Environmentally-powered wireless sensor module

Information

  • Patent Grant
  • 8508193
  • Patent Number
    8,508,193
  • Date Filed
    Wednesday, October 7, 2009
    15 years ago
  • Date Issued
    Tuesday, August 13, 2013
    11 years ago
Abstract
A system that powers a wireless sensor mechanism from ambient sources without the need to replace a battery is disclosed. The present invention uses an energy harvesting mechanism built onto, for example, a substrate to recharge a rechargeable energy storage mechanism that is built on the same substrate. The energy storage mechanism provides power to a transmission/receiving mechanism and microprocessor that may also be arranged on said substrate. The energy-harvesting mechanism may be combined with a power management unit to enable efficient use and regulation of the harvested energy.
Description

This application is related to U.S. patent application Ser. No. 11/561,277, entitled “Hybrid Thin-Film Battery,” filed on Nov. 17, 2006, U.S. patent application Ser. No. 11/687,032, entitled “Metal Film Encapsulation,” filed on Mar. 16, 2007, U.S. patent application Ser. No. 11/748,471, entitled “Thin Film Battery on an Integrated Circuit or Circuit Board and Method Thereof,” filed on May 14, 2007, U.S. Patent Application Ser. No. 61/087,927, entitled “Energy Device with Integral Collector Surface for Electromagnetic Energy Harvesting and Method Thereof,” filed on Aug. 11, 2008, and U.S. Patent Application Ser. No. 61/096,415, entitled “Energy Device with Integral Collector Surface for Electromagnetic Energy Harvesting and Method Thereof,” filed on Sep. 12, 2008, which are incorporated herein by reference in their entirety.


TECHNICAL FIELD AND BACKGROUND OF THE INVENTION

This invention relates to an apparatus, method, and system for communicating data. More particularly, this invention relates to a device capable of being incorporated on a substrate and may be powered by harvesting energy from any ambient source, such as, for example, radio frequency, solar power, wind, vibration or human activity which may be stored and/or converted to communication signals to transmit information.


As electronics have become smaller and more durable, there has been a continuous progression towards using electrical devices in ways never before thought possible. The energy source used to operate these devices may typically be a battery, which can be embedded within the electronics and configured for a single use, configured to be replaceable, or configured to be rechargeable. Each of these current options have shortcomings, as an embedded battery may render associated electronics useless once the battery is discharged or damaged, replaceable batteries require additional space and material to house, and an externally rechargeable battery requires additional material for a connecting plug and a battery charger. Each of these options is typically not ideal, as applications tend to demand equipment that can be lighter, without additional power cords and usable during times when access to an electrical wall outlet or other external power source is unavailable.


Thus, a demand exists to have an electronic device that does not require large batteries and may be able to generate its own energy.


As the ability, desire, and reality of global travel has become more commonplace, consumers often find themselves in need of portable electronic devices. Powering these devices may be a challenge, however, as there are many different voltages and frequencies of electricity power supplies in different countries. Electrical wall outlets are typically needed to charge many consumer devices ranging from electric shavers to computers, cell phones, and other devices that may send or receive signals.


Thus, a demand exists to have an electronic device that may be capable of operating without the use of an electrical wall outlet.


SUMMARY OF INVENTION

Ambient energy exists in many forms and in abundant quantity, providing an opportunity to put that energy to a beneficial electrical use with the assistance of an energy harvesting device. The energy harvester may include, for example, a device that converts specific types of ambient energy into electrical energy, which can then be stored in an electrical energy storage device such as a battery or capacitor. Depending on the application, harvested energy may, for example, be used instantaneously or stored in a component such as a battery and used at defined time intervals or when requested by a remote device.


It is one object of certain exemplary embodiments of this invention to use an energy harvester, such as, for example, a piezoelectric mechanism, and connect it to or incorporate it onto a substrate to harvest energy from one or more non-conventional sources and use that energy to recharge a device such as a battery that may be located such that it, for example, is an integral and inseparable part of a substrate.


The present invention may include, for example, a unique arrangement of a microcontroller, a signal transmitter, a signal receiver, an energy storage device and an energy harvester. In some embodiments, the energy harvester may be a piezoelectric sensor that converts motion/vibration energy into electric energy, wherein the converted energy may be used to recharge a battery, thereby providing power to a signal receiver/transmitter. The signal receiver/transmitter may be, for example, a ZigBee transceiver. In other embodiments, the piezoelectric mechanism may perform a dual function as a converter of motion energy to electrical energy and also a pedometer.


Certain embodiments of the present invention are also included in a system having a transmitter for transmitting a message to an external receiver. The system may also have one or more sensors that may be monitored by a microcontroller. Certain signals from the sensors may be processed by the microcontroller and the processed information may be transmitted to a receiver that may be located remotely.


In some embodiments of the invention, the device may receive a signal from one or more GPS satellites to determine the geographical location of said device.


For improved performance in this application, also disclosed is an example of a manufacturing process for a thin-film battery having a heat and pressure-resilient separation layer for incorporating the battery cell onto a substrate.





BRIEF DESCRIPTION OF DRAWING

Some features and advantages of the invention are described with reference to the drawing of a certain preferred embodiment, which is intended to illustrate and not to limit the invention.


The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the invention that together with the description serve to explain the principles of the invention:



FIG. 1 is a diagram of an embodiment of the present invention showing the subcomponents of the device.



FIG. 2 is a diagram of an embodiment of the present invention showing the step-by-step construction of an embodiment of one contemplated device.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

It is to be understood that the present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements, and includes equivalents thereof known to those skilled in the art. Similarly, for another example, a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps or subservient means. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.


Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, techniques, devices and materials are described although any methods, techniques, devices, or materials similar or equivalent to those described may be used in the practice or testing of the present invention. Structures described herein are to be understood also to refer to functional equivalents of such structures.


All patents and other publications are incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be useful in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason.



FIG. 1 shows the detailed process occurring within the present invention. The energy 110, which may result from radio frequency, solar power, wind power, vibration, human activity such as walking or jogging, water movement, temperature variations and rotational movements reaches an energy harvesting mechanism 120 and may be converted into a usable and storable form of energy, such as, for example, electricity. The energy harvesting mechanism 120 uses the harvested energy to recharge a rechargeable energy storage device 130. In some embodiments, the process of energy harvesting and recharging an energy storage device may be performed under the monitoring and regulation of, for example, a power management unit 130. The energy storage device 130 may store the energy and, when needed, power the microcontroller 150 and the transmitter and/or receiver 140 depending on whether a signal is being sent out, received, or both. The transmitter and/or receiver 140 may be, for example, a ZigBee transceiver. The transceiver may be part of a wireless mesh network, which is one of the possible implementations of a Zigbee network. Independent nodes in a mesh may provide self repairing features if a failure at one of the nodes is discovered. Therefore, mesh nodes relying on energy harvesting may be more robust over the long run, being able to “hibernate” during extended periods when the energy source is not available. A sensor 160 may be used to measure any desirable physical quantities depending on the use of the device.



FIG. 2 shows an example of the steps that may be used to construct some embodiments of the present invention on a substrate, such as, for example, a thin, flexible substrate. Step 200 shows the beginning of the construction where an energy storage device, shown in this example as a thin-film battery, as the foundation. Step 210 shows attaching a substrate to the energy storage device. Step 220 may be performed to add a transmitter/receiver mechanism to the substrate. Step 230 may be performed to add a microcontroller onto the substrate and connecting it to the transmitter/receiver mechanism. Step 240 may be performed to add an energy harvesting mechanism and power management unit to the substrate.


In some embodiments, the substrate may be rigid or semi-rigid. In several embodiments, the substrate may be a thin, flexible substrate. The substrate may be embedded internally, laminated, glued or mechanically attached with screws or otherwise for installation onto the surface of a target application.


In several embodiments, the energy harvesting mechanism is based on a piezoelectric transducer. This embodiment may be used by taking applied mechanical stress or pressure and transforming it into electrical energy to recharge or be stored in an energy storage device. In other embodiments, the energy harvesting mechanism is based on a radio frequency energy transducer. In some embodiments, the energy harvesting mechanism may also be a device that can convert solar power, wind power, vibration, pedestrian activity such as walking or jogging, water movement, temperature variations or rotational movements into usable energy such as electricity.


In addition to an electrochemical storage device, such as a battery or thin-film battery, the energy storage component may be an electrical storage device such as a capacitor or thin-film capacitor, but may also be a mechanical energy storage device, such as, for example, a flywheel, micro-flywheel, micro electro-mechanical system (MEMS), or a mechanical spring. In several embodiments, the thin-film battery may contain a metallic lithium anode. In some embodiments, the thin-film battery may not contain a metallic lithium anode but may instead contain a Li-ion anode or a Li-free anode. The energy storage component may also be an electro-mechanical device, such as a piezoelectric element or a magneto-electric element, similar to the invention disclosed in U.S. Pat. No. 7,088,031, entitled “Method and Apparatus for an Ambient Energy Battery or Capacitor Recharge System” which is herein incorporated by reference in its entirety. The energy storage component may also be a thermal energy storage device, such as a thermal mass container, or it could be a chemical energy storage device, such as, for example, a hydrogen generator with hydrogen container or an ozone generator with ozone container. Each one of these devices may be used to store energy based on exemplary elements of the system.


In some embodiments, the system on the substrate contains a receiver that may receive a signal from one or more GPS satellites to determine the geographic location and direction of the device, as well as the speed of the device if the device happens to be in motion.


In some embodiments, one or more sensors may measure any number of different physical qualities. In some embodiments, one sensor may be measuring the weather in which case it may be, for example, a thermometer to measure the temperature, a hydrometer to measure the humidity, an anemometer to measure the velocity or pressure of the wind or a barometer to measure the atmospheric pressure. A barometer in combination with a microprocessor may be able to detect changes in pressure and predict changes in the weather. In several embodiments, one sensor may be used to measure pressure and determine changes in altitude.


In some embodiments where the energy storage device is a thin-film battery, the thin-film battery may have a thickness that does not exceed 1 cm and a lateral area that may be less than 10 square inches. In another embodiment, the lateral area of said thin-film battery may be less than 0.25 square centimeters.


In a different embodiment, the thin-film battery may have a heat and pressure-resilient separation layer for purposes of incorporating the battery cell into the substrate manufacturing process.


In the several embodiments in which the energy storage device is a rechargeable device, such as, for example, a thin-film battery, this will present an opportunity whereby the present invention may be capable of performing nearly indefinitely. The present invention may, for example, allow for energy created through radio frequency, wind power, solar power, vibration, human activity, water movement, temperature variations and rotational movements to be harvested in an energy harvesting mechanism and for that harvested energy to ensure that the rechargeable energy storage device may be so charged.


This invention has been described herein in several embodiments. It is evident that there are many alternatives and variations that can embrace the performance of ceramics enhanced by the present invention in its various embodiments without departing from the intended spirit and scope thereof. The embodiments described above are exemplary only. One skilled in the art may recognize variations from the embodiments specifically described here, which are intended to be within the scope of this disclosure. As such, the invention is limited only by the following claims. Thus is intended that the present invention cover the modifications of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. An apparatus comprising: a substrate having a first side surface and a second side surface;an energy harvesting module on the second side surface of said substrate;an energy storage device on the first side of said substrate opposite to the energy harvesting module on the second side surface of the substrate and connected to said energy-harvesting module through said substrate between the first and second side surfaces; anda microprocessor located on the second side of said substrate opposite to the energy storage device on the first side surface of the substrate and connected to said energy storage device through said substrate between the first and second side surfaces,wherein said first and second side surfaces oppose each other.
  • 2. The apparatus of claim 1, further comprising a power management unit connected to said energy harvesting module.
  • 3. The apparatus of claim 1, wherein said substrate comprises any device selected from the group of: rigid substrate, semi-rigid substrate and flexible substrate.
  • 4. The apparatus of claim 1, wherein said substrate comprises any material selected from the group of: polyimide, polyester, polyethylene naphthalate, polyetherimide, aramid, and epoxy.
  • 5. The apparatus of claim 1, further comprising at least one sensor connected to said microprocessor.
  • 6. The apparatus of claim 1, further comprising at least one signal transmitter connected to said microprocessor.
  • 7. The apparatus of claim 1, further comprising at least one signal receiver connected to said microprocessor.
  • 8. The apparatus of claim 1, wherein said energy-harvesting module comprises any device selected from the group of: piezoelectric transducer, radio-frequency transducer, solar cell, wind turbine, vibration energy scavenger, water movement-to-electric energy converter, rotational movement-to-electric energy converter, and temperature variation-to-electric energy converter.
  • 9. The apparatus of claim 5, wherein said at least one sensor comprises any device selected from the group of: an altimeter, a pressure gauge, a thermometer, a barometer, a hygrometer, an accelerometer, and an anemometer.
  • 10. The apparatus of claim 1, wherein said energy storage device comprises any device selected from the group of: battery, thin-film battery, capacitor, thin-film capacitor, magneto-electric element, piezoelectric element, thermal mass container, flywheel, micro-flywheel, micro electro-mechanical system (MEMS), mechanical spring, hydrogen generator with hydrogen container, and ozone generator with ozone container.
  • 11. The apparatus of claim 1, further comprising an energy conversion component connected to the energy harvesting module.
  • 12. The apparatus of claim 1, wherein said energy storage device comprises a thin-film battery with a total thickness that does not exceed 1 centimeter.
  • 13. The apparatus of claim 12, wherein the lateral area of said thin-film battery does not exceed 10 square inches.
  • 14. The apparatus of claim 12, wherein the lateral area of said thin-film battery does not exceed 0.25 square centimeters.
  • 15. The apparatus of claim 12, wherein said thin-film battery contains a heat and pressure-resilient separation layer.
  • 16. The apparatus of claim 12, wherein said thin-film battery contains a metallic lithium anode.
  • 17. The apparatus of claim 12, wherein the electroactive element within said thin-film battery comprises lithium.
  • 18. The apparatus of claim 12, wherein said thin-film battery comprises a lithium-ion cell.
  • 19. The apparatus of claim 12, wherein said thin-film battery is a lithium-free battery.
  • 20. The apparatus of claim 7, wherein said signal receiver receives a signal from a GPS satellite.
  • 21. The apparatus of claim 7, wherein said signal receiver comprises a ZigBee transceiver.
  • 22. A method for communicating information comprising: converting energy into a useful form on a second side surface of a substrate;storing said useful form of energy on a first side surface of the substrate by a connection through said substrate between the first and second side surfaces;powering a processing unit on the second side surface of said substrate opposite to the energy storage device on the first side surface of the substrate with said stored energy on said first side surface of said substrate;monitoring at least one parameter with at least one sensor on said second side surface of the substrate;communicating the monitored parameter to said processing unit powered with said stored energy; andprocessing said monitored parameter into user data,wherein said first and second side surfaces oppose each other.
  • 23. The method of claim 22 further comprising: receiving GPS signals from one or more GPS satellites; anddetermining the location of the device from said GPS signals.
  • 24. An apparatus comprising: an energy storage device;a substrate having a first side surface positioned on the energy storage device;an energy harvesting mechanism on a second side surface of said substrate and connected through said substrate between said first and second side surfaces to said energy storage device; anda microprocessor located on said second surface of said substrate opposite to the energy storage device on the first side surface of the substrate and connected through said substrate between said first and second side surfaces to said energy storage device,wherein said first and second side surfaces oppose each other.
RELATED APPLICATIONS

This application is related to and claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application Ser. No. 61/103,746, entitled “Environmentally-Powered Wireless Sensor Module,” filed on Oct. 8, 2008, which is incorporated herein by reference in its entirety.

US Referenced Citations (807)
Number Name Date Kind
712316 Loppe et al. Oct 1902 A
2970180 Urry Jan 1961 A
3309302 Heil Mar 1967 A
3616403 Collins et al. Oct 1971 A
3790432 Fletcher et al. Feb 1974 A
3797091 Gavin Mar 1974 A
3850604 Klein Nov 1974 A
3939008 Longo et al. Feb 1976 A
4082569 Evans, Jr. Apr 1978 A
4111523 Kaminow et al. Sep 1978 A
4127424 Ullery, Jr. Nov 1978 A
4226924 Kimura et al. Oct 1980 A
4283216 Brereton Aug 1981 A
4318938 Barnett et al. Mar 1982 A
4328297 Bilhorn May 1982 A
4395713 Nelson et al. Jul 1983 A
4437966 Hope et al. Mar 1984 A
4442144 Pipkin Apr 1984 A
4467236 Kolm et al. Aug 1984 A
4481265 Ezawa et al. Nov 1984 A
4518661 Rippere May 1985 A
4555456 Kanehori et al. Nov 1985 A
4572873 Kanehori et al. Feb 1986 A
4587225 Tsukuma et al. May 1986 A
4619680 Nourshargh et al. Oct 1986 A
4645726 Hiratani et al. Feb 1987 A
4664993 Sturgis et al. May 1987 A
4668593 Sammells May 1987 A
RE32449 Claussen Jun 1987 E
4672586 Shimohigashi et al. Jun 1987 A
4710940 Sipes, Jr. Dec 1987 A
4728588 Noding et al. Mar 1988 A
4740431 Little Apr 1988 A
4756717 Sturgis et al. Jul 1988 A
4785459 Baer Nov 1988 A
4826743 Nazri May 1989 A
4865428 Corrigan Sep 1989 A
4878094 Balkanski Oct 1989 A
4903326 Zakman et al. Feb 1990 A
4915810 Kestigian et al. Apr 1990 A
4964877 Keister et al. Oct 1990 A
4977007 Kondo et al. Dec 1990 A
4978437 Wirz Dec 1990 A
5006737 Fay Apr 1991 A
5019467 Fujiwara May 1991 A
5030331 Sato Jul 1991 A
5035965 Sangyoji et al. Jul 1991 A
5055704 Link et al. Oct 1991 A
5057385 Hope et al. Oct 1991 A
5085904 Deak et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5100821 Fay Mar 1992 A
5107538 Benton et al. Apr 1992 A
5110694 Nagasubramanian et al. May 1992 A
5110696 Shokoohi et al. May 1992 A
5119269 Nakayama Jun 1992 A
5119460 Bruce et al. Jun 1992 A
5124782 Hundt et al. Jun 1992 A
5147985 DuBrucq Sep 1992 A
5153710 McCain Oct 1992 A
5169408 Biggerstaff et al. Dec 1992 A
5171413 Arntz et al. Dec 1992 A
5173271 Chen et al. Dec 1992 A
5174876 Buchal et al. Dec 1992 A
5180645 Moré Jan 1993 A
5187564 McCain Feb 1993 A
5196041 Tumminelli et al. Mar 1993 A
5196374 Hundt et al. Mar 1993 A
5200029 Bruce et al. Apr 1993 A
5202201 Meunier et al. Apr 1993 A
5206925 Nakazawa et al. Apr 1993 A
5208121 Yahnke et al. May 1993 A
5217828 Sangyoji et al. Jun 1993 A
5221891 Janda et al. Jun 1993 A
5225288 Beeson et al. Jul 1993 A
5227264 Duval et al. Jul 1993 A
5237439 Misono et al. Aug 1993 A
5252194 Demaray et al. Oct 1993 A
5262254 Koksbang et al. Nov 1993 A
5273608 Nath Dec 1993 A
5287427 Atkins et al. Feb 1994 A
5296089 Chen et al. Mar 1994 A
5300461 Ting Apr 1994 A
5302474 Shackle et al. Apr 1994 A
5303319 Ford et al. Apr 1994 A
5306569 Hiraki Apr 1994 A
5307240 McMahon Apr 1994 A
5309302 Vollmann May 1994 A
5314765 Bates May 1994 A
5326652 Lake Jul 1994 A
5326653 Chang Jul 1994 A
5338624 Gruenstern et al. Aug 1994 A
5338625 Bates et al. Aug 1994 A
5342709 Yahnke et al. Aug 1994 A
5355089 Treger et al. Oct 1994 A
5360686 Peled et al. Nov 1994 A
5362579 Rossoll et al. Nov 1994 A
5381262 Arima et al. Jan 1995 A
5387482 Anani Feb 1995 A
5401595 Kagawa et al. Mar 1995 A
5403680 Otagawa et al. Apr 1995 A
5411537 Munshi et al. May 1995 A
5411592 Ovshinsky et al. May 1995 A
5419982 Tura et al. May 1995 A
5427669 Drummond Jun 1995 A
5435826 Sakakibara et al. Jul 1995 A
5437692 Dasgupta et al. Aug 1995 A
5445856 Chaloner-Gill Aug 1995 A
5445906 Hobson et al. Aug 1995 A
5448110 Tuttle et al. Sep 1995 A
5449576 Anani Sep 1995 A
5455126 Bates et al. Oct 1995 A
5457569 Liou et al. Oct 1995 A
5458995 Behl et al. Oct 1995 A
5464692 Huber Nov 1995 A
5464706 Dasgupta et al. Nov 1995 A
5470396 Mongon et al. Nov 1995 A
5472795 Atita Dec 1995 A
5475528 LaBorde Dec 1995 A
5478456 Humpal et al. Dec 1995 A
5483613 Bruce et al. Jan 1996 A
5493177 Muller et al. Feb 1996 A
5498489 Dasgupta et al. Mar 1996 A
5499207 Miki et al. Mar 1996 A
5501918 Gruenstern et al. Mar 1996 A
5504041 Summerfelt Apr 1996 A
5512147 Bates et al. Apr 1996 A
5512387 Ovshinsky Apr 1996 A
5512389 Dasgupta et al. Apr 1996 A
5538796 Schaffer et al. Jul 1996 A
5540742 Sangyoji et al. Jul 1996 A
5547780 Kagawa et al. Aug 1996 A
5547782 Dasgupta et al. Aug 1996 A
5552242 Ovshinsky et al. Sep 1996 A
5555127 Abdelkader et al. Sep 1996 A
5561004 Bates et al. Oct 1996 A
5563979 Bruce et al. Oct 1996 A
5565071 Demaray et al. Oct 1996 A
5567210 Bates et al. Oct 1996 A
5569520 Bates Oct 1996 A
5582935 Dasgupta et al. Dec 1996 A
5591520 Migliorini et al. Jan 1997 A
5597660 Bates et al. Jan 1997 A
5597661 Takeuchi et al. Jan 1997 A
5599355 Nagasubramanian et al. Feb 1997 A
5601952 Dasgupta et al. Feb 1997 A
5603816 Demaray et al. Feb 1997 A
5607560 Hirabayashi et al. Mar 1997 A
5607789 Treger et al. Mar 1997 A
5612152 Bates Mar 1997 A
5612153 Moulton et al. Mar 1997 A
5613995 Bhandarkar et al. Mar 1997 A
5616933 Li Apr 1997 A
5618382 Mintz et al. Apr 1997 A
5625202 Chai Apr 1997 A
5637418 Brown et al. Jun 1997 A
5643480 Gustavsson et al. Jul 1997 A
5644207 Lew et al. Jul 1997 A
5645626 Edlund et al. Jul 1997 A
5645960 Scrosati et al. Jul 1997 A
5654054 Tropsha et al. Aug 1997 A
5654984 Hershbarger et al. Aug 1997 A
5658652 Sellergren Aug 1997 A
5660700 Shimizu et al. Aug 1997 A
5665490 Takeuchi et al. Sep 1997 A
5667538 Bailey Sep 1997 A
5677784 Harris Oct 1997 A
5679980 Summerfelt Oct 1997 A
5681666 Treger et al. Oct 1997 A
5686360 Harvey, III et al. Nov 1997 A
5689522 Beach Nov 1997 A
5693956 Shi et al. Dec 1997 A
5702829 Paidassi et al. Dec 1997 A
5705293 Hobson Jan 1998 A
5716728 Smesko Feb 1998 A
5718813 Drummond et al. Feb 1998 A
5719976 Henry et al. Feb 1998 A
5721067 Jacobs et al. Feb 1998 A
RE35746 Lake Mar 1998 E
5731661 So et al. Mar 1998 A
5738731 Shindo et al. Apr 1998 A
5742094 Ting Apr 1998 A
5755938 Fukui et al. May 1998 A
5755940 Shindo May 1998 A
5757126 Harvey, III et al. May 1998 A
5762768 Goy et al. Jun 1998 A
5763058 Isen et al. Jun 1998 A
5771562 Harvey, III et al. Jun 1998 A
5776278 Tuttle et al. Jul 1998 A
5779839 Tuttle et al. Jul 1998 A
5790489 O'Connor Aug 1998 A
5792550 Phillips et al. Aug 1998 A
5805223 Shikakura et al. Sep 1998 A
5811177 Shi et al. Sep 1998 A
5814195 Lehan et al. Sep 1998 A
5830330 Lantsman Nov 1998 A
5831262 Greywall et al. Nov 1998 A
5834137 Zhang et al. Nov 1998 A
5841931 Foresi et al. Nov 1998 A
5842118 Wood, Jr. Nov 1998 A
5845990 Hymer Dec 1998 A
5847865 Gopinath et al. Dec 1998 A
5849163 Ichikawa et al. Dec 1998 A
5851896 Summerfelt Dec 1998 A
5853830 McCaulley et al. Dec 1998 A
5855744 Halsey et al. Jan 1999 A
5856705 Ting Jan 1999 A
5864182 Matsuzaki Jan 1999 A
5865860 Delnick Feb 1999 A
5870273 Sogabe et al. Feb 1999 A
5874184 Takeuchi et al. Feb 1999 A
5882721 Delnick Mar 1999 A
5882946 Otani Mar 1999 A
5889383 Teich Mar 1999 A
5895731 Clingempeel Apr 1999 A
5897522 Nitzan Apr 1999 A
5900057 Buchal et al. May 1999 A
5909346 Malhotra et al. Jun 1999 A
5916704 Lewin et al. Jun 1999 A
5923964 Li Jul 1999 A
5930046 Solberg et al. Jul 1999 A
5930584 Sun et al. Jul 1999 A
5942089 Sproul et al. Aug 1999 A
5948215 Lantsmann Sep 1999 A
5948464 Delnick Sep 1999 A
5948562 Fulcher et al. Sep 1999 A
5952778 Haskal et al. Sep 1999 A
5955217 Lerberghe Sep 1999 A
5961672 Skotheim et al. Oct 1999 A
5961682 Lee et al. Oct 1999 A
5966491 DiGiovanni Oct 1999 A
5970393 Khorrami et al. Oct 1999 A
5973913 McEwen et al. Oct 1999 A
5977582 Flemming et al. Nov 1999 A
5982144 Johnson et al. Nov 1999 A
5985484 Young et al. Nov 1999 A
5985485 Ovshinsky et al. Nov 1999 A
6000603 Koskenmaki et al. Dec 1999 A
6001224 Drummond et al. Dec 1999 A
6004660 Topolski et al. Dec 1999 A
6007945 Jacobs et al. Dec 1999 A
6013949 Tuttle Jan 2000 A
6019284 Freeman et al. Feb 2000 A
6023610 Wood, Jr. Feb 2000 A
6024844 Drummond et al. Feb 2000 A
6025094 Visco et al. Feb 2000 A
6028990 Shahani et al. Feb 2000 A
6030421 Gauthier et al. Feb 2000 A
6033768 Muenz et al. Mar 2000 A
6042965 Nestler et al. Mar 2000 A
6045626 Yano et al. Apr 2000 A
6045652 Tuttle et al. Apr 2000 A
6045942 Miekka et al. Apr 2000 A
6046081 Kuo Apr 2000 A
6046514 Rouillard et al. Apr 2000 A
6048372 Mangahara et al. Apr 2000 A
6051114 Yao et al. Apr 2000 A
6051296 McCaulley et al. Apr 2000 A
6052397 Jeon et al. Apr 2000 A
6057557 Ichikawa May 2000 A
6058233 Dragone May 2000 A
6071323 Kawaguchi Jun 2000 A
6075973 Greeff et al. Jun 2000 A
6077106 Mish Jun 2000 A
6077642 Ogata et al. Jun 2000 A
6078791 Tuttle et al. Jun 2000 A
6080508 Dasgupta et al. Jun 2000 A
6080643 Noguchi et al. Jun 2000 A
6093944 VanDover Jul 2000 A
6094292 Goldner et al. Jul 2000 A
6096569 Matsuno et al. Aug 2000 A
6100108 Mizuno et al. Aug 2000 A
6106933 Nagai et al. Aug 2000 A
6110531 Paz De Araujo Aug 2000 A
6115616 Halperin et al. Sep 2000 A
6117279 Smolanoff et al. Sep 2000 A
6118426 Albert et al. Sep 2000 A
6120890 Chen et al. Sep 2000 A
6129277 Grant et al. Oct 2000 A
6133670 Rodgers et al. Oct 2000 A
6137671 Staffiere Oct 2000 A
6144916 Wood, Jr. et al. Nov 2000 A
6146225 Sheats et al. Nov 2000 A
6148503 Delnick et al. Nov 2000 A
6156452 Kozuki et al. Dec 2000 A
6157765 Bruce et al. Dec 2000 A
6159635 Dasgupta et al. Dec 2000 A
6160373 Dunn et al. Dec 2000 A
6162709 Raoux et al. Dec 2000 A
6165566 Tropsha Dec 2000 A
6168884 Neudecker et al. Jan 2001 B1
6169474 Greeff et al. Jan 2001 B1
6175075 Shiotsuka et al. Jan 2001 B1
6176986 Watanabe et al. Jan 2001 B1
6181283 Johnson et al. Jan 2001 B1
6192222 Greeff et al. Feb 2001 B1
6197167 Tanaka Mar 2001 B1
6198217 Suzuki et al. Mar 2001 B1
6204111 Uemoto et al. Mar 2001 B1
6210544 Sasaki Apr 2001 B1
6210832 Visco et al. Apr 2001 B1
6214061 Visco et al. Apr 2001 B1
6214660 Uemoto et al. Apr 2001 B1
6218049 Bates et al. Apr 2001 B1
6220516 Tuttle et al. Apr 2001 B1
6223317 Pax et al. Apr 2001 B1
6228532 Tsuji et al. May 2001 B1
6229987 Greeff et al. May 2001 B1
6232242 Hata et al. May 2001 B1
6235432 Kono et al. May 2001 B1
6236793 Lawrence et al. May 2001 B1
6242128 Tura et al. Jun 2001 B1
6242129 Johnson Jun 2001 B1
6242132 Neudecker et al. Jun 2001 B1
6248291 Nakagama et al. Jun 2001 B1
6248481 Visco et al. Jun 2001 B1
6248640 Nam Jun 2001 B1
6249222 Gehlot Jun 2001 B1
6252564 Albert et al. Jun 2001 B1
6258252 Miyasaka et al. Jul 2001 B1
6261917 Quek et al. Jul 2001 B1
6264709 Yoon et al. Jul 2001 B1
6265652 Kurata et al. Jul 2001 B1
6268695 Affinito Jul 2001 B1
6271053 Kondo Aug 2001 B1
6271793 Brady et al. Aug 2001 B1
6271801 Tuttle et al. Aug 2001 B2
6280585 Obinata Aug 2001 B1
6280875 Kwak et al. Aug 2001 B1
6281142 Basceri Aug 2001 B1
6284406 Xing et al. Sep 2001 B1
6287986 Mihara Sep 2001 B1
6289209 Wood, Jr. Sep 2001 B1
6290821 McLeod Sep 2001 B1
6290822 Fleming et al. Sep 2001 B1
6291098 Shibuya et al. Sep 2001 B1
6294722 Kondo et al. Sep 2001 B1
6296949 Bergstresser et al. Oct 2001 B1
6296967 Jacobs et al. Oct 2001 B1
6296971 Hara Oct 2001 B1
6300215 Shin Oct 2001 B1
6302939 Rabin Oct 2001 B1
6306265 Fu et al. Oct 2001 B1
6316563 Naijo et al. Nov 2001 B2
6323416 Komori et al. Nov 2001 B1
6324211 Ovard et al. Nov 2001 B1
6325294 Tuttle et al. Dec 2001 B2
6329213 Tuttle et al. Dec 2001 B1
6339236 Tomii et al. Jan 2002 B1
6340880 Higashijima et al. Jan 2002 B1
6344366 Bates Feb 2002 B1
6344419 Forster et al. Feb 2002 B1
6344795 Gehlot Feb 2002 B1
6350353 Gopalraja et al. Feb 2002 B2
6351630 Wood, Jr. Feb 2002 B2
6356230 Greeff et al. Mar 2002 B1
6356694 Weber Mar 2002 B1
6356764 Ovard et al. Mar 2002 B1
6358810 Dornfest et al. Mar 2002 B1
6360954 Barnardo Mar 2002 B1
6361662 Chiba et al. Mar 2002 B1
6365300 Ota et al. Apr 2002 B1
6365319 Heath et al. Apr 2002 B1
6368275 Sliwa et al. Apr 2002 B1
6369316 Plessing et al. Apr 2002 B1
6372383 Lee et al. Apr 2002 B1
6372386 Cho et al. Apr 2002 B1
6373224 Goto et al. Apr 2002 B1
6375780 Tuttle et al. Apr 2002 B1
6376027 Lee et al. Apr 2002 B1
6379835 Kucherovsky et al. Apr 2002 B1
6379842 Mayer Apr 2002 B1
6379846 Terahara et al. Apr 2002 B1
6380477 Curtin Apr 2002 B1
6384573 Dunn May 2002 B1
6387563 Bates May 2002 B1
6391166 Wang May 2002 B1
6392565 Brown May 2002 B1
6394598 Kaiser May 2002 B1
6395430 Cho et al. May 2002 B1
6396001 Nakamura May 2002 B1
6398824 Johnson Jun 2002 B1
6399241 Hara et al. Jun 2002 B1
6402039 Freeman et al. Jun 2002 B1
6402795 Chu et al. Jun 2002 B1
6402796 Johnson Jun 2002 B1
6409965 Nagata et al. Jun 2002 B1
6413284 Chu et al. Jul 2002 B1
6413285 Chu et al. Jul 2002 B1
6413382 Wang et al. Jul 2002 B1
6413645 Graff et al. Jul 2002 B1
6413676 Munshi Jul 2002 B1
6414626 Greeff et al. Jul 2002 B1
6416598 Sircar Jul 2002 B1
6420961 Bates et al. Jul 2002 B1
6422698 Kaiser Jul 2002 B2
6423106 Bates Jul 2002 B1
6423776 Akkapeddi et al. Jul 2002 B1
6426163 Pasquier et al. Jul 2002 B1
6432577 Shul et al. Aug 2002 B1
6432584 Visco et al. Aug 2002 B1
6433380 Shin Aug 2002 B2
6433465 McKnight et al. Aug 2002 B1
6436156 Wandeloski et al. Aug 2002 B1
6437231 Kurata et al. Aug 2002 B2
6444336 Jia et al. Sep 2002 B1
6444355 Murai et al. Sep 2002 B1
6444368 Hikmet et al. Sep 2002 B1
6444750 Touhsaent Sep 2002 B1
6459418 Comiskey et al. Oct 2002 B1
6459726 Ovard et al. Oct 2002 B1
6466771 Wood, Jr. Oct 2002 B2
6475668 Hosokawa et al. Nov 2002 B1
6480699 Lovoi Nov 2002 B1
6481623 Grant et al. Nov 2002 B1
6488822 Moslehi Dec 2002 B1
6494999 Herrera et al. Dec 2002 B1
6495283 Yoon et al. Dec 2002 B1
6497598 Affinito Dec 2002 B2
6500287 Azens et al. Dec 2002 B1
6503661 Park et al. Jan 2003 B1
6503831 Speakman Jan 2003 B2
6506289 Demaray et al. Jan 2003 B2
6511516 Johnson et al. Jan 2003 B1
6511615 Dawes et al. Jan 2003 B1
6517968 Johnson et al. Feb 2003 B2
6522067 Graff et al. Feb 2003 B1
6524466 Bonaventura et al. Feb 2003 B1
6524750 Mansuetto Feb 2003 B1
6525976 Johnson Feb 2003 B1
6528212 Kusumoto et al. Mar 2003 B1
6529827 Beason et al. Mar 2003 B1
6533907 Demaray et al. Mar 2003 B2
6537428 Xiong et al. Mar 2003 B1
6538211 St. Lawrence et al. Mar 2003 B2
6541147 McLean et al. Apr 2003 B1
6548912 Graff et al. Apr 2003 B1
6551745 Moutsios et al. Apr 2003 B2
6558836 Whitacre et al. May 2003 B1
6562513 Takeuchi et al. May 2003 B1
6563998 Farah et al. May 2003 B1
6569564 Lane May 2003 B1
6569570 Sonobe et al. May 2003 B2
6570325 Graff et al. May 2003 B2
6572173 Muller Jun 2003 B2
6573652 Graff et al. Jun 2003 B1
6576546 Gilbert et al. Jun 2003 B2
6579728 Grant et al. Jun 2003 B2
6582480 Pasquier et al. Jun 2003 B2
6582481 Erbil Jun 2003 B1
6582852 Gao et al. Jun 2003 B1
6589299 Missling et al. Jul 2003 B2
6593150 Ramberg et al. Jul 2003 B2
6599662 Chiang et al. Jul 2003 B1
6600905 Greeff et al. Jul 2003 B2
6602338 Chen et al. Aug 2003 B2
6603139 Tessler et al. Aug 2003 B1
6603391 Greeff et al. Aug 2003 B1
6605228 Kawaguchi et al. Aug 2003 B1
6608464 Lew et al. Aug 2003 B1
6608470 Oglesbee et al. Aug 2003 B1
6610440 LaFollette et al. Aug 2003 B1
6615614 Makikawa et al. Sep 2003 B1
6616035 Ehrensvard et al. Sep 2003 B2
6618829 Pax et al. Sep 2003 B2
6620545 Goenka et al. Sep 2003 B2
6622049 Penner et al. Sep 2003 B2
6632563 Krasnov et al. Oct 2003 B1
6637906 Knoerzer et al. Oct 2003 B2
6637916 Mullner Oct 2003 B2
6639578 Comiskey et al. Oct 2003 B1
6642895 Zurcher et al. Nov 2003 B2
6645675 Munshi Nov 2003 B1
6650000 Ballantine et al. Nov 2003 B2
6650942 Howard et al. Nov 2003 B2
6662430 Brady et al. Dec 2003 B2
6664006 Munshi Dec 2003 B1
6673484 Matsuura Jan 2004 B2
6673716 D'Couto et al. Jan 2004 B1
6674159 Peterson et al. Jan 2004 B1
6677070 Kearl Jan 2004 B2
6683244 Fujimori et al. Jan 2004 B2
6683749 Daby et al. Jan 2004 B2
6686096 Chung Feb 2004 B1
6693840 Shimada et al. Feb 2004 B2
6700491 Shafer Mar 2004 B2
6706449 Mikhaylik et al. Mar 2004 B2
6709778 Johnson Mar 2004 B2
6713216 Kugai et al. Mar 2004 B2
6713389 Speakman Mar 2004 B2
6713987 Krasnov et al. Mar 2004 B2
6723140 Chu et al. Apr 2004 B2
6730423 Einhart et al. May 2004 B2
6733924 Skotheim et al. May 2004 B1
6737197 Chu et al. May 2004 B2
6737789 Radziemski et al. May 2004 B2
6741178 Tuttle May 2004 B1
6750156 Le et al. Jun 2004 B2
6752842 Luski et al. Jun 2004 B2
6753108 Hampden-Smith et al. Jun 2004 B1
6753114 Jacobs et al. Jun 2004 B2
6760520 Medin et al. Jul 2004 B1
6764525 Whitacre et al. Jul 2004 B1
6768246 Pelrine et al. Jul 2004 B2
6768855 Bakke et al. Jul 2004 B1
6770176 Benson et al. Aug 2004 B2
6773848 Nortoft et al. Aug 2004 B1
6780208 Hopkins et al. Aug 2004 B2
6797428 Skotheim et al. Sep 2004 B1
6797429 Komatsu Sep 2004 B1
6805998 Jensen et al. Oct 2004 B2
6805999 Lee et al. Oct 2004 B2
6818356 Bates Nov 2004 B1
6822157 Fujioka Nov 2004 B2
6824922 Park et al. Nov 2004 B2
6827826 Demaray et al. Dec 2004 B2
6828063 Park et al. Dec 2004 B2
6828065 Munshi Dec 2004 B2
6830846 Kramlich et al. Dec 2004 B2
6835493 Zhang et al. Dec 2004 B2
6838209 Langan et al. Jan 2005 B2
6846765 Imamura et al. Jan 2005 B2
6852139 Zhang et al. Feb 2005 B2
6855441 Levanon Feb 2005 B1
6861821 Masumoto et al. Mar 2005 B2
6863699 Krasnov et al. Mar 2005 B1
6865080 Radosevich et al. Mar 2005 B2
6866901 Burrows et al. Mar 2005 B2
6866963 Seung et al. Mar 2005 B2
6869722 Kearl Mar 2005 B2
6884327 Pan et al. Apr 2005 B2
6886240 Zhang et al. May 2005 B2
6890385 Tsuchiya et al. May 2005 B2
6896992 Kearl May 2005 B2
6899975 Watanabe et al. May 2005 B2
6902660 Lee et al. Jun 2005 B2
6905578 Moslehi et al. Jun 2005 B1
6906436 Jenson et al. Jun 2005 B2
6911667 Pichler et al. Jun 2005 B2
6916679 Snyder et al. Jul 2005 B2
6921464 Krasnov et al. Jul 2005 B2
6923702 Graff et al. Aug 2005 B2
6924164 Jensen Aug 2005 B2
6929879 Yamazaki Aug 2005 B2
6936377 Wensley et al. Aug 2005 B2
6936381 Skotheim et al. Aug 2005 B2
6936407 Pichler Aug 2005 B2
6949389 Pichler et al. Sep 2005 B2
6955986 Li Oct 2005 B2
6962613 Jenson Nov 2005 B2
6962671 Martin et al. Nov 2005 B2
6964829 Utsugi et al. Nov 2005 B2
6982132 Goldner et al. Jan 2006 B1
6986965 Jenson et al. Jan 2006 B2
6994933 Bates Feb 2006 B1
7022431 Shchori et al. Apr 2006 B2
7033406 Weir et al. Apr 2006 B2
7045246 Simburger et al. May 2006 B2
7045372 Ballantine et al. May 2006 B2
7056620 Krasnov et al. Jun 2006 B2
7073723 Fürst et al. Jul 2006 B2
7095372 Soler Castany et al. Aug 2006 B2
7129166 Speakman Oct 2006 B2
7131189 Jenson Nov 2006 B2
7144654 LaFollette et al. Dec 2006 B2
7144655 Jenson et al. Dec 2006 B2
7157187 Jenson Jan 2007 B2
7158031 Tuttle Jan 2007 B2
7162392 Vock et al. Jan 2007 B2
7183693 Brantner et al. Feb 2007 B2
7186479 Krasnov et al. Mar 2007 B2
7194801 Jenson et al. Mar 2007 B2
7198832 Burrows et al. Apr 2007 B2
7202825 Leizerovich et al. Apr 2007 B2
7220517 Park et al. May 2007 B2
7230321 McCain Jun 2007 B2
7247408 Skotheim et al. Jul 2007 B2
7253494 Mino et al. Aug 2007 B2
7265674 Tuttle Sep 2007 B2
7267904 Komatsu et al. Sep 2007 B2
7267906 Mizuta et al. Sep 2007 B2
7273682 Park et al. Sep 2007 B2
7274118 Jenson et al. Sep 2007 B2
7288340 Iwamoto Oct 2007 B2
7316867 Park et al. Jan 2008 B2
7323634 Speakman Jan 2008 B2
7332363 Edwards Feb 2008 B2
7335441 Luski et al. Feb 2008 B2
RE40137 Tuttle et al. Mar 2008 E
7345647 Rodenbeck Mar 2008 B1
7348099 Mukai et al. Mar 2008 B2
7389580 Jenson et al. Jun 2008 B2
7400253 Cohen Jul 2008 B2
7410730 Bates Aug 2008 B2
RE40531 Graff et al. Oct 2008 E
7466274 Lin et al. Dec 2008 B2
7468221 LaFollette et al. Dec 2008 B2
7494742 Tarnowski et al. Feb 2009 B2
7670724 Chan et al. Mar 2010 B1
7848715 Boos Dec 2010 B2
7858223 Visco et al. Dec 2010 B2
8010048 Brommer et al. Aug 2011 B2
8034006 Celik-Butler et al. Oct 2011 B2
8056814 Martin et al. Nov 2011 B2
20010005561 Yamada et al. Jun 2001 A1
20010027159 Kaneyoshi Oct 2001 A1
20010031122 Lackritz et al. Oct 2001 A1
20010032666 Jenson et al. Oct 2001 A1
20010033952 Jenson et al. Oct 2001 A1
20010034106 Moise et al. Oct 2001 A1
20010041294 Chu et al. Nov 2001 A1
20010041460 Wiggins Nov 2001 A1
20010052752 Ghosh et al. Dec 2001 A1
20010054437 Komori et al. Dec 2001 A1
20010055719 Akashi et al. Dec 2001 A1
20020000034 Jenson Jan 2002 A1
20020001746 Jenson Jan 2002 A1
20020001747 Jenson Jan 2002 A1
20020004167 Jenson et al. Jan 2002 A1
20020009630 Gao et al. Jan 2002 A1
20020019296 Freeman et al. Feb 2002 A1
20020028377 Gross Mar 2002 A1
20020033330 Demaray et al. Mar 2002 A1
20020037756 Jacobs et al. Mar 2002 A1
20020066539 Muller Jun 2002 A1
20020067615 Muller Jun 2002 A1
20020071989 Verma et al. Jun 2002 A1
20020076133 Li et al. Jun 2002 A1
20020091929 Ehrensvard Jul 2002 A1
20020093029 Ballantine et al. Jul 2002 A1
20020106297 Ueno et al. Aug 2002 A1
20020110733 Johnson Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020134671 Demaray et al. Sep 2002 A1
20020139662 Lee Oct 2002 A1
20020140103 Kloster et al. Oct 2002 A1
20020159245 Murasko et al. Oct 2002 A1
20020161404 Schmidt Oct 2002 A1
20020164441 Amine et al. Nov 2002 A1
20020170821 Sandlin et al. Nov 2002 A1
20020170960 Ehrensvard et al. Nov 2002 A1
20030019326 Han et al. Jan 2003 A1
20030022487 Yoon et al. Jan 2003 A1
20030024994 Ladyansky Feb 2003 A1
20030029493 Plessing Feb 2003 A1
20030030589 Zurcher et al. Feb 2003 A1
20030035906 Memarian et al. Feb 2003 A1
20030036003 Shchori et al. Feb 2003 A1
20030042131 Johnson Mar 2003 A1
20030044665 Rastegar et al. Mar 2003 A1
20030048635 Knoerzer et al. Mar 2003 A1
20030063883 Demaray et al. Apr 2003 A1
20030064292 Neudecker et al. Apr 2003 A1
20030068559 Armstrong et al. Apr 2003 A1
20030076642 Shiner et al. Apr 2003 A1
20030077914 Le et al. Apr 2003 A1
20030079838 Brcka May 2003 A1
20030091904 Munshi May 2003 A1
20030095463 Shimada et al. May 2003 A1
20030097858 Strohhofer et al. May 2003 A1
20030109903 Berrang et al. Jun 2003 A1
20030127319 Demaray et al. Jul 2003 A1
20030134054 Demaray et al. Jul 2003 A1
20030141186 Wang et al. Jul 2003 A1
20030143853 Celii et al. Jul 2003 A1
20030146877 Mueller Aug 2003 A1
20030152829 Zhang et al. Aug 2003 A1
20030162094 Lee et al. Aug 2003 A1
20030173207 Zhang et al. Sep 2003 A1
20030173208 Pan et al. Sep 2003 A1
20030174391 Pan et al. Sep 2003 A1
20030175142 Milonopoulou et al. Sep 2003 A1
20030178623 Nishiki et al. Sep 2003 A1
20030178637 Chen et al. Sep 2003 A1
20030180610 Felde et al. Sep 2003 A1
20030185266 Henrichs Oct 2003 A1
20030231106 Shafer Dec 2003 A1
20030232248 Iwamoto et al. Dec 2003 A1
20040008587 Siebott et al. Jan 2004 A1
20040015735 Norman Jan 2004 A1
20040023106 Benson et al. Feb 2004 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040029311 Snyder et al. Feb 2004 A1
20040038050 Saijo et al. Feb 2004 A1
20040043557 Haukka et al. Mar 2004 A1
20040048157 Neudecker et al. Mar 2004 A1
20040058237 Higuchi et al. Mar 2004 A1
20040072067 Minami et al. Apr 2004 A1
20040077161 Chen et al. Apr 2004 A1
20040078662 Hamel et al. Apr 2004 A1
20040081415 Demaray et al. Apr 2004 A1
20040081860 Hundt et al. Apr 2004 A1
20040085002 Pearce May 2004 A1
20040101761 Park et al. May 2004 A1
20040105644 Dawes Jun 2004 A1
20040106038 Shimamura et al. Jun 2004 A1
20040106045 Ugaji Jun 2004 A1
20040106046 Inda Jun 2004 A1
20040118700 Schierle-Arndt et al. Jun 2004 A1
20040126305 Chen et al. Jul 2004 A1
20040151986 Park et al. Aug 2004 A1
20040161640 Salot Aug 2004 A1
20040175624 Luski et al. Sep 2004 A1
20040188239 Robison et al. Sep 2004 A1
20040209159 Lee et al. Oct 2004 A1
20040212276 Brantner et al. Oct 2004 A1
20040214079 Simburger et al. Oct 2004 A1
20040219434 Benson et al. Nov 2004 A1
20040245561 Sakashita et al. Dec 2004 A1
20040258984 Ariel et al. Dec 2004 A1
20040259305 Demaray et al. Dec 2004 A1
20050000794 Demaray et al. Jan 2005 A1
20050006768 Narasimhan et al. Jan 2005 A1
20050048802 Zhang et al. Mar 2005 A1
20050070097 Barmak et al. Mar 2005 A1
20050072458 Goldstein Apr 2005 A1
20050079418 Kelley et al. Apr 2005 A1
20050095506 Klaassen May 2005 A1
20050105231 Hamel et al. May 2005 A1
20050110457 LaFollette et al. May 2005 A1
20050112461 Amine et al. May 2005 A1
20050118464 Levanon Jun 2005 A1
20050130032 Krasnov et al. Jun 2005 A1
20050133361 Ding et al. Jun 2005 A1
20050141170 Honda et al. Jun 2005 A1
20050142447 Nakai et al. Jun 2005 A1
20050147877 Tarnowski et al. Jul 2005 A1
20050158622 Mizuta et al. Jul 2005 A1
20050170736 Cok Aug 2005 A1
20050175891 Kameyama et al. Aug 2005 A1
20050176181 Burrows et al. Aug 2005 A1
20050181280 Ceder et al. Aug 2005 A1
20050183946 Pan et al. Aug 2005 A1
20050189139 Stole Sep 2005 A1
20050208371 Kim et al. Sep 2005 A1
20050239917 Nelson et al. Oct 2005 A1
20050255828 Fisher Nov 2005 A1
20050266161 Medeiros et al. Dec 2005 A1
20060019504 Taussig Jan 2006 A1
20060021214 Jenson et al. Feb 2006 A1
20060021261 Face Feb 2006 A1
20060040177 Onodera et al. Feb 2006 A1
20060046907 Rastegar et al. Mar 2006 A1
20060054496 Zhang et al. Mar 2006 A1
20060057283 Zhang et al. Mar 2006 A1
20060057304 Zhang et al. Mar 2006 A1
20060063074 Jenson et al. Mar 2006 A1
20060071592 Narasimhan et al. Apr 2006 A1
20060155545 Jayne Jul 2006 A1
20060201583 Michaluk et al. Sep 2006 A1
20060210779 Weir et al. Sep 2006 A1
20060222954 Skotheim et al. Oct 2006 A1
20060234130 Inda Oct 2006 A1
20060237543 Goto et al. Oct 2006 A1
20060244581 Breed et al. Nov 2006 A1
20060255435 Fuergut et al. Nov 2006 A1
20060286448 Snyder et al. Dec 2006 A1
20070009802 Lee et al. Jan 2007 A1
20070021156 Hoong et al. Jan 2007 A1
20070023275 Tanase et al. Feb 2007 A1
20070037058 Visco et al. Feb 2007 A1
20070053139 Zhang et al. Mar 2007 A1
20070087230 Jenson et al. Apr 2007 A1
20070091543 Gasse et al. Apr 2007 A1
20070125638 Zhang et al. Jun 2007 A1
20070141468 Barker Jun 2007 A1
20070148065 Weir et al. Jun 2007 A1
20070148553 Weppner Jun 2007 A1
20070151661 Mao et al. Jul 2007 A1
20070164376 Burrows et al. Jul 2007 A1
20070166612 Krasnov et al. Jul 2007 A1
20070184345 Neudecker et al. Aug 2007 A1
20070196682 Visser et al. Aug 2007 A1
20070202395 Snyder et al. Aug 2007 A1
20070205513 Brunnbauer et al. Sep 2007 A1
20070210459 Burrows et al. Sep 2007 A1
20070222681 Greene et al. Sep 2007 A1
20070224951 Gilb et al. Sep 2007 A1
20070229228 Yamazaki et al. Oct 2007 A1
20070235320 White et al. Oct 2007 A1
20070264564 Johnson et al. Nov 2007 A1
20070278653 Brunnbauer et al. Dec 2007 A1
20070298326 Angell et al. Dec 2007 A1
20080003496 Neudecker et al. Jan 2008 A1
20080008936 Mizuta et al. Jan 2008 A1
20080014501 Skotheim et al. Jan 2008 A1
20080057397 Skotheim et al. Mar 2008 A1
20080150829 Lin et al. Jun 2008 A1
20080213672 Skotheim et al. Sep 2008 A1
20080233708 Hisamatsu Sep 2008 A1
20080254575 Fuergut et al. Oct 2008 A1
20080261107 Snyder et al. Oct 2008 A1
20080263855 Li et al. Oct 2008 A1
20080286651 Neudecker et al. Nov 2008 A1
20080297116 Odaohhara et al. Dec 2008 A1
20090092903 Johnson et al. Apr 2009 A1
20090124201 Meskens May 2009 A1
20090181303 Neudecker et al. Jul 2009 A1
20090211353 Gao et al. Aug 2009 A1
20090302226 Schieber et al. Dec 2009 A1
20090308936 Nitzan et al. Dec 2009 A1
20090312069 Peng et al. Dec 2009 A1
20100001079 Martin et al. Jan 2010 A1
20100032001 Brantner Feb 2010 A1
20100086853 Venkatachalam et al. Apr 2010 A1
20110267235 Brommer et al. Nov 2011 A1
20110304430 Brommer et al. Dec 2011 A1
Foreign Referenced Citations (111)
Number Date Country
1415124 Apr 2003 CN
1532984 Sep 2004 CN
19824145 Dec 1999 DE
10 2005 014 427 Sep 2006 DE
10 2006 054 309 Nov 2006 DE
10 2008 016 665 Oct 2008 DE
10 2007 030604 Jan 2009 DE
0 510 883 Oct 1992 EP
0 639 655 Feb 1995 EP
0 652 308 May 1995 EP
0 820 088 Jan 1998 EP
1 068 899 Jan 2001 EP
0 867 985 Feb 2001 EP
1 092 689 Apr 2001 EP
1 189 080 Mar 2002 EP
1 713 024 Oct 2006 EP
2 861 218 Apr 2005 FR
2806198 Sep 2011 FR
55-009305 Jan 1980 JP
56-076060 Jun 1981 JP
56-156675 Dec 1981 JP
60-068558 Apr 1985 JP
61-269072 Nov 1986 JP
62-267944 Nov 1987 JP
63-290922 Nov 1988 JP
2000-162234 Nov 1988 JP
2-054764 Feb 1990 JP
2-230662 Sep 1990 JP
03-036962 Feb 1991 JP
4-058456 Feb 1992 JP
4-072049 Mar 1992 JP
6-010127 Jan 1994 JP
6-100333 Apr 1994 JP
7-233469 May 1995 JP
7-224379 Aug 1995 JP
08-114408 May 1996 JP
10-026571 Jan 1998 JP
10-239187 Sep 1998 JP
11-204088 Jul 1999 JP
2000-144435 May 2000 JP
2000-188099 Jul 2000 JP
2000-268867 Sep 2000 JP
2001-171812 Jun 2001 JP
2001-259494 Sep 2001 JP
2001-297764 Oct 2001 JP
2001-328198 Nov 2001 JP
2002-140776 May 2002 JP
2002-344115 Nov 2002 JP
2003-17040 Jan 2003 JP
2003-347045 Dec 2003 JP
2004-071305 Mar 2004 JP
2004-149849 May 2004 JP
2004-158268 Jun 2004 JP
2004-273436 Sep 2004 JP
2005-256101 Sep 2005 JP
2002-026412 Feb 2007 JP
7-107752 Apr 2007 JP
20020007881 Jan 2002 KR
20020017790 Mar 2002 KR
20020029813 Apr 2002 KR
20020038917 May 2002 KR
20030033913 May 2003 KR
20030042288 May 2003 KR
20030085252 Nov 2003 KR
2241281 Nov 2004 RU
WO 9513629 May 1995 WO
WO 9623085 Aug 1996 WO
WO 9623217 Aug 1996 WO
WO 9727344 Jul 1997 WO
WO 9735044 Sep 1997 WO
WO 9847196 Oct 1998 WO
WO 9943034 Aug 1999 WO
WO 9957770 Nov 1999 WO
WO 0021898 Apr 2000 WO
WO 0022742 Apr 2000 WO
WO 0028607 May 2000 WO
WO 0036665 Jun 2000 WO
WO 0060682 Oct 2000 WO
WO 0060689 Oct 2000 WO
WO 0242516 May 2002 WO
WO 0247187 Jun 2002 WO
WO 02071506 Sep 2002 WO
WO 02101857 Dec 2002 WO
WO 03003485 Jan 2003 WO
WO 03005477 Jan 2003 WO
WO 03026039 Mar 2003 WO
WO 03036670 May 2003 WO
WO 03069714 Aug 2003 WO
WO 03080325 Oct 2003 WO
WO 03083166 Oct 2003 WO
WO 2004012283 Feb 2004 WO
WO 2004021532 Mar 2004 WO
WO 2004061887 Jul 2004 WO
WO 2004077519 Sep 2004 WO
WO 2004086550 Oct 2004 WO
WO 2004093223 Oct 2004 WO
WO 2004106581 Dec 2004 WO
WO 2004106582 Dec 2004 WO
WO 2005008828 Jan 2005 WO
WO 2005013394 Feb 2005 WO
WO 2005038957 Apr 2005 WO
WO 2005067645 Jul 2005 WO
WO 2005085138 Sep 2005 WO
WO 2005091405 Sep 2005 WO
WO 2006063308 Jun 2006 WO
WO 2006085307 Aug 2006 WO
WO 2007016781 Feb 2007 WO
WO 2007019855 Feb 2007 WO
WO 2007027535 Mar 2007 WO
WO 2007095604 Aug 2007 WO
WO 2008036731 Mar 2008 WO
Non-Patent Literature Citations (148)
Entry
Jones and Akridge, “A thin film solid state microbattery,” Solid State Ionics 53-56 (1992), pp. 628-634.
Dobkin, D.M., “Silicon Dioxide: Properties and Applications”.
Sarro, P., “Silicon Carbide as a New MEMS Technology,” Sensors and Actuators 82, 210-218 (2000).
Hwang et al., “Characterization of Sputter-Deposited LiMn2O4 Thin Films for Rechargeable Microbatteries,” 141(12) J. Electrochem. Soc. 3296-99 (1994).
Jones et al., 53-56 Solid State Ionics 628 (1992).
Mattox “Handbook of Physical Vapor Deposition (PVD) Processing, Society of Vacuum Coaters,” Albuquerque, New Mexico 660f and 692ff, Noyes Publications (1998).
Hill, R. et al., “Large Area Deposition by Mid-Frequency AC Sputtering,” Society of Vacuum Coaters, 41st Annual Tech. Conference Proceedings, 197-202 (1998).
Macák, Karol et al., “Ionized Sputter Deposition Using an Extremely High Plasma Density Pulsed Magnetron Discharge,” J. Vac. Sci. Technol. A 18(4):1533-37 (2000).
Balanis, Constantine A., “Antenna Theory: Analysis and Design,” 3rd Ed., pp. 817-820 (John Wiley & Sons, Inc. Publication, 2005).
Starner “Human-Powered Wearable Computing” 35(3&4) IBM Sys. J. 618-29 (1996)[1].
Strohhofer, C. and Polman, A. “Energy transfer to Er3+ in Ag ion-exchanged glass,” FOM Institute for Atomic and Molecular Physics, 10 pages (2001).
Sugiyama, A. et al., “Gas Permeation Through the Pinholes of Plastic Film Laminated with Aluminum Foil,” Vuoto XXVIII(1-2):51-54 (1999).
Tervonen, A. “Challenges and opportunities for integrated optics in optical networks,” SPIE 3620:2-11 (1999).
Ting, C.Y. et al., “Study of planarized sputter-deposited SiO2” J. Vac. Sci Technol, 15(3):1105-1112 (1978).
Tomaszewski, H. et al., “Yttria-stabilized zirconia thin films grown by reactive r.f. magnetron sputtering,” Thin Solid Films 287: 104-109 (1996).
Triechel, O. and Kirchhoff, V., “The influences of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass,” Surface and Coating Technology 123:268-272 (2000).
Tukamoto, H. and West, A.R., “Electronic Conductivity of LiCoOs and Its Enhancement by Magnesium Doping,” J. Electrochem. Soc 144(9):3164-3168 (1997).
Van Dover, R.B., “Amorphous Lanthanide-Doped TiOx Dielectric Films,” Appl. Phys. Lett. 74(20):3041-3043 (1999).
Viljanen, J. and Leppihalme, M., “Planner Optical Coupling Elements for Multimode Fibers with Two-Step Ion Migration Process,” Applied Physics 24(1):61-63 (1981).
Villegas, M.A. et al., “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37(6):248-253 (1996).
Von Rottkay, K. et al., “Influences of stoichiometry on electrochromic cerium-titanium oxide compounds,” Presented at the 11th Int'l Conference of Solid State Ionics, Honolulu, Hawaii, Nov. 19, 1997, Published in Solid State Ionics 113-115:425-430. (1998).
Wang, B. et al., “Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes,” J. Electrochem. Soc. 143:3203-13 (1996).
Westlinder, J. et al., “Simulations and Dielectric Characterization of Reactive dc Magnetron Cosputtered (Ta2O5)1-−(TiO2)x Thin Films,” J Vac. Sci. Technol. B 20(3):855-861 (May/Jun. 2002).
Wilkes, K.E., “Gas Permeation Through Vacuum Barrier Films and its Effect on VIP Thermal Performance,” presented at the Vacuum Insulation Panel Symp., Baltimore, Maryland, 21 pages (May 3, 1999).
Yanagawa, H. et al., “Index-and-Dimensional Taper and Its Application to Photonic Devices,” J. Lightwave Technology 10(5):587-591 (1992).
Yoshikawa, K. et al., “Spray formed aluminum alloys for sputtering targets,” Powder Metallurgy 43(3): 198-199 (2000).
Zhang, H. et al., “High Dielectric Strength, High k TiO2 Films by Pulsed DC, Reactive Sputter Deposition,” 5 pages (2001).
Abraham, K.M. et al., “Inorganic-organic composite solid polymer electrolytes,” 147(4) J. Electrochem. Soc. 1251-56 (2000).
Appetecchi, G.B. et al., “Composite polymer electrolytes with improved lithium metal electrode interfacial properties,” 145(12) J. Electrochem. Soc. 4126-32 (1998).
Bates, J.B. et al., “Electrical properties of amorphous lithium electrolyte thin films,” 53-56 Solid State Ionics 647-54 (1992).
Abrahams, I., “Li6Zr2O7, a new anion vacancy ccp based structure, determined by ab initio powder diffraction methods,” 104 J. Solid State Chem. 397-403 (1993).
Amatucci, G. et al., “Lithium scandium phosphate-based electrolytes for solid state lithium rechargeable microbatteries,” 60 Solid State Ionics 357-65 (1993).
Yu, X. et al., “A stable thin-film lithium electrolyte: lithium phosphorus oxynitride,” 144(2) J. Electrochem. Soc. 524-532 (1997).
Delmas, C. et al., “Des conducteurs ioniques pseudo-bidimensionnels Li8MO6 (M=Zr, Sn), Li7LO6 (L=Nb, Ta) et Li6In2O6,” 14 Mat. Res. Bull. 619-25 (1979).
Hu, Y-W. et al., “Ionic conductivity of lithium phosphate-doped lithium orthosilicate,” 11 Mat. Res. Bull. 1227-30 (1976).
Neudecker, B. et al., “Li9SiAlO8: a lithium ion electrolyte for voltages above 5.4 V,” 143(7) J. Electrochem. Soc. 2198-203 (1996).
Ohno, H. et al., “Electrical conductivity of a sintered pellet of octalithium zirconate,” 132 J. Nucl. Mat. 222-30 (1985).
Scholder, V. et al., “Über Zirkonate, Hafnate und Thorate von Barium, Strontium, Lithium und Natrium,” Zeitschrift für Anorganische und Allgemeine Chemie, Band 362, pp. 149-168 (1968).
Affinito, J.D. et al., “PML/oxide/PML barrier layer performance differences arising from use of UV or electron beam polymerization of the PML layers,” Thin Solid Films 308-309: 19-25 (1997).
Affinito, J.D. et al., “Polymer-oxide transparent barrier layers,” Society of Vacuum Coaters, 39th Ann. Technical Conference Proceedings, May 5-10, 1996, Philadelphia, PA, pp. 392-397 (1996).
Alder, T. et al., “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photonics Tech. Lett. 12(8): 1016-1018 (2000).
Almeida, V.R. et al., “Nanotaper for compact mode conversion,” Optics Letters 28(15): 1302-1304 (2003).
Anh et al., “Significant Suppression of Leakage Current in (Ba,Sr)TiO3 Thin Films by Ni or Mn Doping,” J. Appl. Phys.,92(5): 2651-2654 (Sep. 2002).
Asghari, M. and Dawnay, E., “ASOC™—a manufacturing integrated optics technology,” SPIE 3620: 252-262 (Jan. 1999).
Barbier, D. et al., “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Tech. Lett. 9:315-317 (1997).
Barbier, D., “Performances and potential applications of erbium doped planar waveguide amplifiers and lasers,” Proc. OAA, Victoria, BC, Canada, pp. 58-63 (Jul. 21-23, 1997).
Bates et al., “Thin-Film Lithium Batteries” in New Trends in Electrochemical Technology: Energy Storage Systems for Electronics (T. Osaka & M. Dana eds. Gordon and Breach 2000).
Beach R.J., “Theory and optimization of lens ducts,” Applied Optics 35(12): 2005-2015 (1996).
Belkind, A. et al., “Pulsed-DC Reactive Sputtering of Dielectrics: Pulsing Parameter Effects,” 43rd Annual Technical Conference Proceedings (2000).
Belkind, A. et al., “Using pulsed direct current power for reactive sputtering of Al2O3,” J. Vac. Sci. Technol. A 17(4): 1934-1940 (1999).
Bestwick, T., “ASOC™ silicon integrated optics technology,” SPIE 3631: 182-190 (1999).
Borsella, E. et al., “Structural incorporation of silver in soda-lime glass by the ion-exchange process: a photoluminescence spectroscopy study,” Applied Physics A 71: 125-132 (2000).
Byer, R.L., “Nonlinear optics and solid-state lasers: 2000,” IEEE J. Selected Topics in Quantum Electronics 6(6): 911-930 (2000).
Campbell, S.A. et al., “Titanium dioxide (TiO2)-based gate insulators,” IBM J. Res. Develop. 43(3): 383-392 (1999).
Inaguma, Yoshiyuki, “High Ionic Conductivity in Lithium Lanthanum Titanate,” Solid State Communications,vol. 86, No. 10, pp. 689-693 (1993).
Guy, D., “Novel Architecture of Composite Electrode for Optimization of Lithium Battery Performance,” Journal of Power Sources 157, pp. 438-442 (2006).
Wolfenstine, J., “Electrical Conductivity and Charge Compensation in Ta Doped Li4Ti5O12,” Journal of Power Sources 180, pp. 582-585 (2008).
Balanis, Constantine A., “Antenna Theory: Analysis and Design,” 3rd Ed., pp. 811-820 (2005).
Lee, B.H. et al., “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silion,” Appl. Phys. Lett. 74(21):3143-3145 (1999).
Lee, K.K. et al., “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11):1617-1619 (2000).
Love, J.D. et al., “Quantifying Loss Minimisation in Single-Mode Fibre Tapers,” Electronics Letters 22(17):912-914 (1986).
Mardare, D. and Rusu, G.I., “On the structure of Titanium Oxide Thin Films,” Andalele Stiintifice Ale Universitatii IASI, Romania, pp. 201-208 (1999).
Marques, P.V.S. et al., “Planar Silica-on-Silicon Waveguide Lasers Based in Two Layers Core Devices,” 10th European Conference on Integrated Optics, Session WeB2, pp. 79-82 (2001).
Meijerink, A. et al, “Luminescence of Ag+ in Crystalline and Glassy Srb4O7,” J. Physics Chem. Solids 54(8):901-906 (1993).
Mesnaoui, M. et al, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3—AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29:1001-1013 (1992).
Mitomi, O. et al., “Design of a Single-Mode Tapered Waveguide for Low-Loss Chip-to-Fiber Coupling,” IEEE J. Quantum Electronics 30(8): 1787-1793 (1994).
Mizuno, Y. et al “Temperature dependence of oxide decomposition on titanium surfaces in UHV,” J. Vac. Sci & Tech. A. 20(5): 1716-1721 (2002).
Ohkubo, H. et al., Polarization-Insensitive Arrayed-Waveguide Grating Using Pure SiO2 Cladding, Fifth Optoelectronics and Communication Conference (OECC 2000) Technical Digest, pp. 366-367 (2000).
Ohmi, S. et al., “Rare earth mental oxides for high-K fate insulator,” VLSI Design 2004, 1 Page (2004).
Ohtsuki, T., et al., “Gain Characteristics of high concentration Er3+-doped phosphate glass waveguide,” J. Appl. Phys. 78(6):3617-3621 (1995).
Ono, H. et al., “Design of a Low-loss Y-branch Optical Waveguide,” Fifth Optoelectronic and Communications Conference (OECC 2000) Technical Digest, pp. 502-503 (2000).
Padmini, P. et al. “Realization of High Tunability Barium Strontium Titanate Thin Films by rf Megnetron Sputtering,” Appl. Phys. Lett. 75(20):3186-3188 (1999).
Pan, T. et al., “Planar Er3+-doped aluminosilicate waveguide amplifier with more than 10 dB gain across C-band,” Optical Society of America, 3 pages (2000).
Park et al., “Characteristics of Pt Thin Film on the Conducting Ceramics TiO and Ebonex (Ti4O7) as Electrode Materials,” Thin Solid Films 258: 5-9 (1995).
Peters, D.P. et al., “Formation mechanism of silver nanocrystals made by ion irradiation of Na+—Ag+ ion-exchanged sodalime silicate glass,” Nuclear Instruments and Methods in Physics Research B 168:237-244 (2000).
Rajarajan, M. et al., “Numerical Study of Spot-Size Expanders fro an Efficient OEIC to SMF Coupling,” IEEE Photonics Technology Letters 10(8): 1082-1084 (1998).
Ramaswamy, R.V. et al., “Ion-Exchange Glass Waveguides: A Review,” J. Lightwave Technology 6(6): 984-1002 (1988).
Roberts, S.W. et al., “The Photoluminescence of Erbium-doped Silicon Monoxide,” University of Southampton , Department of Electronics and Computer Science Research Journal, 7 pages (1996).
Saha et al., “Large Reduction of Leakage Current by Graded-Layer La Doping in (Ba0.5,Sr0.5)TiO3 Thin Films,” Appl. Phys. Lett. 79(1): 111-113 (Jul. 2001).
Sanyo Vacuum Industries Co., Ltd. Products Infor, TiO2, (2003), 1 page, http://www.sanyovac.co.jp/Englishweb/products?ETiO2.htm.
Schermer, R. et al., “Investigation of Mesa Dielectric Waveguides,” Proceedings of the OSA Integrated Photonics Research Topical Meeting and Exhibit, Paper No. IWB3, 3 pages (2001).
Schiller, S. et al., “PVD Coating of Plastic Webs and Sheets with High Rates on Large Areas,” European Materials Research Society 1999 Spring Meeting, Jun. 1-4, 1999, Strasbourg, France, 13 pages (1999).
Scholl, R., “Power Supplies for Pulsed Plasma Technologies: State-of-the-Art and Outlook,” Advances Energy Industries, Inc. 1-8 (1999).
Scholl, R., “Power Systems for Reactive Sputtering of Insulating Films,” Advances Energy Industries, Inc., 1-8 (Aug. 2001).
Second International Symposium of Polymer Surface Modification: Relevance to Adhesion, Preliminary Program, 13 pages (1999).
Seventh International Conference on TiO2 Photocatalysis: Fundamentals & Applications, Toronto, Ontario, Canada, Final Program, 7 pages (Nov. 17-21, 2002).
Sewell, P. et al., “Rib Waveguide Spot-Size Transformers: Modal Properties,” J Lightwave Technology 17(5):848-856 (1999).
Shaw, D.G. et al., “Use of Vapor Deposited Acrylate Coatings to Improve the Barrier Properties of Metallized Film,” Society of Vacuum Coaters, 37th Annual Technical Conference Proceedings, pp. 240-244 (1994).
Shin, J.C. et al. “Dielectric and Electrical Properties of Sputter Grown (Ba,Se)TiO3 Thin Films,” J. Appl. Phys. 86(1):506-513 (1999).
Shmulovich, J. et al., “Recent progress in Erbium-doped waveguide amplifiers,” Bell Laboratories, pp. 35-37 (1999).
Slooff, L.H. et al., “Optical properties of Erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83(1):497-503 (1998).
Smith, R.E. et al., “Reduced Coupling Loss Using a Tapered-Rib Adiabatic-Following Fiber Coupler,” IEEE Photonics Technology Lett. 8(8):1052-1054 (1996).
Snoeks, E. et al., “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12(8): 1468-1474 (1995).
Chang, C.Y. and Sze, S.M. (eds.), in ULSI Technology, The McGraw-Hill Companies, Inc., Nyew York, Chapter 4, pp. 169-170 and 226-231 (1996).
Chen, G. et al., “Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells,” J. Electrochemical Society 149(8): A1092-A1099 (2002).
Choi, Y.B. et al., “Er-Al-codoped silicate planar light waveguide-type amplifier fabricated by radio-frequency sputtering,” Optics Letters 25(4): 263-265 (2000).
Choy et al., “Eu-Doped Y2O3 Phosphor Films Produced by Electrostatic-Assisted Chemical Vapor Deposition,” J. Mater. Res. 14(7): 3111-3114 (Jul. 1999).
Cocorullo, G. et al., “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Optics Lett. 21(24): 2002-2004 (1996).
Cooksey, K. et al., “Predicting permeability & Transmission rate for multilayer materials,” Food Technology 53(9): 60-63 (1999).
Crowder, M.A. et al., “Low-temperature single-crystal Si TFT's fabricated on Si films processed via sequential lateral solidification,” IEEE Electron Device Lett. 19(8): 306-308 (1998).
Delavaux, J-M. et al., “Integrated optics erbium ytterbium amplifier system in 10Gb/s fiber transmission experiment,” 22nd European Conference on Optical Communication, Osla, I.123-I.126 (1996).
Distributed Energy Resources: Fuel Cells, Projects, 4 pages http://www.eere.energy.gov/der/fuel—cells/projects.html (2003).
Dorey, R.A., “Low temperature micromoulding of functional ceramic devices,” Grant summary for GR/S84156/01 for the UK Engineering and Physical Sciences Research Council, 2 pages (2004).
DuPont Teijin Films, Mylar 200 SBL 300, Product Information, 4 pages (2000).
Electrometals Technologies Limited, Financial Report for 2002, Corporate Directory, Chairman's review, Review of Operations, 10 pages (2002).
E-Tek website: FAQ, Inside E-Tek, E-TEk News, Products; http://www.etek-inc.com/, 10 pages (2003).
Flytzanis, C. et al., “Nonlinear optics in composite materials,” in Progress in Optics XXIX, Elsevier Science Publishers B.V., pp. 323-425 (1991).
Frazao, O. et al., “EDFA gain flattening using long-period fibre gratings based on the electric arc technique,” Proc. London Comm. Symp. 2001, London, England, 3 pages (2001).
Fujii, M. et al., “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals for Er3+,” Appl. Phys. Lett. 71(9): 1198-1200 (1997).
Garcia, C. et al., “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10): 1595-1597 (2003).
Goossens, A. et al., “Sensitization of TiO2 with p-type semiconductor polymers,” Chem. Phys. Lett. 287: 148 (1998).
Greene, J.E. et al., “Morphological and electrical properties of rf sputtered Y2O3 -doped ZrO2 thin films,” J. Vac. Sci. Tech. 13(1): 72-75 (1976).
Han, H.-S. et al., “Optical gain at 1.54 μm in Erbium-doped Silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79(27): 4568-4570 (2001).
Hayakawa, T. et al., “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Crystalline Solids 259: 16-22 (1999).
Hayakawa, T. et al., “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11): 1513-1515 (1999).
Hayfield, P.C.S., I Development of a New Material-Monolithic Ti4O7 Ebonix® Ceramic, Royal Society of Chemistry, Cambridge, Table of Contents, 4 pages (2002).
Hehlen, M.P. et al., “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Physical Review B 56(15): 9302-9318 (1997).
Hehlen, M.P. et al., “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Optics Letters 22(11); 772-774 (1997).
Horst, F. et al., “Compact, tunable optical devices in silicon-oxynitride waveguide technology,” Top. Meeting Integrated Photonics Res. '00, Quebec, Canada, p. IThFI, 3 pages (2000).
Howson, R.P., “The reactive sputtering of oxides and nitrides,” Pure & Appl. Chem. 66(6): 1311-1318 (1994).
Hubner, J. and Guldberg-Kjaer, S., “Planar Er- and Yb-doped amplifiers and lasers,” COM Technical University of Denmark, 10th European Conf. on Integrated Optics, Session WeB2, pp. 71-74 (2001).
Hwang et al., “Characterization of sputter-deposited LiMn2O4 thin films for rechargeable microbatteries,” 141(12) J. Electrochem. Soc. 3296-99 (1994).
Hwang, M-S. et al., “The effect of pulsed magnetron sputtering on the properties of iridium tin oxide thin films,” Surface and Coatings Tech. 171: 29-33 (2003).
Im, J.S. and Sposili, R.S., “Crystalline Si films for integrated active-matrix liquid crystal displays,” MRS Bulletin, pp. 39-48 (1996).
Im, J.S. et al., “Controlled super-lateral growth of Si-films for microstructural manipulation and optimization,” Physica Status Solidi (A) 166(2): 603-617 (1998).
Im, J.S. et al., “Single-crystal Si films for thin-film transistor devices,” Appl. Physics Lett. 70(25): 3434-3436 (1997).
Itoh, M. et al., “Large reduction of singlemode-fibre coupling loss in 1.5% Δ planar lightwave circuits using spot-size converters,” Electronics Letters 38(2): 72-74 (2002).
Jackson, M.K. and Movassaghi, M., “An accurate compact EFA model,” Eur. Conf. Optical Comm., Munich, Germany, 2 pages (2000).
Janssen, R. et al., “Photoinduced electron transfer from conjugated polymers onto nanocrystalline TiO2,” Synthet. Metal., 1 page (1999).
Johnson, J.E. et al., “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input,” IEEE J. Selected topics in Quantum Electronics 6(1): 19-25 (2000).
Jonsson, L.B. et al., “Frequency response in pulsed DC reactive sputtering processes,” Thin Solid Films 365: 43-48 (2000).
Kato, K. and Inoue, Y., “Recent progress on PLC hybrid integration,” SPIE 3631: 28-36 (1999).
Kato, K. and Tohmori, Y., “PLC hybrid integration technology and its application to photonic components,” IEEE J. Selected Topics in Quantum Electronics 6(1): 4-13 (2000).
Kelly, P.J. and Arnell, Rd., “Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering,” J. Vac. Sci. Technol. A 17(3): 945-953 (1999).
Kelly, P.J. et al., “A novel technique for the deposition of aluminum-doped zinc oxide films,” Thin Solid Films 426(1-2): 111-116 (2003).
Kelly, P.J. et al., “Reactive pulsed magnetron sputtering process for alumina films,” J. Vac. Sci. Technol. A 18(6): 2890-2896 (2000).
Kik, P.G. and Polman, A., “Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2,” J. Appl. Phys. 91(1): 536-536 (2002).
Kim et al., “Correlation Between the Microstructures and the Cycling Performance of RuO2 Electrodes for Thin-Film Microsupercapacitros,” J. Vac. Sci. Technol. B20(5): 1827-1832 (Sep. 2002).
Kim, D-W. et al. “Mixture Behavior and Microwave Dielectric Properties in the Low-fired TiO2—CuO System,” Jpn. J. Appl. Phys. 39:2696-2700 (2000).
Kim, H-K. et al., “Characteristics of rapid-thermal-annealed LiCoO2 cathode film for an all-solid-state thin film microbattery,” J. Vac. Sci. Technol. A 22(4): 1182-1187 (2004).
Kim, J-Y. et al. “Frequency-dependent pulsed direct current magnetron sputtering of titanium oxide films,” J. Vac. Sci. Technol. A 19(2):429-434 (2001).
Ladouceur, F. and Love, J.D., in: Silica-based Buried Channel Waveguides and Devices, Chapman & Hall, London, Table of Contents, 6 pages (1996).
Ladouceur, F. et al., “Effect of side wall roughness in buried channel waveguides,” IEEE Proc. Optoelectron. 141(4):242-248 (1994).
Lamb, W. and Zeiler, R., Designing Non-Foil Containing Skins for Vacuum Insulation Panel (VIP) Application, Vuoto XXVIII(1-2):55-58 (1999).
Lamb, W.B., “Designing Nonfoil Containing Skins for VIP Applications,” DuPont VIA Symposium Presentation, 35 Pages (1999).
Lange, M.R. et al, “High Gain Ultra-Short Length Phosphate glass Erbium-Doped Fiber Amplifier Material,” OSA Optical Fiber Communications (OFC), 3 Pages (2002).
Laporta, P. et al, “Diode-pumped cw bulk Er: Yb: glass laser,” Optics Letters 16(24):1952-1954 (1991).
Laurent-Lund, C. et al., “PECVD Grown Multiple Core Planar Waveguides with Extremely Low Interface Reflections and Losses,” IEEE Photonics Tech. Lett. 10(10):1431-1433 (1998).
Related Publications (1)
Number Date Country
20100090655 A1 Apr 2010 US
Provisional Applications (1)
Number Date Country
61103746 Oct 2008 US