Enhanced Block Floating Point Number Multiplier

Information

  • Patent Application
  • 20240036822
  • Publication Number
    20240036822
  • Date Filed
    August 01, 2022
    2 years ago
  • Date Published
    February 01, 2024
    11 months ago
Abstract
A data processing apparatus is configured to determine a product of two operands stored in an Extended Block Floating-Point format. The operands are decoded, based on their tags and payloads, to generate exponent differences and at least the fractional parts of significands. The significands are multiplied to generate an output significand and shared exponents and exponent differences of the operands are combined to generate an output exponent. Signs of the operands may also be combined to provide an output sign. The apparatus may be combined with an accumulator having one or more lanes to provide an apparatus for determining dot products.
Description
BACKGROUND

A Block Floating-Point (BFP) number system represents a block of floating-point (FP) numbers by a shared exponent (typically the largest exponent in the block) and right-shifted significands of the block of FP numbers. Computations using BFP can provide improved accuracy compared to integer arithmetic and use fewer computing resources than full floating point. However, the range of numbers that can be represented using a BFP format is limited, since small numbers are replaced by zero when the significands are right-shifted too far.


In some applications, such as computational neural networks, input data may have a very large range. The use of BFP in such applications can lead to inaccurate results. In applications that use a large amount of data, the use of higher precision number representations may be precluded by limitations on storage resources, etc.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings provide visual representations which will be used to more fully describe various representative embodiments, and can be used by those skilled in the art to better understand the representative embodiments disclosed and their inherent advantages. In these drawings, like reference numerals identify corresponding or analogous elements.



FIG. 1 is a representation of a block of Enhanced Block Floating Point (EBFP) numbers, in accordance with various representative embodiments.



FIGS. 2A and 2B are diagrammatic representations of computer storage of an EBFP number, in accordance with various representative embodiments.



FIGS. 3A and 3B are diagrammatic representations of computer storage of an EBFP number, in accordance with various representative embodiments.



FIG. 4 is a block diagram of an apparatus for converting an enhanced block floating-point number into a floating-point number, in accordance with various representative embodiments.



FIG. 5 is a block diagram of a first decoder, in accordance with various representative embodiments.



FIG. 6 is a block diagram of a second decoder, in accordance with various representative embodiments.



FIG. 7 is a flow chart of a computer-implemented method for converting an enhanced block floating point (EBFP) number into a floating-point (FP) number, in accordance with various representative embodiments.



FIG. 8 is a block diagram of a data processing apparatus for determine a product of two operands in EBFP format, in accordance with various representative embodiments.



FIG. 9 is a block diagram of a wide, fixed-point accumulator, in accordance with various representative embodiments.



FIG. 10 is a block diagram of a layer of a Convolutional Neural Network (CNN), in accordance with various representative embodiments.



FIG. 11 is a flow chart of a computer-implemented method of multiplying two operands in EBFP format, in accordance with various representative embodiments.





DETAILED DESCRIPTION

The various apparatus and devices described herein provide mechanisms for data processing using an enhanced block floating point data format.


While this present disclosure is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail specific embodiments, with the understanding that the embodiments shown and described herein should be considered as providing examples of the principles of the present disclosure and are not intended to limit the present disclosure to the specific embodiments shown and described. In the description below, like reference numerals are used to describe the same, similar or corresponding parts in the several views of the drawings. For simplicity and clarity of illustration, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.


In accordance with various embodiments, a data processing apparatus is configured to determine a product of two operands stored in an Extended Block Floating-Point (EBFP) format. The operands are decoded, based on their tags and payloads, to generate exponent differences and fractions. Significands of the fractions are multiplied to generate an output significand and shared exponents and exponent differences of the operands are combined to generate an output exponent. Signs of the operands may also be combined to provide an output sign. The apparatus may be combined with an accumulator having one or more lanes to provide an apparatus for determining dot products.


A number may be represented as (−1)s×m×be, where s is a sign value, m is a significand, e is an exponent and b is a base. In some binary (b=2) floating-point representations, such as the 32-bit IEEE (Institute of Electrical and Electronic Engineers) format, the significand is either zero or in the range 1≤m<2. For non-zero values of m, the value m−1 is referred as the fractional part of the significand. The 32-bit IEEE format stores the exponent as an 8-bit value and the significands as a 23-bit value.


A Block Floating-Point (BFP) number system represents a block of floating-point (FP) numbers by a shared exponent (typically the largest exponent in the Block) and right-shifted significands of the block of FP numbers. The present disclosure improves upon BFP by representing small FP numbers (that would ordinarily be set to zero) by the difference between the exponent and the shared exponent. A tag bit indicates whether the EBFP number represents a shifted significand or the exponent difference.


Some data processing applications, such as Neural Network (NN) processing, require very large amounts of data. For example, a single network architecture can use millions of parameters. Consequently, there is great interest in storing data as efficiently as possible. In some applications, for example, 8-bit scaled integers are used for inference but data for training requires the use of floating-point numbers with a greater exponent range than the 16-bit IEEE half-precision format, which has only 5 exponent bits. A 16-bit “Bfloat” format has been used for NN training tasks. The Bfloat format and has a sign bit, 8 exponent bits, and 7 fraction bits (denoted as s,8e,7f). Other FP formats include “DLfloat” which has 6 exponent bits and 9 fraction bits (s,6e,9f) as well as other 8-bit formats having more exponent bits than fraction bits (such as s,4e,3f and s,5e,2f).


Block Floating-Point (BFP) representation has been used in a variety of applications, such as NN and Fast Fourier Transforms. In BFP, a block of data shares a common exponent, typically the largest exponent of the block to be processed. The significands of FP numbers are right-shifted by the difference between their individual exponents and the shared exponent. BFP has the added advantage that arithmetic processing can be performed on integer data paths saving considerable power and area in NN hardware implementation. BFP appears particularly well-suited to computing dot products because numbers with smaller exponents will not contribute many bits, if any, to the result. However, a difficulty with using BFP for processing Convolutional Neural Networks (CNNs) is that output feature maps are derived from multiple input feature maps which can have widely differing numeric distributions. In this case, many or even most of the numbers in a BFP scheme for encoding feature maps could end up being set to zero. By contrast, the weights employed in CNNs are routinely normalized to the range −1 . . . +1. Given that successful training and inference is usually dependent on the highest magnitude parameter of each filter, blocks of weights need exponents to sit only within a relatively small range.


TABLE 1 shows an example dot product computation for vector operands A and B. The number are denoted by hexadecimal significands with radix 2 exponents. Corresponding decimal significands and exponents are shown in brackets. The maximum of each vector is shown in bold font.









TABLE 1







Dot Product for Real Numbers









Op A
Op B
OpA × OpB





+0 × 1.39p − 17 (1.22 × 2−17)
−0 × 1.40p − 5 (−1.25 × 2−5)
−0 × 1.8740p − 22 (−1.53 × 2−22)



−0 × 1.ccp + 20 (−1.80 × 220)

+0 × 1.fap − 6 (1.98 × 2−6)
−0 × 1.c69cp + 15 (−1.78 × 215)


+0 × 1.bbp + 7 (1.73 × 27)

+0 × 1.dep + 19 (1.87 × 219)

+0 × 1.9d95p + 27 (1.62 × 227)


−0 × 1.d8p + 11
−0 × 1.49p + 0
+0 × 1.2f4cp + 12


+0 × 1.dfp − 12
+0 × 1.8cp − 10
+0 × 1.727ap − 21


−0 × 1.d9p + 19 (−1.85 × 219)
−0 × 1.0ap + 9
+0 × 1.eb7ap + 28


+0 × 1.f2p − 17
−0 × 1.41p + 13 (−1.25 × 213)
−0 × 1.3839p − 3


+0 × 1.d1p − 7
+0 × 1.ecp − 20
+0 × 1.bed6p − 26




Result


+0 × 1.5d1bp + 29










TABLE 2 shows the same dot product computation for vector operands A and B performed using Block Floating Point arithmetic. In this example, the dot product is calculated as zero because a number of small operands are represented by zero in the Block Floating Point format.









TABLE 2







Dot Product using Block Floating Point











Op A (p + 20)
Op B (p + 19)
Op A × Op B







0
0
0



−0 × 1.cc (−1.80)
0
0



0
+0 × 1.de (1.87)
0



0
0
0



0
0
0



−0 × 0.ed (−0.93)
0
0



0
−0 × 0.05 (−0.02)
0



0
0
0





BFP Result


0











This example illustrates that conventional Block Floating Point arithmetic is not well suited for used where data a large range of values.


The present disclosure uses a number format, referred to as Enhanced Block Floating Point (EBFP). The format may be used in applications such as convolutional neural networks where (i) individual feature maps have widely differing numeric distributions and (ii) filter kernels only require their larger parameters to be represented with higher accuracy.


In accordance with various embodiments, the exponent of a floating number to be encoded is compared with the shared exponent: when the difference is large enough that the BFP representation would be zero due to all the significand bits being shifted out of range, the exponent difference is stored; otherwise, the suitably encoded significand is stored.



FIG. 1 is a representation of a block of Enhanced Block Floating Point (EBFP) numbers 100. Each number is represented by shared exponent 102 and an M-bit word 104, where M is an integer such as 8 or 16 for example. Word 104 includes one or more tag bits 106, a sign bit 108 and a number of bits for storing a payload 110 indicative of either the exponent difference or an encoded significand. For example, a number may be represented by an 8-bit base exponent and an 8-bit word having one or two tag bits, a sign bit and 5 or 6 bits for storing either the exponent difference or the encoded significand. In this example, the EBFP format implements a floating-point number system with 5 or 6 exponent bits and 1 to 6 significand bits. In contrast to prior formats, the allocation of payload bits between exponent bits and significand bits is variable.


In accordance with an embodiment of the disclosure, an input datum in EBFP format is converted into a number in floating-point format in a data processor. A payload of the EBFP number can be in a first format or a second format. The format of an input datum is determined based on a tag value of the input datum. For the first format, an exponent and significand of a floating-point number are determined, based on a payload of the input datum and a shared exponent. For the second format, the exponent of the floating-point number is determined, based on the payload of the input datum and the shared exponent. In this case, the floating-point number has a designated significand, such as the value “1.” The output floating-point number consists of a sign copied from the input datum, the exponent of the floating-point number and the significand of the floating-point number.


The EBFP format is described in more detail below with reference to an apparatus for converting an EBFP number to a floating-point (FP).



FIG. 2A is a diagrammatic representation of computer storage 200 of an EBFP number, in accordance with various representative embodiments. The embodiment shown uses a single tag bit. The storage includes a shared exponent (SH-EXP) 202 and payloads (selectable words) 204, 206 and 208.


First word 204 includes sign bit 210, 1-bit tag 212, and a payload consisting of fields 214, 216, 218 and 220. The tag 212 is set to zero to indicate that the payload is associated with a significand. Fields 214, 216 and 218 indicate a difference between the shared exponent 202 and the exponent of the number being represented. Field 214 contains L zeros, where L may be zero. Field 216 contains a “one” bit, and field 218 contains an R-bit integer, where R is a designated integer. The factor 2 is called the “radix” of the representation, so the radix is 2 when R=0, 4 when R=1, and 8 when R=2. Field 218 is omitted when R=0. The exponent difference is given by 2R×L+P. Field 220 is a rounded and right-shifted fractional part of the significand. The total number of bits in the payload is fixed. Since the number of zeros in field 214 is variable, the number of bits, T, in the fraction field varies accordingly. When the integer value of field 220 is F, the significand is given 1+2−T×F, which may be denoted by 1.fff . . . f. Thus, when the shared exponent is se, the number represented is:






x=2se×2−(2RL+P)×(1+2−T×F).


Thus, a decoder can determine the represented number by determining L, P and F from an EBFP payload. In one embodiment, the designated number R is zero and the radix is two. In this case






x=2se×2−L(1+2−T×F),


and the payload is simply the right-shifted significand. The exponent difference may be determined by counting the number of leading zeros in the EBFP number.


In second payload 206, the payload 222 is set to zero. When the tag bit is zero, the payload represents the number zero. When the tag bit is one, the payload represents an exponent difference of −1. This can occur when rounding causes the maximum value to overflow. Thus, the number represented is 2se+1.


In payload 208, the tag bit is set to one to indicate that the payload 224 relates only to the exponent difference. When the payload is an integer E, the number represented is 2se+E+bias, where bias is an offset or bias value. The bias value is included since some small values of exponent difference can represented by payload 204.


TABLE 3 shows how exponent difference and significand values are determined from a payload for an example implementation, where the payload has 8 bits and includes a sign bit, a tag bit and 6 payload bits. In this example, R=0, so the radix is 2. The format is designated “8r2”. In the table below, “f” denotes fractional bit of the input value and “e” denotes one bit of the biased exponent difference.









TABLE 3







EBFP 8r2, 1-bit tag Format.










Input

Rounded &



Sign, Tag,
Exponent
Shifted
Notes:


Payload[5:0]
Difference
Significand
R = 0, exp-diff = L













s 0 1fffff
0
 1.fffff
L = 0


s 0 01ffff
1
1.ffff
L = 1


s 0 001fff
2
 1.fff
L = 2


s 0 0001ff
3
1.ff
L = 3


s 0 00001f
4
1.f 
L = 4


s 0 000001
5
1.0
L = 5


X 0 000000
Any
Zero


s 1 000000
0
10.0 
Overflow due to rounding


s 1 eeeeee
6-68
Any
exp-diff = 6 + eeeeee


0 1 111111
>68
Any
Underflow


1 1 111111

NaN
Not a number









For zero tag, the bits indicated in bold font indicate the encoding of the exponent difference. In this example, the payload is equivalent to a right-shifted significand, including an explicit leading bit. Note that for an exponent difference greater than 5, the right-shifted significand is lost because of the limited number of bits. For an exponent difference greater than 5, only the exponent difference is encoded with a bias of 6.


Is the embodiment shown in TABLE 3, the exponent difference can be decoded from the EBFP number by counting the number of leading zeros in the payload. This operation is denoted as CLZ(payload).


TABLE 4 shows the result of the example dot product computation described above. The exponents and signs of FP values with smaller exponents are retained. The resulting error compared to the true result is 13%. This is much improved compared to conventional BFP, which gave the results as zero. The accuracy of the EBFP approach is sufficient for many applications, including training convolutional neural networks.









TABLE 4







Dot Product using Enhanced Block Floating Point









Op A (p + 20)
Op B (p + 19)
Op A × Op B





+0 × 1.0p − 17 (1.00 × 2−17)
−0 × 1.0p − 5 (−1.00 × 2−5)
−0 × 1.0p − 22 (−1.00 × 2−22)


−0 × 1.cc (−1.80 × 220)
+0 × 1.0p − 6 (1.00 × 2−6)
−0 × 1.ccp + 14 (−1.80 × 214)


+0 × 1.0p + 7 (1.00 × 27)
+0 × 1.de (1.87 × 219)
+0 × 1.dep + 26 (1.87 × 226)


−0 × 1.0p + 11 (−1.00 × 211)
−0 × 1.0p + 0 (−1.00 × 20)
+0 × 1.0p + 11 (1.00 × 211)


+0 × 1.0p − 12 (1.00 × 2−12)
+0 × 1.0p − 10 (1.00 × 2−10)
+0 × 1.0p − 22 (1.00 × 2−22)


−0 × 0.ed (−0.93 × 220)
−0 × 1.0p + 9 (1.00 × 29)
+0 × 1.dap + 28 (1.85 × 228)


+0 × 1.0p − 17 (1.00 × 2−17)
−0 × 0.05 (−0.02 × 219)
−0 × 1.40p − 4 (−1.40 × 2−4)


+0 × 1.0p − 7 (1.00 × 2−7)
+0 × 1.0p − 20 (1.00 × 2−20)
+0 × 1.0p − 27 (1.00 × 2−27)




EBFP Result


+0 × 1.28bdp + 29 (1.16 × 229)











FIG. 2B is a diagrammatic representation of computer storage 206′ of an EBFP number, in accordance with various representative embodiments. EBFP format includes a number of fields. The order of the fields maybe varied without departing from the present disclosure. For example, in FIG. 2B, the R-bit integer field 218 follows the tag field 212. The “one” field 216 is used to terminate the L-leading zeros field 214. This field has a variable length. The length of field 220 varies accordingly, with L+T being constant. Other variations will be apparent to those of ordinary skill in the art. In general, the exponent difference and fractional part (if any) are encoded to generate a tag and a payload, with the tag indicating how the payload is to be interpreted.



FIG. 3A is a diagrammatic representation of computer storage 300 of an EBFP number, in accordance with various representative embodiments. The embodiment shown uses a 2-bit tag. The storage includes a shared exponent (SH-EXP) 302 and selectable payloads 304, 306, 308, 310, and 312. Payloads 304, 306, 308 correspond to payloads 204, 206 and 208 in the format with a 1-bit tag. However, the bias may be different. The length of the payload is 1-bit shorter because of the extra tag bit. The format includes a first additional payload 310, identified by a tag 10, that stores the fractional part 314 of the significand rounded to M-bits, where M is the length of the payload field. The exponent difference is zero. The format also includes a second additional payload 312, identified by a tag 01, that stores the fractional part 316 of the significand rounded to (M−R+1)-bits, together with an R-bit integer 318. The exponent difference is one. For R=1, the payload is the rounded significand and the exponent difference is one. For R=2, the exponent difference is one when the first bit of the payload is zero, and two when the first bit of the payload is one.


TABLE 5 shows how exponent differences and significands are determined from an input payload for an example implementation, where the payload has 8 bits and includes a sign bit, two tag bits and 5 payload bits. In this example, R=0. In the table below, “f” denotes fractional bit of the input value and “e” denotes one bit of the biased exponent difference. In this embodiment, the exponent difference can be decoded from the EBFP number by counting the number of leading zeros in the tag and payload. This operation is denoted as CLZ(tag, payload).









TABLE 5







EBFP 8r2, 2-bit tag Format










Input
Output

Notes:


Sign, Tag[1:0],
Exponent
Output
R = 0,


Payload[4:0]
Difference
Significand
exp-diff = CLZ(tag, payload)













s 10 fffff
0
1.fffff
CLZ(tag, payload) = 0


s 01 fffff
1
1.fffff
CLZ(tag, payload) = 1


s 00 1ffff
2
1.ffff 
CLZ = 2


s 00 01fff
3
1.fff 
CLZ = 3


s 00 001ff
4
1.ff 
CLZ = 4


s 00 0001f
5
1.f   
CLZ = 5


s 00 00001
6
1.0 
CLZ = 6


X 00 00000

Zero


s 11 00000
0
 10.00000
Overflow due to





rounding (L = −3)


s 11 eeeee
7 − 37
Any
exp-diff = 7 + eeeee


0 11 11111
>37
Any
Underflow


1 11 11111

NaN
Not a number









TABLES 4 and 5 above, illustrate how an output exponent difference and significand can be obtained from a payload.


TABLE 6 shows how output exponent differences and significands are obtained from a payload for an example implementation where the payload has 8 bits and includes a sign bit, a tag bit and 6 payload bits. In this example, R=1, so the radix is 4. In the table below, “f” denotes fractional bit of the input value and “e” denotes one bit of the biased exponent difference.









TABLE 6







EBFP 8r4, 2-bit tag Format













Notes:


Input


R = 1,


Sign, Tag[1:0],
Output

exp-diff = 2 ×


Payload[4:0]
Exponent
Output
CLZ(tag, payload) +


P = 0 or 1
Difference
Significand
p − 1













s 10 fffff
0
1.fffff
Special case: p = 1 is assumed


s 01 pffff
1 + p

1.ffff

CLZ = 1


s 00 1pfff
3 + p
 1.fff
CLZ = 2


s 00 01pff
5 + p

1.ff

CLZ = 3


s 00 001pf
7 + p
1.f
CLZ = 4


s 00 0001p
9 + p
1.0
CLZ = 5


s 00 00001
11
1.0
CLZ = 6, hidden p = 0


X 00 00000

Zero


s 11 00000
0
10.0 
Overflow due to rounding


s 11 eeeee
12 − 42
Any
exp-diff = 12 + eeeee


0 11 11111
>42
Any
Underflow


1 11 11111

NaN
Not a number









In the examples above, the significand is stored to the right of the encoded exponent difference in the input payload. It will be apparent to those of ordinary skill in the art that alternative arrangements may be used without departing from the present disclosure. For example, in one embodiment, the significand is stored to the left of the encoded exponent difference, and the encoded exponent difference includes L trailing zeros. This is shown in TABLE 7A below. In this embodiment, the encoded exponent the use of one and zeros is reversed. The exponent difference can be decoded by counting the number of trailing zeros in the tag and payload. The exponent difference is decoded as 2×CTZ(tag, payload)+p−1.









TABLE 7A







Alternative EBFP 8r4, 2-bit tag Format










Input


R = 1,


Sign, Payload[4:0],
Output

exp-diff = 2 ×


Tag[1:0]
Exponent
Output
CTZ(tag, payload) +


p = 0 or 1
Difference
Significand
p − 1













s fffff 11
0
1.fffff
CTZ = 0, p = 1


s ffffp 10
1 + p

1.ffff

CTZ = 1


s fffp1 00
3 + p
 1.fff
CTZ = 2


s ffp10 00
5 + p

1.ff

CTZ = 3


s fp100 00
7 + p
1.f
CTZ = 4


s p1000 00
9 + p
1.0
CTZ = 5


s 10000 00
11
1.0
CTZ = 6, hidden p = 0


X 00000 00

Zero


s 00000 01
0
10.0 
Overflow due to





rounding


s eeeee 01
12 − 42
Any


0 11111 01
>42
Any
Underflow


1 11111 01

NaN
Not a number









The payload is made up an encoded exponent difference (shown in bold font) concatenated with a number (possibly 0) of fraction bits (ff . . . f), where the encoded exponent difference includes a number (possibly 0) of bits set to zero, at least one bit set to one, and a number (possibly 0) of additional bits (p).



FIG. 3B is a diagrammatic representation of computer storage 304′ of an EBFP number, in accordance with various representative embodiments. In FIG. 3B, the order of the fields is changed, with the R-bit integer field 324 following the tag field 3222. The “one” field 328 is used to terminate the L-leading zeros field 326. Examples of this arrangement are discussed in more detail below.


TABLE 7B, below, shows an example encoding using storage 304′ in FIG. 3B. In this example, the exponent difference is given by 2R×(CLZ+tag)+p, when tag=01, and by 2R×tag+p when tag=00 or 01 (R=1 in this example).









TABLE 7B







Alternative EBFP 8r4, 2-bit tag (R = 1) Format










Sign:Tag:Payload
Floating-Point Equivalent







s 11 ddddd
(−1)s × 1.0 × 2{circumflex over ( )}(shexp − ddddd − 13)



s 11 11111
(−1)s × 1.0 × 2{circumflex over ( )}(shexp + 1)



0 11 00000
Zero



1 11 00000
NaN



s 00 pffff
(−1)s × 1.fffff × 2{circumflex over ( )}(shexp − p)



s 01 pffff
(−1)s × 1.ffff × 2{circumflex over ( )}(shexp − p − 2)



s 10 p1fff
(−1)s × 1.fff × 2{circumflex over ( )}(shexp − p − 4)



s 10 p01ff
(−1)s × 1.ff × 2{circumflex over ( )}(shexp − p − 6)



s 10 p001f
(−1)s × 1.f × 2{circumflex over ( )}(shexp − p − 8)



s 10 p0001
(−1)s × 1.0 × 2{circumflex over ( )}(shexp − p − 10)



s 10 p0000
(−1)s × 1.0 × 2{circumflex over ( )}(shexp − p − 12)










The payload is made up an encoded exponent difference concatenated with a number (possibly 0) of fraction bits (ff . . . f), where the encoded exponent difference includes a number (possibly 0) of bits set to zero, at least one bit set to one, and a number (possibly 0) of additional bits (p).



FIG. 4 is a block diagram of a data processing apparatus 400 for converting an enhanced block floating-point (EBFP) number into a floating-point number, in accordance with various embodiments. Input datum 402 is an EBFP number stored as sign bit 404, tag 406 having one or more bits, and payload 408. Storage 410 is provided for an output floating-point (FP) number, stored as a sign bit 412, an exponent 414 and at least a fractional part (fraction) 416 of a significand. When combined with an implicit or hidden “1” bit, fraction 416 provides the significand of the number. Thus, fraction 416 is equivalent to a significand, in that it provides the same information. It will be apparent to those of ordinary skill in the art that apparatus 400 may output a fraction or a significand. Apparatus 400 includes a number of logic units including controller 418, selector 420, first decoder 422 and second decoder 424. Controller 418 is configured to control selector 420 to select between first decoder 422 and second decoder 424 based on tag 406 of an input datum. In FIG. 4, selector 420 is shown on the outputs of the first and second decoders 422, 424. However, the selector may select which decoder generates the outputs by selecting which decoder receives the payload, or which decoder is operated.


First decoder 422 is configured to determine exponent difference 426 and fraction 428 based on the payload 408 of input datum 402. Second decoder 424 is configured to determine exponent difference 430 of the floating-point number based on the payload 408 of the input datum 402, the floating-point number having a designated fraction 432. Selector 420 selects the outputs of the first or second decoders 422, 424 as exponent difference 434 and fraction 436. Exponent 438 of the output floating-point number is determined by subtracting the selected exponent difference 434 from a shared exponent 440 in subtractor 442. Sign bit 412 is determined from sign bit 404. However, sign bit 412 may be modified for certain special values, dependent upon the format chosen for the floating-point number.


The arrangement of the logic units shown in FIG. 4, may be varied without departing from the present disclosure. For example, in an embodiment, the shared exponent may be subtracted within the first and second decoders.



FIG. 5 is a block diagram of a first decoder 422, in accordance with various embodiments. First decoder 422 is used when the payload is in a first format and is a concatenation of a code part and a fraction part. Exponent difference decoder 502 generates exponent difference 434 and shift value 504 from tag 406 and a code part of payload 408 of an input datum. Shifter 506 is configured to left-shift a fraction part of payload 408, according to shift value 504, to generate fraction 428.



FIG. 6 is a block diagram of a second decoder 424, in accordance with various embodiments. Second decoder 424 is used when the payload is in a second format and represents a contribution to an exponent. Second decoder 424 is configured to determine exponent difference 430 by subtracting, in subtractor 604, bias value 602 from the payload 408 of the input datum 402. Fraction 432 is set to a designated value 606, such a “0,” for example.



FIG. 7 is a flow chart of a computer-implemented method 700 for converting a number in EBFP format into a number in a floating-point format, in accordance with various representative embodiments. At block 702, an input datum in EBFP format is provided, having a sign, a tag and payload. If the tag equals binary value “11” and the payload is not equal to zero, as depicted by the positive branch from decision block 704, the exponent difference is computed as the payload value plus a bias value at block 706, and the output fraction is set to zero. Otherwise, flow continues to decision block 708. If the tag equals binary value “11” and the payload is equal to zero, as depicted by the negative branch from decision block 708, the exponent difference is set to −1 and the output fraction is set to zero at block 710. Otherwise, flow continues to decision block 712. If the tag value is binary “00” and the payload is not equal to zero, as depicted by the positive branch from decision block 712, the exponent difference is determined by counting the number of leading zeros, in the payload or the payload and tag, (if any) and adding 1. As discussed above, in an alternative embodiment, the number of trailing zeros are counted. The output fraction is generated by shifting the payload left by the exponent difference. The addition of 1 to the number of leading zeros ensures the leading 1 in the payload becomes hidden. For other case, as depicted by the negative branch from decision block 712, the exponent difference is computed by subtracting the tag value from 2, and the output fraction is set equal to the payload.


At block 718, the exponent of the output floating-point number is determined by subtracting the exponent difference from a shared exponent. The sign of the output is copied from the sign of the input and the sign, exponent and fraction of the floating-point number are output at block 720.


In some embodiments, an EBFP formatted number occupies an 8-bit word. This enables computations to be made using shorter word lengths. This is advantageous, for example, when a large number of values is being processed or when memory is limited. However, in some applications, such as accumulators, more precision is needed. An EBFP format using 16-bit words is described below. In general, the format using M-bit words, where M can be any number (e.g., 8, 16, 24, 32, 64 etc.).


In one embodiment using 16-bit words, all EBFP16 numbers have an additional eight fraction bits than in EBFP8, while the range of exponent differences is the same as in EBFP8. EBFP16 may be used where a wider storage format is needed and provides better accuracy and a wider exponent range than the “bfloat” format.


TABLE 8 below gives an example of decoding an EBFP16r2 (radix 2) format with two tag bits. Note that for exponent differences in the range 7-37, the last eight bits of the payload contain the fractional part of the number, while the first 5 bits contain the exponent. In this case, the payload is similar to floating point representation of the input, except that the exponent is to be subtracted from the shared exponent.













TABLE 8








Output





Exponent



Input
Difference
Output



Sign, Tag[1:0], Payload[12:0]
(CLZ)
Significand









s 10 fffff ffffffff
0
1.fffff ffffffff



s 01 fffff ffffffff
1
1.fffff ffffffff



s 00 1ffff ffffffff
2
1.ffff ffffffff 



s 00 01fff ffffffff
3
1.fff ffffffff 



s 00 001ff ffffffff
4
1.ff ffffffff 



s 00 0001f ffffffff
5
1.f ffffffff   



s 00 00001 ffffffff
6
1. ffffffff  



X 00 00000 xxxxxxxx

Zero



s 11 00000 xxxxxxxx
0
10.0       



s 11 eeeee ffffffff
7 − 37
1. ffffffff  










TABLE 9 below gives an example of decoding an EBFP16r4 (radix 4) format with two tag bits.













TABLE 9







Input
Output




Sign, Tag[1:0], Payload[12:0]
Exponent
Output



p = 0 or 1
Difference
Significand




















s 10 fffff ffffffff
0
  1.fffff ffffffff



s 01 pffff ffffffff
1 + p
  1.ffff ffffffff



s 00 1pfff ffffffff
3 + p
 1.fff ffffffff



s 00 01pff ffffffff
5 + p
1.ff ffffffff



s 00 001pf ffffffff
7 + p
 1.f ffffffff



s 00 0001p ffffffff
9 + p
1. ffffffff



s 00 00001 ffffffff
11
1. ffffffff



X 00 00000 xxxxxxxx

Zero



s 11 00000 xxxxxxxx
0
10.0    



s 11 eeeee ffffffff
12 − 42
1. ffffffff










In one embodiment, an EBFP number is encoded in a first format of the form “s:tag:P:1:F” or second format of the form “s:tag:D”. where “s” is a sign-bit, “tag” is one or more bits of an encoding tag, “P” is R encoded exponent difference bits, “F” is a fraction and “D” is an exponent difference. Except for a subset of tag values, the floating-point number represented has significand 1.F and exponent difference 2R×(tag+CLZ)+P, where CLZ is the number of leading zeros in the fraction F. For a first special tag value (e.g., all ones), the second format is used where the exponent difference is D plus a bias offset.


Some example embodiments for an 8-bit EBFP number are given below in TABLE 10.









TABLE 10







1-bit tag, R = 0










Tag:Payload
Floating-Point Equivalent







1 dddddd
1.0 * 2{circumflex over ( )}(shexp − dddddd − 5)



1 111111
1.0 * 2{circumflex over ( )}(shexp + 1)



1 000000
Zero



0 1fffff
1.fffff * 2{circumflex over ( )}shexp



0 01ffff
1.ffff * 2{circumflex over ( )}(shexp − 1)



0 001fff
1.fff * 2{circumflex over ( )}(shexp − 2)



0 0001ff
1.ff * 2{circumflex over ( )}(shexp − 3)



0 00001f
1.f * 2{circumflex over ( )}(shexp − 4)



0 000001
1.1 * 2{circumflex over ( )}(shexp − 5)



0 000000
1.0 * 2{circumflex over ( )}(shexp − 5)










In contrast with the embodiments discussed above, the positions of the one or more “p” bits are fixed as the leading bits in the payload. With an 8-bit data, R may be in the range 0-5. Some examples are listed below in TABLES 11-15.









TABLE 11







1-bit tag, R = 1










Tag:Payload
Floating-Point Equivalent







1 dddddd
1.0 * 2{circumflex over ( )}(shexp − dddddd − 8)



1 111111
1.0 * 2{circumflex over ( )}(shexp + 1)



1 000000
Zero



0 p1ffff
1.ffff * 2{circumflex over ( )}(shexp − p)



0 p01fff
1.fff * 2{circumflex over ( )}(shexp − p − 2)



0 p001ff
1.ff * 2{circumflex over ( )}(shexp − p − 4)



0 p0001f
1.f * 2{circumflex over ( )}(shexp − p − 6)



0 p00001
1.1 * 2{circumflex over ( )}(shexp − p − 8)



0 p00000
1.0 * 2{circumflex over ( )}(shexp − p − 8)

















TABLE 12







2-bit tag, R = 0










Tag:Payload
Floating-Point Equivalent







11 ddddd
1.0 * 2{circumflex over ( )}(shexp − ddddd − 6)



11 11111
1.0 * 2{circumflex over ( )}(shexp + 1)



11 00000
Zero



00 fffff
1.fffff * 2{circumflex over ( )}shexp



01 fffff
1.fffff * 2{circumflex over ( )}(shexp − 1)



10 1ffff
1.ffff * 2{circumflex over ( )}(shexp − 2)



10 01fff
1.fff * 2{circumflex over ( )}(shexp − 3)



10 001ff
1.ff * 2{circumflex over ( )}(shexp − 4)



10 0001f
1.f * 2{circumflex over ( )}(shexp − 5)



10 00001
1.1 * 2{circumflex over ( )}(shexp − 6)



10 00000
1.0 * 2{circumflex over ( )}(shexp − 6)

















TABLE 13







2-bit tag, R = 1










Tag:Payload
Floating-Point Equivalent







11 ddddd
1.0 * 2{circumflex over ( )}(shexp − ddddd − 10)



11 11111
1.0 * 2{circumflex over ( )}(shexp + 1)



11 00000
Zero



00 pffff
1.fffff * 2{circumflex over ( )}(shexp − p)



01 pffff
1.ffff * 2{circumflex over ( )}(shexp − p − 2)



10 p1fff
1.fff * 2{circumflex over ( )}(shexp − p − 4)



10 p01ff
1.ff * 2{circumflex over ( )}(shexp − p − 6)



10 p001f
1.f * 2{circumflex over ( )}(shexp − p − 8)



10 p0001
1.1 * 2{circumflex over ( )}(shexp − p − 10)



10 p0000
1.0 * 2{circumflex over ( )}(shexp − p − 10)

















TABLE 14







1-bit tag, R = 2










Tag:Payload
Floating-Point Equivalent







1 dddddd
1.0 * 2{circumflex over ( )}(shexp − dddddd − 15)



1 111111
1.0 * 2{circumflex over ( )}(shexp + 1)



1 000000
Zero



0 pp1fff
1.fff * 2{circumflex over ( )}(shexp − pp)



0 pp01ff
1.ff * 2{circumflex over ( )}(shexp − pp − 4)



0 pp001f
1.f * 2{circumflex over ( )}(shexp − pp − 8)



0 pp0001
1.1 * 2{circumflex over ( )}(shexp − pp − 12)



0 pp0000
1.0 * 2{circumflex over ( )}(shexp − pp − 12)

















TABLE 15







3-bit tag, R = 1










Tag:Payload
Floating-Point Equivalent







111 dddd
1.0 * 2{circumflex over ( )}(shexp − dddd − 16)



111 1111
1.0 * 2{circumflex over ( )}(shexp + 1)



111 0000
Zero



110 p1ff
1.ff * 2{circumflex over ( )}(shexp − p − 12)



110 p01f
1.f * 2{circumflex over ( )}(shexp − p − 14)



110 p00f
1.f * 2{circumflex over ( )}(shexp − p − 16)



xxx pfff
1.fff * 2{circumflex over ( )}(shexp − p − 2*xxx)










In TABLE 15, “xxx” is any 3-bit combination except for the special values “111” and “110”.


Still further embodiments are given in TABLES 16-18.









TABLE 16





3-bit Tag


















111 dddd
1.0 * 2{circumflex over ( )}(shexp-21 − dddd)



111 1111
1.0 * 2{circumflex over ( )}(shexp + 1)



111 0000
e.g. Zero (S = 0); NaN/Inf (S = 1)



0tt pfff
1.fff * (2{circumflex over ( )}shexp − ttp)



10t ppff
1.ff * (2{circumflex over ( )}shexp − tpp − 8)



110 p1ff
1.ff * 2{circumflex over ( )}(shexp − p − 16)



110 p01f
1.f * 2{circumflex over ( )}(shexp − p − 18)



110 p00f
1.f * 2{circumflex over ( )}(shexp − p − 20)

















TABLE 17





4-bit Tag


















0ttt fff
1.fff * 2{circumflex over ( )}(shexp − ttt)



10tt pff
1.ff * 2{circumflex over ( )}(shexp − ttp − 8)



110t pff
1.ff * 2{circumflex over ( )}(shexp − tp − 16)



1110 ppf
1.f * 2{circumflex over ( )}(shexp − pp − 20)



1111 ddd
1.0 * 2{circumflex over ( )}(shexp − 23 − ddd)



1111 111
1.0 * 2{circumflex over ( )}(shexp + 1)



1111 000
Zero (S = 0); NaN/Inf (S = 1)

















TABLE 18





4-bit Tag (0↔1)


















1ttt fff
1.fff * 2{circumflex over ( )}(shexp − ttt)



01tt pff
1.ff * 2{circumflex over ( )}(shexp − ttp − 8)



001t pff
1.ff * 2{circumflex over ( )}(shexp − tp − 16)



0001 ppf
1.f * 2{circumflex over ( )}(shexp − pp − 20)



0000 ddd
1.0 * 2{circumflex over ( )}(shexp − 23 − ddd)



0000 111
1.0 * 2{circumflex over ( )}(shexp + 1)



0000 000
Zero (S = 0); NaN/Inf (S = 1)










TABLE 18 is equivalent to TABLE 17 and illustrates how the use of zero and one in the part of the encoding shown in bold font may be reversed.



FIG. 8 is a block diagram of a data processing apparatus 800 configured to determine a product of two operands in an EBFP format, in accordance with various representative embodiments. A first operand includes sign-bit 802, tag 804 and payload 806, and is associated with shared exponent 808. A second operand includes sign-bit 810, tag 812 and payload 814, and is associated with shared exponent 816. The operands and shared exponents may be stored in input buffers or registers, for example. Logic unit 818 is configured to combine sign-bit 802 and sign-bit 810, using an “exclusive or” operation, to generate sign-bit 820 of the product of the operands. Decoder 822 is configured to generate a first exponent difference 824 and a first fraction 826 based on first tag 804 and first payload 806 of the first operand. Decoder 828 is configured to generate a second exponent difference 830 and second fraction 832 based on second tag 812 and second payload 814 of the second operand. Parallel decoders may be used, as shown, or a single decoder may be used to decode the operands sequentially. Exponent combiner 834 is configured to determine product exponent 836 by summing shared exponent 808 of the first operand and shared exponent 816 of the second operand and subtracting first exponent difference 824 and second exponent difference 830. Significand multiplier and shifter 838 is configured to multiply the significand of first fraction 826 by a significand of second fraction 832 to generate significand 840. The output of apparatus 800 is the product of the two input operands and consists of product sign 820, product exponent 836 and at least a fractional part of the product significand 840.


Exponent combiner 834 may be configured to add one to product exponent 836 when the product of the significands is greater or equal to two. Significand multiplier and shifter 838 may be further configured to right-shift the product of significands by one place when the output significand is greater or equal to two to generate product significand 840 in a normalized form. Alternatively, the shift may be applied at a later time, such as when the product is accumulated or output.


Decoder 822 (and/or decoder 828) may comprise a first decoder, a second decoder, and a controller configured to select between the first decoder and the second decoder based on the tag value of the input operand. The first decoder is configured to determine the exponent difference 824 and the fraction 826 based on at least on payload 806, and the second decoder is configured to determine exponent difference 824 based on payload 806 of the first operand, and further configured to provide a designated value (such as “1”, for example) as fraction 826.


The first decoder may be configured to determine a number of leading zeros in a designated part of payload 806 (as shown as 204 and 204′ in FIGS. 2 and 304 and 304′ in FIG. 3). The exponent difference is determined based, at least in part, on the number of leading zeros. Thus, the first decoder is configured to determine the first exponent difference, based on a first part of the payload, and to determine the first fraction based on a second part of the payload.


The second decoder may be configured to determine the first exponent difference based on the first payload and set the first fraction to zero.


Denoting the significand, exponent difference and shared exponent the first operand as SIG_A, EXP-DIFF_A and SH-EXP_A, respectively, and the significand, exponent difference and shared exponent the second operand as SIG_B, EXP-DIFF_B and SH-EXP_B, respectively, the product significand 840 is given by (SIG_A or 1.0 or zero)×(SIG_B or 1.0 or zero). The corresponding product exponent 836 is given by SH-EXP_A+SH-EXP_B−(EXP-DIFF_A+bias)−(EXP-DIFF_B+bias), for a designated bias. The (EXP-DIFF+bias) term is only subtracted when the payload is non-zero and the tag indicates that the payload represents an exponent difference (E.g., tag==2′b11 AND payload≠0). When the tag indicates that a rounding overflow has occurred (E.g., tag==2′b11 AND payload=0), the (EXP-DIFF+bias) term in the product is set to −1 to increment product exponent.


Apparatus 800 generates a product of two EBFP operands in a floating-point format. The product may be passed to a fixed-point accumulator. Since a wide range of numbers can be represented in floating-point format, a wide accumulator may be used that is much wider (has more bits) than the significand of the value to be accumulated. In this case, when a value is added to the accumulator, only a subset of bits in the accumulator are altered. In one embodiment, the accumulator may use a number of overlapping “lanes,” each lane holding a part of the final accumulated value.


Apparatus 800 has a lower power consumption than a conventional multiplier for IEEE formatted data. In addition, the multiplier is smaller and uses no rounding, or subnorms.



FIG. 9 is a block diagram of a wide, fixed-point accumulator 900 in accordance with various representative embodiments. Accumulator 900 receives, as inputs, product exponent 902 and product significand (or fraction) 904. These may be generated by a multiplier, as shown in FIG. 8, for example. Accumulator 900 may also receive an “anchor” value 906 that indicates the significance of the various accumulator values. This may be an exponent of the output value, for example. Lane selector 908 is configured to determine shift value 910 based on anchor value 906 and product exponent 902. Shifter 912 is configured to shift product significand 904, based on shift value 910, to generate shifted significand 914. The shifted significand is passed to an adder 916 of a selected lane of the accumulator. Lane selector 908 is also configured to generate selection signal 918 that selects which lane of the accumulator is to be used. Optionally, when there is an overlap of lanes, only this lane is enabled and powered, so as to reduce power consumption by the accumulator. The accumulated values for the lanes are combined to generate the final accumulated value.


Anchor value 906 is held constant during a multiply-accumulate computation such as a dot product operation. For example, the anchor value may be set at SH_EXP_A+SH−EXP_B+8 for dot product of EBFP vectors. In one embodiment, lane selector 908 compares product exponent 902 with the most significant bits (MSBs) of all lanes and selects the lane with lowest lane MSB greater than or equal to product exponent 902. The lane MSB value is given by, for example,





Lane MSB value=Anchor−lane number×(Width−Overlap).


The shift value 910 is computed from the MSB of the selected lane MSB and product exponent 836. Once a lane has been selected, a large shift of significand 904 is not required. In general, the shift is less than would be required for a conventional accumulator that does not use lanes.


A lane may store a “Carry Ready” bit that indicates whether lane is close to overflowing. When a Carry Ready bit is set high, the overlap bits of the lane are added to the next higher lane, and the overlap bits are reset to zero before the accumulation continues. Operations can be completed in parallel or in series, or in a combination of parallel and series.



FIG. 10 is a block diagram of a layer 1000 of a Convolutional Neural Network (CNN), in accordance with embodiments of the disclosure. Dot product computations account for a large majority of all computations in a layer of a CNN. The computations are used when applying filters, such as 1002, 1004 and 1006, to Input Feature Maps (IFMs) such as 1008, 1010 and 1012. For example, weights 1014 are applied to IFM elements 1016 in multiplier 1018, weights 1020 are applied to IFM elements 1022 in multiplier 1024, and weights 1026 are applied to IFM elements 1028 in multiplier 1030. Blocks of filter weights and IFMs are each quantized with one or more shared exponents. Each multiplier receives two shared exponents and two EBFP encoded values. The resulting products are passed to wide fixed-point accumulator 1032. This reduces the amount of storage required for the weights and IFMs. Thus, the dot product computations combine floating-point products from different blocks, which may have different exponents. This is in contrast to traditional Block Floating-Point calculations, where all the products are arranged so as to have the same exponent. Thus, when performing convolutions in a CNN, EBFP operands are taken from several different blocks. EBFP Blocks are encoded within individual IFMs, and EBFP weight blocks are encoded within the filter.



FIG. 11 is a flow chart 1100 of a computer-implemented method of multiplying two operands in EBFP format in accordance with various representative embodiments. At block 1102, the two operands are provided as inputs. The first operand, operand A, is specified by an EBFP datum EBFP_A and a corresponding shared exponent, SH-EXP_A. The second operand, operand B, is specified by an EBFP datum EBFP_B and a corresponding shared exponent, SH-EXP_B. Data of the first and second operands are decoded at block 1104, to provide operand signs, SIGN_A and SIGN_B, operand exponent differences, EXP-DIFF_A and EXP-DIFF_B, and fractions FRACTION_A and FRACTION_B. As described above, for one or more tag values, the exponent difference is assumed to be zero, for other tag values the fraction is assumed to be zero. The decoding is based on the tag and payload values of the data. At block 1106, the sign of the output product is computed as a logical XOR operation between the operand signs, namely SIGN_A{circumflex over ( )}SIGN_B. At block 1108, the output exponent is determined by summing the shared exponent of the first operand and the shared exponent of the second operand and subtracting the first exponent difference and the second exponent difference to generate an output exponent. Thus, the output exponent is determined as SH-EXP_A+SH-EXP_B−EXP-DIFF_A−EXP-DIFF_B. One or both of EXP-DIFF_A and EXP-DIFF_B may be zero, as discussed above. At block 1110, the significand of the output product is computed as a product of the operand significands. The operand significands are obtained from the operand fractions by multiplying a significand of the first fraction by a significand of the second fraction to generate an output significand. The significands are obtained by reinstating the hidden “1” to the fraction. Thus, output significand is computed as (1+FRACTION_A)×(1+FRACTION_B). If the product of significands is less than two, as depicted by the negative branch from decision block 1112, flow continues to block 1114 and the sign, exponent and significand of the product are output. For example, the values could be placed in an output register.


If the product of significands is greater than or equal to two, as depicted by the positive branch from decision block 1112, the output exponent is increased by one at block 1116, and the output significand is right shifted by one at block 1118. In this way, the output significand is normalized to be in the range 1≤significand<2. In an alternative embodiment, the extra shift may be implemented at a later position in a computation—such as in an adder of an accumulator. The sign, exponent and at least the fractional part of the significand of the product are output at block 1114. These values may be passed to an accumulator of a dot product unit.


In this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” or any other variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.


Reference throughout this document to “one embodiment,” “certain embodiments,” “an embodiment,” “implementation(s),” “aspect(s),” or similar terms means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, the appearances of such phrases or in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments without limitation.


The term “or,” as used herein, is to be interpreted as an inclusive or meaning any one or any combination. Therefore, “A, B or C” means “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


As used herein, the term “configured to,” when applied to an element, means that the element may be designed or constructed to perform a designated function, or that is has the required structure to enable it to be reconfigured or adapted to perform that function.


Numerous details have been set forth to provide an understanding of the embodiments described herein. The embodiments may be practiced without these details. In other instances, well-known methods, procedures, and components have not been described in detail to avoid obscuring the embodiments described. The disclosure is not to be considered as limited to the scope of the embodiments described herein.


Those skilled in the art will recognize that the present disclosure has been described by means of examples. The present disclosure could be implemented using hardware component equivalents such as special purpose hardware and/or dedicated processors which are equivalents to the present disclosure as described and claimed. Similarly, dedicated processors and/or dedicated hard-wired logic may be used to construct alternative equivalent embodiments of the present disclosure.


Dedicated or reconfigurable hardware components used to implement the disclosed mechanisms may be described, for example, by instructions of a hardware description language (HDL), such as VHDL, Verilog or RTL (Register Transfer Language), or by a netlist of components and connectivity. The instructions may be at a functional level or a logical level or a combination thereof. The instructions or netlist may be input to an automated design or fabrication process (sometimes referred to as high-level synthesis) that interprets the instructions and creates digital hardware that implements the described functionality or logic.


The HDL instructions or the netlist may be stored on non-transitory computer readable medium such as Electrically Erasable Programmable Read Only Memory (EEPROM); non-volatile memory (NVM); mass storage such as a hard disc drive, floppy disc drive, optical disc drive; optical storage elements, magnetic storage elements, magneto-optical storage elements, flash memory, core memory and/or other equivalent storage technologies without departing from the present disclosure. Such alternative storage devices should be considered equivalents.


Various embodiments described herein are implemented using dedicated hardware, configurable hardware or programmed processors executing programming instructions that are broadly described in flow chart form that can be stored on any suitable electronic storage medium or transmitted over any suitable electronic communication medium. A combination of these elements may be used. Those skilled in the art will appreciate that the processes and mechanisms described above can be implemented in any number of variations without departing from the present disclosure. For example, the order of certain operations carried out can often be varied, additional operations can be added or operations can be deleted without departing from the present disclosure. Such variations are contemplated and considered equivalent.


The various representative embodiments, which have been described in detail herein, have been presented by way of example and not by way of limitation. It will be understood by those skilled in the art that various changes may be made in the form and details of the described embodiments resulting in equivalent embodiments that remain within the scope of the appended claims.

Claims
  • 1. A data processing apparatus comprising: a decoder configured to generate: a first exponent difference and at least a fractional part of a first significand based on a first tag and a first payload of a first operand, anda second exponent difference and at least a fractional part of a second significand based on a second tag and a second payload of a second operand;a multiplier configured to generate an output significand as a product of the first significand and the second significand;an exponent combiner configured to generate an output exponent by summing a shared exponent of the first operand and a shared exponent of the second operand, subtracting the first exponent difference, if not zero, and subtracting the second exponent difference, if not zero; andstorage configured to store the output exponent and at least a fractional part of the output significand.
  • 2. The data processing apparatus of claim 1, where: the exponent combiner is further configured to add one to the output exponent when the output significand is greater or equal to two; andthe data processing apparatus further comprises a shifter configured to right-shift the output significand by one place when the output significand is greater or equal to two.
  • 3. The data processing apparatus of claim 1, where: the first operand includes a first sign, the second operand includes a second sign, and the storage configured to store an output sign, andthe data processing apparatus further comprises a logic unit configured to generate the output sign as an “exclusive or” of the first sign and the second sign.
  • 4. The data processing apparatus of claim 1, where the decoder is configured to decode the first operand followed by the second operand.
  • 5. The data processing apparatus of claim 1, where the decoder comprises: a first decoder configured to decode the first operand; anda second decoder configured to decode the second operand.
  • 6. The data processing apparatus of claim 1, where the decoder comprises: a first decoder configured to determine the first exponent difference and the first significand based on at least the first payload;a second decoder configured to: determine the first exponent difference based on the payload of the first operand, andgenerate a designated value as the first significand; anda controller configured to select between the first decoder and the second decoder based on a first tag value.
  • 7. The data processing apparatus of claim 6, where the first decoder is configured to: determine a number of leading zeros of a designated part of the first payload;determine the first exponent difference based on the number of leading zeros; andshift the payload by the first exponent difference to generate the first significand.
  • 8. The data processing apparatus of claim 6, where the first decoder is configured to: determine the first exponent difference based on a first part of the first payload; anddetermine the first significand based on a second part of the first payload.
  • 9. The data processing apparatus of claim 6, where the second decoder is configured to: determine the first exponent difference based on the first payload; andset the first significand to one.
  • 10. The data processing apparatus of claim 1, further comprising: an accumulator including one or more lanes; anda shifter configured to: shift the output significand based on the output exponent to generate a shifted significand, andadd the shifted significand to a selected lanes of the one or more lanes of the accumulator.
  • 11. A system, comprising: an EBFP multiplier including: a decoder configured to: generate a first exponent difference and at least a fractional part of a first significand based on a first tag and a first payload of a filter weight of the plurality of filter weights, andgenerate a second exponent difference and at least a fractional part of a second significand based on a second tag and a second payload of an element of the one or more input feature maps;a significand multiplier configured to generate an output significand as a product of the first significand and the second a significand;an exponent combiner configured to generate an output exponent by summing a shared exponent of a first operand and a shared exponent of a second operand and subtracting the first exponent difference and the second exponent difference;an accumulator having one or more lanes and configured to: shift the output significand based on the output exponent to generate a shifted significand, andadd the shifted significand to a selected lane of one or more lanes of the accumulator.
  • 12. A computer-implemented method comprising: decoding a first operand, based on a first tag and a first payload of the first operand, to generate a first exponent difference and at least a fractional part of a first significand;decoding a second operand, based on a second tag and a second payload of the second operand, to generate a second exponent difference and at least a fractional part of a second significand;generating an output significand as a product of the first significand and the second significand;summing a shared exponent of the first operand and a shared exponent of the second operand, subtracting the first exponent difference, if not zero, and subtracting the second exponent difference, if not zero, to generate an output exponent; andstoring the output exponent and at least a fractional part of the output significand.
  • 13. The computer-implemented method of claim 12, further comprising: when the output significand is greater or equal to two, adding one to the output exponent and right-shifting the output significand by one place.
  • 14. The computer-implemented method of claim 12, where the first operand includes a first sign, the second operand includes a second sign, and the computer-implemented method further comprises: performing an “exclusive or” operation between the first sign and the second sign to generate an output sign; andstoring the output sign.
  • 15. The computer-implemented method of claim 12, where said decoding the first operand comprises: when the first tag has a first value, determining the first exponent difference and the first significand based on at least the first payload; andwhen the first tag has a second value, determining the first exponent difference based on the first payload and setting the first significand to a designated value.
  • 16. The computer-implemented method of claim 15, where: when the first tag has the first value, said determining the first exponent difference and the first significand comprises: determining a number of leading zeros of a designated part of the first payload:determining the first exponent difference based on the number of leading zeros; andshifting the payload left by the first exponent difference to generate the first significand.
  • 17. The computer-implemented method of claim 15, where: when the first tag has the first value, said determining the first exponent difference and the first significand comprises: determining the first exponent difference based on a first part of the first payload; anddetermining the first significand based on a second part of the first payload.
  • 18. The computer-implement method of claim 15, where: when the first tag has a second value, said determining the first exponent difference comprises: determining the first exponent difference based on the first payload.
  • 19. The computer-implement method of claim 12, where the first operand comprises: a sign bit, a 1-bit tag, and a 6-bit payload or a 14-bit payload; ora sign bit, a 2-bit tag, and a 5-bit payload or a 13-bit payload.
  • 20. The computer-implement method of claim 12, further comprising: shifting the output significand based on the output exponent to generate a shifted significand; andadding the shifted significand to a selected lane of one or more lanes of an accumulator.