Enhanced filtration control packages, wellbore servicing fluids utilizing the same, and methods of maintaining the structure of a wellbore

Information

  • Patent Grant
  • 10487254
  • Patent Number
    10,487,254
  • Date Filed
    Tuesday, April 18, 2017
    7 years ago
  • Date Issued
    Tuesday, November 26, 2019
    4 years ago
Abstract
A wellbore servicing fluid comprises an aqueous base fluid, one or more alkali metal or alkali earth metal salts, at least one visocisifier, and a filtration control package. The filtration control package may comprise a carboxylic acid and an ethoxylated alcohol compound. Alternatively, the filtration control package may comprise a polyethylene glycol. The carboxylic acid may have from 8 to 20 carbon atoms. The ethoxylated alcohol compound may have a general formula R—(OCH2CH2)x—OH, where R is a hydrocarbon having from 10 to 16 atoms and x is an integer from 6 to 9. The ethoxylated alcohol compound may have a hydrophilic-lipophilic balance of from 8.0 to 16.0. The polyethylene glycol may have a mass average molar mass (Mw) of less than or equal to 1500 daltons.
Description
TECHNICAL FIELD

Embodiments of the present disclosure generally relate to wellbore servicing fluids. In particular, the present disclosure relates to wellbore servicing fluids with enhanced filtration control packages.


BACKGROUND

During drilling operations, a drilling mud, also referred to as a drilling fluid, may be circulated through the wellbore to aid in the drilling process. These drilling muds cool the drill bit, remove formation cuttings from the wellbore, and can support the structure of the wellbore, preventing collapse. Drilling muds that support the structure of the wellbore and prevent collapse are also known as wellbore servicing fluids.


However, during circulation, drilling muds cannot be contained within the wellbore. Drilling muds filter into the surrounding formation, that is, the drilling muds seep into the formation through the pores and channels of the formation material. Over time, this filtration results in a reduction in the amount of fluid being circulated through the wellbore. This phenomenon is known as fluid loss. Fluid loss can be especially problematic in the case of wellbore servicing fluids designed to support the structure of the wellbore and prevent collapse. Fluid loss in wellbore servicing fluids can cause the collapse of the wellbore, resulting in costly and time intensive re-drilling operations.


SUMMARY

Accordingly, there exists a need for wellbore servicing fluids designed to limit fluid loss and control filtration of the fluid into the surrounding formation. The present embodiments address these needs by providing filtration control packages that limit fluid loss.


More specifically, the present embodiments are related to filtration control packages, wellbore servicing fluids comprising those filtration control packages, and methods of using those wellbore servicing fluids. The filtration control packages of the current disclosure typically consist of one or more carboxylic acids and either an ethoxylated alcohol compound or a polyethylene glycol.


For example, in one embodiment of the present disclosure, a filtration control package may comprise at least one carboxylic acid and an ethoxylated alcohol compound. The carboxylic acid may have from 14 to 20 carbon atoms. The ethoxylated alcohol compound may have a general formula R—(OCH2CH2)x—OH, where R is a hydrocarbon having from 10 to 16 atoms and x is an integer from 6 to 9. The ethoxylated alcohol compound may have a hydrophilic-lipophilic balance of from 8.0 to 16.0.


Embodiments of the present disclosure are also directed to filtration control packages comprising at least one carboxylic acid and a polyethylene glycol. The carboxylic acid may have from 8 to 20 carbon atoms and the polyethylene glycol may have a mass average molar mass (Mw) of less than or equal to 1500 daltons.


In yet another embodiment of the present disclosure, a wellbore servicing fluid comprises an aqueous base fluid, one or more alkali metal or alkali earth metal salts, at least one visocisifier, and a filtration control package. The filtration control package may comprise a carboxylic acid and an ethoxylated alcohol compound. Alternatively, the filtration control package may comprise a polyethylene glycol.


Additional features and advantages of the described embodiments will be set forth in the detailed description infra, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the described embodiments, including the detailed description provided infra as well as the claims.







DETAILED DESCRIPTION

In one embodiment, a filtration control package comprises at least one carboxylic acid, and at least one ethoxylated alcohol compound. The at least one carboxylic acid may have from 8 to 20 carbon atoms and the ethoxylated alcohol compound may have the general formula R—(OCH2CH2)x—OH, where R is a hydrocarbon group having from 10 to 16 carbon atoms and x is an integer from 6 to 9. The ethoxylated alcohol compound may have a hydrophilic-lipophilic balance of from 8.0 to 16.0.


In another embodiment, a filtration control package comprises at least one carboxylic acid and polyethylene glycol. The carboxylic acid may have from 8 to 20 carbon atoms and the polyethylene glycol may have a mass average molar mass (Mw) less than or equal to 1500 daltons. The filtration control package may comprise from 30 wt. % to 70 wt. % of at least one carboxylic acid and from 30 wt. % to 70 wt. % of polyethylene glycol.


Filtration control packages of the present disclosure may be added to wellbore servicing fluids to reduce fluid loss in the wellbore servicing fluid. Wellbore servicing fluids of the present disclosure, comprising filtration control packages of the present disclosure, exhibit a fluid loss of less than or equal to 20 cubic centimeters (cm3) over 30 minutes as measured by American Petroleum Institute Recommended Practice 13 B-1, incorporated by reference in its entirety.


In one or more embodiments, a wellbore servicing fluid comprises an aqueous base fluid, one or more alkali metal or alkali earth metal salts, at least one viscosifier, and a filtration control package comprising at least one carboxylic acid and an ethoxylated alcohol compound. The at least one carboxylic acid may have from 8 to 20 carbon atoms and the ethoxylated alcohol compound may have the general formula R—(OCH2HC2)x—OH, where R is a hydrocarbon group having from 10 to 16 carbon atoms and x is an integer from 6 to 9. The ethoxylated alcohol compound may have a hydrophilic-lipophilic balance value from 8.0 to 16.0. The carboxylic acid may be present in an amount less than or equal to 30 pounds per barrel (ppb) of wellbore servicing fluid. As used in the present disclosure, a barrel is a unit of volume equal to 42 gallons or 159 liters. The ethoxylated alcohol compound may also be present in an amount less than or equal to 30 ppb total wellbore servicing fluid.


In one or more embodiments, a wellbore servicing fluid comprises an aqueous base fluid, on or more alkali metal or alkali earth metal salts, at least one viscosifier, and a filtration control package comprising a polyethylene glycol. The polyethylene glycol may have a mass average molar mass (Mw) of less than or equal to 1500 daltons. The polyethylene glycol may be present in an amount less than or equal to 30 ppb of wellbore servicing fluid.


A wellbore is formed by inserting a drill string into a previously drilled hole. The drill string comprises a drill bit and drill collars. The drill string can then be rotated about an annular axis causing the drill bit to cut into the surrounding formation and, as a result, expand the hole. The surrounding formation may vary in composition and may include rock, dirt, sand, stone, or combinations thereof.


After the drill string expands the hole, a hollow cylinder, known as a casing, is lowered into the hole. The interior of the casing defines the annulus of the wellbore. The casing may vary in material, diameter, and length depending on the surrounding formation. The casing may be inserted into the hole in one piece or in segments.


The wellbore, including the casing, forms a circuit for fluids to flow. Fluids may be passed through the annulus, and then at the bottom of the casing, the fluids can be forced upward along the exterior of the casing via fluid pressure. Once the fluids return to the surface of the wellbore they may be reintroduced through the annulus or removed from the circuit. The wellbore comprises an outlet disposed at the surface of the wellbore which allows for the selective removal of fluids from the wellbore.


Drilling muds may be circulated through the circuit disposed in the wellbore. These drilling muds can accomplish many functions. For example, as the wellbore is expanded, formation cuttings need to be removed. Formation cuttings include, but are not limited to, any rock, dirt, sand or stone separated from the surrounding formation by the drill bit or otherwise present in the wellbore. A drilling mud can be used to remove these formation cuttings. The drilling mud may be passed through the annulus of the wellbore, forced up the exterior of the casing, and carried out the outlet.


Drilling muds may also be used to cool the drill bit. Drilling muds provide lubrication between the drill bit and the surrounding formation. This lubrication reduces the friction between the drill bit and the surrounding formation, and therefore reduces the amount of heat generated by the rotation of the drill bit. Additionally, drilling muds typically have a large specific heat, or heat capacity, relative to the drill bit and therefore can cool the drill bit by absorbing some amount of heat from the drill bit while maintaining a relatively stable temperature.


Drilling muds can also provide hydrostatic pressure in the wellbore to provide support to the walls of the wellbore and prevent collapse or caving in on the drill string. This function of maintaining the structure of the wellbore is extremely critical to the entire drilling process and failures to maintain the structure of the wellbore can result in costly and time intensive remedial measures. Drilling muds that maintain the structure of the wellbore are also known as wellbore servicing fluids.


Fluid loss occurs in almost any fluid that is circulated in the wellbore, but it is especially problematic in the case of wellbore servicing fluids. Fluid loss is a decrease in the amount of fluid being circulated through a wellbore and is caused by filtration. Fluid loss can result in a decrease in the hydrostatic pressure provided by the wellbore servicing fluid. A decrease in hydrostatic pressure provided by the wellbore servicing fluid can lead to wellbore instability and potentially a wellbore collapse.


Filtration occurs due to the permeability of the surrounding formation. The formation surrounding a wellbore naturally has some permeability; the ability of oil and gases to flow from the formation to the wellbore is dependent on the formation having some amount of permeability. However, the permeability of the surrounding formation allows for wellbore servicing fluids to filter into the formation from the wellbore. In the current disclosure, the filtration of a wellbore servicing fluid, and therefore the fluid loss of a wellbore servicing fluid, is limited by the addition of a filtration control package.


In one or more embodiments, a filtration control package may comprise an ethoxylated alcohol compound having a general formula R—(OCH2CH2)x—OH where R is a hydrocarbon group having from 10 to 16 carbon atoms and x is an integer from 6 to 9. In some embodiments, R can be a saturated, unsaturated, linear, branched, or aromatic hydrocarbon such as, by way of non-limiting examples, —C12H25 or —C10H20CH(CH3)2. In other embodiments, R can be a hydrocarbon group having from 12 to 14 carbon atoms, a hydrocarbon group having exactly 13 carbon atoms, or even an iso tridecyl hydrocarbon group. In at least one embodiment, x is an integer from 7 to 9. In other embodiments, x may be 6, 7, 8, or 9. Without being limited by theory, it is believed that the carboxylic acid and the ethoxylated alcohol compound form a mixed micellar solution within wellbore servicing fluid, controlling filtration into the formation. In at least one embodiment, the carboxylic acid has from 14 to 20 carbon atoms.


Carboxylic acids of this size are conducive to forming mixed micellar solutions with the ethoxylated alcohol compounds of the present disclosure. In other embodiments, the carboxylic acid may have from 16 to 18 carbon atoms, from 14 to 16 carbon atoms, from 18 to 20 carbon atoms, from 14 to 18 carbon atoms, or even from 16 to 20 carbon atoms.


In at least one embodiment, a filtration control package may comprise from 30 wt. % to 70 wt. % of an ethoxylated alcohol compound. In other embodiments, a filtration control package may comprise from 30 wt. % to 65 wt. %, from 33 wt. % to 65 wt. %, from 35 wt. % to 65 wt. %, from 40 wt. % to 60 wt. %, from 45 wt. % to 55 wt. %, or from 48 wt. % to 52 wt. % of an ethoxylated alcohol compound.


The ethoxylated alcohol compound may be the condensation product of an ethoxylation reaction of a fatty alcohol. The fatty alcohol is an alcohol having a formula R—OH, where R is a saturated or unsaturated, linear, or branched hydrocarbon. In some embodiments, the fatty alcohol may be a naturally occurring fatty alcohol, such as a fatty alcohol obtained from natural sources such as animal products or vegetable oils. Non-limiting examples of naturally occurring fatty alcohols include, but are not limited to, capric alcohol, decyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, palmitoeyl alcohol, heptadecanol, nonadecyl alcohol, arachidyl alcohol, other naturally-occuring fatty alcohols, other synthetic alcohols, or combinations thereof.


In other embodiments, the fatty alcohol may be a synthetic fatty alcohol prepared from a synthesis reaction using one or more petroleum based precursors. For example, one embodiment may use the oligomerization of ethylene to produce a fatty alcohol having a formula R—OH where R is a saturated or unsaturated, linear or branched hydrocarbon having from 10 to 16 carbon atoms. The ethoxylation of fatty alcohol, R—OH to form the ethoxylated alcohol compound proceeds according to Equation 1:










ROH
+



x

C

2



H
4


O





KOH





R


(


OC
2



H
4


)


X


OH





Eq
.





(
1
)









where the fatty alcohol is reacted with ethylene oxide in a 1:x molar ratio yielding a relative mole of reaction product with x units of ethoxylation. As shown in Equation 1, the reaction product is an ethoxylated fatty alcohol according to having the general formula R—(OCH2CH2)x—OH.


The ethoxylated alcohol compound of the filtration control package may have a hydrophilic-lipophilic balance (HLB) value from 8.0 to 16.0. The HLB value of a molecule is a measure of the degree to which it is hydrophilic or lipophilic. HLB value is calculated by the Griffin Method according to Equation 2:









HLB
=

20
*


M
h

M






Eq
.





(
2
)









where Mh is the molecular mass of the hydrophilic portion of the molecule and M is the molecular mass of the whole molecule. HLB values calculated using Equation 2 range from 0 to 20 in which a value of 0 indicates an absolutely hydrophobic/lipophilic molecule and a value of 20 corresponds to an absolutely hydrophilic/lipophobic molecule. Generally, molecules having an HLB less than 10 are lipid soluble, molecules having an HLB greater than 10 are water soluble, and molecules with an HLB between 3 and 16 have some surfactant/emulsifying properties.


In some embodiments, the ethoxylated alcohol compound of the filtration control package has an HLB value from 8 to 16. In other embodiments, the ethoxylated alcohol compound has an HLB value from 10 to 14, from 12 to 14, from 12 to 13.5, from 12.5 to 14.5, from 12.5 to 14, from 12.5 to 13.5, from 13 to 14.5, from 13 to 14, or even from 13 to 13.5.


In one or more embodiments, a wellbore servicing fluid comprises an aqueous base fluid, an alkali metal or alkali earth metal salt, at least one viscosifier, and a filtration control package comprising a carboxylic acid having from 8 to 20 carbon atoms and an ethoxylated alcohol compound with an HLB from 8.0 to 16.0, where neither the carboxylic acid nor the ethoxylated alcohol compound are present in the wellbore servicing fluid in an amount more than 30 ppb of wellbore servicing fluid.


The aqueous base fluid of the wellbore servicing fluid may include deionized, tap, distilled or fresh waters; natural, brackish and saturated salt waters; natural, salt dome, hydrocarbon formation produced or synthetic brines; filtered or untreated seawaters; mineral waters; and other potable and non-potable waters containing one or more dissolved salts, minerals or organic materials. Fresh water is often used because of potential issues with introducing unnecessary amounts of ions, metals, and minerals to the wellbore or surrounding formation.


Various amounts of aqueous base fluid were contemplated in wellbore servicing fluid embodiments. In one embodiment, a wellbore servicing fluid comprises from 210 ppb to 351 ppb of aqueous base fluid. In other embodiments, a wellbore servicing fluid may comprise from 230 ppb to 351 ppb, from 250 ppb to 351 ppb, from 270 ppb to 351 ppb, from 290 ppb to 351 ppb, from 300 ppb to 351 ppb, from 310 ppb to 340 ppb, from 320 ppb to 340 ppb, or from 310 ppb to 330 ppb of aqueous base fluid.


In one embodiment, a filtration control package comprises from 30 wt. % to 70 wt. % of a carboxylic acid. In other embodiments, a filtration control package may comprise from 30 wt. % to 65 wt. %, from 33 wt. % to 65 wt. %, from 35 wt. % to 65 wt. %, from 40 wt. % to 60 wt. %, from 45 wt. % to 55 wt. %, or from 48 wt. % to 52 wt. % of a carboxylic acid.


In one or more embodiments the at least one viscosifier may comprise xanthan gum polymer, bentonite, barite, minerals, polyacrylamides, polysaccharides, polyanionic cellulose, or combinations thereof. Xanathan gum polymer is a polysaccharide secreted by Xanthomonas Campestris bacteria. Viscosifiers such as xanathan gum polymer, as well as polyacrylamides, polysaccharides, polyanionic cellulose, bentonite, and barite increase the viscosity of the wellbore servicing fluid. In one embodiment, a wellbore servicing fluid comprises from 0.01 ppb to 30 ppb of at least one viscosifier. In one or more embodiments, the one or more viscosifier may comprise a solid having a specific gravity sufficient to increase the density of the wellbore servicing fluid without adversely affecting the flowability or other rheological properties of the spacer fluid


In other embodiments, a wellbore servicing fluid may comprise from 0.01 ppb to 10 ppb, from 0.1 ppb to 30 ppb, from 0.1 ppb to 25 ppb, from 0.1 ppb to 20 ppb, from 1 ppb to 30 ppb, from 1 ppb to 25 ppb, from 1 ppb to 20 ppb, from 5 ppb to 30 ppb, from 5 ppb to 25 ppb, or from 5 ppb to 20 ppb from of at least one viscosifier.


In one or more embodiments, the one or more alkali metal or alkali earth metal salt comprises KCl. In other embodiments, the alkali metal or alkali earth metal salt comprises NaCl, CaCl2, or combinations of NaCl, KCl, or CaCl2.


In one or more embodiments, a wellbore servicing fluid comprises a carboxylic acid and an ethoxylated alcohol compound in an amount no more than 25 ppb each. In other embodiments, a wellbore servicing fluid comprises a carboxylic acid and an ethoxylated alcohol compound in an amount no more than 20 ppb each, no more than 18 ppb each, no more than 15 ppb each, or even no more than 10 ppb each.


Alternatively, a filtration control package may comprise a polyethylene glycol with a mass average molar mass (Mw) less than or equal to 1500 daltons. In other embodiments, a filtration control package comprises a polyethylene glycol with a mass average molar mass less than or equal to 1300 daltons, less than or equal to 1100 daltons, less than or equal to 1000 daltons, less than or equal to 900 daltons, less than or equal to 800 daltons, less than or equal to 700 daltons, or even less than or equal to 600 daltons.


In at least one embodiment, a filtration control package comprises from 30 wt. % to 70 wt. % of a polyethylene glycol. In other embodiments, a filtration control package comprises from 30 wt. % to 65 wt. %, from 33 wt. % to 65 wt. %, from 35 wt. % to 65 wt. %, from 40 wt. % to 60 wt. %, from 45 wt. % to 55 wt. %, or from 48 wt. % to 52 wt. % of a polyethylene glycol.


In one or more embodiments, a wellbore servicing fluid comprises an aqueous base fluid, an alkali metal or alkali earth metal salt and a filtration control package comprising a polyethylene glycol with a mass average molar mass (Mw) of less than or equal to 1500 daltons, where the amount of polyethylene glycol does not exceed 30 ppb of the wellbore servicing fluid. In one or more embodiments, a wellbore servicing fluid may further comprises a carboxylic acid having from 8 to 20 carbon atoms.


In one or more embodiments, a wellbore servicing fluid comprises a carboxylic acid and a polyethylene glycol in an amount no more than 25 ppb each. In other embodiments, a wellbore servicing fluid comprises a carboxylic acid and a polyethylene glycol in an amount no more than 20 ppb each, no more than 18 ppb each, no more than 15 ppb each, or even no more than 10 ppb each.


In one or more embodiments, a wellbore servicing fluid may be added to a wellbore and a drill string may be operated in the presence of the wellbore servicing fluid where the hydrostatic pressure provided by the wellbore servicing fluid maintains the structure of the wellbore and prophylax wellbore instability and wellbore collapse.


EXAMPLES

The subsequent examples illustrate one or more additional features of the present disclosure described supra. It should be understood that these examples are not intended to limit the scope of the disclosure or the appended claims in any manner.


In the subsequent examples, three different wellbore servicing fluids (Examples 1-3) as well as a Comparative Example wellbore servicing fluid were prepared. The fluid loss of these filtration control packages were then tested using API Recommended Practice 13B-1 at a time interval of 30 minutes.


According to API Recommended Practice 13B-1, fluid loss may be tested at low temperature and low pressure with a filter press having a mostly cylindrical drilling mud cell, the drilling mud cell having an inside diameter of 76.2 millimeters and a height of at least 64.0 millimeters. A sheet of 90 millimeter diameter filter paper is placed at the bottom of the cell and below the filter paper is a drain tube for discharging filtrate into a graduated cylinder. The filter press is sealed with gaskets and supported by a stand.


Sample wellbore servicing fluids are poured into the drilling mud cell of the filter press with 1 centimeter to 1.5 centimeters of room at the top of the drilling mud cell. Room at the top of the drilling mud cell is minimized to prevent CO2 contamination. A graduated cylinder is then placed under the drain tube to collect filtrate. The filter press is then brought to a pressure of 690 kiloPascals within a tolerance of 35 kiloPascals within 30 seconds or less. The test period time interval begins when pressure is applied. After 30 minutes, the volume of filtrate collected is measured. This volume represents the fluid loss of the wellbore servicing fluid. The fluid loss results of the subsequent examples are detailed in Table 1.


Example 1

A wellbore servicing fluid was prepared in a mud cup using a multimixer. First, 328.45 grams of fresh water were added to the mud cup. Next, 1 gram of xanthan gum polymer was added to the mud cup and mixed for 10 minutes. Then, 2 grams of a mixture of carboxylic acids having from 16 to 18 carbon atoms were added to the mud cup and mixed for 5 minutes. Then 2 grams of an ethoxylated alcohol compound, C13H27(OCH2CH2)8OH, were added to the mud cup and mixed for 5 minutes. Finally, 70.26 grams of barite were added to the mud cup and mixed for 5 minutes.


Example 2

A wellbore servicing fluid was prepared in a mud cup using a multimixer. First, 332.73 grams of fresh water were added to the mud cup. Next, 1 gram of xanthan gum polymer was added to the mud cup and mixed for 10 minutes. Then, 4 grams of a polyethylene glycol with a mass average molecular weight of 600 daltons were added to the mud cup and mixed for 5 minutes. Finally, 69.99 grams of barite were added to the mud cup and mixed for 5 minutes.


Example 3

A wellbore servicing fluid was prepared in a mud cup using a multimixer. First, 332.73 grams of fresh water were added to the mud cup. Next, 1 gram of xanthan gum polymer was added to the mud cup and mixed for 10 minutes. Then, 2 grams of a mixture of carboxylic acids having from 16 to 18 carbon atoms were added to the mud cup and mixed for 5 minutes. Then, 2 grams of a polyethylene glycol with a mass average molecular weight of 600 daltons were added to the mud cup and mixed for 5 minutes. Finally, 69.99 grams of barite were added to the mud cup and mixed for 5 minutes.


Comparative Example

A comparative example filtration control package was prepared in a mud cup using a multimixer. First, 332.73 grams of fresh water were added to the mud cup. Next, 1 gram of xanthan gum polymer was added to the mud cup and mixed for 10 minutes. Finally, 69.99 grams of barite were added to the mud cup and mixed for 5 minutes.












TABLE 1







Wellbore Servicing
Fluid Loss



Fluid Composition
at 30 Minutes









Example 1
18.8 cm3



Example 2
15.0 cm3



Example 3
12.0 cm3



Comparative Example
27.0 cm3










As can be seen from the fluid loss data detailed in Table 1, the example wellbore servicing fluids had less fluid loss than the comparative example. The example wellbore servicing fluid with the greatest fluid loss, Example 1, still had less than 70% of the fluid loss of the Comparative Example. The example wellbore servicing fluid with the least fluid loss, Example 3, had less than 45% of the fluid loss of the Comparative Example.


It should be understood that any two quantitative values assigned to a property may constitute a range of that property, and all combinations of ranges formed from all stated quantitative values of a given property are contemplated in this disclosure. It should be appreciated that compositional ranges of a chemical constituent in a composition or formulation should be appreciated as containing, in some embodiments, a mixture of isomers of that constituent. It should also be appreciated that the examples supply compositional ranges for various compositions, and that the total amount of isomers of a particular chemical composition can constitute a range.


Having described the subject matter of the present disclosure in detail and by reference to specific embodiments, it is noted that the various details described in this disclosure should not be taken to imply that these details relate to elements that are essential components of the various embodiments described in this disclosure. Rather, the claims appended infra should be taken as the sole representation of the breadth of the present disclosure and the corresponding scope of the various embodiments described in this disclosure. Further, it should be apparent to those skilled in the art that various modifications and variations can be made to the described embodiments without departing from the spirit and scope of the claim subject matter. Therefore, it is intended that the specification cover the modifications and variations of the various described embodiments provided such modification and variations come within the scope of the appended claims and their equivalents.


A first aspect of the disclosure is directed to a filtration control package comprising at least one carboxylic acid having from 8 to 20 carbon atoms; and an ethoxylated alcohol compound having a general formula R—(OCH2CH2)X—OH; where: R is a hydrocarbon group having from 10 to 16 carbon atoms; x is an integer from 6 to 9; and the ethoxylated alcohol compound has a hydrophilic-lipophilic balance value of from 8.0 to 16.0.


A second aspect of the disclosure includes the first aspect, where the filtration control package comprises from 30 wt. % to 70 wt. % of at least one carboxylic acid having from 8 to 20 carbon atoms.


A third aspect of the disclosure includes the first or second aspects, where the filtration comprises from 30 wt. % to 70 wt. % of an ethoxylated alcohol compound.


A fourth aspect of the disclosure includes any of the first through third aspects, where the at least one carboxylic acid has from 14 to 20 carbon atoms.


A fifth aspect of the disclosure includes any of the first through fourth aspects, where the at least one carboxylic acid has from 16 to 18 carbon atoms.


A sixth aspect of the disclosure includes any of the first through fifth aspects, where R is a hydrocarbon group having from 12 to 14 carbon atoms.


A seventh aspect of the disclosure includes any of the first through sixth aspects, where R is a branched isotridecyl hydrocarbon group.


An eighth aspect of the disclosure includes any of the first through seventh aspects, where x is 8.


A ninth aspect of the disclosure includes any of the first through eighth aspects, where where the ethoxylated alcohol compound has a hydrophilic-lipophilic balance of from 10.0 to 14.0.


A tenth aspect of the disclosure includes any of the first through ninth aspects, where the ethoxylated alcohol compound has a hydrophilic-lipophilic balance value of from 13.0 to 13.5.


An eleventh aspect of the disclosure is directed to a filtration control package comprising from 30 wt. % to 70 wt. % of at least one carboxylic acid having from 8 to 20 carbon atoms; and from 30 wt. % to 70 wt. % of polyethylene glycol; where the polyethylene glycol has a mass average molar mass (MW) less than or equal to 1500 daltons.


A twelfth aspect of the disclosure includes the eleventh aspect, where the at least one carboxylic acid has from 12 to 20 carbon atoms.


A thirteenth aspect of the disclosure includes the eleventh and twelfth aspects, where the at least one carboxylic acid has from 16 to 18 carbon atoms.


A fourteenth aspect of the disclosure includes any of the eleventh through thirteenth aspects, where the polyethylene glycol has a mass average molar mass (MW) less than or equal to 800 daltons.


A fifteenth aspect of the disclosure is directed to a wellbore servicing fluid comprising: an aqueous base fluid; one or more alkali metal or alkali earth metal salts; at least one viscosifier; and a filtration control package comprising: at least one carboxylic acid having from 8 to 20 carbon atoms; an ethoxylated alcohol compound having a general formula,


R—(OCH2CH2)x-OH; where: R is a hydrocarbon group having from 10 to 16 carbon atoms; x is an integer from 6 to 9; and the ethoxylated alcohol compound has an hydrophilic-lipophilic balance value of from 8.0 to 16.0; and where the carboxylic acid and ethoxylated alcohol compound are present in the wellbore servicing fluid in an amount no more than 30 pounds per barrel of wellbore servicing fluid each.


A sixteenth aspect of the disclosure includes the fifteenth aspect, where the one or more alkali metal or alkali earth metal salts comprise NaCl, KCl, CaCl2, or combinations thereof.


A seventeenth aspect of the disclosure includes the fifteenth and sixteenth aspects, where the carboxylic acid has from 14 to 20 carbon atoms.


An eighteenth aspect of the disclosure includes any of the fifteenth through seventeenth aspects, where the carboxylic acid has from 16 to 18 carbon atoms.


A nineteenth aspect of the disclosure includes any of the fifteenth through eighteenth aspects, where R is a hydrocarbon group having from 12 to 14 carbon atoms.


A twentieth aspect of the disclosure includes any of the fifteenth through nineteenth aspects, where R is a branched isotridecyl hydrocarbon group.


A twenty-first aspect of the disclosure includes any of the fifteenth through twentieth aspects, where x is 8.


A twenty-second aspect of the disclosure includes any of the fifteenth through twenty-fifteenth aspects, where the at least one viscosifier comprises xanthan gum polymer.


A twenty-third aspect of the disclosure includes any of the fifteenth through twenty-second aspects, where the ethoxylated alcohol compound has a hydrophilic-lipophilic balance value of from 10.0 to 14.0.


A twenty-fourth aspect of the disclosure includes any of the fifteenth through twenty-third aspects, where the ethoxylated alcohol compound has a hydrophilic-lipophilic balance value of from 13.0 to 13.5.


A twenty-fifth aspect of the disclosure includes any of the fifteenth through twenty-fourth aspects, where the aqueous base fluid is fresh water.


A twenty-sixth aspect of the disclosure includes any of the fifteenth through twenty-fifth aspects, where the carboxylic acid and ethoxylated alcohol compound are present in the wellbore servicing fluid in an amount no more than 20 pounds per barrel of wellbore servicing fluid each.


A twenty-seventh aspect of the disclosure is directed to a wellbore servicing fluid comprising: an aqueous base fluid; one or more alkali metal or alkali earth metal salts; at least one viscosifier; and a filtration control package comprising a polyethylene glycol with a mass average molar mass (Mw) less than or equal to 1500 daltons; where the amount of polyethylene glycol does not exceed 30 pounds per barrel of wellbore servicing fluid.


A twenty-eighth aspect of the disclosure includes the twenty-seventh aspect, further comprising a carboxylic acid having from 8 to 20 carbon atoms.


A twenty-ninth aspect of the disclosure includes the twenty-seventh and twenty-eighth aspects, where the carboxylic acid has from 14 to 20 carbon atoms.


A thirtieth aspect of the disclosure includes any of the twenty-seventh through twenty-ninth aspects, where the carboxylic acid has from 16 to 18 carbon atoms.


A thirty-first aspect of the disclosure includes any of the twenty-seventh through thirtieth aspects, where the polyethylene glycol has a mass average molar mass (MW) less than or equal to 800 daltons.


A thirty-second aspect of the disclosure includes any of the twenty-seventh through thirty-twenty-seventh aspects, where the polyethylene glycol is present in the wellbore servicing fluid in an amount no more than 20 pounds per barrel of wellbore servicing fluid.


A thirty-third aspect of the disclosure includes any of the twenty-eighth through thirty-second aspects, where the carboxylic acid is present in the wellbore servicing fluid in an amount no more than 30 pounds per barrel of wellbore servicing fluid.


A thirty-fourth aspect of the disclosure includes any of the twenty-eighth through thirty-third aspects, where the carboxylic acid is present in the wellbore servicing fluid in an amount no more than 20 pounds per barrel of wellbore servicing fluid.


A thirty-fifth aspect of the disclosure includes any of the twenty-seventh through thirty-fourth aspects, where the at least one viscosifier comprises xanthan gum polymer.


A thirty-sixth aspect of the disclosure includes any of the twenty-seventh through thirty-fifth aspects, where the one or more alkali metal or alkali earth metal salts comprise NaCl, KCl, CaCl2, or combinations thereof.


A thirty-seventh aspect of the disclosure includes any of the fifteenth through thirty-sixth aspects, and is directed to adding a wellbore servicing fluid of the present disclosure and operating a drill string in the presence of the wellbore servicing fluid, maintaining the structure of the wellbore.

Claims
  • 1. A wellbore servicing fluid comprising: an aqueous base fluid;xanthan gum polymer; anda filtration control package comprising: from 30 wt. % to 70 wt. % of at least one carboxylic acid having from 16 to 18 carbon atoms;from 30 wt. % to 70 wt. % of an ethoxylated alcohol compound having a general formula,R—(OCH2CH2)x—OH; where: R is a hydrocarbon group having from 12 to 14 carbon atoms;x is an integer from 6 to 9; andthe ethoxylated alcohol compound has a hydrophilic-lipophilic balance value of from 12.5 to 13.5; andwhere the carboxylic acid and ethoxylated alcohol compound are present in the wellbore servicing fluid in an amount no more than 30 pounds per barrel of wellbore servicing fluid each.
  • 2. The wellbore servicing fluid of claim 1, where R is a branched isotridecyl hydrocarbon group.
  • 3. The wellbore servicing fluid of claim 1, where x is 8.
  • 4. The wellbore servicing fluid of claim 1, where the aqueous base fluid is fresh water.
  • 5. The wellbore servicing fluid of claim 1, where the carboxylic acid and ethoxylated alcohol compound are present in the wellbore servicing fluid in an amount no more than 20 pounds per barrel of wellbore servicing fluid each.
  • 6. The wellbore servicing fluid of claim 1, further comprising one or more alkali metal or alkali earth metal salts.
CROSS REFERENCES TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 62/454,189 filed Feb. 3, 2017, and to U.S. Provisional Patent Application Ser. No. 62/454,192 filed Feb. 3, 2017, both of which are incorporated by reference in their entirety.

US Referenced Citations (127)
Number Name Date Kind
2589949 Meadors Mar 1952 A
2782163 Doyne et al. Feb 1957 A
3000826 Gilliland Sep 1961 A
3044959 Martin et al. Jul 1962 A
3048538 Rosenberg et al. Aug 1962 A
3319714 Knox May 1967 A
3353603 Knight et al. Nov 1967 A
3720610 Erasmus Mar 1973 A
3816351 Lancz Jun 1974 A
3849316 Motley et al. Nov 1974 A
3953337 Walker et al. Apr 1976 A
4140650 Wilde Feb 1979 A
4141843 Watson Feb 1979 A
4172800 Walker Oct 1979 A
4217231 King Aug 1980 A
4280943 Bivens et al. Jul 1981 A
4519923 Hori et al. May 1985 A
4561985 Glass, Jr. Dec 1985 A
4588032 Weigand et al. May 1986 A
4626362 Dickert, Jr. et al. Dec 1986 A
4658036 Schilling Apr 1987 A
4687516 Burkhalter et al. Aug 1987 A
4704214 Russell et al. Nov 1987 A
4719021 Branch, III Jan 1988 A
4842065 McClure Jun 1989 A
5007489 Enright et al. Apr 1991 A
5016711 Cowan May 1991 A
5105885 Bray et al. Apr 1992 A
5109042 Stephens Apr 1992 A
5275654 Cowan Jan 1994 A
5298070 Cowan Mar 1994 A
5314022 Cowan et al. May 1994 A
5330662 Jahnke et al. Jul 1994 A
5348993 Daeumer et al. Sep 1994 A
5399548 Patel Mar 1995 A
5474701 Jaquess et al. Dec 1995 A
RE35163 Christensen et al. Feb 1996 E
5586608 Clark et al. Dec 1996 A
5593953 Malchow, Jr. Jan 1997 A
5593954 Malchow Jan 1997 A
5602082 Hale et al. Feb 1997 A
5618780 Argillier et al. Apr 1997 A
5728210 Moran et al. Mar 1998 A
5744432 Bamhorst et al. Apr 1998 A
5850880 Moran et al. Dec 1998 A
5996693 Heathman Dec 1999 A
6063737 Haberman et al. May 2000 A
H1932 Heathman et al. Jan 2001 H
6258756 Hayatdavoudi Jul 2001 B1
6632779 Vollmer et al. Oct 2003 B1
6803346 Bailey et al. Oct 2004 B1
6972274 Slikta et al. Dec 2005 B1
7081438 Horton Jul 2006 B2
7262152 Monfreux-Gaillard et al. Aug 2007 B2
7318477 Hou Jan 2008 B2
7435706 Mueller et al. Oct 2008 B2
7799742 Dino Sep 2010 B2
7893010 Ali et al. Feb 2011 B2
8252728 Karagianni et al. Aug 2012 B2
8403051 Huang et al. Mar 2013 B2
8563479 Amanullah et al. Oct 2013 B2
8703658 Smith Apr 2014 B2
8741989 Martin et al. Jun 2014 B2
8932997 Merli et al. Jan 2015 B2
8936111 Maghrabi et al. Jan 2015 B2
9006151 Amanullah et al. Apr 2015 B2
9034800 Harris et al. May 2015 B2
9127192 Maghrabi et al. Sep 2015 B2
9175205 Amanullah et al. Nov 2015 B2
20010027880 Brookey Oct 2001 A1
20030017953 Horton et al. Jan 2003 A1
20030127903 Quintero Jul 2003 A1
20040108113 Luke et al. Jun 2004 A1
20040144537 Reddy et al. Jul 2004 A1
20050049147 Patel et al. Mar 2005 A1
20060111245 Carbajal et al. May 2006 A1
20060174805 Chatterji et al. Aug 2006 A1
20060183842 Johnson Aug 2006 A1
20060254770 Hou Nov 2006 A1
20070015678 Rodrigues et al. Jan 2007 A1
20070093393 Navarrete et al. Apr 2007 A1
20080006404 Reddy et al. Jan 2008 A1
20080194432 Heidlas Apr 2008 A1
20080171671 Mueller et al. Jul 2008 A1
20080217064 Stoian et al. Sep 2008 A1
20080308011 Brothers et al. Dec 2008 A1
20090042746 Bailey Feb 2009 A1
20090200033 Kakadjian et al. Aug 2009 A1
20100016180 Scoggins et al. Jan 2010 A1
20100152068 Hartshorne et al. Jun 2010 A1
20100263863 Quintero et al. Oct 2010 A1
20100319915 Bustos et al. Dec 2010 A1
20100326660 Ballard et al. Dec 2010 A1
20110306524 Smith Dec 2011 A1
20120018226 Nzeadibe et al. Jan 2012 A1
20120241155 Ali et al. Sep 2012 A1
20120329683 Droger et al. Dec 2012 A1
20130079256 Yang et al. Mar 2013 A1
20130092376 Al-Subhi et al. Apr 2013 A1
20130153232 Bobier et al. Jun 2013 A1
20130244913 Maberry et al. Sep 2013 A1
20130303410 Wagle et al. Nov 2013 A1
20130303411 Wagle et al. Nov 2013 A1
20140024560 Gonzalez Poche et al. Jan 2014 A1
20140024561 Reddy Jan 2014 A1
20140073540 Berry et al. Mar 2014 A1
20140102809 King et al. Apr 2014 A1
20140121135 Gamage et al. May 2014 A1
20140213489 Smith Jul 2014 A1
20140318785 Reddy et al. Oct 2014 A1
20140332212 Ayers et al. Nov 2014 A1
20150024975 Wagle et al. Jan 2015 A1
20150034389 Perez Feb 2015 A1
20150080273 Hatchman Mar 2015 A1
20150087563 Brege Mar 2015 A1
20150159073 Assmann et al. Jun 2015 A1
20150240142 Kefi et al. Aug 2015 A1
20150299552 Zamora et al. Oct 2015 A1
20160009981 Teklu et al. Jan 2016 A1
20160024370 Ba geri et al. Jan 2016 A1
20160069159 Teklu et al. Mar 2016 A1
20160177169 Zhang Jun 2016 A1
20160186032 Yu et al. Jun 2016 A1
20160237340 Pandya et al. Aug 2016 A1
20160289529 Nguyen Oct 2016 A1
20170009125 Shaffer et al. Jan 2017 A1
20180223162 Al-Yami et al. Aug 2018 A1
Foreign Referenced Citations (78)
Number Date Country
5117264 May 1967 AU
2495811 Mar 2004 CA
2594108 Sep 2008 CA
2810345 Mar 2012 CA
2745017 Dec 2012 CA
102120158 Jul 2011 CN
101240218 Dec 2011 CN
102041138 Dec 2011 CN
102321461 Jan 2012 CN
102382697 Mar 2012 CN
102373042 Aug 2013 CN
102464974 Aug 2013 CN
103320203 Sep 2013 CN
102500141 Jan 2014 CN
103571599 Feb 2014 CN
102899152 Apr 2014 CN
102899154 Apr 2014 CN
102977940 Nov 2014 CN
104130839 Nov 2014 CN
104559954 Apr 2015 CN
103351925 Jul 2015 CN
102373053 Aug 2015 CN
103571578 Aug 2015 CN
104830513 Aug 2015 CN
104877749 Sep 2015 CN
104910881 Sep 2015 CN
105038737 Nov 2015 CN
103757640 Dec 2015 CN
105112036 Dec 2015 CN
103773041 Jan 2016 CN
105441051 Mar 2016 CN
104449893 May 2016 CN
103555304 Jun 2016 CN
105623814 Jun 2016 CN
105778992 Jul 2016 CN
105861135 Aug 2016 CN
0108546 May 1984 EP
0243067 Oct 1987 EP
0265563 May 1988 EP
0296655 Dec 1988 EP
315243 May 1989 EP
331158 Sep 1989 EP
0 395 815 Nov 1990 EP
1213270 Feb 2005 EP
2708586 Mar 2014 EP
2205748 Dec 1988 GB
2283036 Apr 1995 GB
2 343 447 May 2000 GB
07109472 Apr 1995 JP
8911516 Nov 1989 WO
9402565 Feb 1994 WO
9530818 Nov 1995 WO
9640836 Dec 1996 WO
9730142 Aug 1997 WO
9836151 Aug 1998 WO
9907816 Feb 1999 WO
0123703 Apr 2001 WO
03093641 Nov 2003 WO
2004076561 Sep 2004 WO
2006012622 Feb 2006 WO
2006120151 Nov 2006 WO
2007003885 Jan 2007 WO
2007118328 Oct 2007 WO
2008081158 Jul 2008 WO
2009060405 May 2009 WO
2009138383 Nov 2009 WO
2010030275 Mar 2010 WO
2012158645 Nov 2012 WO
2013055843 Apr 2013 WO
2013154435 Oct 2013 WO
2014107391 Jul 2014 WO
2014164381 Oct 2014 WO
2014193507 Dec 2014 WO
2015000077 Jan 2015 WO
2015006101 Jan 2015 WO
2015038117 Mar 2015 WO
2015041649 Mar 2015 WO
2016189062 Dec 2016 WO
Non-Patent Literature Citations (51)
Entry
International Search Report pertaining to International Application No. PCT/US2018/015191, filed Jan. 25, 2018, 6 pages.
Written Opinion pertaining to International Application No. PCT/US2018/015191, filed Jan. 25, 2018, 8 pages.
International Search Report and Written Opinion dated Mar. 16, 2018 pertaining to International Application No. PCT/US2018/015140.
Non-Final Office Action dated Jan. 16, 2018 pertaining to U.S. Appl. No. 15/485,479, filed Apr. 12, 2017.
Non-Final Office Action dated May 4, 2018 pertaining to U.S. Appl. No. 15/628,892, filed Jun. 21, 2017.
International Search Report and Written Opinion dated May 8, 2018 pertaining to International Application No. PCT/US2018/015631.
International Search Report and Written Opinion dated May 14, 2018 pertaining to International Application No. PCT/US2018/015640 filed Jan. 29, 2018, 16 pages.
International Search Report and Written Opinion dated May 9, 2018 pertaining to International Application No. PCT/US2018/015638 filed Jan. 29, 2018, 15 pages.
Non-Final Office Action dated May 25, 2018 pertaining to U.S. Appl. No. 15/485,724, 6 pages.
International Search Report and Written Opinion dated Apr. 3, 2018, pertaining to International Application PCT/US2018/016447, filed Feb. 1, 2018, 14 pages.
International Search Report and Written Opinion dated Apr. 20, 2018, pertaining to International Application PCT/US2018/016365, filed Feb. 1, 2018, 16 pages.
International Search Report and Written Opinion dated Apr. 20, 2018, pertaining to International Application PCT/US2018/016414, filed Feb. 1, 2018, 14 pages.
International Search Report and Written Opinion dated Apr. 16, 2018, pertaining to International Application PCT/US2018/016415, filed Feb. 1, 2018, 13 pages.
Non-Final Office Action dated Apr. 30, 2018 pertaining to U.S. Appl. No. 15/586,543, filed May 4, 2017.
Non-Final Office Action dated May 1, 2018 pertaining to U.S. Appl. No. 15/496,794, filed Apr. 25, 2017.
Shell Chemicals, HLB numbers, solvent miscibility and emulsification characteristics of NEODOL ethoxylates, retrieved Apr. 26, 2018 from https://www.shel.com/business-customers/chemicals/our-products/higher-olefins-and-derivatives/neodol-alchols-and-ethoxylates/_jcr_contents/par/tabbedcontent/tab_1780231844/textimage.
International Search Report pertaining to International Application No. PCT/US2018/014986, filed Jan. 24, 2018, 8 pages.
Written Opinion pertaining to International Application No. PCT/US2018/014986, filed Jan. 24, 2018, 12 pages.
International Search Report and Written Opinion dated Apr. 3, 2018 for PCT/US2018/016182 Filed Jan. 31, 2018. pp. 1-13.
Akkutlu et al., “Molecular Dynamics Simulation of Adsorpotion from Microemulsions and Surfactant Micellar Solutions at Solid-Liquid, Liquid-Liquid and Gas-Liquid Interfaces”, Tech Connector World Innovation Conference & Expo, Jun. 15-18, 2014, Washington D.C.
Fraser, Greig, “Method for Determining the Bioconcentration Factor of Linear Alcohol Ethoxylates”, SPE Offshore Europe Oil and Gas Conference and Exhibition, Aberdeen, GB, Sep. 8-11, 2009, Society of Petroleum Engineers.
Inoue et al., “Interactions Between Engine Oil Additive”, J. Japan Petrol. Inst., 1981, 24 (2), 101-107.
Joshi et al., “Physiochemical Behaviour of Ternary System Based on Coconut Oil/C12/E8/n-pentanol/Water”, J. Surface Sci. Technol., 2013, 29 (1-2), 1-13.
Lim, Jongchoo, “Solubilization of Mixture of Hydrocarbon Oils by C12e 8 Nonionic Surfactant Solution”, Journal of the Korean Industrial and Engineering Chemistry, 2008, 19, 59-65.
Luan et al., “Foaming Property for Anionic-Nonionic Gemini Surfactant of Polyalkoxylated Ether Sulfonate”, Oilfield Chemistry, Tsinghua Tongfang Knowledge Network Technology Co., Ltd., 2006.
Min et al., “Research on Coking Dust Wettability of Strong Cohesiveness and Easy Mudding”, Safety in Coal Mines, Tsinghua Tongfang Knowledge Network Technology Co., Ltd., 2006.
Mitchell et al., “Measurement of HTHP Fluid-Loss Equipment and Test Fluids with Thermocouples”, American Association of Drilling Engineers, AADE Drilling Fluids Conference, Houston TX, Apr. 6-7, 2004.
Nelson, Erik B., “Well Cementing Fundamentals”, Oilfield Review, Summer 2012, vol. 24, No. 2, 59-60, Schlumberger.
Paswan et al., “Development of Jatropha oil-in-water emulsion drilling mud system”, Journal of Petroleum Science and Engineering, 2016, vol. 144, p. 10-18.
Sun et al., “Synthesis and Salt Tolerance Determination of Aliphatic Alcohol Polyoxyethylene Ethers Sulfonate Series”, Journal of Chemical Industry & Engineering, Tsinghua Tongfang Knowledge Network Technology Co., Ltd., 2006.
Office Action pertaining to U.S. Appl. No. 16/002,672 dated Sep. 14, 2018.
Office Action pertaining to. U.S. Appl. No. 16/002,669 dated Sep. 21, 2018.
Final Rejection dated Oct. 9, 2018 pertaining to U.S. Appl. No. 15/496,794.
Sabicol TA Series Synthetic Alcohol Ethoxylates, SGS, 2013, pp. 1-3, retrieved Sep. 28, 2018 from http://www.latro.com.tr/upload/1499842623-t2.pdf (Year:2013).
International Search Report and Written Opinion dated May 25, 2018, pertaining to International Application No. PCT/US2018/016167, filed Jan. 31, 2018, 20 pages.
nternational Search Report and Written Opinion dated May 29, 2018 pertaining to International Application No. PCT/US2018/015207 filed Jan. 25, 2018, 15 pages.
Office Action dated Dec. 12, 2018 pertaining to U.S. Appl. No. 15/581,136, filed Apr. 28, 2017.
Office Action dated Dec. 19, 2018 pertaining to U.S. Appl. No. 15/489,930, filed Apr. 18, 2017.
Notice of Allowance and Fee(s) Due dated Jan. 8, 2019 pertaining to U.S. Appl. No. 15/485,479, filed Apr. 12, 2017.
Office Action dated Jan. 17, 2019 pertaining to U.S. Appl. No. 15/485,724, filed Apr. 12, 2017.
Office Action dated Feb. 11, 2019 pertaining to U.S. Appl. No. 15/496,794, filed Apr. 25, 2017, 16 pgs.
Office Action dated Feb. 11, 2019 pertaining to U.S. Appl. No. 15/920,879, filed Mar. 14, 2018, 68 pgs.
Office Action dated Feb. 7, 2019 pertaining to U.S. Appl. No. 16/002,669, filed Jun. 7, 2018, 54 pgs.
Office Action dated Feb. 21, 2019 pertaining to U.S. Appl. No. 16/037,493, filed Jul. 17, 2018, 52 pgs.
Office Action dated Jan. 24, 2019 pertaining to U.S. Appl. No. 15/489,854, filed Apr. 18, 2017, 46 pgs.
Office Action dated Feb. 5, 2019 pertaining to U.S. Appl. No. 15/612,397, filed Jun. 2, 2017, 67 pgs.
Office Action dated Feb. 27, 2019 pertaining to U.S. Appl. No. 15/922,077, filed Mar. 15, 2018, 69 pgs.
Office Action dated Mar. 13, 2019 pertaining to U.S. Appl. No. 15/922,065, filed Mar. 15, 2018, 77 pgs.
Office Action dated Mar. 27, 2019 pertaining to U.S. Appl. No. 15/581,136, filed Apr. 28, 2017, 20 pgs.
Office Action dated Apr. 4, 2019 pertaining to U.S. Appl. No. 15/586,543, filed May 4, 2017, 23 pgs.
Office Action dated Apr. 8, 2019 pertaining to U.S. Appl. No. 15/660,118, filed Jul. 26, 2017, 76 pgs.
Related Publications (1)
Number Date Country
20180223156 A1 Aug 2018 US
Provisional Applications (2)
Number Date Country
62454189 Feb 2017 US
62454192 Feb 2017 US