Enhanced communication connector assembly with crosstalk compensation

Information

  • Patent Grant
  • 6186834
  • Patent Number
    6,186,834
  • Date Filed
    Tuesday, June 8, 1999
    25 years ago
  • Date Issued
    Tuesday, February 13, 2001
    23 years ago
Abstract
An enhanced communication connector assembly capable of meeting Category 6 performance levels with respect to near end crosstalk (NEXT), when the assembly is connected to a mating connector. The assembly includes a wire board, and a number of elongated terminal contact wires with base portions that are supported on the board. The contact wires have free end portions opposite the base portions for making electrical contact with a mating connector. A crosstalk compensating device on the wire board is constructed and arranged to cooperate with sections of selected terminal contact wires to provide capacitive compensation coupling between the selected terminal contact wires, when the contact wires are engaged by the mating connector.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates generally to communication connectors, and particularly to a connector assembly that compensates for crosstalk among different signal paths conducted through the assembly.




2. Discussion of the Known Art




There is a need for a durable, high frequency communication connector assembly that compensates for (i.e., cancels or reduces) crosstalk among and between different signal paths within the assembly. As broadly defined herein, crosstalk occurs when signals conducted over a first signal path, e.g., a pair of terminal contact wires associated with a communication connector, are partly transferred by inductive or capacitive coupling into a second signal path, e.g., another pair of terminal contact wires in the same connector. The transferred signals define “crosstalk” in the second signal path, and such crosstalk degrades any signals that are routed over the second path.




For example, an industry type RJ-45 communication connector has four pairs of terminal wires defining four different signal paths. In typical RJ-45 plug and jack connectors, all four pairs of terminal wires extend closely parallel to one another over the lengths of the connector bodies. Thus, signal crosstalk may be induced between and among different pairs of terminal wires within the typical RJ-45 plug and jack connectors, particularly when the connectors are in a mated configuration. The amplitude of the crosstalk becomes stronger as the coupled signal frequencies or data rates increase.




Applicable industry standards for rating the degree to which communication connectors exhibit crosstalk, do so in terms of so-called near end crosstalk or “NEXT”. Moreover, NEXT ratings are typically specified for mated connector configurations, e.g., a type RJ-45 plug and jack combination, wherein the input terminals of the plug connector are used as a reference plane. Communication links using unshielded twisted pairs (UTP) of copper wire are now expected to support data rates up to not only 100 MHz, or industry standard “Category 5” performance; but to meet “Category 6” performance levels which call for at least 46 dB crosstalk isolation at 250 MHz.




U.S. Pat. No. 5,186,647 to Denkmann et al. (Feb. 16, 1993), which is assigned to the assignee of the present invention and application, discloses an electrical connector for conducting high frequency signals. The connector has a pair of metallic lead frames mounted flush with a dielectric spring block, with connector terminals formed at opposite ends of the lead frames. The lead frames themselves include flat elongated conductors each of which includes a spring terminal contact wire at one end for contacting a corresponding terminal wire of a mating connector, and an insulation displacing connector terminal at the other end for connection with an outside insulated wire lead. The lead frames are placed over one another on the spring block, and three conductors of one lead frame have cross-over sections configured to overlap corresponding cross-over sections formed in three conductors of the other lead frame. All relevant portions of the mentioned '647 patent are incorporated by reference herein. U.S. Pat. No. 5,580,270 (Dec. 3, 1996) also discloses an electrical plug connector having crossed pairs of contact strips.




Crosstalk compensation circuitry may also be provided on or within layers of a printed wire board, to which spring terminal contact wires of a communication jack are connected within the jack housing. See U.S. patent application Ser. No. 08/923,741 filed Sep. 29, 1997, and assigned to the assignee of the present application and invention. All relevant portions of the '741 application are incorporated by reference herein. See also U.S. Pat. No. 5,299,956 (Apr. 5, 1994).




U.S. patent application Ser. No. 09/264,506 filed Mar. 8, 1999, and assigned to the assignee of the present application and invention, discloses a communications connector assembly having co-planar terminal contact wires, wherein certain pairs of the contact wires have opposed cross-over sections to provide inductive crosstalk compensation. All relevant portions of the '506 application are also incorporated by reference herein.




Further, U.S. Pat. No. 5,547,405 (Aug. 20, 1996) discloses an electrical connector having signal carrying contacts that are stamped as lead frames from a metal sheet. Certain contacts have integral lateral extensions that overlie enlarged adjacent portions of other contacts to provide capacitive coupling crosstalk compensation. A dielectric spacer is disposed between an extension of one contact and an enlarged adjacent portion of the other contact. Thus, the stamped lead frames for the connector of the '405 patent are complex, and are relatively difficult to manufacture and assemble precisely.




There remains a need for a communication jack connector assembly which, when mated with a typical RJ-45 plug, provides both inductive and capacitive crosstalk compensation such that the mated connectors will meet or surpass Category


6


performance.




SUMMARY OF THE INVENTION




According to the invention, a communications connector assembly includes a wire board, and a number of elongated terminal contact wires each having a base portion supported on the wire board, and a free end portion opposite the base portion to make electrical contact with a mating connector. A crosstalk compensating device on the wire board cooperates with sections of selected terminal contact wires to produce a determined amount of capacitive compensation coupling between the selected terminal contact wires, when the contact wires are engaged by the mating connector.




In one embodiment, the wire board of the communication connector assembly is inserted within a jack housing, and an opening in a front surface of the jack housing is dimensioned for receiving the mating plug connector.




For a better understanding of the invention, reference is made to the following description taken in conjunction with the accompanying drawing and the appended claims.











BRIEF DESCRIPTION OF THE DRAWING




In the drawing:





FIG. 1

is a perspective view of a communication connector assembly, and a jack housing into which the assembly can be inserted and mounted;





FIG. 2

is an enlarged, perspective view of a front portion of the connector assembly in

FIG. 1

;





FIG. 3

is a side view, partly in section, of the front portion of the connector assembly in

FIG. 2

;





FIG. 4

is a sectional view of the connector assembly, as taken along line


4





4


in

FIG. 3

;





FIG. 5

is a plan view, of a plate capacitor circuit;





FIG. 6

is a perspective view showing the capacitor circuit of

FIG. 5

mounted on the connector assembly; and





FIG. 7

is an electrical schematic representation of the connector assembly with capacitive crosstalk compensation coupling between sections of terminal contact wires.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

is a perspective view of an enhanced communication connector assembly


10


, and a communication jack frame or housing


12


into which the assembly


10


can be inserted and mounted. The jack housing


12


has a front face in which a plug opening


13


is formed. The plug opening


13


has an axis P, along the direction of which axis a mating plug connector may be inserted into the housing opening


13


to connect electrically with the assembly


10


.

FIG. 2

is an enlarged, perspective view of a front portion of the connector assembly


10


in FIG.


1


.




In the illustrated embodiment, the communication connector assembly


10


has an associated, generally rectangular printed wire board


14


. The board


14


may comprise, for example, a single or a multi-layer dielectric substrate. A number, e.g., eight elongated terminal contact wires


18




a


-


18




h


emerge from a central portion of the printed wire board


14


, as seen in FIG.


1


. The contact wires


18




a


-


18




h


extend substantially parallel to one another, and are generally uniformly spaced from a top surface


15


of a two-part contact wire guide structure


16


. A first support part


17


of the guide structure


16


is fixed on a front portion of the wire board


14


.




A second support part


19


is fixed to a front end of the first support part


17


, and projects in a forward direction from the wire board


14


, as shown in

FIGS. 1 and 3

. The second support part


19


of the guide structure has a number of parallel channels opening in the top surface


15


, for pre-loading and for guiding the free end portions of corresponding contact wires, as shown in

FIGS. 1-3

.




The contact wires are formed and arranged to deflect resiliently toward the top surface


15


of the guide structure


16


, when free end portions


70




a


to


70




h


of the wires are engaged by a mating connector along a direction parallel to the top surface. The material forming the terminal contact wires


18




a


-


18




h


may be a copper alloy, e.g., spring-tempered phosphor bronze, beryllium copper, or the like. A typical cross-section of the terminal contact wires


18




a


-


18




h


is 0.015 inches square.




The wire board


14


may incorporate conductive traces, electrical circuit components or other devices arranged to compensate for connector-induced crosstalk. Such devices can include wire traces printed within layers of the board, such as are disclosed in the mentioned '741 application. Any crosstalk compensation provided by the board


14


may be in addition to, and cooperate with, an initial stage of crosstalk compensation provided by the terminal contact wires


18




a


-


18




h


and the contact wire guide stricture


16


on the board


14


, as explained below.




The terminal contact wires


18




a


-


18




h


have upstanding base portions


20




a


-


20




h


that are electrically connected at one end to conductors associated with the wire board


14


. For example, contact leg or “tail” ends of the base portions


20




a


-


20




h


may be soldered or press-fit into corresponding plated terminal openings in the board


14


, to connect with conductive traces or other electrical components on or within one or more layers of the board


14


.




The base portions


20




a


-


20




h


connect with the board


14


with an alternating offset in the long direction of the contact wires


18




a


-


18




h


. This offset configuration is necessary to allow a relatively close center-to-center spacing of, e.g., 0.040 inches between adjacent free end portions of the contact wires, without requiring the same close spacing between adjacent plated terminal openings in the board


14


. Otherwise, adjacent terminals on the board may “short” with one another. While the offset configuration of the contact wire base portions


20




a


-


20




h


shown in

FIGS. 1 and 2

provides satisfactory results, other configurations may also be acceptable. For example, an alternating “saw-tooth” pattern where three or more consecutive terminal openings in the board


14


are aligned to define an edge of each tooth, may also offer acceptable performance in certain applications. Accordingly, the illustrated offset pattern is not to be construed as a limitation in the manufacture of the connector assembly


10


, as long as adjacent plated terminal openings in board


14


are spaced far enough apart to prevent electrical shorting.




The wire board


14


has a wire connection terminal region


52


(

FIG. 1

) at which outside, insulated wire leads are connected to an array of contact terminals (not shown) located in the region


52


. Such terminals may be so-called insulation displacing connector (IDC) terminals each of which has a leg part connected to a conductive trace on the board


14


, which trace is associated with one of the terminal contact wires


18




a


-


18




h


. The wire connection terminal region


52


may be enclosed by a terminal housing on the top side of the board


14


, and a cover on the bottom side of the board. See co-pending patent application Ser. No. 08/904,391 filed Aug. 1, 1997, and assigned to the assignee of the present invention and application. All relevant portions of the '391 application are incorporated by reference herein.




As seen in

FIGS. 2 & 3

, the free end portions


70




a


-


70




h


of the terminal contact wires have a downwardly arching configuration, and project beyond a front edge


71


of the wire board


14


. The free end portions


70




a


-


70




h


are supported in cantilever fashion by the base portions


20




a


-


20




h


of the contact wires, wherein the base portions are supported by the board


14


. The free end portions of the contact wires define a line of contact


72


(

FIG. 2

) transversely of the contact wires, and the wires make electrical contact with a mating connector at points along line of contact


72


. When the contact wires


18




a


-


18




h


engage corresponding terminals of a mating connector, the free end portions


70




a


-


70




h


cantilever in the direction of the top surface of the contact wire guide structure


16


, i.e., toward the wire board


14


.




In the following disclosure, pairs of the eight terminal contact wires


18




a


-


18




h


are sometimes referred to by pair numbers, from wire pair no.


1


to pair no.


4


, as follows.



















Pair No.




Terminal Contact Wires













1




18d, 18e







2




18a, 18b







3




18c, 18f







4




18g, 18h















As seen in

FIGS. 1-3

, pair nos.


1


,


2


and


4


of the terminal contact wires have cross-over sections


74


, at which each contact wire of a given pair steps toward and crosses above or below the ther contact wire of the pair, with a generally “S”-shaped side-wise step


76


. The terminal contact wires are also curved arcuately above and below their common plane at each cross-over section


74


, as shown in FIG.


3


. Opposing faces of the steps


76


in the contact wires are spaced apart typically by about 0.035 inches (i.e., enough to prevent shorting when the terminal wires are engaged by a mating connector). A typical length of each cross-over section in the long direction of the terminal contact wires, is approximately 0.144 inches.




The cross-over sections


74


in the terminal contact wires


18




a


-


18




h


serve to initiate inductive crosstalk compensation coupling among the contact wires, in a region where the wires are co-planar. See the earlier-mentioned '506 application. This region extends from a center line of the cross-over sections


74


to points where alternate ones of the terminal contact wires bend toward the wire board


14


. The remaining terminal contact wires continue to extend above the board


14


to form the mentioned offset, until they too bend toward the board


14


. The length of the co-planar region of inductive crosstalk compensation is, e.g., approximately 0.180 inches.




In the illustrated embodiment, the cross-over sections


74


are provided on pair nos.


1


,


2


and


4


of the eight terminal contact wires


18




a


-


18




h


. The “pair


3


” contact wires, i.e., wires


18




c


,


18




f


, straddle contact wire pair


1


(contact wires


18




d


,


18




e


) and no cross-over section is formed in the contact wires


18




c


,


18




f


. That is, each of the contact wires


18




c


,


18




f


, extends above the wire board


14


without a side-wise step. Pairs of terminal contact wires having the cross-over sections


74


are disposed at either side of each of the “straight” contact wires


18




c


,


18




f.






The cross-over sections


74


are relatively close to the line of contact


72


. A typical distance between the line of contact


72


and a center line of the cross-over sections


74


, is approximately 0.149 inches. Accordingly, inductive crosstalk compensation by the connector assembly


10


starts near the line of contact


72


, beginning with the cross-over sections


74


.




Further details of the contact wire guide structure


16


in

FIGS. 1-3

, now follow. The first support part


17


of the structure


16


has a generally “L”-shaped profile, and is mounted on a front portion of the wire board


14


next to the terminal region


52


. The support part


17


is secured on the top surface of the board by one or more ribbed mounting posts


80


that are press fit into corresponding openings


82


formed in the board


14


. See FIG.


3


.




An elongated, generally rectangular block


84


projects upward from a rear end portion of the support part


17


. The block


84


forms, e.g., eight substantially evenly spaced-apart openings or slots


86


that open in a top surface of the block. Each slot


86


is located in the block


84


to receive a section of a corresponding one of the terminal contact wires


18




a


-


18




h


. Components associated with the block


84


function to produce or inject an initial stage of capacitive crosstalk compensation coupling between sections of selected ones of the terminal contact wires, as explained further below.




The second support part


19


acts to apply a certain pre-load bias force F on the free end portions of the terminal contact wires, in the direction of the arrow in FIG.


3


. The part


19


also has associated ribbed mounting posts


85


that are press fit into corresponding holes


87


formed in the board


14


, near the board front edge


71


as shown in FIG.


3


.




Eight parallel channels


89


are cut in the top surface of the second support part


19


. The channels


89


are located to align with and receive corresponding free end portions


70




a


-


70




h


of the terminal contact wires, and to guide the free end portions when they are deflected by the action of a mating plug connector. A front end portion


90


of the second support part


19


is configured to apply the pre-load bias force F to the free end portions of the contact wires in each of the channels


89


, as shown in FIG.


3


.




As mentioned, the block


84


of the first support part


17


has associated components that produce capacitive coupling between sections of certain terminal contact wires, for the purpose of capacitive crosstalk compensation. A cross-section view through one of the contact wire slots


86


in the block


84


, is shown in FIG.


3


. To suppress crosstalk between terminal contact wire pair nos.


1


and


3


, larger values of capacitive coupling are needed between adjacent sections of the terminal contact wires


18




c


&


18




e


, and between sections of the wires


18




d


&


18




f


; with respect to any capacitance coupling introduced between sections of the remaining wires in the slots


86


. An additional stage or stages of crosstalk compensation on the wire board


14


may then be provided in a manner disclosed, for example, in the mentioned U.S. patent application Ser. No. 08/923,741. Such additional stage or stages may then effectively cancel or substantially reduce crosstalk that would otherwise be present at output terminals of the assembly


10


corresponding to the terminal contact wire pair nos.


1


and


3


.




Increased capacitive coupling between adjacent sections of contact wire pair nos.


1


and


3


in the slots


86


, is produced by a pair of compensation plate capacitors


100


that are supported by the block


84


. Dielectric portions of the capacitors


100


form walls between those slots


86


in which adjacent sections of wires


18




c


&


18




e


, and


18




d


&


18




f


, are contained. The plate capacitors


100


are aligned with and connect electrically to the mentioned contact wire sections when the connector assembly


10


is engaged by a mating connector, as explained below. Thus, capacitive crosstalk compensation coupling is injected relatively close to the line of contact


72


, and to the crossover section


74


of contact wire pair no.


1


.




Each of the plate capacitors


100


comprises a generally rectangular base dielectric


102


of, for example, a polyamide film material having a dielectric constant (ε) of about 3.5. An upper portion of the dielectric


102


also forms a partition wall between adjacent slots


86


in the block


84


, as seen in

FIG. 4. A

pair of electrically conductive capacitor plates


104


,


106


, are deposited or otherwise adhered on opposite sides of the base dielectric


102


. In the illustrated embodiment, capacitor plate


104


has less area then capacitor plate


106


. Thus, precise alignment between the plates


104


,


106


, is not necessary to obtain a desired value of capacitance. That is, the capacitive coupling produced by each capacitor


100


is a function of the area of the smaller plate


104


, and a slight misalignment of the plates


104


,


106


, relative to one another will not vary the capacitance value which is expressed by the following equation:









C
=



ϵ





A


4


π


(

t
1

)


×
9
×

10
5





μ
F






(Eq. 1)













wherein:




ε=dielectric constant of base dielectric


102






A=area of conductive plate


104


in square centimeters




t


1


=thickness of base dielectric


102


in centimeters




Each of the capacitor plates


104


,


106


, has one or more points of contact or “bumps”


108


along a top edge of the plate. See FIG.


3


. The thicknesses (in

FIG. 4

) of the plates


104


,


106


, are such that the corresponding contact wire sections will make satisfactory electrical contact with the bumps


108


on the plates when a mating connector causes the wire sections to be urged downward within the slots


86


, as viewed in

FIGS. 3 and 4

. The bumps


108


assure a good contact between the plates


104


,


106


, and the cooperating sections of terminal contact wires. The bumps


108


may, for example, be curved sharply at the top so as to cause any foreign material to be dislodged when a contact wire section is urged against a point of contact on the bump.




Capacitive coupling between adjacent sections of contact wires


18




c


&


18




e


, and between adjacent sections of wires


18




d


&


18




f


, by an amount more than


14


times that produced between adjacent sections of contact wires


18




d


&


18




e


was obtained under the following conditions, wherein t


2


is the distance between plates


106


,


104


of the two plate capacitors


100


, which plates directly oppose one another in the dielectric block


84


(see FIG.


4


):







Ratio





of





spacing






t2
t1


=
12.3





Dielectric





constant





of





base





dielectric





102

=
3.5





Dielectric





constant





of





block





84

=
3.0











FIGS. 5 and 6

show an alternative arrangement to inject capacitive coupling for crosstalk compensation between sections of certain terminal contact wires, at the block


84


on the board


14


. A double-sided, flexible plate capacitor circuit


120


in

FIG. 5

is formed from a generally rectangular, elongated flexible film base dielectric


122


such as, e.g., polyamide. A pair of electrically conductive capacitor plates


124


are formed on a front side of the base dielectric


122


, at areas near opposite ends of the base dielectric. A pair of flexible connection strips


126


are formed with conductive material also on the front side of the dielectric


122


, and the strips


126


connect electrically with the capacitor plates


124


. The connection strips


126


extend substantially perpendicular to the long axis o the base dielectric


122


.




Another pair of conductive capacitor plates


128


are formed on the rear side of the base dielectric


122


, behind the plates


124


on the front side. The area of a rear plate


128


may be less than that of the opposed front plate


124


, as long as a known area of the rear plate is fully opposed by the front plate. Thus, the plates of each set need not be precisely aligned with one another to produce a desired value of capacitance. That is, the known area of each smaller plate


128


may be used to define the capacitance value in accordance with Eq. (1), above.




A second pair of connection strips


130


are formed with conductive material on the front side of the base dielectric


122


. The strips


130


extend substantially perpendicular to the axis of the base dielectric


122


, and between the two connection strips


126


associated with the larger capacitor plates


124


. A pair of terminal posts or vias


132


extend through the base dielectric


122


and electrically connect the ends of the strips


130


at the front side of the dielectric, to the smaller conductive plates


128


on the rear side.





FIG. 6

shows the flexible plate capacitor circuit


120


secured along a front wall of the dielectric block


84


on the first support part


17


of the terminal support structure


16


. The connection strips


126


,


130


, are folded to extend horizontally along bottom surfaces of corresponding slots


86


in the block


84


, beneath the sections of selected terminal contact wires. The contact wire sections thus make electrical contact with the connection strips


126


,


130


, when the contact wires are urged against the strips in the slots


86


by the action of a mating connector. Free ends of the strips


126


,


130


, may be held in place by a dielectric ledge at a back wall of the block


84


. Alternatively, the strip ends may be secured against the bottom surfaces of the slots


86


with an acrylic pressure sensitive adhesive.





FIG. 7

is a schematic representation of the connector assembly


10


. Free end portions of the terminal contact wires


18




a


-


18




h


appear beneath the line of contact


72


in

FIG. 7

, and cross-over sections


74


in terminal pair nos.


1


,


2


and


4


appear above the line of contact


72


. Plate capacitors


100


within the contact wire guide structure


16


, are connected between contact wires


18




c


&


18




e


, and between contact wires


18




d


&


18




f


, just above the cross-over section


74


formed by terminal wire pair no.


1


(


18




d


&


18




e


).




It is believed that Category


6


crosstalk isolation may be achieved when the connector assembly


10


is mated with an existing plug connector, if the value of each compensation plate capacitor


100


is about 2.0 picofarads (pf) and two additional stages of crosstalk compensation are provided within the wire board


14


. Enhanced performance may also be obtained with the connector assembly


10


if the value of the plate capacitors


100


is about 1.2 pf and one additional stage of crosstalk compensation is provided on the board


14


. If no additional crosstalk compensation is provided by the board


14


, the capacitors


100


may have a value of about 0.72 pf and satisfactory performance may still be obtained.




In summary, the connector assembly


10


described and illustrated herein, provides:




(1) Enhanced capacitive crosstalk compensation coupling among selected terminal contact wires.




(2) A relatively short distance between the line of contact


72


with a mating connector, and the position of the cross-over sections


74


where co-planar inductive crosstalk compensation begins, thus minimizing signal transmission delays and improving crosstalk cancellation performance;




(3) A relatively short distance between the position of the cross-over sections


74


where co-planar, inductive crosstalk compensation begins, and the position at which capacitive compensation is injected. This also minimizes signal transmission delays and improves cross-talk cancellation; and




(4) A substantial reduction in the size and complexity of additional crosstalk compensation stages that may be needed within the limited space of the printed wire board


14


.




While the foregoing description represents preferred embodiments of the invention, it will be obvious to those skilled in the art that various changes and modifications may be made, without departing from the spirit and scope of the invention pointed out by the following claims.



Claims
  • 1. An enhanced communication connector assembly, comprising:a wire board; a number of elongated terminal contact wires each having a base portion supported on the wire board, a free end portion opposite said base portion for making electrical contact with a mating connector, and a section connecting the free end portion and the base portion with one another; the free end portion is arranged so that the section of the terminal contact wire deflects by the action of the mating connector; and a first crosstalk compensating device fixed on the wire board, wherein the device is constructed and arranged to engage with the sections of selected terminal contact wires to provide capacitive compensation coupling between the selected terminal contact wires when the sections of the contact wires are deflected by said mating connector.
  • 2. The communication connector assembly according to claim 1, wherein said crosstalk compensating device includes one or more compensation capacitors each having a dielectric base, and a pair of conductive plates on opposite sides of the base which plates are configured to contact the sections of the selected terminal contact wires.
  • 3. The communication connector assembly according to claim 2, including a contact wire guide structure on the wire board, said structure comprising a block having openings located to receive the corresponding sections of the terminal contact wires, and the conductive plates of said compensation capacitors are aligned with the openings in said block.
  • 4. The communication connector assembly according to claim 1, wherein said crosstalk compensating device includes compensation capacitors formed on a common dielectric base, and including flexible capacitor connection strips extending from the dielectric base wherein the connection strips are configured to contact the sections of the selected terminal contact wires.
  • 5. The communication connector assembly according to claim 4, including a contact wire guide structure on the wire board, said structure comprising a block have openings located to receive the corresponding sections of the terminal contact wires, and the connection strips of the compensation capacitors are seated in the openings in said block.
  • 6. The communication connector assembly according to claim 1, including a second crosstalk compensating device for producing inductive compensation coupling among selected ones of the terminal contact wires.
  • 7. The communication connector assembly according to claim 6, wherein said second crosstalk compensating device includes at least one pair of terminal contact wires that are formed with opposed cross-over sections.
  • 8. The communication connector assembly of claim 1, including a contact wire guide structure on the wire board, said structure comprising a block having openings located to receive the corresponding sections of the terminal contact wires, and connection terminals of said first crosstalk compensating device are supported within the openings in said block.
  • 9. An enhanced communications jack connector, comprising:a jack housing having a front surface and a plug opening in said front surface, wherein the plug opening has an axis and is formed to receive a mating plug connector; and a communication connector assembly inserted in said jack housing for making electrical contact with said mating plug connector when the plug connector is inserted along the axis of the plug opening in the jack housing, said connector assembly comprising; a wire board supported in the jack housing; a number of elongated terminal contact wires each having a base portion supported on the wire board, a free end portion opposite said base portion for electrically contacting a corresponding terminal of the mating plug connector, and a section connecting the free end portion and the base portion with one another; the free end portion is configured so that the section of the terminal contact wire deflects by the action of the mating plug connector; and a first crosstalk compensating device fixed on the wire board, wherein the device is constructed and arranged to engage with the sections of selected terminal contact wires to provide capacitive compensation coupling between the selected terminal contact wires when the sections of the contact wires are deflected by said mating plug connector.
  • 10. The communications jack connector according to claim 9, wherein said crosstalk compensating device includes one or more compensation capacitors each having a dielectric base, and a pair of conductive plates on opposed sides of the base which plates are configured to contact the sections of the selected terminal contact wires.
  • 11. The communications jack connector according to claim 10, including a contact wire guide structure on the wire board, said structure comprising a block having openings located to receive the corresponding sections of the terminal contact wires, and the conductive plates of said compensation capacitors are aligned with the openings in said block.
  • 12. The communications jack connector according to claim 9, wherein said crosstalk compensating device includes compensation capacitors formed on a common dielectric base, and including flexible capacitor connection strips extending from the dielectric base wherein the connection strips are configured to contact the sections of the selected terminal contact wires.
  • 13. The communications jack connector according to claim 12, including a contact wire guide structure on the wire board, said structure comprising a block having openings located to receive the corresponding sections of the terminal contact wires, and the connection strips of the compensation capacitors are seated in the openings in said block.
  • 14. The communications jack connector according to claim 9, including a second crosstalk compensating device for producing inductive compensation coupling among selected ones of the terminal contact wires.
  • 15. The communications jack connector according to claim 14, wherein said second crosstalk compensating device includes at least one pair of terminal contact wires that are formed with opposed cross-over sections.
  • 16. The jack connector of claim 9, including a contact wire guide structure on the wire board, said structure comprising a block having openings located to receive the corresponding sections of the terminal contact wires, and connection terminals of said first crosstalk compensating device are supported within the openings in said block.
US Referenced Citations (9)
Number Name Date Kind
5186647 Denkmann et al. Feb 1993
5299956 Brownell et al. Apr 1994
5362257 Neal et al. Nov 1994
5547405 Pinney et al. Aug 1996
5562498 Brandenburg et al. Oct 1996
5580270 Pantland et al. Dec 1996
5967828 Geurts et al. Oct 1999
5975919 Arnett et al. Nov 1999
6042427 Adriaenssens et al. Mar 2000