Enhanced vacuum decay diagnostic and integration with purge function

Information

  • Patent Grant
  • 6334355
  • Patent Number
    6,334,355
  • Date Filed
    Wednesday, January 19, 2000
    25 years ago
  • Date Issued
    Tuesday, January 1, 2002
    23 years ago
Abstract
The present invention relates a method of detecting leaks and blockages in a fuel system. The leaks are detected using a RAMPOFF mode and a TANK mode. The RAMPOFF mode modifies the evaporative diagnostic purge logic to increase the ramp down rates of the evaporative purge duty cycle to aggressively shut off the purge solenoid valve for tests used to detect leaks as small as 0.02 inches in diameter. The TANK mode modifies the evaporative diagnostic purge logic to support aggressive purging requirements for tests used to detect larger leaks of greater than 0.04 inches in diameter. The MASS FLOW mode modifies the evaporative diagnostic purge logic to hold a constant purge mass flow rate necessary to detect blockages across a vent solenoid valve. The RAMPOFF mode, TANK mode, and MASS FLOW modes support evaporative diagnostics that are run continuously within a fuel system when acceptable engine operating conditions are present.
Description




TECHNICAL FIELD




The present invention relates to fuel systems in automotive vehicles. More specifically, this invention relates to a diagnostics system for detecting leaks in a fuel system for an automobile engine.




BACKGROUND




On-board diagnostics for detection of fuel system leaks have been required in the United States since Model Year 1996 by both the Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Leaks equivalent to a 0.040 inch (1 mm) diameter hole or greater anywhere in the fuel system are currently required to be detected by the EPA, while CARB lowered the detection level requirements to 0.020-inch diameter holes for the Model Year 2000.




Two methods of leak detection have generally been used, namely, vacuum decay and pressure decay. Vacuum decay methods typically have a cost advantage over pressure based systems; however, vacuum decay methods have been thought to be deficient with respect to their ability to reliably detect 0.020 inch leaks.




One deficiency in previous vacuum-based evaporative leak diagnostic systems is that high purge rates required to evacuate the fuel tank at idle cannot be achieved. This is due to either insufficient fuel injector or integrator margins to allow the necessary purge rates.




Another deficiency in the prior systems is that the lower purge rates results in either longer idle times required to evacuate the fuel tank or in not being able to draw the required tank volume for certain types of fuel and leak combinations.




A third deficiency in prior systems diagnostics is that idle stability problems occurred when purge solenoid valves are closed for purge duty cycles which are greater than 10% to 40% at idle. The purge duty cycle is a software calculation that determines how long the purge solenoid valve is opened during one pass through the software.




SUMMARY OF THE INVENTION




It is therefore an object of the present invention to integrate an enhanced purge function algorithm into an enhanced vacuum decay diagnostic that compensates for these deficiencies by adding unique purge duty cycle rates and limits to allow for the higher amount of purge necessary to draw the required fuel/leak combinations and to allow for the higher purge duty cycle transient rates required to shut off purge when the tank vacuum target is reached to minimize vacuum overshoots.




To accomplish this, three purge modes (TANK, MASS FLOW, and RAMP OFF) are used to support the evaporative diagnostic. TANK mode modifies the purge logic to support the aggressive purging requirements of a Preset Large Leak Test, a Warm Large Leak Test, and an Idle Large Leak Test. MASS FLOW mode modifies the purge logic to hold a constant purge flow mass rate that is necessary during the Vent Blockage Test. RAMP OFF mode increases the ramp down rate of the purge duty cycle to aggressively shut off the purge value at the start of the Small and Very Small System Leak Tests and clamps purge off during the Purge Valve Leak Test.




In one aspect of the present invention, the evaporative diagnostic determines whether small or large leaks are present in the fuel system and whether the vent solenoid valve is blocked or partially blocked by performing tests using the three purge modes (RAMP OFF, TANK, and MASS FLOW) when certain engine operating conditions are present.




In a further aspect of the invention, the RAMP OFF mode is used in conjunction with the Small and Very Small Leak Tests to determine whether leaks as small as 0.02 inches in diameter are present in the fuel system. The test comprises the steps of determining whether a set of engine operating conditions is present; drawing a predetermined vacuum in the fuel system; sealing the fuel system; allowing the vacuum to decay for a predetermined amount of time; and indicating when said the pressure decay exceeds the predetermined vacuum decay threshold.




In a further aspect of the invention, the TANK mode is used in conjunction with the Warm, Preset and Idle Large Leak Tests to determine whether large leaks of greater than 0.04 inches in diameter are present in the fuel system. The test comprises the steps of determining whether a set of engine operating conditions is present; closing a vent solenoid valve; drawing a vacuum across the fuel system at a predetermined rate for a predetermined time; determining whether a vacuum pressure rise exceeds a predetermined vacuum rise threshold; or indicating when the vacuum pressure rise is less than the predetermined vacuum rise threshold within a predetermined time.




In a further aspect of the invention, the MASS FLOW mode is used to determine whether there is a blockage or partial blockage in the vent solenoid valve of the fuel system. The test comprises the steps of determining whether a set of engine operating conditions is present; opening the vent solenoid valve and a purge solenoid valve of the fuel system; purging the fuel system at a predetermined constant rate until a sufficient mass is purged; determining whether a vacuum pressure rise exceeds a predetermined vacuum rise threshold; or indicating when the vacuum pressure rise exceeds the predetermined vacuum rise threshold within a predetermined time.




Other objects and advantages of the present invention will become apparent upon considering the following detailed description and appended claims, and upon reference to the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a diagram of an automotive evaporative emission system according to the invention, including a microprocessor-based engine control module (ECM);





FIG. 2

is a logic flow diagram for an evaporative system diagnostic;





FIG. 3

is a logic flow diagram for determining an evaporative diagnostic purge duty cycle; and





FIG. 4

is a logic flow diagram for increasing idle speed during RAMPOFF and TANK modes.











DESCRIPTION OF THE PREFERRED EMBODIMENT(S)




Referring to

FIG. 1

, the reference numeral


10


generally designates an evaporative emission system for an automobile engine


12


and fuel system


14


. The fuel system


14


includes a fuel tank


16


, a fuel pump (P)


18


, a pressure regulator (PR)


19


, an engine fuel rail


20


, and one or more fuel injectors


22


. The fuel tank has an internal chamber


24


, and the pump


18


draws fuel into the chamber


24


through a filter


26


, as generally indicated by the arrows. Fuel (not shown) is supplied to the tank


16


via a conventional filler pipe


32


sealed by the removable fuel cap


34


.




The evaporative emission system


10


includes a charcoal canister


40


, a solenoid purge valve


42


and a solenoid air vent valve


44


. The canister


40


is coupled to fuel tank


16


via line


46


, to air vent valve


44


via line


48


, and to purge valve


42


via line


50


. The air vent valve


44


is normally open so that the canister


40


collects hydrocarbon vapor generated by the fuel in tank


16


, and in subsequent engine operation, the normally closed purge valve


42


is modulated to draw the vapor out of the canister


40


via lines


50


and


52


for ingestion in engine


12


. To this end, the line


52


couples with the purge valve


42


to the engine intake manifold


54


on the vacuum or downstream side of throttle


56


.




The air vent valve


44


and purge valve


42


are both controlled by a microprocessor-based engine control module (ECM)


60


, based on a number of input signals, including fuel tank pressure (FTP) on line


62


and fuel level (FL) on line


64


. The fuel tank pressure is detected with a conventional pressure sensor


66


and the fuel level is detected with a conventional fuel level sensor


68


. Of course, the ECM controls a host of engine related functions not listed herein.




In general, the ECM


60


diagnoses leaks in the evaporative emission system


10


by suitably activating the solenoid purge valves


42


and solenoid air vent valve


44


, and monitoring fuel tank pressure (FTP). As vacuums are drawn across the evaporative system due to the opening and closing of valves


42


and


44


, pressure increases may be monitored by the ECM


60


. If an unusual pressure increase or decrease is detected, the ECM


60


will indicate a leak or blockage.




Referring now to

FIG. 2

, a global evaporative system diagnostic routine for detecting leaks in evaporative emissions systems is illustrated. To begin the routine, Step


100


determines whether the evaporative diagnostic is disabled. If it is not disabled, Step


105


determines whether the global enablement criteria are met. The global enablement criterion determines by inference fuel or vapor temperature, which affects vapor levels in the fuel system, by using reliable predictors. These predictors may include determining whether the fuel level, coolant level, intake temperature, coolant-intake delta temperature, tank hydrocarbon vapor levels, and barometric pressure are within an acceptable range. In addition, the diagnostic may be disabled by the diagnostic manager (through the ECM


60


) for vehicle applications which do not require this evaporative diagnostic.




If the criteria are met, Step


110


calls the Purge Valve Leak Test and Step


115


is executed. In Step


115


, a determination is made whether the Purge Valve Leak Test is passed. The Purge Valve Leak Test invokes RAMP OFF mode in the purge logic. The Purge Valve Leak Test closes both the purge and vent valves to test for leaks across the purge valve. A leak will be indicated if the tank vacuum exceeds a pre-determined vacuum threshold in the allotted time. The allotted time is based the available manifold vacuum. If the manifold vacuum is large, the test runs quickly. If the manifold vacuum is low, the test runs slower. The details of the Purge Valve Leak Test of Steps


110


and


105


are discussed in more detail in copending U.S. patent application Ser. No. 09/437661 and are incorporated by reference herein.




If the Purge Valve Leak Test of Step


115


is passed, Step


120


is executed. Step


120


determines whether the vehicle is in idle mode. If the vehicle is in idle mode, Step


125


is executed.




In Step


125


, a determination is made as to whether the vehicle has completed the minimum time in the Preset Mode. The minimum time feature functions to ensure that the fuel tank would be under a vacuum for a predetermined time before proceeding so that vapor content in the tank yields more accurate results. If the minimum time in Preset Mode is completed, the Idle Large Leak Test of Step


130


is called and Step


135


is executed.




Step


135


determines whether the Idle Large Leak Test has passed. The Idle Large Leak Test invokes TANK mode in the purge logic. The Idle Large Leak Test runs when the engine is at idle and the vehicle is stationary. The test will fail if there is an inability to draw a vacuum in the tank above a predetermined threshold within a certain allotted time when the vent valve is closed and TANK mode is in operation. If the Idle Large Leak Test has passed, Step


140


is executed.




In Step


140


, it is determined whether the Very Small Leak Test enablement criteria are met. The enablement criteria for the Very Small Leak Test are whether the fuel level, coolant temperature, intake temperature, and coolant-intake delta temperature are within an acceptable range. If the enablement criteria are met, the Very Small Leak Test is called in Step


145


and Step


150


is executed. If the enablement criteria are not met in Step


140


, Step


150


is executed without performing Step


145


. In Step


150


, the Small Leak Test is called.




After Step


150


, Step


155


is executed. Step


155


determines whether the Small and Very Small Leak Test are passed. In Step


155


, the Small and Very Small Leak Tests invoke the RAMP OFF purge mode in the purge logic as described in Step


115


with different predetermined vacuum thresholds in the allotted time. If Step


155


indicates that these tests were passed, the Vent Blockage Test in Step


160


is called and executed.




In Step


160


, a determination is made as to whether there is a blockage in the vent path using the Vent Path Blockage Test. Vent solenoid blockages will cause the fuel tank vacuum level to rise during a normal purge. The Vent Blockage Test invokes the MASS FLOW purge mode in the purge logic to determine a pass or fail. In the MASS FLOW purge mode, the purge solenoid valve


42


and vent solenoid valve


44


are commanded open. Purge mass flow is limited to a maximum value. If tank vacuum rises above a threshold value, the test will fail. If sufficient mass is purged without a rise in tank vacuum, the test will pass. The MASS FLOW mode alters the purge logic to hold a constant purge mass flow rate within the evaporative system during the test cycle.




After Step


160


, Step


165


is executed. Step


165


determines whether all tests of evaporative diagnostic have been completed. If all of the tests have been completed, Step


170


is executed, where a report of all the results is stored. From Step


170


, the diagnostic ends in Step


175


.




Referring back to Step


100


, if the evaporative diagnostic is disabled, Step


175


is executed, where the diagnostic as described above is ended.




Referring back to Step


105


, if the global criterion are not met, Step


180


is executed. In Step


180


, a determination is made as to whether a Large Leak History Fault is present. The Large Leak History Fault is present when a leak greater than 0.04″ has been detected within the last three key cycles. If the Large Leak History Fault is not present, the Evaporative Diagnostic is disabled in Step


185


and Step


170


is executed. In Step


170


, the results are reported and the diagnostic is ended in Step


175


.




If the Large Leak History Fault is present in Step


180


, the Warm Leak Test is called in Step


190


and Step


195


is executed. The Warm Leak Test of Step


195


is a designed to run when the vehicle is warm and the fuel may be volatile. It is designed to extinguish a malfunction indicator light and clear false faults that occur as a result of a gas cap not being properly replaced on a vehicle. The Warm Leak Test invokes the TANK mode in the purge logic in a similar manner to the Idle Large Leak Test of Step


135


described below. After the Warm Leak Test is run, proceed to Step


170


where the results are reported and the diagnostic is ended in Step


175


.




Referring back to Step


120


, where the vehicle is determined to be idling, or to Step


125


, when the vehicle is not idling and the vehicle has not spent the allotted time in Preset Mode, Step


200


is executed. In Step


200


, the Preset Large Leak Test in called. After Step


200


, Step


205


is executed. In Step


205


, a determination is made whether the Preset Large Leak Test is passed. The Preset Large Leak Test invokes TANK mode in the purge logic. Under real world conditions, the vehicle may not be at idle when the diagnostic test begins. In these conditions, the diagnostic begins purging from the tank to “preset” the system vacuum. The amount of purge is by the TANK mode. Then, the Preset Large Leak Test determines whether there is a large leak (greater than 0.04″) in the evaporative system. It uses the same criteria as the Idle Large Leak Test described above in Step


130


with different predetermined vacuum threshold values; If the Preset Large Leak Test is passed, Step


100


is executed. If not, Step


170


is executed where the results are reported and the diagnostic is ended in Step


175


. The details of Step


200


and


205


are described in copending U.S. application Ser. No. 09/438,068 and are incorporated by reference herein.




Referring now to

FIG. 3

, a logic flow diagram for determining an Evaporative Diagnostic Purge Duty Cycle Logic is illustrated.




The Purge Duty Cycle Logic determines the amount of time that the Purge Solenoid Valve


42


of

FIG. 1

will be opened during a particular software frame. For a preferred embodiment of the present invention, the software frame lasts approximately 62.5 milliseconds. Thus, if the purge duty cycle value is set 5 to 50%, the valve


42


will be opened for 31.25 milliseconds per software frame, if the value is 0% the valve is closed for the entire software frame. The purge duty cycle value may be determined as a function of engine intake airflow, and the value is limited by other engine parameters such as fuel pulse-width and purge duty cycle change rates. For each subroutine (TANK, MASSFLOW, or RAMPOFF), purge duty cycle gains and limits are set by the subroutine. Each subroutine has different limits.




Step


300


determines whether the Purge enablement criteria are met similar to Step


105


of FIG.


2


. If the criteria are met, Step


310


is executed. Step


310


determines if the Evaporative Diagnostic is enabled, similar to Step


100


of FIG.


2


.




If the evaporative diagnostic is enabled in Step


310


, then a determination is made in Step


320


whether the evaporative diagnostic mode is TANK MODE. TANK MODE modifies the purge logic to support aggressive purging requirements of the evaporative diagnostic during the Idle Large Leak Test of Step


135


in

FIG. 2

, the Preset Large Leak Test of Step


200


in

FIG. 2

, and the Warm Large Leak Test of Step


195


in FIG.


2


. If the evaporative diagnostic mode is TANK mode, Step


345


determines whether or not the preset vacuum option is selected.




If the preset vacuum option is selected in Step


345


, Step


350


uses the Preset Large Leak Test tank vacuum targets and purge duty cycle gains and limits to control the commanded purge duty cycle. After Step


350


, Step


360


is executed. If the preset vacuum option is not selected in Step


345


, Step


355


uses the Idle Large Leak Test tank vacuum targets and purge duty cycle gains and limits to control the commanded purge duty cycle. After Step


355


, Step


360


is executed.




In Step


360


, a determination is made as to whether the current fuel tank vacuum is greater than the tank vacuum target. If the tank vacuum is not greater than the tank vacuum target, Step


365


is executed. In Step


365


, a determination is made as to whether the current purge duty cycle is greater than the allowable limits.




If the current tank vacuum is greater than the current tank vacuum targets in Step


360


or if the current purge duty cycle is greater than the allowable limits in Step


365


, Step


375


is executed. In Step


375


, the purge duty cycle using specific evaporative diagnostic test ramp rates is decreased.




If the current purge duty cycle is not greater than the allowable limits in Step


365


, Step


370


is executed. In Step


370


, the purge duty cycle using the specific evaporative diagnostic test ramp rates is increased.




Referring now to Step


300


, if the purge enablement criteria are not met, Step


305


is executed. In Step


305


, the purge duty cycle is set to 0%, wherein the purge solenoid valve


42


of

FIG. 1

is closed for the entire software frame.




Referring now to Step


310


, if the evaporative diagnostic is disabled, the normal closed loop purge logic is selected to calculate the purge duty cycle in Step


315


.




Referring now to Step


320


, if the evaporative diagnostic mode is not the TANK mode, Step


325


is executed. In Step


325


, the nominal purge duty cycle step gains and fuel limits are set. After Step


325


, Step


330


is executed.




In Step


330


, a determination is made as the whether the evaporative diagnostic mode is MASS FLOW. If the evaporative diagnostic is MASS FLOW, Step


340


is executed. In Step


340


, a determination is made as to whether purge flow is greater than a target value. If the purge flow is greater than the target value in Step


340


, Step


375


is executed, wherein the purge duty cycle is decreased using specific evaporative diagnostic ramp rates.




Referring now to Step


330


, if the evaporative diagnostic mode is not MASS FLOW, Step


335


is executed. In Step


335


, RAMP OFF mode ramp rates are set. After Step


335


, Step


375


is executed, wherein the purge duty cycle is decreased using specific evaporative diagnostic test ramp rates.




Referring now to Step


340


, if the purge flow is not greater than a target value, Step


370


is executed, wherein the purge duty cycle is increased using specific evaporative diagnostic test ramp rates.




Referring now to

FIG. 4

, a logic flow diagram for increasing the engine idle speed during RAMP OFF and TANK modes is illustrated. The Evaporative Diagnostic Intrusive Idle Speed Override feature is called during the Purge Valve Leak Test, the Preset Large Leak Test, the Idle Large Leak Test, the Small and Very Small Leak Tests, and the Warn Large Leak Test in FIG.


3


. This feature increases the idle speed during the specific evaporative diagnostic tests to avoid engine stumble and to accommodate more fuel vapor from purge and to enhance engine stability during high purge transients.




In

FIG. 4

, Step


400


determines whether the vehicle is at idle. If the vehicle was at idle in Step


400


, Step


410


is executed. Step


410


determines whether the evaporative diagnostic high idle speed is required for the currently running test. High Idle is required where TANK mode or RAMP OFF mode is indicated. If the high idle is required, Step


420


is executed. Step


420


sets the idle speed equal to the evaporative diagnostic high idle speed.




Referring now to Step


400


, if the vehicle is not at idle, the intrusive idle is not called.




Referring now to Step


410


, if the high idle is not required, Step


430


is executed. In Step


430


, the idle speed is ramped down to the normal idle speed.





FIG. 5

is a logic flow diagram for the Purge Concentration Learning Logic that is used in the TANK Mode, the RAMPOFF mode, and the MASS FLOW mode to aggressively learn the tank concentrations during the first tank draw. This is necessary to avoid engine stumble or stalls that may occur from improper engine fueling. Improper engine fueling occurs when the tank concentration is learned incorrectly. If the concentration is incorrect, the resulting engine fueling, caused by the purge transients required to support the various evaporative diagnostic tests, could be too rich or lean to support stable compression. The increased gains and limits imposed by the TANK mode, MASS FLOW mode, and RAMPOFF mode are designed to maintain proper fueling so that the evaporative diagnostic can operate inconspicuously.




In

FIG. 5

, Step


500


determines whether the engine is running. If the engine is idling, Step


520


is executed. In Step


520


, it is determined whether the evaporative diagnostic is enabled as in Step


100


of FIG.


2


. If the diagnostic is enabled, Step


530


is executed.




In Step


530


, a more aggressive evaporative diagnostic purge concentration learning logic is selected. From Step


530


, Step


550


calculates the current purge concentration using the more aggressive evaporative diagnostic rates and limits.




Referring now to Step


500


, if the engine is not running, Step


510


is executed. In Step


510


, the purge concentration is set to zero.




Referring now to Step


520


, if the evaporative diagnostic is not enabled, Step


540


is executed. In Step


540


, purge concentration learning rates and limits are set to the baseline (non-diagnostic rates and limits). From Step


540


, Step


550


calculates the current purge concentration using baseline rates and limits.




While the invention has been described in terms of preferred embodiments, it will be understood, of course, that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings.



Claims
  • 1. A method for detecting leaks and blockages in a fuel system, the method comprising the steps of:determining whether small leaks are present when a first set of operating conditions are present and when a tank hydrocarbon level does not exceed an allowable tank hydrocarbon threshold value using a RAMP OFF mode modified purge duty cycle; determining whether large leaks are present when a second set of operating conditions are present and when a tank hydrocarbon level does not exceed an allowable tank hydrocarbon threshold value using a RAMP OFF mode modified purge duty cycle; and determining whether the vent solenoid valve is blocked when a third set of operating conditions is present using a MASS FLOW mode modified purge duty cycle when said MASS FLOW mode modified purge duty cycle is called.
  • 2. The method according to claim 1, wherein the step of determining whether small leaks are present when a first set of operating conditions is present using a RAMP OFF mode modified purge duty cycle comprises the steps of:determining whether a first set of engine operating conditions is present; modifying a purge logic duty cycle with a RAMP OFF purge mode when a tank hydrocarbon level does not exceed an allowable tank hydrocarbon threshold value; sealing the fuel system; drawing a vacuum across a fuel system at a predetermined rate for a predetermined time when said first set of operating conditions is present, wherein said predetermined rate is a function of said purge logic duty cycle; determining whether a vacuum pressure rise exceeds a predetermined vacuum rise threshold; and indicating when said vacuum pressure rise exceeds said predetermined vacuum rise threshold within said predetermined time.
  • 3. The method according to claim 2, wherein the step of determining whether said first set of engine operating conditions is present comprises the steps of verifying that a fuel level of the fuel system is within an acceptable range; verifying that a coolant temperature of the fuel system is within an acceptable range; verifying that an engine intake temperature of the fuel system is within an acceptable range; verifying that a coolant-intake delta temperature of the fuel system is within an acceptable range; verifying that an engine containing the fuel system is idling; verifying that that a minimum time in a Preset Mode has been completed; and verifying that an engine fault is not indicated.
  • 4. The method according to claim 1, wherein the step of determining whether large leaks are present when a second set of operating conditions are present using a TANK mode modified purge duty cycle comprises the steps of:determining whether a second set of engine operating conditions is present; modifying a purge logic duty cycle with a TANK purge mode when a tank hydrocarbon level does not exceed an allowable tank hydrocarbon threshold value; closing a vent solenoid valve; drawing a vacuum across the fuel system at a predetermined rate for a predetermined time when said second set of operating conditions is present, wherein said predetermined rate is a function of said purge logic duty cycle; determining whether a vacuum pressure rise exceeds a predetermined vacuum threshold rise; and indicating when said vacuum pressure rise is less than said predetermined vacuum rise threshold within said predetermined time.
  • 5. The method according to claim 4, wherein the step of determining whether said second set of engine operating conditions is present comprises the steps of verifying that a fuel level of the fuel system is within an acceptable range; verifying that a coolant temperature of the fuel system is within an acceptable range; verifying that an engine intake temperature of the fuel system is within an acceptable range; verifying that a coolant-intake delta temperature of the fuel system is within an acceptable range; verifying that an engine containing the fuel system is idling; verifying that that a minimum time in a Preset Mode has been completed; and verifying that an engine fault is not indicated.
  • 6. The method of claim 1, wherein the step of determining whether the vent solenoid is blocked when a third set of operating conditions are present using a MASS FLOW mode modified purge duty cycle is called comprises the steps of:determining whether a third set of engine operating conditions is present; modifying a purge logic duty cycle with a MASS FLOW purge mode to hold a constant air flow rate within the fuel system during a diagnostic test cycle; opening the vent solenoid valve and a purge solenoid valve of the fuel system; purging the fuel system at a predetermined constant rate until a sufficient mass is purged, wherein said predetermined constant rate is a function of said purge logic duty cycle; determining whether a vacuum pressure rise exceeds a predetermined vacuum threshold rise; and indicating when said vacuum pressure rise exceeds said predetermined vacuum rise threshold within said predetermined time.
  • 7. The method according to claim 6, wherein the step of determining whether said third set of engine operating conditions is present comprises the steps of verifying that a fuel level of the fuel system is within an acceptable range; verifying that a coolant temperature of the fuel system is within an acceptable range; verifying that an engine intake temperature of the fuel system is within an acceptable range; verifying that a coolant-intake delta temperature of the fuel system is within an acceptable range; verifying that an engine containing the fuel system is idling; verifying that that a minimum time in a Preset Mode has not been completed; and verifying that an engine fault is not indicated.
  • 8. The method according to claim 2, further comprising the step of increasing an idle speed to a predetermined idle speed level prior to the step of sealing said the fuel system.
  • 9. The method according to claim 4, further comprising the step of increasing an idle speed to a predetermined idle speed level prior to the step of closing a vent solenoid valve.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to the following patent applications which are co-owned by the same: “Evaporative Emission Leak Detection Method With Vapor Generation Compensation”, Ser. No. 09/437,661, filed Nov. 10, 1999 (DKT H-203436), “Preset Diagnostic Leak Detection Method For An Automotive Evaporative Emission System”, Ser. No. 09/438,068, filed Nov. 10, 1999 (DKT H-203437).

US Referenced Citations (14)
Number Name Date Kind
5251477 Nakashima et al. Oct 1993 A
5261379 Lipinski et al. Nov 1993 A
5275144 Gross Jan 1994 A
5396873 Yamanaka et al. Mar 1995 A
5460141 Denz et al. Oct 1995 A
5614665 Curran et al. Mar 1997 A
5616836 Blomquist et al. Apr 1997 A
5651349 Dykstra et al. Jul 1997 A
5678523 Hashimoto et al. Oct 1997 A
5680849 Morikawa et al. Oct 1997 A
5767395 Goto et al. Jun 1998 A
5794599 Blumenstock Aug 1998 A
6082189 Bayerle et al. Jul 2000 A
6082337 Fujimoto et al. Jul 2000 A