The present invention is directed to a payload for use as a projectile having a plurality of entangling elements tethered to a central projectile with a flexible line. Upon launching of the projectile, such as the firing from a barreled weapon, the entangling elements expand outward to result in an entanglement zone within which an object, or individual can be ensnared through the entangling action of the of the entangling elements.
Until recently, the use of improvised explosive devices (IEDs) were responsible for approximately two-thirds of U.S. and Coalition casualties. Recent reports forecast that the use of weaponized drones will surpass the threat of IEDs in future conflicts. (Gouré, D. (2018, Feb. 8) [Retrieved from internet on 2018, Apr. 27] Drones will Surpass IED Threat in Future Conflicts. Retrieved from: <https://www.realcleardefense.com/articles/2018/02/08/drones_to_will_surpass_ied_threat_in_future_conflicts_113030.html>. Weaponization of drones, typically surrounds modifying a drone to allow it to carry and deliver lethal munitions. Weaponized drones have become increasingly common and pose a real and effective threat, particularly inside a range of 200 meters (656 feet) from a target.
Furthermore, the unauthorized use of drones has become problematic in environments such as search and rescue operations and emergency response efforts. Reports of drones encroaching into the airspace in the proximity of wildfires, pose a real threat to the operation of fire-fighting airplanes and helicopters in the grounding of emergency aircraft until drones are no longer encroaching in the airspace.
Unmanned Aerial Vehicles, such as CLASS I and II commercial Aerial Drone Systems, herein referred to as drones, have become prevalent threats to privacy and safety in a wide variety of use cases. Class I drone systems are categorized as having a maximum weight of under 20 lbs and operate at a nominal operating altitude of 1,200 ft above ground level, while the Class II drone systems are categorized as having a maximum weight of between 21-55 lbs and operate at altitudes under 3500 ft above ground level.
A typical UAV—particularly those which are available to consumers—are affordable, man-portable, offer relative acoustic stealth, and can carry a relatively significant payload. Commercially available drones provide flight control computers and sensors to provide stabilized flight with some degree of autonomy which mitigates the need for line-of-sight operation or continuous link to the operator. For these reasons, it is anticipated that commercially available UAVs may be used for intelligence, surveillance, and reconnaissance, but also as weapon delivery platforms for carrying explosive, chemical, radiological, and/or biological payloads.
Small commercial drones typically fly at altitudes below 200 meters (656 feet), and fly low and fast resulting in low exposure times for countermeasures to be used against them. Thus, the neutralization of a drone threat is increasingly difficult as it requires detection and subsequent action. Common threat scenarios maximize the unique flight characteristics of the drones and the ability to fly low, in near proximity to the ground—whereas detection and identification of the drones is difficult.
Due to the increasing threat of drones interfering with emergency aircraft, and the increasing weaponization of drones, there is a need for a solution for immobilizing drones within an effective range and larger impact area beyond the current capabilities presently available.
Currently available solutions propose a variety of methods to immobilize a drone mid-flight. There is an identified need a portable solution for the immobilization of a drone (interchangeably used with a UAV herein) which allows a user to immobilize a drone—preferably at a range of 100-125 meters (328-4510 feet) with kinetic countermeasures.
Many solutions have been proposed for the immobilization of a drone surrounding the use of jamming technologies, sometimes referred to as “directed energy”. Jamming technologies surround the use of electromagnetic noise at radio frequencies that drones operate and transmit video at, at a power level high enough to drown out effective communication between a drone and its pilot. A problem with such solutions surrounds the effects that jamming technologies have on surrounding infrastructure which maintains safety systems. For instance, a jammer intended to immobilize a drone can have negative effects on GPS systems as well as air traffic control. (O'Donnell, Michael J. A. A. E. “To Airport Sponsor.” 26 Oct. 2016. [Retrieved from internet on 2018, May 15] Retrieved from: <https://www.faa.gov/airports/airport_safety/media/UAS-Counter-Measure-Testing-letter.pdf) Furthermore, such solutions may result in a drone continuing flight blind without navigation, armed with explosives continuing toward its target due to forward momentum and falling toward its intended target with an unexploded payload. Thus, the drone, even if immobilized, poses a potential threat. In some scenarios, a jammer may result in a drone initiating a “return to home” action, in which it returns toward the operator. Although in some scenarios it is advantageous to for the initiation of such an action to allow the tracking the operator of the drone, it also poses a risk. If a drone is forced to initiate a “return to home” operation, and the operator is not found, the operator may be able to reuse the drone for a subsequent action against a target.
The use of a jamming technology is only effective if the jamming technology is active and directed toward a drone which poses a threat. Because portable jammer technologies require battery power, and because they disrupt radio communications sometimes critical for safety measures, the operational lifespan of such technologies is impractical for perpetual use. Thus, a drone that poses a threat must be safely intercepted, disabled, and disposed of prior to ceasing jamming functions. During these operations, personnel and equipment involved in interception and disabling of a jammed drone are at risk, particularly if the jamming signal is interrupted mid-intercept or mid-disposal. Furthermore, the suspension of radio communications leaves personnel vulnerable to not receive communications that may otherwise warn them of further threats.
It is an aspect of certain embodiments of the present invention to mitigate unintended negative effects which solutions such as jammers and directed energy weapons sometimes have in an urban environment. The use of a kinetic defeat strategy, involving the use of ballistic particles directed at a target, allows embodiments of the present invention to be multifunctional as a countermeasure against mobile targets and static targets while mitigating the shortfalls associated with some directed energy solutions.
Solutions such as jammers require personnel to carry additional equipment. This is both costly and encumbers the personnel's mobility and ability to respond rapidly to a threat. It is an aspect of the present invention to provide effective countermeasures to immobilize and neutralize drone threats with equipment commonly carried by law enforcement and military personnel.
Certain solutions surround the use of a drone to counter a drone which poses a threat. Drones may be used in terror attacks in both military and civilian environments. For instance, U.S. Pat. No. 9,896,221 to Kilian (“Kilian”), incorporated herein in its entirety for all purposes, is directed to a drone with a net designed to ensnare other drones. This countermeasure is both more expensive than a single anti-drone projectile of the present invention, and is limited to immobilizing a single opposing drone at a time.
In certain solutions, law enforcement and military personnel use traditional weapons—such as a shotgun—to attempt to immobilize a drone which poses a threat. However, weapons carried by law enforcement and military personnel, such as shotguns, are decreasingly effective at immobilizing a drone beyond 40 meters (131 feet) due to range limitations. A typical characteristic of shotgun shot is an approximately 2.5 cm (1 inch) in diameter of shot pattern, per meter distance to the target. Thus, the effective impact area of shotgun shot at 40 meters (131 feet), would be expected to be 100 cm (40 in) in diameter. However, the larger the area of the effective impact area, the larger the spacing between shotgun shot. It will be appreciated that the effective impact area refers to the area encompassing the points of impact of all payload elements, such as shot pellets, against a planar object perpendicular to the trajectory of the payload. Thus, a drone beyond 40 meters may not be immobilized by on-target shotgun shot due to spacing between shot. A drone which is within 40 meters (131 feet) of a target, poses a real threat. For instance, a drone travelling at speed which is immobilized by a shotgun may still travel 40 meters (131 feet) or more before coming to rest on the ground. Thus, the use of a shotgun to eliminate a threat posed by a drone may be ineffective in preventing the drone from reaching its intended target. As a result, there is a need for a solution for immobilizing a drone with an effective impact area at a range over 40 meters (131 feet), and more preferably with at a range of 200 meters (656 feet) or more.
Furthermore, with respect to traditional weapons and rounds, such as shotguns, the shot pattern of a shotgun may impact a drone but not disable it due to increasing distance between shot pellets. It is an aspect of the present invention to use connected elements to provide an impact mechanism coupled with a tangling mechanism to increase the probability of disabling flight of a UAV.
Certain existing solutions such as U.S. patent application Ser. No. 10,753,715 to Joseph Garst, et al. (“Garst”), leverage kinetic defeat strategies to disable a drone, while others such as U.S. Pat. No. 10,435,153 to Max Edward Klein (“Klein”), leverage a netting strategy to disable drones—each incorporated herein by reference in their entirety for all purposes. However, where netting strategies such as Klein fall short surround the limitations of weapon required to fire such a device as well as the effective range of the disabling device. A suitably sized round to convey a packed net requires large-caliber weapons such as a 40 mm grenade launcher or larger, or a specialized firearm. Furthermore, it will be appreciated to one skilled in the art that a net as disclosed in Klein has high aerodynamic drag, resulting in a short effective range.
It is an aspect of the present invention to provide a munitions round capable of having a suitable effective target impact area at a range of at least 100-125 meters (328-410 feet). It is a further aspect of the present invention to employ an impact and entangle disabling strategy.
Certain embodiments of the present invention comprise a central projectile having multiple satellite projectiles tethered to the central projectile with a flexible line. The central projectile is configured to spin mid-flight, causing the satellite projectiles to orbit around the central projectile. In a first scenario, the central projectile strikes a drone, the flexible lines of the satellite projectiles entangle around different aspects of the drone, resulting in the satellite projectiles impacting the drone. In a second scenario, the central projectile misses a drone but is in near proximity of the drone, wherein the orbiting action of the satellite projectiles results in the entangling of at least one flexible line around the drone, resulting in the central projectile impacting the drone, the flexible lines of the other satellite projectiles entangling around the drone, and the other satellite projectiles impacting the drone. In either scenario, there is a high likelihood of disabling and grounding the drone due to impact of projectiles, or the entanglement of the flexible lines within the propellers of the drone.
It is a further aspect of the present invention to provide an impact and entangle disabling strategy capable of being fired from common weapons such as a shotgun. In certain embodiments, a projectile system comprises a plurality of satellite projectiles that are interconnected with a central projectile by flexible lines. The flexible lines are wound around the central projectile and the satellite projectiles are placed within recesses. When placed into the recesses, the satellite projectiles do not extend past the maximum envelope of the central projectile so that the central projectile can be fired from a standardized barreled weapon such as a shotgun or 40 mm grenade launcher without impedance from the satellite projectiles. Once the projectile system is shot from the barreled weapon, an induced spin to the central projectile causes the satellite projectiles to release from the recesses and unravel the flexible lines which are wound around the central projectile. Spin can be induced from the rifling of a barreled weapon, aerodynamic features such as aerodynamic channels, a combination thereof, or through any manner appreciated by those skilled in the art. Thus, the satellite projectiles extend away from the central projectile until the extent of the flexible lines are reached. The satellite projectiles orbit around the central projectile as the central projectile spins in flight at a rapid rate. As a result, the central projectile, the flexible lines, and the satellite projectiles each provide opportunity to impact and/or entangle the drone to maximize chance of disabling and downing the drone.
Existing solutions which use pelletized shot to impact a drone are effective within narrow range from the weapons from which they are shot. The further that pelletized shot travels, the less impact it imparts upon a target, and the further apart the shot pellets spread from each other, resulting in a lower chance of impacting a target with lower kinetic energy the further the target is.
It is an aspect of the present invention to provide an anti-drone projectile system with a consistent impact area for the duration of flight from the weapons from which it is launched, to the target. Once a projectile is shot and the satellite projectiles expand outward to their extent, the projectile's effective impact zone is limited for the duration of its flight. Furthermore, even if the projectile system slows to a rate at which the kinetic impact it can impart on a target is below what is required to disable it, the entangling projectile system is still able to entangle and disable the drone. Thus, the effective range of the projectile system discussed herein is extends beyond the provided strategies currently existing.
It is an aspect of the present invention that the entangling zone of the projectile system comprises a radius equal to the distance of a satellite projectile from the longitudinal axis of the central projectile.
It is an aspect of the present invention to allow the firing of a plurality of entangling projectile systems in close succession. In certain embodiments, the entangling projectiles systems are fired in sequence with separate rounds, while in alternate embodiments a plurality of entangling projectile systems are fired with a single round.
It is an aspect of the present invention to limit self-entangling of a entangling projectile system or entanglement of nearby entangling projectile systems fired in close succession to each other. The manner in which the satellite projectiles expand radially away from the central projectile maintains the flexible line in a generally straight configuration. The radially expanding satellite projectiles thereby limiting and mitigating self-entanglement of the entangling projectile system. In certain embodiments the satellite projectiles expand radially away and maintain the flexible line in a generally straight flexible line due to centrifugal action.
These and other advantages will be apparent from the disclosure of the inventions contained herein. The above-described embodiments, objectives, and configurations are neither complete nor exhaustive. As will be appreciated, other embodiments of the invention are possible using, alone or in combination, one or more of the features set forth above or described in detail below. Further, this Summary is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. The present invention is set forth in various levels of detail in this Summary, as well as in the attached drawings and the detailed description below, and no limitation as to the scope of the present invention is intended to either the inclusion or non-inclusion of elements, components, etc. in this Summary.
Additional aspects of the present invention will become more readily apparent from the detailed description, particularly when taken together with the drawings, and the claims provided herein.
Certain embodiments of an entangling projectile system 1000 disclosed herein, shown in
The central projectile 1100 of certain embodiments, shown in
In certain embodiments, referencing
In certain embodiments, as shown in
Certain embodiments of an entangling projectile system 1000, as shown in
In certain embodiments, shown in
In certain embodiments, as seen in
In a stowed configuration 4000, shown in
In certain embodiments, as shown in
While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention. Further, the inventions described herein are capable of other embodiments and of being practiced or of being carried out in various ways. In addition, it is to be understood that the phraseology and terminology used herein is for the purposes of description and should not be regarded as limiting. The use of “including,” “comprising,” or “adding” and variations thereof herein are meant to encompass the items listed thereafter and equivalents thereof, as well as additional items.
This application claims the benefit of U.S. Provisional Patent Application 63/221,741 entitled “ENTANGLING PROJECTILE SYSTEM FOR THE DISABLING OF UAV'S AND OTHER TARGETS OF INTEREST” filed on Jul. 14, 2021, the entire contents of which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
39282 | Ganster | Jul 1863 | A |
1067080 | Torday | Jul 1913 | A |
1072968 | McCreary | Sep 1913 | A |
1198035 | Huntington | Sep 1916 | A |
1309530 | Lamberson | Jul 1919 | A |
2184802 | Milavec | Dec 1939 | A |
2251918 | Dawson | Aug 1941 | A |
2296980 | Carmichael | Sep 1942 | A |
2348240 | Braun | May 1944 | A |
2372383 | Lee | Mar 1945 | A |
2925965 | Pierce | Feb 1960 | A |
3803751 | Pippin, Jr. | Apr 1974 | A |
3930448 | Barber | Jan 1976 | A |
3965611 | Pippin, Jr. | Jun 1976 | A |
4327644 | Stancil | May 1982 | A |
4350315 | Pollin | Sep 1982 | A |
4799906 | Perkins, Jr. | Jan 1989 | A |
5460155 | Hobbs, II | Oct 1995 | A |
5698815 | Ragner | Dec 1997 | A |
6381894 | Murphy | May 2002 | B1 |
6626077 | Gilbert | Sep 2003 | B1 |
7314007 | Su | Jan 2008 | B2 |
7963278 | Makowski | Jun 2011 | B2 |
8613241 | Martinez et al. | Dec 2013 | B2 |
8857305 | Tseng | Oct 2014 | B1 |
9139304 | Frucht | Sep 2015 | B2 |
9989336 | Purvis | Jun 2018 | B2 |
10036615 | Norris et al. | Jul 2018 | B2 |
10107599 | Norris et al. | Oct 2018 | B2 |
10435153 | Klein | Oct 2019 | B2 |
10634461 | Norris | Apr 2020 | B2 |
10852114 | Norris et al. | Dec 2020 | B2 |
10890419 | Norris | Jan 2021 | B2 |
20130291710 | Martinez | Nov 2013 | A1 |
20170261292 | Armstrong | Sep 2017 | A1 |
20190086184 | Sands | Mar 2019 | A1 |
20230020012 | Bigelow | Jan 2023 | A1 |
Number | Date | Country | |
---|---|---|---|
20230020012 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
63221741 | Jul 2021 | US |