the first edge 40 and the second edge 42 is 47 μm. Generally, the width of the second planar conductor 34 will be at least 20 μm wider than the first planar conductor 32 to accommodate the support posts 38 and the gap between the first planar conductor 32 and the support posts 38.
The first planar conductor 32 typically has a width that is from 10 μm to 100 μm. Moreover, the support posts 38 are separated and spaced from the sidewalls 58 of the first planar conductor 32 by at least 2 μm. However, it is to be understood that the dimensions illustrated in
In an exemplary embodiment, the first planar conductor 32, the second planar conductor 34, the support posts 38, the via 56, and the ground plane 54 are made of metal, such as gold, copper, aluminum, steel, a combination thereof, and so on. In other examples the first planar conductor 32, the second planar conductor 34, the support posts 38, the via 56, and the ground plane 54 are made of other conductive materials or materials coated or plated in a metal. The dielectric substrate 36 is made of an appropriate dielectric, such as silicon carbide (SiC) or silicon (Si).
In an exemplary aspect, the first planar conductor 32, the second planar conductor 34, and the support posts 38 are deposited on the dielectric substrate 36 through a multi-layer deposition technique. For example, the first planar conductor 32 and a bottom section 60 of the support posts 38 may be deposited in a first layer. A middle section 62 of the support posts 38 may be deposited in a second layer, and the second planar conductor 34 may be deposited in a third layer. In this regard, a mask, such as a photoresist layer, may be applied to direct deposition of the first planar conductor 32, the second planar conductor 34, and the support posts 38. The mask may be a photoresist layer or other appropriate masking material, and may be etched or otherwise cleaned out once the first planar conductor 32, the second planar conductor 34, and the support posts 38 are deposited.
In this regard, due to the small gap between adjacent support posts 38, the mask may not be efficiently etched, which would degrade performance of the impedance transmission line 30. In this regard, the openings 48 are formed in the second planar conductor 34 to facilitate etching the mask by allowing flow 64 of gases through the impedance transmission line 30. This enables more efficient etching of the mask, improving the performance of the impedance transmission line 30. As described above, the openings 48 are oblong, with an elongated length spanning parallel to the first edge 40 and the second edge 42. In the example depicted in
It should be understood that the operations of the process 500 may be performed in different orders than depicted in
An output matching circuit section 84 is coupled between a second end E2 of the second planar conductor 34 and the second port P2. In at least one embodiment, the output matching circuit section 84 includes a third capacitor C3 coupled between the second end E2 of the second planar conductor 34 and ground GND. The output matching circuit section 84 further includes a second inductor L2 coupled in series with a fourth capacitor C4 between the second end E2 of the second planar conductor 34 and the second port P2. The output matching circuit section 84 also further includes package transition circuitry 86 configured to provide transition impedance that is tuned to reduce RF signal reflection and loss due to parasitic impedance of wire bonds within an external component package (not shown) coupled to the second port P2. An exemplary input impedance (ZIN) of 12.5 ohms (Ω) is seen looking into the input port P1. Due to the Ruthroff configuration of the impedance transmission line 30 (electrically coupling a third end E3 of the first planar conductor 32 to the first end E1 of the second planar conductor 34 and electrically coupling a fourth end E4 of the first planar conductor 32 to ground GND, with crisscrossed dashed lines representing energy coupling between the first planar conductor 32 and the second planar conductor 34), an output impedance ZOUT is four times the input impedance ZIN, which in this case results in ZOUT equal to 50Ω.
As described above, in some examples the impedance transmission line 30 is configured differently than shown in
In this regard,
In an exemplary aspect, a protective overcoat 88 may be formed over some or all surfaces of the impedance transmission line 30. The protective overcoat 88 may be a dielectric layer having a thickness of 100 to 5000 angstroms (Å). The protective overcoat 88 may be deposited (e.g., through sputtering, vapor deposition, or another appropriate technique) after formation of the first planar conductor 32, the second planar conductor 34, and the support posts 38. The protective overcoat 88 may electrically insulate the metal surfaces of the impedance transmission line 30, provide environmental protection, and/or provide additional mechanical strength.
In addition, in some examples a dielectric material 90 may be deposited between the first planar conductor 32 and the support posts 38. The dielectric material 90 may be the same or a different material as the protective overcoat 88, and may be formed in the same or a different process. It should be understood that the protective overcoat 88 and/or the dielectric material 90 may be used in other embodiments, such as those described above with respect to
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
5594393 | Bischof | Jan 1997 | A |
5907266 | Budka | May 1999 | A |
6466112 | Kwon | Oct 2002 | B1 |
8164397 | Wang | Apr 2012 | B2 |
9406604 | Cho | Aug 2016 | B2 |
9406621 | Mitchell | Aug 2016 | B2 |
10122328 | Roberg | Nov 2018 | B2 |
10257921 | Roy | Apr 2019 | B1 |
Number | Date | Country | |
---|---|---|---|
20200266513 A1 | Aug 2020 | US |