1. Field of the Invention
This disclosure relates generally to enhanced methods of synthetic chemical and fuel production, more particularly, methods of producing joint synthetic fuels and various chemical products. Using multiple production technologies together can optimize production and allow for waste recovery for additional product manufacturing. Various carbon based feed stock, and blends can be broken down to base process compounds through pyrolysis. These compounds are then processed through various known techniques in co-processing methods to yield a variety of synthetic hydrocarbon compounds. One example of how the waste material is used for additional product is the use of carbon dioxide for methanol synthesis which also creates heat and steam that can be used in other process applications.
2. Description of Related Art
Modern civilization is heavily dependent on hydrocarbon fuel and synthetic derived carbon products. These materials include hydrocarbon based fuels used in combustion engines and chemical oils for the production of various products. Due to the recent increase of demand for fuel from emerging countries such as India and China, and the limited production of crude oil, there has been an increase in the price of liquid fuel. In order to increase production of liquid fuel, low cost alternative means of production are needed to meet the ever increasing demand. Many countries have vast amount of available carbonaceous feedstock that can be used for the production of fuels. Biomass, municipal solid waste and coal are carbonaceous and may be used in various processes.
Coal is the most abundant carbonaceous feedstock found in the United States. By some estimates, the amount of coal in the U.S. is projected to last between 200-250 years at current rates of consumption. The combustion of coal produces over half of the electricity generated in the U.S. When used for electricity generation, coal is usually pulverized and burned in a furnace with a boiler. The furnace heat converts the boiler water to steam, which is then used to spin turbines that turn generators to create electricity.
Nevertheless, coal and other carbonaceous feed stock materials can also be converted to gaseous fuels, coal tars, and high carbon feed stocks such as coke or char by a process commonly referred to as low-temperature carbonization (LTC) or also referred to as pyrolysis process of carbonaceous materials. LTC or pyrolysis occurs when heat is applied to a carbonaceous feed stock or a blend of various types of feed stock in the absence of air (to prevent combustion) at temperature (about 450° C.-700° C.) lower than conventional combustion. Pyrolysis leads to the production of a gaseous fuel, referred to as synthetic gas or syngas or light gas, coal tar, mineral oil, water and coke or char. Syngas or light gas is a mixture mainly consisting of methane, carbon monoxide (CO) and hydrogen (H2) that may be used as a fuel. The resulting syngas can be used for combustion, distilled and processed for various liquid hydrocarbon products, or synthesized into types of fuel. The resulting coal tar is rich in lighter hydrocarbons (organic compounds or liquid organic compounds) than normal coal tar, and therefore it is suitable for processing into fuels. Coal tars are complex and variable mixtures of phenols, polycyclic aromatic hydrocarbons (PAHs), and heterocyclic compounds. The condensed coal tar and oil are then further processed by hydrogenation to remove sulfur and nitrogen species, after which they are processed into fuels. The resulting coke or char can be used as a product, combined with other substances for fertilizer (referred to as terra preta) or a reducing agent or used for any various process methods such as combustion to generate heat or gasification to generate syngas.
The typical use of LTC or pyrolysis is to create one type of feed stock to process use. The other resulting by-product is considered waste and sold to be used by others in other processes. For example, when LTC or pyrolysis is used for the creation of char/coke then the coal tar (hydrocarbon liquids or organic compounds) or syngas are sold to others as a waste product. When LTC or pyrolysis is used for crude oil, syngas and hydrocarbon liquids (or organic compounds) then the resulting char/coke is sold to others as a waste. Full utilization of all products resulted from LTC or pyrolysis can create a synergistic processing method that will increase total product yields.
When coal or other carbonaceous feedstock is burned for electricity production, it releases into the atmosphere green house gases (GHGs) such as carbon dioxide (CO2) and other harmful pollutants such as oxides of sulfur (Sox) and oxides of nitrogen (NOx). As concerns of global warming intensify, there is increased pressure to reduce the amount of GHGs released into the atmosphere. One suggested method to reduce the GHGs released into the atmosphere is by sequestering the gaseous emissions in underground storage facilities. However, underground storage of CO2 and other emissions would increase costs and raise concerns about possible leakage from underground rock formations or possible contamination of water supplies.
However, LTC or pyrolysis process barely produces carbon dioxide (CO2); thus, LTC or pyrolysis is a cleaner chemical product/fuel production technology than the conventional burning of carbonaceous feedstock. Full utilization of all products resulted from LTC or pyrolysis can significantly reduce the GHGs released into the atmosphere.
The present invention is directed to improved methods and systems through co-generation for producing fuel and chemical products by recovering byproducts including emissions to increase total production yield and reduce the GHGs released into the atmosphere.
Where possible, turbine and generators may be utilized to the creation of electric power for utilization with the processes. The use of this equipment is to enhance the electrical needs of the plant and process for increase in efficient utilization of the process.
The primary object of the present invention is to provide integrated methods to achieve full utilization of all products resulted from LTC or pyrolysis so as to increase the total product yields. A further object of the present invention is to reduce the green house gases (GHGs) released into the atmosphere. These objects and others are achieved in accordance with the present invention.
The present invention is directed to improved methods and systems through co-generation for the producing fuel and chemical products by recovering all by-products including emissions to increase total fuel/chemical product yields. The present invention is also directed to integrated methods and systems that can significantly reduce the green house gases (GHGs) released into the atmosphere.
In one aspect, the present disclosure is directed to a process of integrating chemical product/fuel production technologies. The process includes integrating three or more chemical product/fuel production technologies such that one or more byproducts of one or more production technologies are applied to other production technologies for additional fuel/chemical product yield and to reduce waste and the GHGs released into the atmosphere.
In another aspect, the present disclosure is directed to a process for integrating chemical product/fuel production facilities. The process includes integrating three or more chemical product/fuel production facilities such that one or more byproducts of one or more production facilities are applied to other production facilities for additional fuel/chemical product yield and to reduce waste and the GHGs released into the atmosphere.
In yet another aspect, the present disclosure is directed to a method of chemical product/fuel production. The method includes producing one or more products and byproducts in a first chemical product/fuel production technology, which may be pyrolysis, and applying said byproducts to other chemical product/fuel production technologies. The byproducts generated by a second and/or a third technology can be utilized by a fourth and/or fifth technology. Consequently, the integrated method increases the overall production of fuel/chemical product yield and reduces waste and the GHGs released into the atmosphere.
In a further aspect, the present disclosure is directed to a facility operating method of chemical product/fuel production. The method includes operating an integrated chemical product/fuel production facility. The integrated chemical product/fuel production facility includes at least three individual production facilities fluidly coupled with each other. Consequently, the method for operating the integrated chemical product/fuel production facility increases the overall production of fuel/chemical product yield and reduces waste and the GHGs released into the atmosphere.
In one embodiment, the present invention is directed to an integrated process of chemical product/fuel production technology that combines LTC or pyrolysis with distillation directly and combustion indirectly. The product, coke/char, resulted from pyrolysis is sold as terra preta for fertilizers. The resulting organic compounds (liquid hydrocarbon) are subjected to distillation, and separated to three products, light gases, medium liquids, and heavy liquids. The medium liquids are stored as fuels. The light gases can be recovered and used as a fuel source in combustion to provide heat for pyrolysis. The heavy liquids may be recycled and charged back to the pyrolysis process. With this integrated process, most of the byproducts resulted from pyrolysis, distillation and combustion are recovered and either recharged back to pyrolysis or co-processed by other technologies. The total quantity of fuel and chemical products is increased and the GHGs released into the atmosphere are reduced. Said embodiment also includes the process to integrate facilities, the method of producing fuel and chemical products, and the method to operate the integrated facility that are associated with the integrated process.
In another embodiment, the present invention is directed to an integrated process of chemical product/fuel production technology wherein the LTC or pyrolysis process is directly integrated with a feedstock preparation, a combustion process, a distillation process, and a gasification process, and indirectly integrated with an air separation process, a catalytic synthesis process, a hydrotreatment/hydrogenation process, and a methanol synthesis process. By means of this integrated process, most of the byproducts resulted from pyrolysis and other technologies are recovered and either charge back or co-processed by other technologies. The total quantity of fuel and chemical products is increased and the GHGs released into the atmosphere are reduced. Said embodiment also includes the process to integrate facilities, the method of producing fuel and chemical products, and the method to operate the integrated facility that are associated with the integrated process.
In a further embodiment, the present invention is directed to an integrated process of chemical product/fuel production technology wherein the LTC or pyrolysis process directly integrated with a feedstock preparation process, a combustion process, a distillation process, and a gasification process, and indirectly integrated with an air separation process, a catalytic synthesis process, a hydrotreatment/hydrogenation process, a methanol synthesis process, and water treatment process. By way of this integrated process, most of the byproducts resulted from pyrolysis and other technologies are recovered and either charge back or co-processed by other technologies. The total quantity of fuel and chemical products is increased and the GHGs released into the atmosphere are reduced. Said embodiment also includes the process to integrate facilities, the method of producing fuel and chemical products, and the method to operate the integrated facility that is associated with the integrated process.
In yet another embodiment, the present invention is directed to an integrated process of chemical product/fuel production technology wherein the LTC or pyrolysis process directly integrated with a feedstock preparation process, a combustion process, and a cavitation process, and indirectly integrated with an air separation process, a distillation, a methanol synthesis process, and water treatment process. By means of this integrated process, most of the byproducts resulted from pyrolysis and other technologies are recovered and either charge back or co-processed by other technologies. The total quantity of fuel and chemical products is increased and the GHGs released into the atmosphere are reduced. Said embodiment also includes the process to integrate facilities, the method of producing fuel and chemical products, and the method to operate the integrated facility that is associated with the integrated process.
The more important features of the invention have thus been outlined in order that the more detailed description that follows may be better understood and in order that the present contribution to the art may better be appreciated. Additional features of the invention will be described hereinafter and will form the subject matter of the claims that follow.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
The foregoing has outlined, rather broadly, the preferred feature of the present invention so that those skilled in the art may better understand the detailed description of the invention that follows. Additional features of the invention will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art should appreciate that they can readily use the disclosed conception and specific embodiment as a basis for designing or modifying other structures for carrying out the same purposes of the present invention and that such other structures do not depart from the spirit and scope of the invention in its broadest form.
Other aspects, features, and advantages of the present invention will become more fully apparent from the following detailed description, the appended claim, and the accompanying drawings in which similar elements are given similar reference numerals.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention.
Reference will now be made to exemplary known chemical product/fuel production technologies and exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Input 001 may be directed into CPT 100 to produce syngas (002), liquid organic compounds (003) and solid materials (004) through pyrolysis. In the process of producing materials from input 001, CPT 100 may also release by-products 202, 302, and 402. CPT 200, 300, and 400 may require additional input to perform their required process as noted with input 201, 301 and 401. For example, if CPT 200 were combustion, then the input of 201 may be oxygen to combust the output of CPT 100 of syngas 002. The resulting output of 202 would then contain the resulting chemicals and waste of CPT 200. The similar progression is duplicated in CPT 300 and 400 where other processes may be used. Any unused waste in output 202, 302 and 402 that is not utilized in their respective process 200, 300 or 400 may be utilized in process 100, 200, 300, and 400. For an example, CPT 300 may be gasification in which hydrogen is a portion of output 302. The hydrogen that is not utilized in catalytic synthesis may be directed to CPT 400 for hydro-treatment and hydrogenation of organic compounds of pyrolysis (004) from CPT 100.
CPT 600 (combustion) yields off gas which is used for CPT 1600 (air separation) as the resulting heat and steam are used for CPT 800 (gasification). CPT 1600 (air separation) utilizes the off gas and air to produce carbon dioxide for CPT 1300 (methanol synthesis) and oxygen for CPT 600 (combustion) and CPT 800 (gasification). Other various gases may be stored as a product 1811 or used in the process 1810. These variations will vary on the initial feedstock and the baseline chemical they yield. CPT 1300 (methanol synthesis) uses hydrogen from CPT 800 (gasification) and carbon dioxide from CPT 1600 (air separation) and CPT 800 (gasification) to yield light fuel and steam that can be utilized in CPT 800 (gasification). CPT 600 (combustion), 1600 (air separation) and 1300 (methanol synthesis) relate to
CPT 800 (gasification and gas separation) yields carbon dioxide for CPT 1300 (methanol synthesis), hydrogen 806 for CPT 1300 (methanol synthesis) and CPT 1200 (hydrogenation) and syngas 812 for CPT 1100 (catalytic synthesis) through gasification and gas separation. The resulting heat and steam 1807 are recovered for other process use such as CPT 1200 (hydro treatment/hydrogenation). CPT 1100 (catalytic synthesis) uses catalytic synthesis of syngas 812 to yield high pressure gasses for CPT 800 (gasification and gas separation) and various liquids. CPT 800 (gasification and gas separation) and 1100 (catalytic synthesis) relate to
CPT 700 (distillation) yields low pressure gas for CPT 600 (combustion) 1803, and medium and heavy liquids. Medium liquids can be processed by CPT 1200 (hydro treatment/hydrogenation), which requires hydrogen 1806 and heat/steam 1805, to yield various fuels (light fuels 1815, medium fuels 1816, and heavy fuels 1817) while heavy liquids 1808 may be processed for fuel or recycled to the raw feedstock for processing. The composition of the raw feedstock may yield various heavy liquids and the resulting chemical in 1808 will have to be determined on a plant design basis. CPT 700 (distillation) and 1200 (hydro treatment/hydrogenation) relate to
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed methods of chemical production without departing from the scope of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.
While there have been shown and described and pointed out the fundamental novel features of the invention as applied to the preferred embodiments, it will be understood that the foregoing is considered as illustrative only of the principles of the invention and not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are entitled.