ENZYMES WITH RUVC DOMAINS

Information

  • Patent Application
  • 20240200047
  • Publication Number
    20240200047
  • Date Filed
    February 26, 2024
    10 months ago
  • Date Published
    June 20, 2024
    6 months ago
Abstract
The present disclosure provides for endonuclease enzymes having distinguishing domain features, as well as methods of using such enzymes or variants thereof.
Description
BACKGROUND

Cas enzymes along with their associated Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) guide ribonucleic acids (RNAs) appear to be a pervasive (˜45% of bacteria, ˜84% of archaea) component of prokaryotic immune systems, serving to protect such microorganisms against non-self nucleic acids, such as infectious viruses and plasmids by CRISPR-RNA guided nucleic acid cleavage. While the deoxyribonucleic acid (DNA) elements encoding CRISPR RNA elements may be relatively conserved in structure and length, their CRISPR-associated (Cas) proteins are highly diverse, containing a wide variety of nucleic acid-interacting domains. While CRISPR DNA elements have been observed as early as 1987, the programmable endonuclease cleavage ability of CRISPR/Cas complexes has only been recognized relatively recently, leading to the use of recombinant CRISPR/Cas systems in diverse DNA manipulation and gene editing applications.


SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on Feb. 22, 2024, is named 55921-731_301.xml and is 26,079,403 bytes in size.


SUMMARY

In some aspects, the present disclosure provides for a method of disrupting a Beta-2-Microglobulin (B2M) locus in a cell, comprising contacting to the cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the B2M locus, wherein the region of the B2M locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6387-6468. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 6305-6386. In some embodiments, the region of the B2M locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6388, 6399, 6401, 6403, 6410, 6413, 6421, 6446, and 6448.


In some aspects, the present disclosure provides for a method of editing a T Cell Receptor Alpha Constant (TRAC) locus in a cell, comprising contacting to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the TRAC locus, wherein the region of the TRAC locus comprises a targeting sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6509-6548 or 6805. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 6469-6508 or 6804. In some embodiments, the region of the TRAC locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6517, 6520, and 6523.


In some aspects, the present disclosure provides for a method of disrupting a Hypoxanthine Phosphoribosyltransferase 1 (HPRT) locus in a cell, comprising contacting to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the HPRT locus, wherein the region of the HPRT locus comprises a targeting sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6616-6682. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6549-6615. In some embodiments, the region of the HPRT locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6619, 6634, 6673, 6675, and 6679.


In some aspects, the present disclosure provides for a method of editing a T Cell Receptor Beta Constant 1 or T Cell Receptor Beta Constant 2 (TRBC1/2) locus in a cell, comprising contacting to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the TRBC1/2 locus, wherein the region of the TRBC1/2 locus comprises a targeting sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6722-6760 or 6782-6802. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6683-6721 and 6761-6781. In some embodiments, the region of the TRBC1/2 locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6734, 6753, 6790, and 6800.


In some aspects, the present disclosure provides for a method of editing an Hydroxyacid Oxidase 1 (HAO1) locus in a cell, comprising contacting to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the HAO1 locus, wherein the region of the HAO1 locus comprises a targeting sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 11802-11820. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the region of the HAO1 locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 11806, 11813, 11816, and 11819.


In some aspects, the present disclosure provides for an engineered nuclease system comprising: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA comprises (i) a 2′-O-methyl nucleotide; (ii) a 2′-fluoro nucleotide; or (iii) a phosphorothioate bond; wherein the RNA-guided endonuclease has at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 421-431 or a variant thereof. In some embodiments, the RNA-guided endonuclease comprises a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 421.


In some aspects, the present disclosure provides for an engineered nuclease system comprising: (a) an endonuclease having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 421-431 or a variant thereof; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a target nucleic acid sequence, wherein the system has reduced immunogenicity when administered to a human subject compared to an equivalent system comprising a Cas9 enzyme. In some embodiments, the Cas9 enzyme is an SpCas9 enzyme. In some embodiments, the immunogenicity is antibody immunogenicity. In some embodiments, the engineered guide RNA comprises a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of any one of SEQ ID NOs: 5466-5467 and 11160-11162. In some embodiments, the engineered nuclease has at least about 75% sequence identity at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 421 or 423 or a variant thereof.


In some aspects, the present disclosure provides for a method of editing a locus in a cell, comprising contacting to the cell: (a) an RNA-guided endonuclease or a nucleic acid encoding the RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the RNA-guided endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the locus; wherein the cell is a peripheral blood mononuclear cell (PBMC), a hematopoietic stem cell (HSC), or an induced pluripotent stem cell (iPSC). In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242, or a variant thereof. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the RNA-guided endonuclease has at least about 75% sequence identity at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 421 or a variant thereof. In some embodiments, the engineered guide RNA comprises a sequence at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 6804, 6806, and 6808. In some embodiments, the nucleic acid encoding the RNA-guided endonuclease comprises a sequence comprising at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 6803 or a variant thereof. In some embodiments, the region of the locus comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to at least 18 nucleotides of any one of SEQ ID NOs: 6805, 6807, and 6809.


In some aspects, the present disclosure provides for a method of editing a CD2 Molecule (CD2) locus in a cell, comprising contacting to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the CD2 locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 6853-6894; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to the non-degenerate nucleotides of any one of SEQ ID NOs: 6811-6852. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244, or a variant thereof. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the RNA-guided endonuclease comprises a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 421-431. In some embodiments, the RNA-guided endonuclease comprises a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 421, or a variant thereof. In some embodiments, the engineered guide RNA comprises a sequence at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to the non-degenerate nucleotides of any one of SEQ ID NOs: 6813, 6841, 6843-6847, 6852, or 6852. In some embodiments, the engineered guide RNA further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 6A. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6855, 6883, 6885-6889, 6892, or 6984.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 6811-6852. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 6A.


In some aspects, the present disclosure provides for a method of editing a CD5 Molecule (CD5) locus in a cell comprising contacting to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the CD5 locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotide complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID Nos: 6959-7022; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity the non-degenerate nucleotides of any one of SEQ ID NOs: 5466 or 6895-6958. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244, or a variant thereof. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the RNA-guided endonuclease comprises an endonuclease comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 421-431 or a variant thereof. In some embodiments, the RNA-guided endonuclease comprises a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 421. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 5466. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity the non-degenerate nucleotides of any one of SEQ ID NOs: 6897, 6904, 6906, 6911, 6928, 6930, 6932, 6934, 6938, 6945, 6950, 6952, and 6958. In some embodiments, the engineered guide RNA further comprises a pattern of nucleotide modification recited in any of the guide RNAs recited in Table 7A. In some embodiments, the engineered guide RNA is configured to hybridize to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6961, 6968, 6970, 6975, 6992, 6994, 6996, 6998, 7002, 7009, 7014, 7016, and 7022.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 6895-6958. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 7A.


In some aspects, the present disclosure provides for a method of editing an RNA locus in a cell, comprising contacting to the cell: (a) an RNA-guided endonuclease comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244, or a variant thereof; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the RNA locus, wherein the RNA locus does not comprise bacterial or microbial RNA. In some embodiments, the guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 5466 or SEQ ID NO: 5539.


In some aspects, the present disclosure provides for a method of disrupting a Fas Cell Surface Death Receptor (FAS) locus in a cell, comprising introducing to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the human FAS locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7057-7090; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7023-7056. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242, or a variant thereof. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 5466. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 80% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 7059, 7061, 7069, 7070, 7076, 7080, 7083, 7084, 7085, or 7088. In some embodiments, the RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421, or a variant thereof. In some embodiments, the guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 7025, 7027, 7035, 7036, 7042, 7046, 7049-7051, or 7054. In some embodiments, the guide RNA further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 8.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7023-7056. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 8.


In some aspects, the present disclosure provides for a method of disrupting a Programmed Cell Death 1 (PD-1) locus in a cell, comprising introducing to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the human PD-1 locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7129-7166; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7091-7128. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242, or a variant thereof. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 5466. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 80% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 7135, 7137, 7146, 7149, 7152, 7156, 7160, 7161, 7164, 7165, or 7166. In some embodiments, the RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421, or a variant thereof. In some embodiments, the guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 7097, 7099, 7108, 7111, 7114, 7118, 7122, 7123, 7126, 7127, or 7128. In some embodiments, the guide RNA further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 9.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7091-7128. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 9.


In some aspects, the present disclosure provides for a method of disrupting an human Rosa26 (hRosa26) locus in a cell, comprising introducing to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the hRosa26 locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7199-7230; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7167-7198. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242, or a variant thereof. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 5466. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 80% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 7205-7206, 7215, 7220, 7223, or 7225. In some embodiments, the RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421, or a variant thereof. In some embodiments, the guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 7173, 7174, 7183, 7188, 7191, or 7193. In some embodiments, the guide RNA further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 10.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7167-7198. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 10.


In some aspects, the present disclosure provides for a method of disrupting an T Cell Receptor Alpha Constant (TRAC) locus in a cell, comprising introducing to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the TRAC locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7235-7238, 7248-7256, 7270, or 7278-7284; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7231-7234, 7239-7247, 7269, or 7271-7277. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 1512, 1756, 11711-11713, or a variant thereof. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 5473, 5475, 11145, 11714, or 11715. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 80% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 7235-7238, 7248-7256, 7270, or 7278-7284. In some embodiments, the guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 7231-7234, 7239-7244, 7269, or 7271-7277. In some embodiments, the engineered guide RNA further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 11.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7231-7234, 7239-7247, 7269, or 7271-7277. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 11.


In some aspects, the present disclosure provides for a method of disrupting an Adeno-Associated Virus Integration Site 1 (AAVS1) locus in a cell, comprising introducing to the cell: (a) a class 2, type II Cas endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the AAVS1 locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7261-7264 or 7267-7268; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7257-7260 or 7265-7266. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 1756 or 11711, or a variant thereof. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 5475 or 11715. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 80% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 7261-7263 or 7267-7268. In some embodiments, the guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 7257-7260 or 7265-7266. In some embodiments, the engineered guide RNA further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 12.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 7257-7260 or 7265-7266. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 12.


In some aspects, the present disclosure provides for a method of disrupting an Hydroxyacid Oxidase 1 (HAO-1) locus in a cell, comprising introducing to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the HAO-1 locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11773-11793. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242, or a variant thereof. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 5466. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 80% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 11773, 11780, 11786, or 11787. In some embodiments, the RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421, or a variant thereof.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a spacer sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11773-11793 and a scaffold sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 5466.


In some aspects, the present disclosure provides for a method of disrupting a human G Protein-Coupled Receptor 146 (GPR146) locus in a cell, comprising introducing to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the GPR146 locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11406-11437; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11374-11405. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242, or a variant thereof. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 5466. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 80% identity to at least 18 consecutive nucleotides of SEQ ID NO: 11425. In some embodiments, the RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421, or a variant thereof. In some embodiments, the guide RNA comprises a sequence having at least 80% identity to SEQ ID NO: 11393. In some embodiments, the engineered guide RNA further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 15.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a spacer sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11374-11405. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 15.


In some aspects, the present disclosure provides for a method of disrupting a mouse G Protein-Coupled Receptor 146 (GPR146) locus in a cell, comprising introducing to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the GPR146 locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11473-11507; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11438-11472. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to SEQ ID NO: 2242, or a variant thereof. In some embodiments, the RNA-guided endonuclease further comprises an HNH domain. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 5466. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 80% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 11482, 11488, or 11490. In some embodiments, the RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421, or a variant thereof. In some embodiments, the guide RNA comprises a sequence having at least 80% identity to SEQ ID NO: 11447, 11453, or 11455. In some embodiments, the engineered guide RNA further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 16.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a spacer sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11438-11472. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 16.


In some aspects, the present disclosure provides for a method of disrupting a T Cell Receptor Alpha Constant (TRAC) locus in a cell, comprising introducing to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the TRAC locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11516-11517; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11514-11515. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 11153. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 80% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 11516. In some embodiments, the RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 11716, or a variant thereof. In some embodiments, the guide RNA comprises a sequence having at least 80% identity to SEQ ID NO: 11514. In some embodiments, the engineered guide RNA further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 17.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a spacer sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11514-11515. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 17.


In some aspects, the present disclosure provides for a method of disrupting an Adeno-Associated Virus Integration Site 1 (AAVS1) locus in a cell, comprising introducing to the cell: (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a region of the AAVS1 locus, wherein the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 18-22 consecutive nucleotides complementary to a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11511-11513; or wherein the engineered guide RNA comprises a nucleotide sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11508-11510. In some embodiments, the RNA-guided endonuclease is a class 2, type II Cas endonuclease. In some embodiments, the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of SEQ ID NO: 11717. In some embodiments, the engineered guide RNA comprises or is configured to hybridize to a sequence having at least 80% identity to at least 18 consecutive nucleotides of SEQ ID NO: 11511. In some embodiments, the RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 914, or a variant thereof. In some embodiments, the guide RNA comprises a sequence having at least 80% identity to SEQ ID NO: 11508. In some embodiments, the engineered guide RNA further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 17.


In some aspects, the present disclosure provides for an isolated RNA molecule comprising a spacer sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any one of SEQ ID NOs: 11508-11510. In some embodiments, the RNA molecule further comprises a pattern of nucleotide modifications recited in any of the guide RNAs recited in Table 17.


In some aspects, the present disclosure provides for an engineered nuclease system comprising: (a) an endonuclease having at least at least about 80%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to a PI domain of any of the Cas effector protein sequences described herein, or a variant thereof; and (b) an engineered guide RNA, wherein the engineered guide RNA is configured to form a complex with the endonuclease and the engineered guide RNA comprises a spacer sequence configured to hybridize to a target nucleic acid sequence, wherein the engineered guide RNA comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to non-degenerate nucleotides of any of the sgRNA sequences described herein. In some embodiments, the endonuclease further comprises a RuvCIII domain or a HNH domain having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to RuvCIII domains or HNH domains of any of the Cas effector nucleases described herein. In some embodiments, the endonuclease is configured to have selectivity for any of the PAM sequences described herein. In some embodiments, the endonuclease further comprises a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% sequence identity to any of the Cas effector sequences described herein.


In some aspects, the present disclosure provides for use of any of the methods described herein for disrupting a B2M locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein or any of the RNA molecules described herein for disrupting a TRAC locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein for disrupting an HPRT locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein for disrupting a TRBC1/2 locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein or any of the RNA molecules described herein for disrupting an HAO-1 locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein or any of the RNA molecules described herein for disrupting a CD2 locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein or any of the RNA molecules described herein for disrupting a CD5 locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein or any of the RNA molecules described herein for disrupting a FAS locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein or any of the RNA molecules described herein for disrupting a PD-1 locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein or any of the RNA molecules described herein for disrupting an hRosa26 locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein or any of the RNA molecules described herein for disrupting an AAVS1 locus in a cell.


In some aspects, the present disclosure provides for use of any of the methods described herein or any of the RNA molecules described herein for disrupting a GPR146 locus in a cell.


In some aspects, the present disclosure provides for an engineered nuclease system, comprising: (a) an endonuclease comprising a RuvC_III domain and an HNH domain, wherein the endonuclease is derived from an uncultivated microorganism, wherein the endonuclease is a class 2, type II Cas endonuclease; and (b) an engineered guide ribonucleic acid structure configured to form a complex with the endonuclease comprising: (i) a guide ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; and (ii) a tracr ribonucleic acid sequence configured to bind to the endonuclease. In some embodiments, the RuvC_III domain comprises a sequence with at least 70%, at least 75%, at least 80%, at least 85%, at least 88%, at least 90%, at least 92%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 1827-3637.


In some aspects, the present disclosure provides for an engineered nuclease system comprising: (a) an endonuclease comprising a RuvC_III domain having at least 70%, at least 75%, at least 80%, at least 85%, at least 88%, at least 90%, at least 92%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 1827-3637; and (b) an engineered guide ribonucleic acid structure configured to form a complex with the endonuclease comprising: (i) a guide ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; and (ii) a tracr ribonucleic acid sequence configured to bind to the endonuclease.


In some aspects, the present disclosure provides for an engineered nuclease system comprising: (a) an endonuclease configured to bind to a protospacer adjacent motif (PAM) sequence comprising SEQ ID NOs: 5512-5537, wherein the endonuclease is a class 2, type II Cas endonuclease; and (b) an engineered guide ribonucleic acid structure configured to form a complex with the endonuclease comprising: (i) a guide ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; and (ii) a tracr ribonucleic acid sequence configured to bind to the endonuclease.


In some embodiments, the endonuclease is derived from an uncultivated microorganism. In some embodiments, the endonuclease has not been engineered to bind to a different PAM sequence. In some embodiments, the endonuclease is not a Cas9 endonuclease, a Cas14 endonuclease, a Cas12a endonuclease, a Cas12b endonuclease, a Cas 12c endonuclease, a Cas12d endonuclease, a Cas12e endonuclease, a Cas13a endonuclease, a Cas13b endonuclease, a Cas13c endonuclease, or a Cas 13d endonuclease. In some embodiments, the endonuclease has less than 80% identity to a Cas9 endonuclease. In some embodiments, the endonuclease further comprises an HNH domain. In some embodiments, the tracr ribonucleic acid sequence comprises a sequence with at least 80% sequence identity to about 60 to 90 consecutive nucleotides selected from any one of SEQ ID NOs: 5476-5511 and SEQ ID NO: 5538.


In some aspects, the present disclosure provides for an engineered nuclease system comprising, (a) an engineered guide ribonucleic acid structure comprising: (i) a guide ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; and (ii) a tracr ribonucleic acid sequence configured to bind to an endonuclease, wherein the tracr ribonucleic acid sequence comprises a sequence with at least 80% sequence identity to about 60 to 90 consecutive nucleotides selected from any one of SEQ ID NOs: 5476-5511 and SEQ ID NO: 5538; and (b) a class 2, type II Cas endonuclease configured to bind to the engineered guide ribonucleic acid. In some embodiments, the endonuclease is configured to bind to a protospacer adjacent motif (PAM) sequence selected from the group comprising SEQ ID NOs: 5512-5537.


In some embodiments, the engineered guide ribonucleic acid structure comprises at least two ribonucleic acid polynucleotides. In some embodiments, the engineered guide ribonucleic acid structure comprises one ribonucleic acid polynucleotide comprising the guide ribonucleic acid sequence and the tracr ribonucleic acid sequence.


In some embodiments, the guide ribonucleic acid sequence is complementary to a prokaryotic, bacterial, archaeal, eukaryotic, fungal, plant, mammalian, or human genomic sequence. In some embodiments, the guide ribonucleic acid sequence is 15-24 nucleotides in length. In some embodiments, the endonuclease comprises one or more nuclear localization sequences (NLSs) proximal to an N- or C-terminus of the endonuclease. In some embodiments, the NLS comprises a sequence selected from SEQ ID NOs: 5597-5612.


In some embodiments, the engineered nuclease system further comprises a single- or double-stranded DNA repair template comprising from 5′ to 3′: a first homology arm comprising a sequence of at least 20 nucleotides 5′ to the target deoxyribonucleic acid sequence, a synthetic DNA sequence of at least 10 nucleotides, and a second homology arm comprising a sequence of at least 20 nucleotides 3′ to the target sequence. In some embodiments, the first or second homology arm comprises a sequence of at least 40, 80, 120, 150, 200, 300, 500, or 1,000 nucleotides.


In some embodiments, the system further comprises a source of Mg2+.


In some embodiments, the endonuclease and the tracr ribonucleic acid sequence are derived from distinct bacterial species within a same phylum. In some embodiments, the endonuclease is derived from a bacterium belonging to a genus Dermabacter. In some embodiments, the endonuclease is derived from a bacterium belonging to Phylum Verrucomicrobia, Phylum Candidatus Peregrinibacteria, or Phylum Candidatus Melainabacteria. In some embodiments, the endonuclease is derived from a bacterium comprising a 16S rRNA gene having at least 90% identity to any one of SEQ ID NOs: 5592-5595.


In some embodiments, the HNH domain comprises a sequence with at least 70% or at least 80% identity to any one of SEQ ID NOs: 5638-5460. In some embodiments, the endonuclease comprises SEQ ID NOs: 1-1826 or a variant thereof having at least 55% identity thereto. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 1827-1830 or SEQ ID NOs: 1827-2140.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 3638-3641 or SEQ ID NOs: 3638-3954. In some embodiments, the endonuclease comprises at least 1, at least 2, at least 3, at least 4, or at least 5 peptide motifs selected from the group consisting of SEQ ID NOs: 5615-5632. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 1-4 or SEQ ID NOs: 1-319.


In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 5461-5464, SEQ ID NOs: 5476-5479, or SEQ ID NOs: 5476-5489. In some embodiments, the guide RNA structure comprises an RNA sequence predicted to comprise a hairpin consisting of a stem and a loop, wherein the stem comprises at least 10, at least 12 or at least 14 base-paired ribonucleotides, and an asymmetric bulge within 4 base pairs of the loop.


In some embodiments, the endonuclease is configured to bind to a PAM comprising a sequence selected from the group consisting of SEQ ID NOs: 5512-5515 or SEQ ID NOs: 5527-5530.


In some embodiments: (a) the endonuclease comprises a sequence at least 70%, at least 80%, or at least 90% identical to SEQ ID NO: 1827; (b) the guide RNA structure comprises a sequence at least 70%, at least 80%, or at least 90% identical to at least one of SEQ ID NO: 5461 or SEQ ID NO: 5476; and (c) the endonuclease is configured to bind to a PAM comprising SEQ ID NO: 5512 or SEQ ID NO: 5527. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, at least 80%, or at least 90% identical to SEQ ID NO: 1828; (b) the guide RNA structure comprises a sequence at least 70%, at least 80%, or at least 90% identical to at least one of SEQ ID NO: 5462 or SEQ ID NO: 5477; and (c) the endonuclease is configured to bind to a PAM comprising SEQ ID NO: 5513 or SEQ ID NO: 5528. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, at least 80%, or at least 90% identical to SEQ ID NO: 1829; (b) the guide RNA structure comprises a sequence at least 70%, at least 80%, or at least 90% identical to at least one of SEQ ID NO: 5463 or SEQ ID NO: 5478; and (c) the endonuclease is configured to bind to a PAM comprising SEQ ID NO: 5514 or SEQ ID NO: 5529. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, at least 80%, or at least 90% identical to SEQ ID NO: 1830; (b) the guide RNA structure comprises a sequence at least 70%, at least 80%, or at least 90% identical to at least one of SEQ ID NO: 5464 or SEQ ID NO: 5479; and (c) the endonuclease is configured to bind to a PAM comprising SEQ ID NO: 5515 or SEQ ID NO: 5530.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 2141-2142 or SEQ ID NOs: 2141-2241. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 3955-3956 or SEQ ID NOs: 3955-4055. In some embodiments, the endonuclease comprises at least 1, at least 2, at least 3, at least 4, or at least 5 peptide motifs selected from the group consisting of SEQ ID NOs: 5632-5638. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 320-321 or SEQ ID NOs: 320-420. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 5465, SEQ ID NOs: 5490-5491 or SEQ ID NOs: 5490-5494. In some embodiments, the guide RNA structure comprises a tracr ribonucleic acid sequence comprising a hairpin comprising at least 8, at least 10, or at least 12 base-paired ribonucleotides. In some embodiments, the endonuclease is configured to bind to a PAM comprising a sequence selected from the group consisting of SEQ ID NOs: 5516 and SEQ ID NOs: 5531. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 2141; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5490; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5531. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 2142; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5465 or SEQ ID NO: 5491; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5516.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 2245-2246. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 4059-4060. In some embodiments, the endonuclease comprises at least 1, at least 2, at least 3, at least 4, or at least 5 peptide motifs selected from the group consisting of SEQ ID NOs: 5639-5648. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 424-425. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 5498-5499 and SEQ ID NO: 5539. In some embodiments, the guide RNA structure comprises a guide ribonucleic acid sequence predicted to comprise a hairpin with an uninterrupted base-paired region comprising at least 8 nucleotides of a guide ribonucleic acid sequence and at least 8 nucleotides of a tracr ribonucleic acid sequence, and wherein the tracr ribonucleic acid sequence comprises, from 5′ to 3′, a first hairpin and a second hairpin, wherein the first hairpin has a longer stem than the second hairpin.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 2242-2244 or SEQ ID NOs: 2247-2249. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 4056-4058 and SEQ ID NOs 4061-4063. In some embodiments, the endonuclease comprises at least 1, at least 2, at least 3, at least 4, or at least 5 peptide motifs selected from the group consisting of SEQ ID NOs: 5639-5648. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 421-423 or SEQ ID NOs: 426-428. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 5466-5467, SEQ ID NOs: 5495-5497, SEQ ID NO: 5500-5502, and SEQ ID NO: 5539. In some embodiments, the guide RNA structure comprises a guide ribonucleic acid sequence predicted to comprise a hairpin with an uninterrupted base-paired region comprising at least 8 nucleotides of a guide ribonucleic acid sequence and at least 8 nucleotides of a tracr ribonucleic acid sequence, and wherein the tracr ribonucleic acid sequence comprises, from 5′ to 3′, a first hairpin and a second hairpin, wherein the first hairpin has a longer stem than the second hairpin. In some embodiments, the endonuclease is configured to binding to a PAM comprising a sequence selected from the group consisting of SEQ ID NOs: 5517-5518 or SEQ ID NOs: 5532-5534. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 2247; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5500; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5517 or SEQ ID NO: 5532. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 2248; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5501; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5518 or SEQ ID NOs: 5533. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 2249; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5502; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5534.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 2253 or SEQ ID NOs: 2253-2481. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 4067 or SEQ ID NOs: 4067-4295. In some embodiments, the endonuclease comprises a peptide motif according to SEQ ID NO: 5649. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 432 or SEQ ID NOs: 432-660. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 5468 or SEQ ID NO: 5503. In some embodiments, the endonuclease is configured to binding to a PAM comprising a sequence selected from the group consisting of SEQ ID NOs: 5519. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 2253; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5468 or SEQ ID NO: 5503; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5519.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 2482-2489. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 4296-4303. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of or SEQ ID NOs: 661-668. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of or SEQ ID NOs: 2490-2498. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 4304-4312. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 669-677. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 5504.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 2499 or SEQ ID NOs: 2499-2750. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 4313 or SEQ ID NOs: 4313-4564. In some embodiments, the endonuclease comprises at least 1, at least 2, at least 3, at least 4, or at least 5 peptide motifs selected from the group consisting of SEQ ID NOs: 5650-5667. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 678 or SEQ ID NOs: 678-929. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5469 or SEQ ID NO: 5505. In some embodiments, the endonuclease is configured to binding to a PAM comprising SEQ ID NOs: 5520 or SEQ ID NOs: 5535. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 2499; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5469 or SEQ ID NO: 5505; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5520 or SEQ ID NO: 5535.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 2751 or SEQ ID NOs: 2751-2913. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 4565 or SEQ ID NOs: 4565-4727. In some embodiments, the endonuclease comprises at least 1, at least 2, at least 3, at least 4, or at least 5 peptide motifs selected from the group consisting of SEQ ID NOs: 5668-5678. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 930 or SEQ ID NOs: 930-1092. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5470 or SEQ ID NOs: 5506. In some embodiments, the endonuclease is configured to binding to a PAM comprising a sequence selected from the group consisting of SEQ ID NOs: 5521 or SEQ ID NOs: 5536. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 2751; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5470 or SEQ ID NO: 5506; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5521 or SEQ ID NO: 5536.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 2914 or SEQ ID NOs: 2914-3174. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 4728 or SEQ ID NOs: 4728-4988. In some embodiments, the endonuclease comprises at least 1, at least 2, or at least 3 peptide motifs selected from the group consisting of SEQ ID NOs: 5676-5678. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 1093 or SEQ ID NOs: 1093-1353. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 5471, SEQ ID NO: 5507, and SEQ ID NOs: 5540-5542. In some embodiments, the guide RNA structure comprises a tracr ribonucleic acid sequence predicted to comprise at least two hairpins comprising less than 5 base-paired ribonucleotides. In some embodiments, the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5522. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 2914; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5471 or SEQ ID NO: 5507; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5522.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 3175 or SEQ ID NOs: 3175-3330. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 4989 or SEQ ID NOs: 4989-5146. In some embodiments, the endonuclease comprises at least 1, at least 2, at least 3, at least 4, or at least 5 peptide motifs selected from the group consisting of SEQ ID NOs: 5679-5686. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 1354 or SEQ ID NOs: 1354-1511. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 5472 or SEQ ID NOs: 5508. In some embodiments, the endonuclease is configured to binding to a PAM comprising a sequence selected from the group consisting of SEQ ID NO: 5523 or SEQ ID NO: 5537. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 3175; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5472 or SEQ ID NO: 5508; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5523 or SEQ ID NO: 5537.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 3331 or SEQ ID NOs: 3331-3474. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 5147 or SEQ ID NOs: 5147-5290. In some embodiments, the endonuclease comprises at least 1, at least 2, at least 3, at least 4, or at least 5 peptide motifs selected from the group consisting of SEQ ID NOs: 5674-5675 and SEQ ID NOs: 5687-5693. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 1512 or SEQ ID NOs: 1512-1655. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 5473 or SEQ ID NO: 5509. In some embodiments, the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5524. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 3331; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5473 or SEQ ID NO: 5509; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5524.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 3475 or SEQ ID NOs: 3475-3568. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 5291 or SEQ ID NOs: 5291-5389. In some embodiments, the endonuclease comprises at least 1, at least 2, at least 3, at least 4, or at least 5 peptide motifs selected from the group consisting of SEQ ID NOs: 5694-5699. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 1656 or SEQ ID NOs: 1656-1755. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5474 or SEQ ID NO: 5510. In some embodiments, the endonuclease is configured to binding to a PAM comprising SEQ ID NOs: 5525. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 3475; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5474 or SEQ ID NO: 5510; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5525.


In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 3569 or SEQ ID NOs: 3569-3637. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 5390 or SEQ ID NOs: 5390-5460. In some embodiments, the endonuclease comprises at least 1, at least 2, at least 3, at least 4, or at least 5 peptide motifs selected from the group consisting of SEQ ID NOs: 5700-5717. In some embodiments, the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to a sequence selected from the group consisting of SEQ ID NO: 1756 or SEQ ID NOs: 1756-1826. In some embodiments, the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5475 or SEQ ID NOs: 5511. In some embodiments, the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5526. In some embodiments: (a) the endonuclease comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 3569; (b) the guide RNA structure comprises a sequence at least 70%, 80%, or 90% identical to SEQ ID NO: 5475 or SEQ ID NO: 5511; and (c) the endonuclease is configured to binding to a PAM comprising SEQ ID NO: 5526. In some embodiments, the sequence identity is determined by a BLASTP, CLUSTALW, MUSCLE, MAFFT, or CLUSTALW with the parameters of the Smith-Waterman homology search algorithm. In some embodiments, the sequence identity is determined by the BLASTP homology search algorithm using parameters of a wordlength (W) of 3, an expectation (E) of 10, and a BLOSUM62 scoring matrix setting gap costs at existence of 11, extension of 1, and using a conditional compositional score matrix adjustment.


In some aspects, the present disclosure provides for an engineered guide ribonucleic acid polynucleotide comprising: (a) a DNA-targeting segment comprising a nucleotide sequence that is complementary to a target sequence in a target DNA molecule; and (b) a protein-binding segment comprising two complementary stretches of nucleotides that hybridize to form a double-stranded RNA (dsRNA) duplex, wherein the two complementary stretches of nucleotides are covalently linked to one another with intervening nucleotides, and wherein the engineered guide ribonucleic acid polynucleotide is configured to forming a complex with an endonuclease comprising a RuvC_III domain having at least 70%, at least 75%, at least 80%, at least 85%, at least 88%, at least 90%, at least 92%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 1827-3637 and targeting the complex to the target sequence of the target DNA molecule. In some embodiments, the DNA-targeting segment is positioned 5′ of both of the two complementary stretches of nucleotides.


In some embodiments: (a) the protein binding segment comprises a sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 88%, at least 90%, at least 92%, at least 95%, or at least 98% identity to a sequence selected from the group consisting of SEQ ID NOs: 5476-5479 or SEQ ID NOs: 5476-5489; (b) the protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to a sequence selected from the group consisting of (SEQ ID NOs: 5490-5491 or SEQ ID NOs: 5490-5494) and SEQ ID NO: 5538; (c) the protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to a sequence selected from the group consisting of SEQ ID NOs: 5498-5499; (d) the protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to a sequence selected from the group consisting of SEQ ID NOs: 5495-5497 and SEQ ID NOs: 5500-5502; (e) the protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to SEQ ID NO: 5503; (f) the protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to SEQ ID NO: 5504; (g) the protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to SEQ ID NOs: 5505; (h) protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to SEQ ID NO: 5506; (i) protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to SEQ ID NO: 5507; (j) the protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to SEQ ID NO: 5508; (k) the protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to SEQ ID NO: 5509; (1) the protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to SEQ ID NO: 5510; or (m) the protein binding segment comprises a sequence having at least 70%, at least 80%, or at least 90% identity to SEQ ID NO: 5511.


In some embodiments: (a) the guide ribonucleic acid polynucleotide comprises an RNA sequence comprising a hairpin comprising a stem and a loop, wherein the stem comprises at least 10, at least 12, or at least 14 base-paired ribonucleotides, and an asymmetric bulge within 4 base pairs of the loop; (b) the guide ribonucleic acid polynucleotide comprises a tracr ribonucleic acid sequence predicted to comprise a hairpin comprising at least 8, at least 10, or at least 12 base-paired ribonucleotides; (c) the guide ribonucleic acid polynucleotide comprises a guide ribonucleic acid sequence predicted to comprise a hairpin with an uninterrupted base-paired region comprising at least 8 nucleotides of a guide ribonucleic acid sequence and at least 8 nucleotides of a tracr ribonucleic acid sequence, and wherein the tracr ribonucleic acid sequence comprises, from 5′ to 3′, a first hairpin and a second hairpin, wherein the first hairpin has a longer stem than the second hairpin; or (d) the guide ribonucleic acid polynucleotide comprises a tracr ribonucleic acid sequence predicted to comprise at least two hairpins comprising less than 5 base-paired ribonucleotides.


In some aspects, the present disclosure provides for a deoxyribonucleic acid polynucleotide encoding any of the engineered guide ribonucleic acid polynucleotides described herein.


In some aspects, the present disclosure provides for a nucleic acid comprising an engineered nucleic acid sequence optimized for expression in an organism, wherein the nucleic acid encodes a class 2, type II Cas endonuclease comprising a RuvC_III domain and an HNH domain, and wherein the endonuclease is derived from an uncultivated microorganism.


In some aspects, the present disclosure provides for a nucleic acid comprising an engineered nucleic acid sequence optimized for expression in an organism, wherein the nucleic acid encodes an endonuclease comprising a RuvC_III domain having at least 70% sequence identity to any one of SEQ ID NOs: 1827-3637. In some embodiments, the endonuclease comprises an HNH domain having at least 70% or at least 80% sequence identity to any one of SEQ ID NOs: 3638-5460. In some embodiments, the endonuclease comprises SEQ ID NOs: 5572-5591 or a variant thereof having at least 70% sequence identity thereto. In some embodiments, the endonuclease comprises a sequence encoding one or more nuclear localization sequences (NLSs) proximal to an N- or C-terminus of the endonuclease. In some embodiments, the NLS comprises a sequence selected from SEQ ID NOs: 5597-5612.


In some embodiments, the organism is prokaryotic, bacterial, eukaryotic, fungal, plant, mammalian, rodent, or human. In some embodiments, the organism is E. coli, and: (a) the nucleic acid sequence has at least 70%, 80%, or 90% identity to a sequence selected from the group consisting of SEQ ID NOs: 5572-5575; (b) the nucleic acid sequence has at least 70%, 80%, or 90% identity to a sequence selected from the group consisting of SEQ ID NOs: 5576-5577; (c) the nucleic acid sequence has at least 70%, 80%, or 90% identity to a sequence selected from the group consisting of SEQ ID NOs: 5578-5580; (d) the nucleic acid sequence has at least 70%, 80%, or 90% identity to SEQ ID NO: 5581; (e) the nucleic acid sequence has at least 70%, 80%, or 90% identity to SEQ ID NO: 5582; (f) the nucleic acid sequence has at least 70%, 80%, or 90% identity to SEQ ID NO: 5583; (g) the nucleic acid sequence has at least 70%, 80%, or 90% identity to SEQ ID NO: 5584; (h) the nucleic acid sequence has at least 70%, 80%, or 90% identity to SEQ ID NO: 5585; (i) the nucleic acid sequence has at least 70%, 80%, or 90% identity to SEQ ID NO: 5586; or (j) the nucleic acid sequence has at least 70%, 80%, or 90% identity to SEQ ID NO: 5587. In some embodiments, the organism is human, and: (a) the nucleic acid sequence has at least 70%, 80%, or 90% identity to SEQ ID NO: 5588 or SEQ ID NO: 5589; or (b) the nucleic acid sequence has at least 70%, 80%, or 90% identity to SEQ ID NO: 5590 or SEQ ID NO: 5591.


In some aspects, the present disclosure provides for a vector comprising a nucleic acid sequence encoding a class 2, type II Cas endonuclease comprising a RuvC_III domain and an HNH domain, wherein the endonuclease is derived from an uncultivated microorganism.


In some aspects, the present disclosure provides for a vector comprising the any of the nucleic acids described herein. In some embodiments, the vector further comprises a nucleic acid encoding an engineered guide ribonucleic acid structure configured to form a complex with the endonuclease comprising: (a) a guide ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; and (b) a tracr ribonucleic acid sequence configured to binding to the endonuclease. In some embodiments, the vector is a plasmid, a minicircle, a CELiD, an adeno-associated virus (AAV) derived virion, or a lentivirus.


In some aspects, the present disclosure provides for a cell comprising any of the vectors described herein.


In some aspects, the present disclosure provides for a method of manufacturing an endonuclease, comprising cultivating any of the cells described herein.


In some aspects, the present disclosure provides for a method for binding, cleaving, marking, or modifying a double-stranded deoxyribonucleic acid polynucleotide, comprising: (a) contacting the double-stranded deoxyribonucleic acid polynucleotide with a class 2, type II Cas endonuclease in complex with an engineered guide ribonucleic acid structure configured to bind to the endonuclease and the double-stranded deoxyribonucleic acid polynucleotide; (b) wherein the double-stranded deoxyribonucleic acid polynucleotide comprises a protospacer adjacent motif (PAM); and (c) wherein the PAM comprises a sequence selected from the group consisting of SEQ ID NOs: 5512-5526 or SEQ ID NOs: 5527-5537. In some embodiments, the double-stranded deoxyribonucleic acid polynucleotide comprises a first strand comprising a sequence complementary to a sequence of the engineered guide ribonucleic acid structure and a second strand comprising the PAM. In some embodiments, the PAM is directly adjacent to the 3′ end of the sequence complementary to the sequence of the engineered guide ribonucleic acid structure.


In some embodiments, the class 2, type II Cas endonuclease is not a Cas9 endonuclease, a Cas14 endonuclease, a Cas12a endonuclease, a Cas12b endonuclease, a Cas 12c endonuclease, a Cas12d endonuclease, a Cas12e endonuclease, a Cas13a endonuclease, a Cas13b endonuclease, a Cas13c endonuclease, or a Cas 13d endonuclease. In some embodiments, the class 2, type II Cas endonuclease is derived from an uncultivated microorganism. In some embodiments, the double-stranded deoxyribonucleic acid polynucleotide is a eukaryotic, plant, fungal, mammalian, rodent, or human double-stranded deoxyribonucleic acid polynucleotide.


In some embodiments: (a) the PAM comprises a sequence selected from the group consisting of SEQ ID NOs: 5512-5515 and SEQ ID NOs: 5527-5530; (b) the PAM comprises SEQ ID NO: 5516 or SEQ ID NO: 5531; (c) the PAM comprises SEQ ID NO: 5539; (d) the PAM comprises SEQ ID NO: 5517 or SEQ ID NO: 5518; (e) the PAM comprises SEQ ID NO: 5519; (f) the PAM comprises SEQ ID NO: 5520 or SEQ ID NO: 5535; (g) the PAM comprises SEQ ID NO: 5521 or SEQ ID NO: 5536; (h) the PAM comprises SEQ ID NO: 5522; (i) the PAM comprises SEQ ID NO: 5523 or SEQ ID NO: 5537; (j) the PAM comprises SEQ ID NO: 5524; (k) the PAM comprises SEQ ID NO: 5525; or (1) the PAM comprises SEQ ID NO: 5526.


In some aspects, the present disclosure provides for a method of modifying a target nucleic acid locus, the method comprising delivering to the target nucleic acid locus any of the engineered nuclease systems described herein, wherein the endonuclease is configured to form a complex with the engineered guide ribonucleic acid structure, and wherein the complex is configured such that upon binding of the complex to the target nucleic acid locus, the complex modifies the target nucleic locus. In some embodiments, modifying the target nucleic acid locus comprises binding, nicking, cleaving, or marking the target nucleic acid locus. In some embodiments, the target nucleic acid locus comprises deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). In some embodiments, the target nucleic acid comprises genomic DNA, viral DNA, viral RNA, or bacterial DNA. In some embodiments, the target nucleic acid locus is in vitro. In some embodiments, the target nucleic acid locus is within a cell. In some embodiments, the cell is a prokaryotic cell, a bacterial cell, a eukaryotic cell, a fungal cell, a plant cell, an animal cell, a mammalian cell, a rodent cell, a primate cell, or a human cell.


In some embodiments, delivering the engineered nuclease system to the target nucleic acid locus comprises delivering any of the nucleic acids described herein or any of the vectors described herein. In some embodiments, delivering the engineered nuclease system to the target nucleic acid locus comprises delivering a nucleic acid comprising an open reading frame encoding the endonuclease. In some embodiments, the nucleic acid comprises a promoter to which the open reading frame encoding the endonuclease is operably linked. In some embodiments, the engineered nuclease system to the target nucleic acid locus comprises delivering a capped mRNA containing the open reading frame encoding the endonuclease. In some embodiments, the engineered nuclease system to the target nucleic acid locus comprises delivering a translated polypeptide. In some embodiments, the engineered nuclease system to the target nucleic acid locus comprises delivering a deoxyribonucleic acid (DNA) encoding the engineered guide ribonucleic acid structure operably linked to a ribonucleic acid (RNA) pol III promoter. In some embodiments, the endonuclease induces a single-stranded break or a double-stranded break at or proximal to the target locus.


In some aspects, the present disclosure provides for an engineered nuclease system comprising: (a) an endonuclease comprising a sequence having at least 75% sequence identity to any one of SEQ ID NOs: 5718-5846 or 6257; and (b) an engineered guide ribonucleic acid structure configured to form a complex with said endonuclease comprising: (i) a ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; and (ii) a ribonucleic acid sequence configured to bind to said endonuclease. In some aspects, the present disclosure provides for an engineered nuclease system comprising: (a) an endonuclease configured to bind to a protospacer adjacent motif (PAM) sequence comprising SEQ ID NOs: 5847-5861 or 6258-6278, wherein said endonuclease is a class 2, type II Cas endonuclease; and (b) an engineered guide ribonucleic acid structure configured to form a complex with said endonuclease comprising: (i) a ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; and (ii) a ribonucleic acid sequence configured to bind to said endonuclease. In some embodiments, said endonuclease is derived from an uncultivated microorganism. In some embodiments, said endonuclease has not been engineered to bind to a different PAM sequence. In some embodiments, said endonuclease is not a Cas9 endonuclease, a Cas14 endonuclease, a Cas12a endonuclease, a Cas12b endonuclease, a Cas 12c endonuclease, a Cas12d endonuclease, a Cas12e endonuclease, a Cas13a endonuclease, a Cas13b endonuclease, a Cas13c endonuclease, or a Cas 13d endonuclease. In some embodiments, said endonuclease has less than 80% identity to a Cas9 endonuclease. In some embodiments, said ribonucleic acid sequence comprises a sequence with at least 80% sequence identity to (a) any one of SEQ ID NOs: 5886-5887, 5891, 5893, or 5894; or (b) the non-degenerate nucleotides of any one of SEQ ID NOs: 5862-5885, 5888-5890, 5892, 5895-5896, or 6279-6301. In some aspects, the present disclosure provides for an engineered nuclease system comprising, (a) an engineered guide ribonucleic acid structure comprising: (i) a ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; and (ii) a ribonucleic acid sequence configured to bind to an endonuclease, wherein said ribonucleic acid sequence comprises a sequence with at least 80% sequence identity (a) any one of SEQ ID NOs: 5886-5887, 5891, 5893, or 5894; or (b) the non-degenerate nucleotides of any one of SEQ ID NOs: 5862-5885, 5888-5890, 5892, 5895-5896, or 6279-6301; and a class 2, type II Cas endonuclease configured to bind to said engineered guide ribonucleic acid. In some embodiments, endonuclease is configured to bind to a protospacer adjacent motif (PAM) sequence selected from the group comprising SEQ ID NOs: 5847-5861 or 6258-6278. In some embodiments, said guide ribonucleic acid sequence is 15-24 nucleotides in length or 19-24 nucleotides in length. In some embodiments, said endonuclease comprises one or more nuclear localization sequences (NLSs) proximal to an N- or C-terminus of said endonuclease. In some embodiments, said NLS comprises a sequence selected from SEQ ID NOs: 5597-5612. In some embodiments, the system further comprises a single- or double-stranded DNA repair template comprising from 5′ to 3′: a first homology arm comprising a sequence of at least 20 nucleotides 5′ to said target deoxyribonucleic acid sequence, a synthetic DNA sequence of at least 10 nucleotides, and a second homology arm comprising a sequence of at least 20 nucleotides 3′ to said target sequence. In some embodiments, said first or second homology arm comprises a sequence of at least 40, 80, 120, 150, 200, 300, 500, or 1,000 nucleotides. In some embodiments, said sequence identity is determined by a BLASTP, CLUSTALW, MUSCLE, MAFFT, or CLUSTALW with the parameters of the Smith-Waterman homology search algorithm. In some embodiments, said sequence identity is determined by said BLASTP homology search algorithm using parameters of a wordlength (W) of 3, an expectation (E) of 10, and a BLOSUM62 scoring matrix setting gap costs at existence of 11, extension of 1, and using a conditional compositional score matrix adjustment.


In some aspects, the present disclosure provides for an engineered guide ribonucleic acid polynucleotide comprising: (a) a DNA-targeting segment comprising a nucleotide sequence that is complementary to a target sequence in a target DNA molecule; and (b) a protein-binding segment comprising two complementary stretches of nucleotides that hybridize to form a double-stranded RNA (dsRNA) duplex, wherein said two complementary stretches of nucleotides are covalently linked to one another with intervening nucleotides, and wherein said engineered guide ribonucleic acid polynucleotide is configured to form a complex with an endonuclease comprising sequence having at least 75% sequence identity to any one of SEQ ID NOs: 5718-5846 or 6257 and target said complex to said target sequence of said target DNA molecule. In some embodiments, said DNA-targeting segment is positioned 5′ of both of said two complementary stretches of nucleotides.


In some aspects, the present disclosure provides for a deoxyribonucleic acid polynucleotide encoding any of the engineered guide ribonucleic acid polynucleotides described herein.


In some aspects, the present disclosure provides for a nucleic acid comprising an engineered nucleic acid sequence optimized for expression in an organism, wherein said nucleic acid encodes an endonuclease comprising a sequence having at least 75% sequence identity to any one of SEQ ID NOs: 5718-5846 or 6257. In some embodiments, said endonuclease comprises a sequence encoding one or more nuclear localization sequences (NLSs) proximal to an N- or C-terminus of said endonuclease. In some embodiments, said NLS comprises a sequence selected from SEQ ID NOs: 5597-5612. In some embodiments, said organism is prokaryotic, bacterial, eukaryotic, fungal, plant, mammalian, rodent, or human.


In some aspects, the present disclosure provides for a vector comprising any of the nucleic acids described herein. In some embodiments, the vector further comprises a nucleic acid encoding an engineered guide ribonucleic acid structure configured to form a complex with said endonuclease comprising: (a) a ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; and (b) a ribonucleic acid sequence configured to bind to said endonuclease. In some embodiments, the vector is a plasmid, a minicircle, a CELiD, an adeno-associated virus (AAV) derived virion, or a lentivirus.


In some aspects, the present disclosure provides for a cell comprising any of the vectors described herein


In some aspects, the present disclosure provides for a method of manufacturing an endonuclease, comprising cultivating any of the cells described herein.


In some aspects, the present disclosure provides for a method for binding, cleaving, marking, or modifying a double-stranded deoxyribonucleic acid polynucleotide, comprising: contacting said double-stranded deoxyribonucleic acid polynucleotide with a class 2, type II Cas endonuclease in complex with an engineered guide ribonucleic acid structure configured to bind to said endonuclease and said double-stranded deoxyribonucleic acid polynucleotide; wherein said double-stranded deoxyribonucleic acid polynucleotide comprises a protospacer adjacent motif (PAM); and wherein said PAM comprises a sequence selected from the group consisting of SEQ ID NOs: 5847-5861 or 6258-6278. In some embodiments, said double-stranded deoxyribonucleic acid polynucleotide comprises a first strand comprising a sequence complementary to a sequence of said engineered guide ribonucleic acid structure and a second strand comprising said PAM. In some embodiments, said PAM is directly adjacent to the 3′ end of said sequence complementary to said sequence of said engineered guide ribonucleic acid structure. In some embodiments, said class 2, type II Cas endonuclease is not a Cas9 endonuclease, a Cas14 endonuclease, a Cas12a endonuclease, a Cas12b endonuclease, a Cas 12c endonuclease, a Cas12d endonuclease, a Cas12e endonuclease, a Cas13a endonuclease, a Cas13b endonuclease, a Cas13c endonuclease, or a Cas 13d endonuclease. In some embodiments, said double-stranded deoxyribonucleic acid polynucleotide is a eukaryotic, plant, fungal, mammalian, rodent, or human double-stranded deoxyribonucleic acid polynucleotide.


In some aspects, the present disclosure provides for a method of modifying a target nucleic acid locus, said method comprising delivering to said target nucleic acid locus any of the engineered nuclease systems described herein, wherein said endonuclease is configured to form a complex with said engineered guide ribonucleic acid structure, and wherein said complex is configured such that upon binding of said complex to said target nucleic acid locus, said complex modifies said target nucleic locus. In some embodiments, said target nucleic acid locus comprises binding, nicking, cleaving, or marking said target nucleic acid locus. In some embodiments, said target nucleic acid locus comprises deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). In some embodiments, said target nucleic acid comprises genomic DNA, viral DNA, viral RNA, or bacterial DNA. In some embodiments, said target nucleic acid locus is in vitro. In some embodiments, said target nucleic acid locus is within a cell. In some embodiments, said cell is a prokaryotic cell, a bacterial cell, a eukaryotic cell, a fungal cell, a plant cell, an animal cell, a mammalian cell, a rodent cell, a primate cell, or a human cell. In some embodiments, said engineered nuclease system to said target nucleic acid locus comprises delivering any of the nucleic acids described herein or any of the vectors described herein. In some embodiments, delivering said engineered nuclease system to said target nucleic acid locus comprises delivering a nucleic acid comprising an open reading frame encoding said endonuclease. In some embodiments, said nucleic acid comprises a promoter to which said open reading frame encoding said endonuclease is operably linked. In some embodiments, delivering said engineered nuclease system to said target nucleic acid locus comprises delivering a capped mRNA containing said open reading frame encoding said endonuclease. In some embodiments, delivering said engineered nuclease system to said target nucleic acid locus comprises delivering a translated polypeptide. In some embodiments, delivering said engineered nuclease system to said target nucleic acid locus comprises delivering a deoxyribonucleic acid (DNA) encoding said engineered guide ribonucleic acid structure operably linked to a ribonucleic acid (RNA) pol III promoter. In some embodiments, said endonuclease induces a single-stranded break or a double-stranded break at or proximal to said target locus.


In some aspects, the present disclosure provides for a method of editing a TRAC locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said TRAC locus, wherein said engineered guide RNA comprises a targeting sequence having at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to at least 19, at least 20, at least 21, at least 22, at least 23, or at least 24 consecutive nucleotides of any one of SEQ ID NOs: 5950-5958 or 5959-5965. In some embodiments, said RNA-guided endonuclease is a class II, type II Cas endonuclease. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said RNA-guided endonuclease comprises a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 421 or SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 5950-5958 and said endonuclease comprises a sequence having at least 75% identity to SEQ ID NO:421. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 5959-5965 and said endonuclease comprises a sequence having at least 75% identity to SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 5953-5957. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 5960-5961 or 5963-5964.


In some aspects, the present disclosure provides for a method of editing a TRBC locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said TRBC locus, wherein said engineered guide RNA comprises a targeting sequence having at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to at least 19, at least 20, at least 21, at least 22, at least 23, or at least 24 consecutive nucleotides of any one of SEQ ID NOs: 5966-6004 or 6005-6025. In some embodiments, said RNA-guided endonuclease is a class II, type II Cas endonuclease. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said RNA-guided endonuclease comprises a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 421 or SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 5966-6004 and said endonuclease comprises a sequence having at least 75% identity to SEQ ID NO: 421. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6005-6025 and said endonuclease comprises a sequence having at least 75% identity to SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 5970, 5971, 5983, or 5984. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6006, 6010, 6011, or 6012.


In some aspects, the present disclosure provides for a method of editing a GR (NR3C1) locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said GR (NR3C1) locus, wherein said engineered guide RNA comprises a targeting sequence having at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to at least 19, at least 20, at least 21, at least 22, at least 23, or at least 24 consecutive nucleotides consecutive nucleotides of any one of SEQ ID NOs: 6026-6090 or 6091-6121. In some embodiments, said RNA-guided endonuclease is a class II, type II Cas endonuclease. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said RNA-guided endonuclease comprises a sequence having at least 75% identity to SEQ ID NO: 421 or SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6026-6090 and said endonuclease comprises a sequence having at least 75% identity to SEQ ID NO: 421. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6091-6121 and said endonuclease comprises a sequence having at least 75% identity to SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6027-6028, 6029, 6038, 6043, 6049, 6076, 6080, 6081, or 6086. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6092, 6115, or 6119.


In some aspects, the present disclosure provides for a method of editing an AAVS1 locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said AAVS1 locus, wherein said engineered guide RNA comprises a targeting sequence having at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to at least 19, at least 20, at least 21, at least 22, at least 23, or at least 24 consecutive nucleotides of any one of SEQ ID NOs: 6122-6152. In some embodiments, said RNA-guided endonuclease is a class II, type II Cas endonuclease. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said RNA-guided endonuclease comprises a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 421 or SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6122, 6125-6126, 6128, 6131, 6133, 6136, 6141, 6143, or 6148.


In some aspects, the present disclosure provides for a method of editing an TIGIT locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said TIGIT locus, wherein said engineered guide RNA comprises a targeting sequence having at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to at least 19, at least 20, at least 21, at least 22, at least 23, or at least 24 consecutive nucleotides of any one of SEQ ID NOs: 6153-6181. In some embodiments, said RNA-guided endonuclease is a class II, type II Cas endonuclease. In some embodiments, said RNA-guided endonuclease comprises a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 421 or SEQ ID NO: 423. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 66155, 6159, 616, or 6172.


In some aspects, the present disclosure provides for a method of editing an CD38 locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said CD38 locus, wherein said engineered guide RNA comprises a targeting sequence having at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to at least 19, at least 20, at least 21, at least 22, at least 23, or at least 24 consecutive nucleotides of any one of SEQ ID NOs: 6182-6248 or 6249-6256. In some embodiments, said RNA-guided endonuclease is a class II, type II Cas endonuclease. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said RNA-guided endonuclease comprises a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 421 or SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6182-6248 and said endonuclease comprises a sequence having at least 75% identity to SEQ ID NO: 421. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6249-6256 and said endonuclease comprises a sequence having at least 75% identity to SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6182-6183, 6189, 6191, 6208, 6210, 6211, or 6215. In some embodiments, said engineered guide RNA comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of SEQ ID NO: 6251.


In some embodiments of any of the methods for editing particular loci in cells above, said cell is a peripheral blood mononuclear cell, a T-cell, an NK cell, a hematopoietic stem cell (HSCT), or a B-cell, or any combination thereof.


In some aspects, the present disclosure provides for an engineered guide ribonucleic acid polynucleotide comprising: (a) a DNA-targeting segment comprising a nucleotide sequence that is complementary to a target sequence in a target DNA molecule; and (b) a protein-binding segment comprising two complementary stretches of nucleotides that hybridize to form a double-stranded RNA (dsRNA) duplex, wherein said two complementary stretches of nucleotides are covalently linked to one another with intervening nucleotides, and wherein said engineered guide ribonucleic acid polynucleotide is configured to form a complex with a class 2, type II Cas endonuclease and target said complex to said target sequence of said target DNA molecule, wherein said DNA-targeting segment comprises a sequence having at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to at least 19, at least 20, at least 21, at least 22, at least 23, or at least 24 consecutive nucleotides of any one of SEQ ID NOs: 5950-5965, 5966-6025, 6026-6121, 6122-6152, 6153-6181, or 6182-6256. In some embodiments, said protein-binding segment comprises a sequence having at least 85% identity to any one of SEQ ID NOs: 5466 or 6304.


In some aspects, the present disclosure provides for a system for generating an edited immune cell, comprising: (a) an RNA-guided endonuclease; (b) an engineered guide ribonucleic acid polynucleotide according to claim 97 configured to bind said RNA-guided endonuclease; and (c) a single- or double-stranded DNA repair template comprising first and second homology arms flanking a sequence encoding a chimeric antigen receptor (CAR). In some embodiments, said cell is a peripheral blood mononuclear cell, a T-cell, an NK cell, a hematopoietic stem cell (HSCT), or a B-cell, or any combination thereof. In some aspects, said RNA-guided endonuclease is a class II, type II Cas endonuclease. In some aspects, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some aspects, said RNA-guided endonuclease further comprises an HNH domain. In some aspects, said RNA-guided endonuclease comprises a sequence having at least 75% identity, at least 80% identity, at least 82% identity, at least 84% identity, at least 86% identity, at least 88% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or at least 100% identity to SEQ ID NO: 421 or SEQ ID NO: 423.


Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.


In some aspects, the present disclosure provides for a method of editing a B2M locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said B2M locus, wherein said region of said B2M locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6387-6468. In some embodiments, said RNA-guided endonuclease is a Cas endonuclease. In some embodiments, said Cas endonuclease is a class 2, type II Cas endonuclease. In some embodiments, said class 2, type II Cas endonuclease comprises an endonuclease having at least 75% sequence identity to any one of SEQ ID NOs: 421-431. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421. In some embodiments, said engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6305-6386. In some embodiments, said region of said B2M locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6388, 6399, 6401, 6403, 6410, 6413, 6421, 6446, and 6448. In some embodiments, said engineered guide RNA comprises a sequence at 80%, or at least 90% identical to any one of SEQ ID NOs: 6306, 6317, 6319, 6321, 6328, 6331, 6339, 6364, and 6366.


In some aspects, the present disclosure provides for a method of editing a TRAC locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said TRAC locus, wherein said region of said TRAC locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6509-6548. In some embodiments, said RNA-guided endonuclease is a Cas endonuclease. In some embodiments, said Cas endonuclease is a class 2, type II Cas endonuclease. In some embodiments, said class 2, type II Cas endonuclease comprises an endonuclease having at least 75% sequence identity to any one of SEQ ID NOs: 421-431. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421. In some embodiments, said engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6469-6508. In some embodiments, said region of said TRAC locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6517, 6520, and 6523. In some embodiments, said engineered guide RNA comprises a sequence at 80%, or at least 90% identical to any one of SEQ ID NOs: 6477, 6480, and 6483.


In some aspects, the present disclosure provides for a method of editing a HPRT locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said HPRT locus, wherein said region of said HPRT locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6616-6682. In some embodiments, said RNA-guided endonuclease is a Cas endonuclease. In some embodiments, said Cas endonuclease is a class 2, type II Cas endonuclease. In some embodiments, said class 2, type II Cas endonuclease comprises an endonuclease having at least 75% sequence identity to any one of SEQ ID NOs: 421-431. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421 or SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6549-6615. In some embodiments, said region of said HPRT locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6619, 6634, 6673, 6675, and 6679. In some embodiments, said engineered guide RNA comprises a sequence at 80%, or at least 90% identical to any one of SEQ ID NOs: 6552, 6567, 6606, 6608, and 6612.


In some aspects, the present disclosure provides for a method of editing a TRBC1/2 locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said TRBC1/2 locus, wherein said region of said TRBC1/2 locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6722-6760 or 6782-6802. In some embodiments, said RNA-guided endonuclease is a Cas endonuclease. In some embodiments, said Cas endonuclease is a class 2, type II Cas endonuclease. In some embodiments, said class 2, type II Cas endonuclease comprises an endonuclease having at least 75% sequence identity to any one of SEQ ID NOs: 421-431. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421 or SEQ ID NO: 423. In some embodiments, said engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6683-6721 and 6761-6781. In some embodiments, said region of said TRBC1/2 locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6734, 6753, 6790, and 6800. In some embodiments, said engineered guide RNA comprises a sequence at 80%, or at least 90% identical to any one of SEQ ID NOs: 6695, 6714, 6769, and 6779.


In some aspects, the present disclosure provides for a method of editing a HAO1 locus in a cell, comprising contacting to said cell (a) an RNA-guided endonuclease; and (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said HAO1 locus, wherein said region of said HAO1 locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 11802-11820. In some embodiments, said RNA-guided endonuclease is a Cas endonuclease. In some embodiments, said Cas endonuclease is a class 2, type II Cas endonuclease. In some embodiments, said class 2, type II Cas endonuclease comprises an endonuclease having at least 75% sequence identity to any one of SEQ ID NOs: 421-431. In some embodiments, said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% sequence identity to SEQ ID NO: 2242. In some embodiments, said RNA-guided endonuclease further comprises an HNH domain. In some embodiments, said RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421. In some embodiments, said region of said HAO1 locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 11806, 11813, 11816, and 11819. In some embodiments, said cell is a peripheral blood mononuclear cell (PBMC). In some embodiments, said cell is a T-cell or a precursor thereof or a hematopoietic stem cell (HSC).


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings (also “Figure” and “FIG.” herein), of which:



FIG. 1 depicts the gene editing outcomes at the DNA level for B2M.



FIG. 2A and FIG. 2B depicts the gene editing outcomes at the DNA level for mouse TRAC.



FIG. 3 depicts the gene editing outcomes at the DNA level for HPRT.



FIG. 4 depicts the flow cytometry results for gene editing of human TRBC1/2.



FIG. 5 depicts the results of a guide screen in Hepa1-6 cells; guides were delivered as mRNA and gRNA using lipofectamine Messenger Max.



FIG. 6 depicts analysis of gene-editing outcomes by NGS for mRNA electroporation in T cells.



FIG. 7 depicts ELISA results from a screen performed at a serum dilution of 1:50 to detect antibodies against MG-3-6 and MG3-8 (n=50). Tetanus toxoid was used as the positive control due to wide-spread vaccination against this antigen. Serum samples above the dashed line were considered antibody-positive; the line represents the mean absorbance of the negative control (human albumin) plus two standard deviations from the mean. *P<0.05, **P<0.01, ****P<0.0001 as determined by an unpaired Student's t-test; ns, not significant.



FIG. 8 depicts the gene editing outcomes at the DNA and cell-surface protein level for TRAC in human peripheral blood B cells.



FIG. 9 depicts the gene editing outcomes at the DNA level for TRAC in hematopoietic stem cells.



FIG. 10 depicts the gene editing outcomes at the DNA and cell-surface protein level for TRAC in induced pluripotent stem cells (iPSCs) for MG3-6 delivered as a ribonucleoprotein.



FIG. 11 depicts the gene editing outcomes at the DNA level for TRAC in induced pluripotent stem cells (iPSCs) for MG3-6 delivered as mRNA.



FIG. 12 depicts the gene editing outcomes at the DNA level for CD2 in primary T cells.



FIG. 13 depicts the gene editing outcomes at the DNA level for CD5 in primary T cells.



FIG. 14 depicts targeted RNA cleavage by MG3-6 and MG3-8.



FIG. 15 depicts the gene editing outcomes at the DNA level for FAS in T cells.



FIG. 16 depicts the gene editing outcomes at the DNA level for PD-1 in T cells.



FIG. 17 depicts the gene editing outcomes at the DNA level for hRosa26 in T cells.



FIG. 18 depicts the gene editing outcomes at the DNA level for TRAC and AAVS1 in K562 cells.



FIG. 19 depicts the activity of chemically modified MG3-6 human HAO-1 guides in Hep3B cells when delivered as mRNA and gRNA using Lipofectamine Messenger Max.



FIG. 20 depicts the gene editing outcomes at the DNA level for human GPR146 in Hep3B cells.



FIG. 21 depicts the gene editing outcomes at the DNA level for mouse GPR146 in Hepa1-6 cells.



FIG. 22 depicts the gene editing outcomes at the DNA level for mouse GPR146 in primary mouse hepatocytes.



FIG. 23 depicts the gene editing outcomes at the DNA level for TRAC and AAVS1 in K562 cells.



FIG. 24 depicts phylogenetic analysis of nucleases from the MG3 and MG150 families. PAM SeqLogo representations are shown for some active candidates. Reference SaCas9 and SpyCas9 sequences were included.



FIG. 25 depicts phylogenetic analysis of nucleases from the MG15 family. Active candidates are highlighted with circles. Reference SaCas9, SpyCas9, and AcCas9 sequences were included as outgroup.



FIG. 26 depicts SeqLogos of the PAMs for MG123-1, MG124-2, MG 125-1 and MG125-2.



FIG. 27 depicts SeqLogos of the PAMs for MG125-3, MG125-4, MG125-5, and MG150-5.



FIG. 28 depicts SeqLogos of the PAMs for MG150-6, MG150-7, MG150-8, and MG150-9.



FIG. 29 depicts SeqLogos of the PAMs for MG3-18, MG3-89, MG3-90, and MG3-91.



FIG. 30 depicts SeqLogos of the PAMs for MG3-92, MG3-93, MG3-95, and MG3-96.



FIG. 31 depicts SeqLogos of the PAMs for MG3-103, MG15-130, MG15-146, and MG15-164.



FIG. 32 depicts SeqLogos of the PAMs for MG15-166, MG15-171, MG15-172, and MG15-174.



FIG. 33 depicts SeqLogos of the PAMs for MG15-184, MG15-187, MG15-191, and MG15-193.



FIG. 34 depicts SeqLogos of the PAMs for MG15-195, MG15-217, MG15-218, and MG15-219.



FIG. 35 depicts a SeqLogo of the PAM for MG15-177.





BRIEF DESCRIPTION OF THE SEQUENCE LISTING

The Sequence Listing filed herewith provides exemplary polynucleotide and polypeptide sequences for use in methods, compositions and systems according to the disclosure. Below are exemplary descriptions of sequences therein.


MG1

SEQ ID NOs: 1-319 and 7285-7293 show the full-length peptide sequences of MG1 nucleases.


SEQ ID NOs: 1827-2140 show the peptide sequences of RuvC_III domains of MG1 nucleases above.


SEQ ID NOs: 3638-3955 show the peptide of HNH domains of MG1 nucleases above.


SEQ ID NOs: 5476-5479 show the nucleotide sequences of MG1 tracrRNAs derived from the same loci as MG1 nucleases above (e.g., same loci as SEQ ID NO:1-4, respectively).


SEQ ID NOs: 5461-5464 and 11130 show the nucleotide sequences of sgRNAs engineered to function with an MG1 nuclease (e.g., SEQ ID NO:1-4, respectively), where Ns denote nucleotides of a targeting sequence.


SEQ ID NOs: 5572-5575 show nucleotide sequences for E. coli codon-optimized coding sequences for MG1 family enzymes (SEQ ID NOs: 1-4).


SEQ ID NOs: 5588-5589 show nucleotide sequences for human codon-optimized coding sequences for MG1 family enzymes (SEQ ID NOs: 1 and 3).


SEQ ID NOs: 5616-5632 show peptide motifs characteristic of MG1 family enzymes.


SEQ ID NOs: 9192-9255 show the peptide sequences of PAM-interacting domains of MG1 nucleases.


SEQ ID NOs: 11229-11269 show the nucleotide sequences of target sites of MG1 nucleases.


MG2

SEQ ID NOs: 320-420 and 7294-7358 show the full-length peptide sequences of MG2 nucleases.


SEQ ID NOs: 2141-2241 show the peptide sequences of RuvC_III domains of MG2 nucleases above.


SEQ ID NOs: 3955-4055 show the peptide of HNH domains of MG2 nucleases above.


SEQ ID NOs: 5490-5494 and 11159 show the nucleotide sequences of MG2 tracrRNAs derived from the same loci as MG2 nucleases above (e.g., same loci as SEQ ID NOs: 320, 321, 323, 325, and 326, respectively).


SEQ ID NO: 5465 shows the nucleotide sequence of an sgRNA engineered to function with an MG2 nuclease (e.g., SEQ ID NO: 321 above).


SEQ ID NOs: 5572-5575 show nucleotide sequences for E. coli codon-optimized coding sequences for MG2 family enzymes.


SEQ ID NOs: 5631-5638 show peptide sequences characteristic of MG2 family enzymes.


SEQ ID NOs: 9256-9322 show the peptide sequences of PAM-interacting domains of MG2 nucleases.


SEQ ID NOs: 11270-11275 show the nucleotide sequences of target sites of MG2 nucleases.


MG3

SEQ ID NOs: 421-431 show the full-length peptide sequences of MG3 nucleases.


SEQ ID NO: 6803 shows the nucleotide sequence of an MG3-6 nuclease containing 5′ UTR, NLS, CDS, NLS, 3′ UTR, and polyA tail.


SEQ ID NOs: 2242-2252 show the peptide sequences of RuvC_III domains of MG3 nucleases above.


SEQ ID NOs: 4056-4066 show the peptide of HNH domains of MG3 nucleases above.


SEQ ID NOs: 5495-5502 and 11160-11162 show the nucleotide sequences of MG3 tracrRNAs derived from the same loci as MG3 nucleases above (e.g., same loci as SEQ ID NOs: 421-428, respectively).


SEQ ID NOs: 5466-5467, 11131, and 11567-11576 show the nucleotide sequences of sgRNAs engineered to function with MG3 nucleases (e.g., SEQ ID NOs: 421-423).


SEQ ID NOs: 5578-5580 show nucleotide sequences for E. coli codon-optimized coding sequences for MG3 family enzymes.


SEQ ID NOs: 5639-5648 show peptide sequences characteristic of MG3 family enzymes.


SEQ ID NOs: 9323-9329 show the peptide sequences of PAM-interacting domains of MG3 nucleases.


SEQ ID NOs: 11108 and 11530-11538 show the nucleotide sequences of single guide PAMs of MG3 nucleases.


SEQ ID NOs: 11276-11294 show the nucleotide sequences of target sites of MG1 nucleases.


SEQ ID NO: 11373 shows the nucleotide sequence of a DNA sequence encoding MG3-6 mRNA.


MG3a

SEQ ID NOs: 7369-7375 show the full-length peptide sequences of MG3a nucleases.


SEQ ID NOs: 11099 show the peptide sequences of PAM-interacting domains of MG3a nucleases.


MG3b

SEQ ID NOs: 7376-7390 show the full-length peptide sequences of MG3b nucleases.


SEQ ID NOs: 11100-11107 show the peptide sequences of PAM-interacting domains of MG3b nucleases.


MG4

SEQ ID NOs: 432-660 and 7391-7535 show the full-length peptide sequences of MG4 nucleases.


SEQ ID NOs: 2253-2481 show the peptide sequences of RuvC_III domains of MG4 nucleases above.


SEQ ID NOs: 4067-4295 show the peptide of HNH domains of MG4 nucleases above.


SEQ ID NO: 5503 shows the nucleotide sequences of an MG4 tracrRNA derived from the same loci as MG4 nucleases above.


SEQ ID NO: 5468 shows the nucleotide sequence of sgRNAs engineered to function with an MG4 nuclease.


SEQ ID NO: 5649 shows a peptide sequence characteristic of MG4 family enzymes.


SEQ ID NOs: 9330-9485 show the peptide sequences of PAM-interacting domains of MG4 nucleases.


SEQ ID NOs: 11295-11303 show the nucleotide sequences of target sites of MG4 nucleases.


MG5

SEQ ID NOs: 7536-7583 show the full-length peptide sequences of MG5 nucleases.


SEQ ID NOs: 9486-9526 show the peptide sequences of PAM-interacting domains of MG5 nucleases.


MG6

SEQ ID NOs: 661-668 and 7584-7587 show the full-length peptide sequences of MG6 nucleases.


SEQ ID NOs: 2482-2489 show the peptide sequences of RuvC_III domains of MG6 nucleases above.


SEQ ID NOs: 4296-4303 show the peptide of HNH domains of MG3 nucleases above.


SEQ ID NOs: 9527-9531 show the peptide sequences of PAM-interacting domains of MG6 nucleases.


MG7

SEQ ID NOs: 669-677 show the full-length peptide sequences of MG7 nucleases.


SEQ ID NOs: 2490-2498 show the peptide sequences of RuvC_III domains of MG7 nucleases above.


SEQ ID NOs: 4304-4312 show the peptide of HNH domains of MG3 nucleases above.


SEQ ID NO: 5504 shows the nucleotide sequence of an MG7 tracrRNA derived from the same loci as MG7 nucleases above.


SEQ ID NOs: 9532-9535 show the peptide sequences of PAM-interacting domains of MG7 nucleases.


MG14

SEQ ID NOs: 678-929 and 7588-7597 show the full-length peptide sequences of MG14 nucleases.


SEQ ID NOs: 2499-2750 show the peptide sequences of RuvC_III domains of MG14 nucleases above.


SEQ ID NOs: 4313-4564 show the peptide of HNH domains of MG14 nucleases above.


SEQ ID NOs: 5505 and 11163-11167 show nucleotide sequences of MG14 tracrRNAs derived from the same loci as MG14 nucleases above.


SEQ ID NO: 5581 shows a nucleotide sequence for an E. coli codon-optimized coding sequences for an MG14 family enzyme.


SEQ ID NOs: 5650-5667 show peptide sequences characteristic of MG14 family enzymes.


SEQ ID NOs: 9536-9611 show the peptide sequences of PAM-interacting domains of MG14 nucleases.


SEQ ID NOs: 11109-11113 show the nucleotide sequences of single guide PAMs of MG14 nucleases.


SEQ ID NOs: 11132-11136 shows the nucleotide sequence of sgRNAs engineered to function with an MG14 nuclease.


SEQ ID NOs: 11304-11312 show the nucleotide sequences of target sites of MG14 nucleases.


MG15

SEQ ID NOs: 930-1092, 7598-7622, and 11593-11616 show the full-length peptide sequences of MG15 nucleases.


SEQ ID NOs: 2751-2913 show the peptide sequences of RuvC_III domains of MG15 nucleases above.


SEQ ID NOs: 4565-4727 show the peptide of HNH domains of MG15 nucleases above.


SEQ ID NOs: 5506 and 11168-11172 show nucleotide sequences of MG15 tracrRNAs derived from the same loci as MG15 nucleases above.


SEQ ID NOs: 5470 and 11577-11592 show the nucleotide sequences of sgRNAs engineered to function with MG15 nucleases.


SEQ ID NO: 5582 shows a nucleotide sequence for an E. coli codon-optimized coding sequences for an MG15 family enzyme.


SEQ ID NOs: 5668-5675 show peptide sequences characteristic of MG15 family enzymes.


SEQ ID NOs: 9612-9671 show the peptide sequences of PAM-interacting domains of MG15 nucleases.


SEQ ID NOs: 11539-11554 show the nucleotide sequences of single guide PAMs of MG15 nucleases.


MG16

SEQ ID NOs: 1093-1353 and 7623-7698 show the full-length peptide sequences of MG16 nucleases.


SEQ ID NOs: 2914-3174 show the peptide sequences of RuvC_III domains of MG16 nucleases above.


SEQ ID NOs: 4728-4988 show the peptide of HNH domains of MG16 nucleases above.


SEQ ID NOs: 5507 and 11173-11174 show nucleotide sequences of MG16 tracrRNAs derived from the same loci as MG16 nucleases above.


SEQ ID NOs: 5471 and 11137 show nucleotide sequences of sgRNAs engineered to function with an MG16 nuclease.


SEQ ID NO: 5583 shows a nucleotide sequence for an E. coli codon-optimized coding sequences for an MG16 family enzyme.


SEQ ID NOs: 5676-5678 show peptide sequences characteristic of MG16 family enzymes.


SEQ ID NOs: 9672-9842 show the peptide sequences of PAM-interacting domains of MG16 nucleases.


SEQ ID NO: 11114 shows the nucleotide sequence of a single guide PAM of an MG16 nuclease.


SEQ ID NOs: 11313-11320 show the nucleotide sequences of target sites of MG16 nucleases.


MG17

SEQ ID NOs: 7699-7715 show the full-length peptide sequences of MG17 nucleases.


SEQ ID NOs: 9843-9856 show the peptide sequences of PAM-interacting domains of MG17 nucleases.


SEQ ID NO: 11115 shows the nucleotide sequence of a single guide PAM of an MG17 nuclease.


SEQ ID NO: 11138 shows the nucleotide sequence of an sgRNA engineered to function with an MG17 nuclease.


SEQ ID NO: 11175 shows the nucleotide sequence of an MG17 tracrRNA derived from the same loci as MG17 nucleases above.


MG18

SEQ ID NOs: 1354-1511 show the full-length peptide sequences of MG18 nucleases.


SEQ ID NOs: 3175-3330 show the peptide sequences of RuvC_III domains of MG18 nucleases above.


SEQ ID NOs: 4989-5146 show the peptide of HNH domains of MG18 nucleases above.


SEQ ID NO: 5508 shows the nucleotide sequences of MG18 tracrRNA derived from the same loci as MG18 nucleases above.


SEQ ID NOs: 5472 shows the nucleotide sequence of an sgRNA engineered to function with an MG18 nuclease.


SEQ ID NO: 5584 shows a nucleotide sequence for an E. coli codon-optimized coding sequences for an MG18 family enzyme.


SEQ ID NOs: 5679-5686 show peptide sequences characteristic of MG18 family enzymes.


SEQ ID NOs: 9857-9891 show the peptide sequences of PAM-interacting domains of MG18 nucleases.


SEQ ID NOs: 11321-11327 show the nucleotide sequences of target sites of MG18 nucleases.


MG21

SEQ ID NOs: 1512-1655 and 7716-7733 show the full-length peptide sequences of MG21 nucleases.


SEQ ID NOs: 3331-3474 show the peptide sequences of RuvC_III domains of MG21 nucleases above.


SEQ ID NOs: 5147-5290 show the peptide of HNH domains of MG21 nucleases above.


SEQ ID NOs: 5509 and 11176-11178 show nucleotide sequences of MG21 tracrRNAs derived from the same loci as MG21 nucleases above.


SEQ ID NOs: 5473 and 11139 show nucleotide sequences of sgRNAs engineered to function with an MG21 nuclease.


SEQ ID NO: 5585 shows a nucleotide sequence for an E. coli codon-optimized coding sequences for an MG21 family enzyme.


SEQ ID NOs: 5687-5692 and 5674-5675 show peptide sequences characteristic of MG21 family enzymes.


SEQ ID NOs: 9892-9951 show the peptide sequences of PAM-interacting domains of MG21 nucleases.


SEQ ID NO: 11116 shows the nucleotide sequence of a single guide PAM of an MG21 nuclease.


SEQ ID NOs: 11328-11336 show the nucleotide sequences of target sites of MG21 nucleases.


MG22

SEQ ID NOs: 1656-1755 show the full-length peptide sequences of MG22 nucleases.


SEQ ID NOs: 3475-3568 show the peptide sequences of RuvC_III domains of MG22 nucleases above.


SEQ ID NOs: 5291-5389 show the peptide of HNH domains of MG22 nucleases above.


SEQ ID NOs: 5510 and 11179-11180 show nucleotide sequences of MG22 tracrRNAs derived from the same loci as MG22 nucleases above.


SEQ ID NOs: 5474 shows the nucleotide sequence of an sgRNAs engineered to function with an MG22 nuclease.


SEQ ID NO: 5586 shows a nucleotide sequence for an E. coli codon-optimized coding sequences for an MG22 family enzyme.


SEQ ID NOs: 5694-5699 show peptide sequences characteristic of MG22 family enzymes.


SEQ ID NOs: 9952-9982 show the peptide sequences of PAM-interacting domains of MG22 nucleases.


SEQ ID NOs: 11337-11344 show the nucleotide sequences of target sites of MG22 nucleases.


MG23

SEQ ID NOs: 1756-1826 and 7734-7735 show the full-length peptide sequences of MG23 nucleases.


SEQ ID NOs: 3569-3637 show the peptide sequences of RuvC_III domains of MG23 nucleases above.


SEQ ID NOs: 5390-5460 show the peptide of HNH domains of MG23 nucleases above.


SEQ ID NOs: 5511 and 11181-11182 show nucleotide sequences of MG23 tracrRNAs derived from the same loci as MG23 nucleases above.


SEQ ID NOs: 5475 and 11140 show nucleotide sequences of sgRNAs engineered to function with an MG23 nuclease.


SEQ ID NO: 5587 shows a nucleotide sequence for an E. coli codon-optimized coding sequences for an MG23 family enzyme.


SEQ ID NOs: 5700-5717 show peptide sequences characteristic of MG23 family enzymes.


SEQ ID NOs: 9983-10004 show the peptide sequences of PAM-interacting domains of MG23 nucleases.


SEQ ID NOs: 11345-11351 show the nucleotide sequences of target sites of MG23 nucleases.


MG24

SEQ ID NOs: 7736-8027 show the full-length peptide sequences of MG24 nucleases.


SEQ ID NOs: 10005-10162 show the peptide sequences of PAM-interacting domains of MG24 nucleases.


MG25

SEQ ID NOs: 8028-8091 show the full-length peptide sequences of MG25 nucleases.


SEQ ID NOs: 10163-10211 show the peptide sequences of PAM-interacting domains of MG25 nucleases.


MG38

SEQ ID NOs: 8092-8095 show the full-length peptide sequences of MG38 nucleases.


SEQ ID NOs: 10212-10214 show the peptide sequences of PAM-interacting domains of MG38 nucleases.


MG40

SEQ ID NOs: 5718-5750 and 8096-8163 show the full-length peptide sequences of MG40 nucleases.


SEQ ID NOs: 5847-5852 show protospacer adjacent motifs associated with MG 40 nucleases.


SEQ ID NOs: 5862-5873 show the nucleotide sequence of an sgRNA engineered to function with an MG40 nuclease.


SEQ ID NOs: 10215-10263 show the peptide sequences of PAM-interacting domains of MG40 nucleases.


SEQ ID NOs: 11183-11188 show nucleotide sequences of MG40 tracrRNAs derived from the same loci as MG40 nucleases above.


MG41

SEQ ID NOs: 8164-8286 show the full-length peptide sequences of MG41 nucleases.


SEQ ID NOs: 10264-10304 show the peptide sequences of PAM-interacting domains of MG41 nucleases.


MG42

SEQ ID NOs: 8287-8356 show the full-length peptide sequences of MG42 nucleases.


SEQ ID NOs: 10305-10355 show the peptide sequences of PAM-interacting domains of MG42 nucleases.


MG43

SEQ ID NOs: 8357-8453 show the full-length peptide sequences of MG43 nucleases.


SEQ ID NOs: 10356-10412 show the peptide sequences of PAM-interacting domains of MG43 nucleases.


SEQ ID NO: 11117 shows the nucleotide sequence of a single guide PAM of an MG43 nuclease.


SEQ ID NO: 11141 shows the nucleotide sequence of an sgRNA engineered to function with an MG43 nuclease.


SEQ ID NO: 11189 shows the nucleotide sequence of an MG43 tracrRNA derived from the same loci as MG43 nucleases above.


MG44

SEQ ID NOs: 8454-8496 show the full-length peptide sequences of MG44 nucleases.


SEQ ID NOs: 10413-10555 show the peptide sequences of PAM-interacting domains of MG44 nucleases.


SEQ ID NO: 11190 shows the nucleotide sequence of an MG44 tracrRNA derived from the same loci as MG44 nucleases above.


MG46

SEQ ID NOs: 8497-8634 show the full-length peptide sequences of MG46 nucleases.


SEQ ID NOs: 10556-10633 show the peptide sequences of PAM-interacting domains of MG46 nucleases.


SEQ ID NO: 11191 shows the nucleotide sequence of an MG46 tracrRNA derived from the same loci as MG46 nucleases above.


MG47

SEQ ID NOs: 5751-5768 and 8635-8664 show the full-length peptide sequences of MG47 nucleases.


SEQ ID NOs: 5853-5854 show protospacer adjacent motifs associated with MG47 nucleases.


SEQ ID NOs: 5878-5881 show the nucleotide sequence of an sgRNA engineered to function with an MG47 nuclease.


SEQ ID NOs: 10634-10656 show the peptide sequences of PAM-interacting domains of MG47 nucleases.


SEQ ID NOs: 11192-11193 show nucleotide sequences of MG47 tracrRNAs derived from the same loci as MG47 nucleases above.


MG48

SEQ ID NOs: 5769-5804 and 8665 show the full-length peptide sequences of MG48 nucleases.


SEQ ID NOs: 5855-5856 show protospacer adjacent motifs associated with MG48 nucleases.


SEQ ID NOs: 5886, 5890, 5893, and 11194 show the nucleotide sequences of MG48 tracrRNA derived from the same loci as MG48 nucleases above


SEQ ID NOs: 5887, 5891 and 5894 show CRISPR repeats associated with MG48 nucleases described herein.


SEQ ID NOs: 5888-5889, 5892 and 5895-5896 show putative sgRNA designed to function with an MG48 nuclease.


SEQ ID NOs: 10657-10662 show the peptide sequences of PAM-interacting domains of MG48 nucleases.


SEQ ID NOs: 11142-11143 show nucleotide sequences of sgRNAs engineered to function with an MG48 nuclease.


MG49

SEQ ID NOs: 5805-5823 and 8666-8677 show the full-length peptide sequences of MG49 nucleases.


SEQ ID NOs: 5857-5858 show protospacer adjacent motifs associated with MG49 nucleases.


SEQ ID NOs: 5862-5873 show the nucleotide sequence of an sgRNA engineered to function with an MG40 nuclease.


SEQ ID NOs: 5876-5877 show the nucleotide sequence of an sgRNA engineered to function with an MG49 nuclease.


SEQ ID NOs: 10663-10675 show the peptide sequences of PAM-interacting domains of MG49 nucleases.


SEQ ID NOs: 11195-11196 show nucleotide sequences of MG49 tracrRNAs derived from the same loci as MG49 nucleases above.


MG50

SEQ ID NOs: 5824-5826 and 8678-8682 show the full-length peptide sequences of MG50 nucleases.


SEQ ID NO: 5859 shows a protospacer adjacent motif associated with MG50 nucleases.


SEQ ID NOs: 5884-5885 show the nucleotide sequence of an sgRNA engineered to function with an MG50 nuclease.


SEQ ID NOs: 10676-10682 show the peptide sequences of PAM-interacting domains of MG50 nucleases.


SEQ ID NO: 11197 shows the nucleotide sequence of an MG50 tracrRNA derived from the same loci as MG50 nucleases above.


MG51

SEQ ID NOs: 5827-5830 and 8683-8705 show the full-length peptide sequences of MG51 nucleases.


SEQ ID NO: 5860 shows a protospacer adjacent motif associated with MG51 nucleases.


SEQ ID NOs: 5882-5883 show the nucleotide sequence of an sgRNA engineered to function with an MG51 nuclease.


SEQ ID NOs: 10683-10704 show the peptide sequences of PAM-interacting domains of MG51 nucleases.


SEQ ID NO: 11198 shows the nucleotide sequence of an MG51 tracrRNA derived from the same loci as MG51 nucleases above.


MG52

SEQ ID NOs: 5831-5846 and 8706 show the full-length peptide sequences of MG52 nucleases.


SEQ ID NO: 5861 shows a protospacer adjacent motif associated with MG52 nucleases.


SEQ ID NOs: 5874-5875 show the nucleotide sequence of an sgRNA engineered to function with an MG52 nuclease.


SEQ ID NOs: 10705-10710 show the peptide sequences of PAM-interacting domains of MG52 nucleases.


SEQ ID NO: 11199 shows the nucleotide sequence of an MG52 tracrRNA derived from the same loci as MG52 nucleases above.


MG71

SEQ ID NOs: 10711-10712 show the peptide sequences of PAM-interacting domains of MG71 nucleases.


SEQ ID NOs: 11144-11145 show nucleotide sequences of sgRNAs engineered to function with an MG71 nuclease.


SEQ ID NOs: 11200-11201 show nucleotide sequences of MG71 tracrRNAs derived from the same loci as MG71 nucleases above.


MG72

SEQ ID NO: 11202 shows the nucleotide sequence of an MG72 tracrRNA derived from the same loci as MG72 nucleases above.


MG73

SEQ ID NOs: 10713-10718 show the peptide sequences of PAM-interacting domains of MG73 nucleases.


SEQ ID NOs: 11203-11204 show nucleotide sequences of MG73 tracrRNAs derived from the same loci as MG73 nucleases above.


MG74

SEQ ID NOs: 10719-10732 show the peptide sequences of PAM-interacting domains of MG74 nucleases.


SEQ ID NO: 11205 shows the nucleotide sequence of an MG74 tracrRNA derived from the same loci as MG74 nucleases above.


MG86

SEQ ID NOs: 8707-8737 show the full-length peptide sequences of MG86 nucleases.


SEQ ID NOs: 10733-10791 show the peptide sequences of PAM-interacting domains of MG86 nucleases.


SEQ ID NO: 11118 shows the nucleotide sequence of a single guide PAM of an MG86 nuclease.


SEQ ID NOs: 11206-11207 show nucleotide sequences of MG86 tracrRNAs derived from the same loci as MG86 nucleases above.


MG87

SEQ ID NOs: 8738-8747 show the full-length peptide sequences of MG87 nucleases.


SEQ ID NOs: 10792-10828 show the peptide sequences of PAM-interacting domains of MG87 nucleases.


SEQ ID NOs: 11208-11210 show nucleotide sequences of MG87 tracrRNAs derived from the same loci as MG87 nucleases above.


MG88

SEQ ID NOs: 10829-10841 show the peptide sequences of PAM-interacting domains of MG88 nucleases.


SEQ ID NOs: 11211-11213 show nucleotide sequences of MG88 tracrRNAs derived from the same loci as MG88 nucleases above.


MG89

SEQ ID NOs: 10842-10854 show the peptide sequences of PAM-interacting domains of MG89 nucleases.


SEQ ID NOs: 11214-11215 show nucleotide sequences of MG89 tracrRNAs derived from the same loci as MG89 nucleases above.


MG94

SEQ ID NOs: 8748-8781 show the full-length peptide sequences of MG94 nucleases.


SEQ ID NOs: 10855-10860 show the peptide sequences of PAM-interacting domains of MG94 nucleases.


SEQ ID NOs: 11119-11120 show the nucleotide sequences of single guide PAMs of MG94 nucleases.


SEQ ID NOs: 11146-11147 show nucleotide sequences of sgRNAs engineered to function with an MG94 nuclease.


SEQ ID NOs: 11216-11217 show nucleotide sequences of MG94 tracrRNAs derived from the same loci as MG94 nucleases above.


MG95

SEQ ID NOs: 8782-8785 show the full-length peptide sequences of MG95 nucleases.


SEQ ID NOs: 10861-10863 show the peptide sequences of PAM-interacting domains of MG95 nucleases.


SEQ ID NOs: 11121-11122 show the nucleotide sequences of single guide PAMs of MG95 nucleases.


SEQ ID NOs: 11148-11149 show nucleotide sequences of sgRNAs engineered to function with an MG95 nuclease.


SEQ ID NOs: 11218-11219 show nucleotide sequences of MG95 tracrRNAs derived from the same loci as MG95 nucleases above.


MG96

SEQ ID NOs: 8786-8814 show the full-length peptide sequences of MG96 nucleases.


SEQ ID NOs: 10864-10884 show the peptide sequences of PAM-interacting domains of MG96 nucleases.


SEQ ID NO: 11123 shows the nucleotide sequence of a single guide PAM of an MG96 nuclease.


SEQ ID NO: 11150 shows the nucleotide sequence of an sgRNA engineered to function with an MG96 nuclease.


SEQ ID NO: 11220 shows the nucleotide sequence of an MG96 tracrRNA derived from the same loci as MG96 nucleases above.


MG97

SEQ ID NOs: 8815-8818 show the full-length peptide sequences of MG97 nucleases.


SEQ ID NOs: 10885-10887 show the peptide sequences of PAM-interacting domains of MG97 nucleases.


MG98

SEQ ID NOs: 8819-8959 show the full-length peptide sequences of MG98 nucleases.


SEQ ID NOs: 10888-10936 show the peptide sequences of PAM-interacting domains of MG98 nucleases.


SEQ ID NOs: 11124-11125 show the nucleotide sequences of single guide PAMs of MG98 nucleases.


SEQ ID NOs: 11151-11152 show nucleotide sequences of sgRNAs engineered to function with an MG98 nuclease.


SEQ ID NOs: 11221-11222 show nucleotide sequences of MG98 tracrRNAs derived from the same loci as MG98 nucleases above.


MG99

SEQ ID NO: 11153 shows the nucleotide sequence of an sgRNA engineered to function with an MG99 nuclease.


SEQ ID NO: 11223 shows the nucleotide sequence of an MG99 tracrRNA derived from the same loci as MG99 nucleases above.


MG100

SEQ ID NOs: 8960-9036 show the full-length peptide sequences of MG100 nucleases.


SEQ ID NOs: 10937-10991 show the peptide sequences of PAM-interacting domains of MG100 nucleases.


SEQ ID NO: 11126 shows the nucleotide sequence of a single guide PAM of an MG100 nuclease.


SEQ ID NOs: 11154-11155 show nucleotide sequences of sgRNAs engineered to function with an MG100 nuclease.


SEQ ID NOs: 11224-11225 show nucleotide sequences of MG100 tracrRNAs derived from the same loci as MG100 nucleases above.


MG111

SEQ ID NOs: 9037-9126 show the full-length peptide sequences of MG111 nucleases.


SEQ ID NOs: 10992-11046 show the peptide sequences of PAM-interacting domains of MG111 nucleases.


SEQ ID NOs: 11127-11128 show the nucleotide sequences of single guide PAMs of MG111 nucleases.


SEQ ID NOs: 11156-11157 show nucleotide sequences of sgRNAs engineered to function with an MG111 nuclease.


SEQ ID NOs: 11226-11227 show nucleotide sequences of MG111 tracrRNAs derived from the same loci as MG111 nucleases above.


MG112

SEQ ID NOs: 9127-9149 show the full-length peptide sequences of MG112 nucleases.


SEQ ID NOs: 11047-11062 show the peptide sequences of PAM-interacting domains of MG112 nucleases.


MG116

SEQ ID NOs: 9150-9191 show the full-length peptide sequences of MG116 nucleases.


SEQ ID NOs: 11063-11098 show the peptide sequences of PAM-interacting domains of MG116 nucleases.


SEQ ID NO: 11129 shows the nucleotide sequence of a single guide PAM of an MG116 nuclease.


SEQ ID NO: 11158 shows the nucleotide sequence of an sgRNA engineered to function with an MG116 nuclease.


SEQ ID NO: 11228 shows the nucleotide sequence of an MG116 tracrRNA derived from the same loci as MG116 nucleases above.


MG123

SEQ ID NOs: 11617-11624 show the full-length peptide sequences of MG123 nucleases.


SEQ ID NO: 11518 shows the nucleotide sequence of a single guide PAM of an MG123 nuclease.


SEQ ID NO: 11555 shows the nucleotide sequence of an sgRNA engineered to function with an MG123 nuclease.


MG124

SEQ ID NOs: 11625-11626 show the full-length peptide sequences of MG124 nucleases.


SEQ ID NO: 11519 shows the nucleotide sequence of a single guide PAM of an MG124 nuclease.


SEQ ID NO: 11556 shows the nucleotide sequence of an sgRNA engineered to function with an MG124 nuclease.


MG125

SEQ ID NOs: 11627-11707 show the full-length peptide sequences of MG125 nucleases.


SEQ ID NOs: 11520-11524 show the nucleotide sequences of single guide PAMs of MG125 nucleases.


SEQ ID NOs: 11557-11561 show the nucleotide sequences of sgRNAs engineered to function with MG125 nucleases.


MG150

SEQ ID NOs: 7359-7368 and 11708-11710 show the full-length peptide sequences of MG150 nucleases.


SEQ ID NOs: 11525-11529 show the nucleotide sequences of single guide PAMs of MG150 nucleases.


SEQ ID NOs: 11562-11566 show the nucleotide sequences of sgRNAs engineered to function with MG150 nucleases.


B2M Targeting

SEQ ID NOs: 6305-6386 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target B2M.


SEQ ID NOs: 6387-6468 show the DNA sequences of B2M target sites.


TRAC Targeting

SEQ ID NOs: 6469-6508 and 6804 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target TRAC.


SEQ ID NOs: 6509-6548 and 6805 show the DNA sequences of TRAC target sites. HPRT Targeting


SEQ ID NOs: 6549-6615 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target HPRT.


SEQ ID NOs: 6616-6682 show the DNA sequences of HPRT target sites.


MG3-6 TRBC1/2 Targeting

SEQ ID NOs: 6683-6721 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target TRBC1/2.


SEQ ID NOs: 6722-6760 show the DNA sequences of TRBC1/2 target sites.


MG3-8 TRBC1/2 Targeting

SEQ ID NOs: 6761-6781 show the nucleotide sequences of sgRNAs engineered to function with an MG3-8 nuclease in order to target TRBC1/2.


SEQ ID NOs: 6782-6802 show the DNA sequences of TRBC1/2 target sites.


MG3-6 CD2 Targeting

SEQ ID NOs: 6811-6852 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target CD2.


SEQ ID NOs: 6853-6894 show the DNA sequences of CD2 target sites.


MG3-6 CD5 Targeting

SEQ ID NOs: 6895-6958 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target CD5.


SEQ ID NOs: 6959-7022 show the DNA sequences of CD5 target sites.


MG3-6 FAS Targeting

SEQ ID NOs: 7023-7056 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target FAS.


SEQ ID NOs: 7057-7090 show the DNA sequences of FAS target sites.


MG3-6 PD-1 Targeting

SEQ ID NOs: 7091-7128 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target PD-1.


SEQ ID NOs: 7129-7166 show the DNA sequences of PD-1 target sites.


MG3-6 hRosa26 Targeting


SEQ ID NOs: 7167-7198 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target hRosa26.


SEQ ID NOs: 7199-7230 show the DNA sequences of hRosa26 target sites.


MG21-1 TRAC Targeting

SEQ ID NOs: 7231-7234 show the nucleotide sequences of sgRNAs engineered to function with an MG21-1 nuclease in order to target TRAC.


SEQ ID NOs: 7235-7238 show the DNA sequences of TRAC target sites.


MG23-1 TRAC Targeting

SEQ ID NOs: 7239-7247 show the nucleotide sequences of sgRNAs engineered to function with an MG23-1 nuclease in order to target TRAC.


SEQ ID NOs: 7248-7256 show the DNA sequences of TRAC target sites.


MG14-241 AAVS1 Targeting

SEQ ID NOs: 11508-11510 show the nucleotide sequences of sgRNAs engineered to function with an MG14-241 nuclease in order to target AAVS1.


SEQ ID NOs: 11511-11513 show the DNA sequences of AAVS1 target sites.


MG23-1 AAVS1 Targeting

SEQ ID NOs: 7257-7260 show the nucleotide sequences of sgRNAs engineered to function with an MG23-1 nuclease in order to target AAVS1.


SEQ ID NOs: 7261-7264 show the DNA sequences of AAVS1 target sites.


MG71-2 AAVS1 Targeting

SEQ ID NOs: 7265-7266 show the nucleotide sequences of sgRNAs engineered to function with an MG71-2 nuclease in order to target AAVS1.


SEQ ID NOs: 7267-7268 show the DNA sequences of AAVS1 target sites.


MG73-1 TRAC Targeting

SEQ ID NO: 7269 shows the nucleotide sequence of an sgRNA engineered to function with an MG73-1 nuclease in order to target TRAC.


SEQ ID NO: 7270 shows the DNA sequence of a TRAC target site.


MG89-2 TRAC Targeting

SEQ ID NOs: 7271-7277 show the nucleotide sequences of sgRNAs engineered to function with an MG89-2 nuclease in order to target TRAC.


SEQ ID NOs: 7278-7284 show the DNA sequences of TRAC target sites.


MG99-1 TRAC Targeting

SEQ ID NOs: 11514-11515 show the nucleotide sequences of sgRNAs engineered to function with an MG99-1 nuclease in order to target TRAC.


SEQ ID NOs: 11516-11517 show the DNA sequences of TRAC target sites.


MG3-6 Human HAO-1 Targeting

SEQ ID NOs: 11352-11372 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target human HAO-1.


MG3-6 human GPR146 Targeting


SEQ ID NOs: 11374-11405 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target human GPR146.


SEQ ID NOs: 11406-11437 show the DNA sequences of human GPR146 target sites.


MG3-6 mouse GPR146 Targeting


SEQ ID NOs: 11438-11472 show the nucleotide sequences of sgRNAs engineered to function with an MG3-6 nuclease in order to target mouse GPR146.


SEQ ID NOs: 11473-11507 show the DNA sequences of mouse GPR146 target sites.


DETAILED DESCRIPTION

While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.


The practice of some methods disclosed herein employ, unless otherwise indicated, techniques of immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics and recombinant DNA. See for example Sambrook and Green, Molecular Cloning: A Laboratory Manual, 4th Edition (2012); the series Current Protocols in Molecular Biology (F. M. Ausubel, et al. eds.); the series Methods In Enzymology (Academic Press, Inc.), PCR 2: A Practical Approach (M. J. MacPherson, B. D. Hames and G. R. Taylor eds. (1995)), Harlow and Lane, eds. (1988) Antibodies, A Laboratory Manual, and Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th Edition (R. I. Freshney, ed. (2010)) (which is entirely incorporated by reference herein).


As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”.


The term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within one or more than one standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, up to 15%, up to 10%, up to 5%, or up to 1% of a given value.


As used herein, a “cell” generally refers to a biological cell. A cell may be the basic structural, functional or biological unit of a living organism. A cell may originate from any organism having one or more cells. Some non-limiting examples include: a prokaryotic cell, eukaryotic cell, a bacterial cell, an archaeal cell, a cell of a single-cell eukaryotic organism, a protozoa cell, a cell from a plant (e.g., cells from plant crops, fruits, vegetables, grains, soy bean, corn, maize, wheat, seeds, tomatoes, rice, cassava, sugarcane, pumpkin, hay, potatoes, cotton, Cannabis, tobacco, flowering plants, conifers, gymnosperms, ferns, clubmosses, hornworts, liverworts, mosses), an algal cell, (e.g., Botryococcus braunii, Chlamydomonas reinhardtii, Nannochloropsis gaditana, Chlorella pyrenoidosa, Sargassum patens C. Agardh, and the like), seaweeds (e.g., kelp), a fungal cell (e.g., a yeast cell, a cell from a mushroom), an animal cell, a cell from an invertebrate animal (e.g., fruit fly, cnidarian, echinoderm, nematode, etc.), a cell from a vertebrate animal (e.g., fish, amphibian, reptile, bird, mammal), a cell from a mammal (e.g., a pig, a cow, a goat, a sheep, a rodent, a rat, a mouse, a non-human primate, a human, etc.), and etcetera. Sometimes a cell is not originating from a natural organism (e.g., a cell can be a synthetically made, sometimes termed an artificial cell).


The term “nucleotide,” as used herein, generally refers to a base-sugar-phosphate combination. A nucleotide may comprise a synthetic nucleotide. A nucleotide may comprise a synthetic nucleotide analog. Nucleotides may be monomeric units of a nucleic acid sequence (e.g., deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)). The term nucleotide may include ribonucleoside triphosphates adenosine triphosphate (ATP), uridine triphosphate (UTP), cytosine triphosphate (CTP), guanosine triphosphate (GTP) and deoxyribonucleoside triphosphates such as dATP, dCTP, dITP, dUTP, dGTP, dTTP, or derivatives thereof. Such derivatives may include, for example, [αS]dATP, 7-deaza-dGTP and 7-deaza-dATP, and nucleotide derivatives that confer nuclease resistance on the nucleic acid molecule containing them. The term nucleotide as used herein may refer to dideoxyribonucleoside triphosphates (ddNTPs) and their derivatives. Illustrative examples of dideoxyribonucleoside triphosphates may include, but are not limited to, ddATP, ddCTP, ddGTP, ddITP, and ddTTP. A nucleotide may be unlabeled or detectably labeled, such as using moieties comprising optically detectable moieties (e.g., fluorophores). Labeling may also be carried out with quantum dots. Detectable labels may include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels and enzyme labels. Fluorescent labels of nucleotides may include but are not limited fluorescein, 5-carboxyfluorescein (FAM), 2′7′-dimethoxy-4′5-dichloro-6-carboxyfluorescein (JOE), rhodamine, 6-carboxyrhodamine (R6G), N,N,N′,N′-tetramethyl-6-carboxyrhodamine (TAMRA), 6-carboxy-X-rhodamine (ROX), 4-(4′dimethylaminophenylazo) benzoic acid (DABCYL), Cascade Blue, Oregon Green, Texas Red, Cyanine and 5-(2′-aminoethyl)aminonaphthalene-1-sulfonic acid (EDANS). Specific examples of fluorescently labeled nucleotides can include [R6G]dUTP, [TAMRA]dUTP, [RI 10]dCTP, [R6G]dCTP, [TAMRA]dCTP, [JOE]ddATP, [R6G]ddATP, [FAM]ddCTP, [R110]ddCTP, [TAMRA]ddGTP, [ROX]ddTTP, [dR6G]ddATP, [dR110]ddCTP, [dTAMRA]ddGTP, and [dROX]ddTTP available from Perkin Elmer, Foster City, Calif; FluoroLink DeoxyNucleotides, FluoroLink Cy3-dCTP, FluoroLink Cy5-dCTP, FluoroLink Fluor X-dCTP, FluoroLink Cy3-dUTP, and FluoroLink Cy5-dUTP available from Amersham, Arlington Heights, Ill.; Fluorescein-15-dATP, Fluorescein-12-dUTP, Tetramethyl-rodamine-6-dUTP, IR770-9-dATP, Fluorescein-12-ddUTP, Fluorescein-12-UTP, and Fluorescein-15-2′-dATP available from Boehringer Mannheim, Indianapolis, Ind.; and Chromosome Labeled Nucleotides, BODIPY-FL-14-UTP, BODIPY-FL-4-UTP, BODIPY-TMR-14-UTP, BODIPY-TMR-14-dUTP, BODIPY-TR-14-UTP, BODIPY-TR-14-dUTP, Cascade Blue-7-UTP, Cascade Blue-7-dUTP, fluorescein-12-UTP, fluorescein-12-dUTP, Oregon Green 488-5-dUTP, Rhodamine Green-5-UTP, Rhodamine Green-5-dUTP, tetramethylrhodamine-6-UTP, tetramethylrhodamine-6-dUTP, Texas Red-5-UTP, Texas Red-5-dUTP, and Texas Red-12-dUTP available from Molecular Probes, Eugene, Oreg. Nucleotides can also be labeled or marked by chemical modification. A chemically-modified single nucleotide can be biotin-dNTP. Some non-limiting examples of biotinylated dNTPs can include, biotin-dATP (e.g., bio-N6-ddATP, biotin-14-dATP), biotin-dCTP (e.g., biotin-11-dCTP, biotin-14-dCTP), and biotin-dUTP (e.g., biotin-11-dUTP, biotin-16-dUTP, biotin-20-dUTP).


The terms “polynucleotide,” “oligonucleotide,” and “nucleic acid” are used interchangeably to generally refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof, either in single-, double-, or multi-stranded form. A polynucleotide may be exogenous or endogenous to a cell. A polynucleotide may exist in a cell-free environment. A polynucleotide may be a gene or fragment thereof. A polynucleotide may be DNA. A polynucleotide may be RNA. A polynucleotide may have any three-dimensional structure and may perform any function. A polynucleotide may comprise one or more analogs (e.g., altered backbone, sugar, or nucleobase). If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. Some non-limiting examples of analogs include: 5-bromouracil, peptide nucleic acid, xeno nucleic acid, morpholinos, locked nucleic acids, glycol nucleic acids, threose nucleic acids, dideoxynucleotides, cordycepin, 7-deaza-GTP, fluorophores (e.g., rhodamine or fluorescein linked to the sugar), thiol containing nucleotides, biotin linked nucleotides, fluorescent base analogs, CpG islands, methyl-7-guanosine, methylated nucleotides, inosine, thiouridine, pseudourdine, dihydrouridine, queuosine, and wyosine. Non-limiting examples of polynucleotides include coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, cell-free polynucleotides including cell-free DNA (cfDNA) and cell-free RNA (cfRNA), nucleic acid probes, and primers. The sequence of nucleotides may be interrupted by non-nucleotide components.


The terms “transfection” or “transfected” generally refer to introduction of a nucleic acid into a cell by non-viral or viral-based methods. The nucleic acid molecules may be gene sequences encoding complete proteins or functional portions thereof. See, e.g., Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 18.1-18.88.


The terms “peptide,” “polypeptide,” and “protein” are used interchangeably herein to generally refer to a polymer of at least two amino acid residues joined by peptide bond(s). This term does not connote a specific length of polymer, nor is it intended to imply or distinguish whether the peptide is produced using recombinant techniques, chemical or enzymatic synthesis, or is naturally occurring. The terms apply to naturally occurring amino acid polymers as well as amino acid polymers comprising at least one modified amino acid. In some cases, the polymer may be interrupted by non-amino acids. The terms include amino acid chains of any length, including full length proteins, and proteins with or without secondary or tertiary structure (e.g., domains). The terms also encompass an amino acid polymer that has been modified, for example, by disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, oxidation, and any other manipulation such as conjugation with a labeling component. The terms “amino acid” and “amino acids,” as used herein, generally refer to natural and non-natural amino acids, including, but not limited to, modified amino acids and amino acid analogues. Modified amino acids may include natural amino acids and non-natural amino acids, which have been chemically modified to include a group or a chemical moiety not naturally present on the amino acid. Amino acid analogues may refer to amino acid derivatives. The term “amino acid” includes both D-amino acids and L-amino acids.


As used herein, the “non-native” can generally refer to a nucleic acid or polypeptide sequence that is not found in a native nucleic acid or protein. Non-native may refer to affinity tags. Non-native may refer to fusions. Non-native may refer to a naturally occurring nucleic acid or polypeptide sequence that comprises mutations, insertions or deletions. A non-native sequence may exhibit or encode for an activity (e.g., enzymatic activity, methyltransferase activity, acetyltransferase activity, kinase activity, ubiquitinating activity, etc.) that may also be exhibited by the nucleic acid or polypeptide sequence to which the non-native sequence is fused. A non-native nucleic acid or polypeptide sequence may be linked to a naturally-occurring nucleic acid or polypeptide sequence (or a variant thereof) by genetic engineering to generate a chimeric nucleic acid or polypeptide sequence encoding a chimeric nucleic acid or polypeptide.


The term “promoter”, as used herein, generally refers to the regulatory DNA region which controls transcription or expression of a gene, and which may be located adjacent to or overlapping a nucleotide or region of nucleotides at which RNA transcription is initiated. A promoter may contain specific DNA sequences which bind protein factors, often referred to as transcription factors, which facilitate binding of RNA polymerase to the DNA leading to gene transcription. A ‘basal promoter’, also referred to as a ‘core promoter’, may generally refer to a promoter that contains all the basic elements to promote transcriptional expression of an operably linked polynucleotide. Eukaryotic basal promoters often contain a TATA-box or a CAAT box.


The term “expression”, as used herein, generally refers to the process by which a nucleic acid sequence or a polynucleotide is transcribed from a DNA template (such as into mRNA or other RNA transcript) or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins. Transcripts and encoded polypeptides may be collectively referred to as “gene product.” If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell.


As used herein, “operably linked”, “operable linkage”, “operatively linked”, or grammatical equivalents thereof generally refer to juxtaposition of genetic elements, e.g., a promoter, an enhancer, a polyadenylation sequence, etc., wherein the elements are in a relationship permitting them to operate in the expected manner. For instance, a regulatory element, which may comprise promoter or enhancer sequences, is operatively linked to a coding region if the regulatory element helps initiate transcription of the coding sequence. There may be intervening residues between the regulatory element and coding region so long as this functional relationship is maintained.


A “vector” as used herein, generally refers to a macromolecule or association of macromolecules that comprises or associates with a polynucleotide and which may be used to mediate delivery of the polynucleotide to a cell. Examples of vectors include plasmids, viral vectors, liposomes, and other gene delivery vehicles. The vector generally comprises genetic elements, e.g., regulatory elements, operatively linked to a gene to facilitate expression of the gene in a target.


As used herein, “an expression cassette” and “a nucleic acid cassette” are used interchangeably generally to refer to a combination of nucleic acid sequences or elements that are expressed together or are operably linked for expression. In some cases, an expression cassette refers to the combination of regulatory elements and a gene or genes to which they are operably linked for expression.


A “functional fragment” of a DNA or protein sequence generally refers to a fragment that retains a biological activity (either functional or structural) that is substantially similar to a biological activity of the full-length DNA or protein sequence. A biological activity of a DNA sequence may be its ability to influence expression in a manner attributed to the full-length sequence.


As used herein, an “engineered” object generally indicates that the object has been modified by human intervention. According to non-limiting examples: a nucleic acid may be modified by changing its sequence to a sequence that does not occur in nature; a nucleic acid may be modified by ligating it to a nucleic acid that it does not associate with in nature such that the ligated product possesses a function not present in the original nucleic acid; an engineered nucleic acid may synthesized in vitro with a sequence that does not exist in nature; a protein may be modified by changing its amino acid sequence to a sequence that does not exist in nature; an engineered protein may acquire a new function or property. An “engineered” system comprises at least one engineered component.


As used herein, “synthetic” and “artificial” are used interchangeably to refer to a protein or a domain thereof that has low sequence identity (e.g., less than 50% sequence identity, less than 25% sequence identity, less than 10% sequence identity, less than 5% sequence identity, less than 1% sequence identity) to a naturally occurring human protein. For example, VPR and VP64 domains are synthetic transactivation domains.


The term “tracrRNA” or “tracr sequence”, as used herein, can generally refer to a nucleic acid with at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% sequence identity or sequence similarity to a wild type exemplary tracrRNA sequence (e.g., a tracrRNA from S. pyogenes S. aureus, etc or SEQ ID NOs: 5476-5511). tracrRNA can refer to a nucleic acid with at most about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% sequence identity or sequence similarity to a wild type exemplary tracrRNA sequence (e.g., a tracrRNA from S. pyogenes S. aureus, etc). tracrRNA may refer to a modified form of a tracrRNA that can comprise a nucleotide change such as a deletion, insertion, or substitution, variant, mutation, or chimera. A tracrRNA may refer to a nucleic acid that can be at least about 60% identical to a wild type exemplary tracrRNA (e.g., a tracrRNA from S. pyogenes S. aureus, etc) sequence over a stretch of at least 6 contiguous nucleotides. For example, a tracrRNA sequence can be at least about 60% identical, at least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, or 100% identical to a wild type exemplary tracrRNA (e.g., a tracrRNA from S. pyogenes S. aureus, etc) sequence over a stretch of at least 6 contiguous nucleotides. Type II tracrRNA sequences can be predicted on a genome sequence by identifying regions with complementarity to part of the repeat sequence in an adjacent CRISPR array.


As used herein, a “guide nucleic acid” can generally refer to a nucleic acid that may hybridize to another nucleic acid. A guide nucleic acid may be RNA. A guide nucleic acid may be DNA. The guide nucleic acid may be programmed to bind to a sequence of nucleic acid site-specifically. The nucleic acid to be targeted, or the target nucleic acid, may comprise nucleotides. The guide nucleic acid may comprise nucleotides. A portion of the target nucleic acid may be complementary to a portion of the guide nucleic acid. The strand of a double-stranded target polynucleotide that is complementary to and hybridizes with the guide nucleic acid may be called the complementary strand. The strand of the double-stranded target polynucleotide that is complementary to the complementary strand, and therefore may not be complementary to the guide nucleic acid may be called noncomplementary strand. A guide nucleic acid may comprise a polynucleotide chain and can be called a “single guide nucleic acid.” A guide nucleic acid may comprise two polynucleotide chains and may be called a “double guide nucleic acid.” If not otherwise specified, the term “guide nucleic acid” may be inclusive, referring to both single guide nucleic acids and double guide nucleic acids. A guide nucleic acid may comprise a segment that can be referred to as a “nucleic acid-targeting segment” or a “nucleic acid-targeting sequence.” A nucleic acid-targeting segment may comprise a sub-segment that may be referred to as a “protein binding segment” or “protein binding sequence” or “Cas protein binding segment”.


The term “sequence identity” or “percent identity” in the context of two or more nucleic acids or polypeptide sequences, generally refers to two (e.g., in a pairwise alignment) or more (e.g., in a multiple sequence alignment) sequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence over a local or global comparison window, as measured using a sequence comparison algorithm. Suitable sequence comparison algorithms for polypeptide sequences include, e.g., BLASTP using parameters of a wordlength (W) of 3, an expectation I of 10, and the BLOSUM62 scoring matrix setting gap costs at existence of 11, extension of 1, and using a conditional compositional score matrix adjustment for polypeptide sequences longer than 30 residues; BLASTP using parameters of a wordlength (W) of 2, an expectation (E) of 1000000, and the PAM30 scoring matrix setting gap costs at 9 to open gaps and 1 to extend gaps for sequences of less than 30 residues (these are the default parameters for BLASTP in the BLAST suite available at https://blast.ncbi.nlm.nih.gov); CLUSTALW with parameters of; the Smith-Waterman homology search algorithm with parameters of a match of 2, a mismatch of −1, and a gap of −1; MUSCLE with default parameters; MAFFT with parameters retree of 2 and maxiterations of 1000; Novafold with default parameters; HMMER hmmalign with default parameters.


Included in the current disclosure are variants of any of the enzymes described herein with one or more conservative amino acid substitutions. Such conservative substitutions can be made in the amino acid sequence of a polypeptide without disrupting the three-dimensional structure or function of the polypeptide. Conservative substitutions can be accomplished by substituting amino acids with similar hydrophobicity, polarity, and R chain length for one another. Additionally or alternatively, by comparing aligned sequences of homologous proteins from different species, conservative substitutions can be identified by locating amino acid residues that have been mutated between species (e.g. non-conserved residues) without altering the basic functions of the encoded proteins. Such conservatively substituted variants may include variants with at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity to any one of the endonuclease protein sequences described herein (e.g. MG1, MG2, MG3, MG3a, MG3b, MG4, MG5, MG6, MG7, MG14, MG15, MG16, MG17, MG18, MG21, MG22, MG23, MG24, MG25, MG38, MG40, MG41, MG42, MG43, MG44, MG46, MG47, MG48, MG49, MG50, MG51, MG52, MG71, MG72, MG73, MG74, MG86, MG87, MG88, MG89, MG94, MG95, MG96, MG97, MG98, MG99, MG100, MG111, MG112, MG116, MG123, MG124, MG125, or MG150 family endonucleases described herein). In some embodiments, such conservatively substituted variants are functional variants. Such functional variants can encompass sequences with substitutions such that the activity of critical active site residues of the endonuclease are not disrupted. In some embodiments, a functional variant of any of the proteins described herein lacks substitution of at least one conserved or functional residue.


Conservative substitution tables providing functionally similar amino acids are available from a variety of references (see, for e.g., Creighton, Proteins: Structures and Molecular Properties (W H Freeman & Co.; 2nd edition (December 1993)). The following eight groups each contain amino acids that are conservative substitutions for one another:

    • 1) Alanine (A), Glycine (G);
    • 2) Aspartic acid (D), Glutamic acid (E);
    • 3) Asparagine (N), Glutamine (Q);
    • 4) Arginine (R), Lysine (K);
    • 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V);
    • 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W);
    • 7) Serine (S), Threonine (T); and
    • 8) Cysteine (C), Methionine (M)


Also included in the current disclosure are variants of any of the nucleic acid sequences described herein with one or more substitutions. Such variants may include variants with at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to any one of the nucleic acid sequences described herein.


As used herein, the term “RuvC_III domain” generally refers to a third discontinuous segment of a RuvC endonuclease domain (the RuvC nuclease domain being comprised of three discontiguous segments, RuvC_I, RuvC_II, and RuvC_III). A RuvC domain or segments thereof can generally be identified by alignment to documented domain sequences, structural alignment to proteins with annotated domains, or by comparison to Hidden Markov Models (HMMs) built based on documented domain sequences (e.g., Pfam HMM PF18541 for RuvC_III).


As used herein, the term “HNH domain” generally refers to an endonuclease domain having characteristic histidine and asparagine residues. An HNH domain can generally be identified by alignment to documented domain sequences, structural alignment to proteins with annotated domains, or by comparison to Hidden Markov Models (HMMs) built based on documented domain sequences (e.g., Pfam HMM PF01844 for domain HNH).


Overview

The discovery of new Cas enzymes with unique functionality and structure may offer the potential to further disrupt deoxyribonucleic acid (DNA) editing technologies, improving speed, specificity, functionality, and ease of use. Relative to the predicted prevalence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems in microbes and the sheer diversity of microbial species, relatively few functionally characterized CRISPR/Cas enzymes exist in the literature. This is partly because a huge number of microbial species may not be readily cultivated in laboratory conditions. Metagenomic sequencing from natural environmental niches that represent large numbers of microbial species may offer the potential to drastically increase the number of new CRISPR/Cas systems documented and speed the discovery of new oligonucleotide editing functionalities. A recent example of the fruitfulness of such an approach is demonstrated by the 2016 discovery of CasX/CasY CRISPR systems from metagenomic analysis of natural microbial communities.


CRISPR/Cas systems are RNA-directed nuclease complexes that have been described to function as an adaptive immune system in microbes. In their natural context, CRISPR/Cas systems occur in CRISPR (clustered regularly interspaced short palindromic repeats) operons or loci, which generally comprise two parts: (i) an array of short repetitive sequences (30-40 bp) separated by equally short spacer sequences, which encode the RNA-based targeting element; and (ii) ORFs encoding the Cas encoding the nuclease polypeptide directed by the RNA-based targeting element alongside accessory proteins/enzymes. Efficient nuclease targeting of a particular target nucleic acid sequence generally requires both (i) complementary hybridization between the first 6-8 nucleic acids of the target (the target seed) and the crRNA guide; and (ii) the presence of a protospacer-adjacent motif (PAM) sequence within a defined vicinity of the target seed (the PAM usually being a sequence not commonly represented within the host genome). Depending on the exact function and organization of the system, CRISPR-Cas systems are commonly organized into 2 classes, 5 types and 16 subtypes based on shared functional characteristics and evolutionary similarity.


Class I CRISPR-Cas systems have large, multisubunit effector complexes, and comprise Types I, III, and IV.


Type I CRISPR-Cas systems are considered of moderate complexity in terms of components. In Type I CRISPR-Cas systems, the array of RNA-targeting elements is transcribed as a long precursor crRNA (pre-crRNA) that is processed at repeat elements to liberate short, mature crRNAs that direct the nuclease complex to nucleic acid targets when they are followed by a suitable short consensus sequence called a protospacer-adjacent motif (PAM). This processing occurs via an endoribonuclease subunit (Cas6) of a large endonuclease complex called Cascade, which also comprises a nuclease (Cas3) protein component of the crRNA-directed nuclease complex. Cas I nucleases function primarily as DNA nucleases.


Type III CRISPR systems may be characterized by the presence of a central nuclease, known as Cas10, alongside a repeat-associated mysterious protein (RAMP) that comprises Csm or Cmr protein subunits. Like in Type I systems, the mature crRNA is processed from a pre-crRNA using a Cas6-like enzyme. Unlike type I and II systems, type III systems appear to target and cleave DNA-RNA duplexes (such as DNA strands being used as templates for an RNA polymerase).


Type IV CRISPR-Cas systems possess an effector complex that consists of a highly reduced large subunit nuclease (csf1), two genes for RAMP proteins of the Cas5 (csf3) and Cas7 (csf2) groups, and, in some cases, a gene for a predicted small subunit; such systems are commonly found on endogenous plasmids.


Class II CRISPR-Cas systems generally have single-polypeptide multidomain nuclease effectors, and comprise Types II, V and VI.


Type II CRISPR-Cas systems are considered the simplest in terms of components. In Type II CRISPR-Cas systems, the processing of the CRISPR array into mature crRNAs does not require the presence of a special endonuclease subunit, but rather a small trans-encoded crRNA (tracrRNA) with a region complementary to the array repeat sequence; the tracrRNA interacts with both its corresponding effector nuclease (e.g. Cas9) and the repeat sequence to form a precursor dsRNA structure, which is cleaved by endogenous RNAse III to generate a mature effector enzyme loaded with both tracrRNA and crRNA. Cas II nucleases are known as DNA nucleases. Type 2 effectors generally exhibit a structure consisting of a RuvC-like endonuclease domain that adopts the RNase H fold with an unrelated HNH nuclease domain inserted within the folds of the RuvC-like nuclease domain. The RuvC-like domain is responsible for the cleavage of the target (e.g., crRNA complementary) DNA strand, while the HNH domain is responsible for cleavage of the displaced DNA strand.


Type V CRISPR-Cas systems are characterized by a nuclease effector (e.g. Cas12) structure similar to that of Type II effectors, comprising a RuvC-like domain. Similar to Type II, most (but not all) Type V CRISPR systems use a tracrRNA to process pre-crRNAs into mature crRNAs; however, unlike Type II systems which requires RNAse III to cleave the pre-crRNA into multiple crRNAs, type V systems are capable of using the effector nuclease itself to cleave pre-crRNAs. Like Type-II CRISPR-Cas systems, Type V CRISPR-Cas systems are again known as DNA nucleases. Unlike Type II CRISPR-Cas systems, some Type V enzymes (e.g., Cas12a) appear to have a robust single-stranded nonspecific deoxyribonuclease activity that is activated by the first crRNA directed cleavage of a double-stranded target sequence.


Type VI CRIPSR-Cas systems have RNA-guided RNA endonucleases. Instead of RuvC-like domains, the single polypeptide effector of Type VI systems (e.g. Cas13) comprises two HEPN ribonuclease domains. Differing from both Type II and V systems, Type VI systems also appear to not require a tracrRNA for processing of pre-crRNA into crRNA. Similar to type V systems, however, some Type VI systems (e.g., C2C2) appear to possess robust single-stranded nonspecific nuclease (ribonuclease) activity activated by the first crRNA directed cleavage of a target RNA.


Because of their simpler architecture, Class II CRISPR-Cas have been most widely adopted for engineering and development as designer nuclease/genome editing applications.


One of the early adaptations of such a system for in vitro use can be found in Jinek et al. (Science. 2012 Aug. 17; 337(6096):816-21, which is entirely incorporated herein by reference). The Jinek study first described a system that involved (i) recombinantly-expressed, purified full-length Cas9 (e.g., a Class II, Type II Cas enzyme) isolated from S. pyogenes SF370, (ii) purified mature ˜42 nt crRNA bearing a ˜20 nt 5′ sequence complementary to the target DNA sequence desired to be cleaved followed by a 3′ tracr-binding sequence (the whole crRNA being in vitro transcribed from a synthetic DNA template carrying a T7 promoter sequence); (iii) purified tracrRNA in vitro transcribed from a synthetic DNA template carrying a T7 promoter sequence, and (iv) Mg2+. Jinek later described an improved, engineered system wherein the crRNA of (ii) is joined to the 5′ end of (iii) by a linker (e.g., GAAA) to form a single fused synthetic guide RNA (sgRNA) capable of directing Cas9 to a target by itself.


Mali et al. (Science. 2013 Feb. 15; 339(6121): 823-826.), which is entirely incorporated herein by reference, later adapted this system for use in mammalian cells by providing DNA vectors encoding (i) an ORF encoding codon-optimized Cas9 (e.g., a Class II, Type II Cas enzyme) under a suitable mammalian promoter with a C-terminal nuclear localization sequence (e.g., SV40 NLS) and a suitable polyadenylation signal (e.g., TK pA signal); and (ii) an ORF encoding an sgRNA (having a 5′ sequence beginning with G followed by 20 nt of a complementary targeting nucleic acid sequence joined to a 3′ tracr-binding sequence, a linker, and the tracrRNA sequence) under a suitable Polymerase III promoter (e.g., the U6 promoter).


MG Enzymes

In one aspect, the present disclosure provides for an engineered nuclease system discovered through metagenomic sequencing. In some cases, the metagenomic sequencing is conducted on samples. In some cases, the samples may be collected by a variety of environments. Such environments may be a human microbiome, an animal microbiome, environments with high temperatures, environments with low temperatures. Such environments may include sediment.


MG3 Enzymes

In one aspect, the present disclosure provides for an engineered nuclease system comprising (a) an endonuclease. In some cases, the endonuclease is a Cas endonuclease. In some cases, the endonuclease is a Type II, Class II Cas endonuclease. The endonuclease may comprise a RuvC_III domain, wherein said RuvC_III domain has at least about 70% sequence identity to any one of SEQ ID NOs: 2242-2251. In some cases, the endonuclease may comprise a RuvC_III domain, wherein the RuvC_III domain has at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity to any one of SEQ ID NOs: 2242-2251. In some cases, the endonuclease may comprise a RuvC_III domain, wherein the substantially identical to any one of SEQ ID NOs: 2242-2251. The endonuclease may comprise a RuvC_III domain having at least about 70% sequence identity to any one of SEQ ID NOs: 2242-2244. In some cases, the endonuclease may comprise a RuvC_III domain having at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity to any one of SEQ ID NOs: 2242-2244. In some cases, the endonuclease may comprise a RuvC_III domain substantially identical to any one of SEQ ID NOs: 2242-2244.


The endonuclease may comprise an HNH domain having at least about 70% identity to any one of SEQ ID NOs: 4056-4066. In some cases, the endonuclease may comprise an HNH domain having at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any one of SEQ ID NOs: 4056-4066. The endonuclease may comprise an HNH domain substantially identical to any one of SEQ ID NOs: 4056-4066. The endonuclease may comprise an HNH domain having at least about 70% identity to any one of SEQ ID NOs: 4056-4058. In some cases, the endonuclease may comprise an HNH domain having at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any one of SEQ ID NOs: 4056-4058. The endonuclease may comprise an HNH domain substantially identical to any one of SEQ ID NOs: 4056-4058.


In some cases, the endonuclease may comprise a variant having at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to any one of SEQ ID NOs: 421-431. In some cases, the endonuclease may be substantially identical to any one of SEQ ID NOs: 421-431. In some cases, the endonuclease may comprise a variant having at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to any one of SEQ ID NOs:421-423. In some cases, the endonuclease may be substantially identical to any one of SEQ ID NOs: 421-423.


In some cases, the endonuclease may comprise a variant having one or more nuclear localization sequences (NLSs). The NLS may be proximal to the N- or C-terminus of said endonuclease. The NLS may be appended N-terminal or C-terminal to any one of SEQ ID NOs: 421-431, or to a variant having at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to any one of SEQ ID NOs: 421-431. The NLS may be an SV40 large T antigen NLS. The NLS may be a c-myc NLS. The NLS can comprise a sequence with at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99% identity to any one of SEQ ID NOs: 5593-5608. The NLS can comprise a sequence substantially identical to any one of SEQ ID NOs: 5593-5608.


In some cases, sequence identity may be determined by the BLASTP, CLUSTALW, MUSCLE, MAFFT, Novafold, or CLUSTALW with the parameters of the Smith-Waterman homology search algorithm. The sequence identity may be determined by the BLASTP algorithm using parameters of a wordlength (W) of 3, an expectation (E) of 10, and using a BLOSUM62 scoring matrix setting gap costs at existence of 11, extension of 1, and using a conditional compositional score matrix adjustment.


In some cases, the system above may comprise (b) at least one engineered synthetic guide ribonucleic acid (sgRNA) capable of forming a complex with the endonuclease bearing a 5′ targeting region complementary to a desired cleavage sequence. In some cases, the 5′ targeting region may comprises a PAM sequence compatible with the endonuclease. In some cases, the 5′ most nucleotide of the targeting region may be G. In some cases, the 5′ targeting region may be 15-23 nucleotides in length. The guide sequence and the tracr sequence may be supplied as separate ribonucleic acids (RNAs) or a single ribonucleic acid (RNA). The guide RNA may comprise a crRNA tracrRNA binding sequence 3′ to the targeting region. The guide RNA may comprise a tracrRNA sequence preceded by a 4-nucleotide linker 3′ to the crRNA tracrRNA binding region. The sgRNA may comprise, from 5′ to 3′: a non-natural guide nucleic acid sequence capable of hybridizing to a target sequence in a cell; and a tracr sequence. In some cases, the non-natural guide nucleic acid sequence and the tracr sequence are covalently linked.


In some cases, the tracr sequence may have a particular sequence. The tracr sequence may have at least about 80% to at least about 60-100 (e.g., at least about 60, at least about 65, at least about 70, at least about 75, at least about 80, at least about 85, or at least about 90) consecutive nucleotides of a natural tracrRNA sequence. The tracr sequence may have at least about 80% sequence identity to at least about 60-100 (e.g., at least about 60, at least about 65, at least about 70, at least about 75, at least about 80, at least about 85, or at least about 90) consecutive nucleotides of any one of SEQ ID NOs: 5495-5502. In some cases, the tracrRNA may have at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to at least about 60-90 (e.g., at least about 60, at least about 65, at least about 70, at least about 75, at least about 80, at least about 85, or at least about 90) consecutive nucleotides of any one of SEQ ID NOs: 5495-5502. In some cases, the tracrRNA may be substantially identical to at least about 60-100 (e.g., at least about 60, at least about 65, at least about 70, at least about 75, at least about 80, at least about 85, or at least about 90) consecutive nucleotides of any one of SEQ ID NOs: 5495-5502. The tracrRNA may comprise any of SEQ ID NOs: 5495-5502.


In some cases, the at least one engineered synthetic guide ribonucleic acid (sgRNA) capable of forming a complex with the endonuclease may comprise a sequence having at least about 80% identity to any one of SEQ ID NOs: 5466-5467. The sgRNA may comprise a sequence having at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to any one of SEQ ID NOs: 5466-5467. The sgRNA may comprise a sequence substantially identical to any one of SEQ ID NOs: 5466-5467.


In some cases, the system above may comprise two different sgRNAs targeting a first region and a second region for cleavage in a target DNA locus, wherein the second region is 3′ to the first region. In some cases, the system above may comprise a single- or double-stranded DNA repair template comprising from 5′ to 3′: a first homology arm comprising a sequence of at least about 20 (e.g., at least about 40, 80, 120, 150, 200, 300, 500, or 1 kb) nucleotides 5′ to the first region, a synthetic DNA sequence of at least about 10 nucleotides, and a second homology arm comprising a sequence of at least about 20 (e.g., at least about 40, 80, 120, 150, 200, 300, 500, or 1 kb) nucleotides 3′ to the second region.


In another aspect, the present disclosure provides a method for modifying a target nucleic acid locus of interest. The method may comprise delivering to the target nucleic acid locus any of the non-natural systems disclosed herein, including an enzyme and at least one synthetic guide RNA (sgRNA) disclosed herein. The enzyme may form a complex with the at least one sgRNA, and upon binding of the complex to the target nucleic acid locus of interest, may modify the target nucleic acid locus of interest. Delivering the enzyme to said locus may comprise transfecting a cell with the system or nucleic acids encoding the system. Delivering the nuclease to said locus may comprise electroporating a cell with the system or nucleic acids encoding the system. Delivering the nuclease to said locus may comprise incubating the system in a buffer with a nucleic acid comprising the locus of interest. In some cases, the target nucleic acid locus comprises deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). The target nucleic acid locus may comprise genomic DNA, viral DNA, viral RNA, or bacterial DNA. The target nucleic acid locus may be within a cell. The target nucleic acid locus may be in vitro. The target nucleic acid locus may be within a eukaryotic cell or a prokaryotic cell. The cell may be an animal cell, a human cell, bacterial cell, archaeal cell, or a plant cell. The enzyme may induce a single or double-stranded break at or proximal to the target locus of interest.


In cases where the target nucleic acid locus may be within a cell, the enzyme may be supplied as a nucleic acid containing an open reading frame encoding the enzyme having a RuvC_III domain having at least about 75% (e.g., at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%) identity to any one of SEQ ID NOs: 2242-2251. The deoxyribonucleic acid (DNA) containing an open reading frame encoding said endonuclease may comprise a sequence substantially identical to any of SEQ ID NOs: 5578-5580 or at variant having at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to any one of SEQ ID NOs: 5578-5580. In some cases, the nucleic acid comprises a promoter to which the open reading frame encoding the endonuclease is operably linked. The promoter may be a CMV, EF1a, SV40, PGK1, Ubc, human beta actin, CAG, TRE, or CaMKIIa promoter. The endonuclease may be supplied as a capped mRNA containing said open reading frame encoding said endonuclease. The endonuclease may be supplied as a translated polypeptide. The at least one engineered sgRNA may be supplied as deoxyribonucleic acid (DNA) containing a gene sequence encoding said at least one engineered sgRNA operably linked to a ribonucleic acid (RNA) pol III promoter. In some cases, the organism may be eukaryotic. In some cases, the organism may be fungal. In some cases, the organism may be human.


Systems of the present disclosure may be used for various applications, such as, for example, nucleic acid editing (e.g., gene editing), binding to a nucleic acid molecule (e.g., sequence-specific binding). Such systems may be used, for example, for addressing (e.g., removing or replacing) a genetically inherited mutation that may cause a disease in a subject, inactivating a gene in order to ascertain its function in a cell, as a diagnostic tool to detect disease-causing genetic elements (e.g. via cleavage of reverse-transcribed viral RNA or an amplified DNA sequence encoding a disease-causing mutation), as deactivated enzymes in combination with a probe to target and detect a specific nucleotide sequence (e.g. sequence encoding antibiotic resistance int bacteria), to render viruses inactive or incapable of infecting host cells by targeting viral genomes, to add genes or amend metabolic pathways to engineer organisms to produce valuable small molecules, macromolecules, or secondary metabolites, to establish a gene drive element for evolutionary selection, to detect cell perturbations by foreign small molecules and nucleotides as a biosensor.


EXAMPLES
Example 1—Metagenomic Analysis for New Proteins

Metagenomic samples were collected from sediment, soil and animal. Deoxyribonucleic acid (DNA) was extracted with a Zymobiomics DNA mini-prep kit and sequenced on an Illumina HiSeq® 2500. Samples were collected with consent of property owners. Additional raw sequence data from public sources included animal microbiomes, sediment, soil, hot springs, hydrothermal vents, marine, peat bogs, permafrost, and sewage sequences. Metagenomic sequence data was searched using Hidden Markov Models generated based on documented Cas protein sequences including type II Cas effector proteins to identify new Cas effectors. Novel effector proteins identified by the search were aligned to documented proteins to identify potential active sites. This metagenomic workflow resulted in delineation of the families of class II, type II CRISPR endonucleases described herein.


Example 2—(General Protocol) PAM Sequence Identification/Confirmation for the Endonucleases Described Herein

PAM sequences were determined by sequencing plasmids containing randomly-generated PAM sequences that can be cleaved by putative endonucleases expressed in an E. coli lysate-based expression system (myTXTL, Arbor Biosciences). In this system, an E. coli codon optimized nucleotide sequence was transcribed and translated from a PCR fragment under control of a T7 promoter. A second PCR fragment with a tracr sequence under a T7 promoter and a minimal CRISPR array composed of a T7 promoter followed by a repeat-spacer-repeat sequence was transcribed in the same reaction. Successful expression of the endonuclease and tracr sequence in the TXTL system followed by CRISPR array processing provided active in vitro CRISPR nuclease complexes.


A library of target plasmids containing a spacer sequence matching that in the minimal array followed by 8N mixed bases (putative PAM sequences) was incubated with the output of the TXTL reaction. After 1-3 hr, the reaction was stopped and the DNA was recovered via a DNA clean-up kit, e.g., Zymo DCC, AMPure XP beads, QiaQuick etc. Adapter sequences were blunt-end ligated to DNA with active PAM sequences that had been cleaved by the endonuclease, whereas DNA that had not been cleaved was inaccessible for ligation. DNA segments comprising active PAM sequences were then amplified by PCR with primers specific to the library and the adapter sequence. The PCR amplification products were resolved on a gel to identify amplicons that corresponded to cleavage events. The amplified segments of the cleavage reaction were also used as template for preparation of an NGS library. Sequencing this resulting library, which was a subset of the starting 8N library, revealed the sequences which contain the correct PAM for the active CRISPR complex. For PAM testing with a single RNA construct, the same procedure was repeated except that an in vitro transcribed RNA was added along with the plasmid library and the tracr/minimal CRISPR array template was omitted. For endonucleases where NGS libraries were prepared, seqLogo (see e.g., Huber et al. Nat Methods. 2015 February; 12(2):115-21) representations were constructed. The seqLogo module used to construct these representations takes the position weight matrix of a DNA sequence motif (e.g. a PAM sequence) and plots the corresponding sequence logo as introduced by Schneider and Stephens (see e.g. Schneider et al. Nucleic Acids Res. 1990 Oct. 25; 18(20):6097-100. The characters representing the sequence in the seqLogo representations have been stacked on top of each other for each position in the aligned sequences (e.g. PAM sequences). The height of each letter is proportional to its frequency, and the letters have been sorted so the most common one is on top.


Example 3—(General Protocol) RNA Folding of tracrRNA and sgRNA Structures

Folded structures of guide RNA sequences at 37° C. were computed using the method of Andronescu et al. Bioinformatics. 2007 Jul. 1; 23(13):i19-28, which is incorporated by reference herein in its entirety.


Example 4—(General Protocol) In Vitro Cleavage Efficiency of MG CRISPR Complexes

Endonucleases were expressed as His-tagged fusion proteins from an inducible T7 promoter in a protease deficient E. coli B strain. Cells expressing the His-tagged proteins were lysed by sonication and the His-tagged proteins were purified by Ni-NTA affinity chromatography on a HisTrap FF column (GE Lifescience) on an AKTA Avant FPLC (GE Lifescience). The eluate was resolved by SDS-PAGE on acrylamide gels (Bio-Rad) and stained with InstantBlue Ultrafast coomassie (Sigma-Aldrich). Purity was determined using densitometry of the protein band with ImageLab software (Bio-Rad). Purified endonucleases were dialyzed into a storage buffer composed of 50 mM Tris-HCl, 300 mM NaCl, 1 mM TCEP, 5% glycerol; pH 7.5 and stored at −80° C.


Target DNAs containing spacer sequences and PAM sequences (determined e.g., as in Example 2) were constructed by DNA synthesis. A single representative PAM was chosen for testing when the PAM had degenerate bases. The target DNAs comprised 2200 bp of linear DNA derived from a plasmid via PCR amplification with a PAM and spacer located 700 bp from one end. Successful cleavage resulted in fragments of 700 and 1500 bp. The target DNA, in vitro transcribed single RNA, and purified recombinant protein were combined in cleavage buffer (10 mM Tris, 100 mM NaCl, 10 mM MgCl2) with an excess of protein and RNA and incubated for 5 minutes to 3 hours, usually 1 hr. The reaction was stopped via addition of RNAse A and incubation at 60 minutes. The reaction was then resolved on a 1.2% TAE agarose gel and the fraction of cleaved target DNA is quantified in ImageLab software.


Example 5—(General Protocol) Testing of Genome Cleavage Activity of MG CRISPR Complexes in E. coli


E. coli lacks the capacity to efficiently repair double-stranded DNA breaks. Thus, cleavage of genomic DNA can be a lethal event. Exploiting this phenomenon, endonuclease activity was tested in E. coli by recombinantly expressing an endonuclease and a tracrRNA in a target strain with spacer/target and PAM sequences integrated into its genomic DNA.


In this assay, the PAM sequence is specific for the endonuclease being tested as determined by the methods described in Example 2. sgRNA sequences were determined based upon the sequence and predicted structure of the tracrRNA. Repeat-anti-repeat pairings of 8-12 bp (generally 10 bp) were chosen, starting from the 5′ end of the repeat. The remaining 3′ end of the repeat and 5′ end of the tracrRNA were replaced with a tetraloop. Generally, the tetraloop was GAAA, but other tetraloops can be used, particularly if the GAAA sequence is predicted to interfere with folding. In these cases, a TTCG tetraloop was used.


Engineered strains with PAM sequences integrated into their genomic DNA were transformed with DNA encoding the endonuclease. Transformants were then made chemocompetent and transformed with 50 ng of single guide RNAs either specific to the target sequence (“on target”), or non-specific to the target (“non target”). After heat shock, transformations were recovered in SOC for 2 hrs at 37° C. Nuclease efficiency was then determined by a 5-fold dilution series grown on induction media. Colonies were quantified from the dilution series in triplicate.


Example 6a—(General protocol) Testing of Genome Cleavage Activity of MG CRISPR Complexes in Mammalian Cells

To show targeting and cleavage activity in mammalian cells, the MG Cas effector protein sequences were tested in two mammalian expression vectors: (a) one with a C-terminal SV40 NLS and a 2A-GFP tag, and (b) one with no GFP tag and two SV40 NLS sequences, one on the N-terminus and one on the C-terminus. In some instances, nucleotide sequences encoding the endonucleases were codon-optimized for expression in mammalian cells.


The corresponding single guide RNA sequence (sgRNA) with targeting sequence attached is cloned into a second mammalian expression vector. The two plasmids are cotransfected into HEK293T cells. 72 hr after co-transfection of the expression plasmid and a sgRNA targeting plasmid into HEK293T cells, the DNA is extracted and used for the preparation of an NGS-library. Percent NHEJ is measured via indels in the sequencing of the target site to demonstrate the targeting efficiency of the enzyme in mammalian cells. At least 10 different target sites were chosen to test each protein's activity.


Example 6b—(General Protocol) Testing of Genome Cleavage Activity of MG CRISPR Complexes in Mammalian Cells

To show targeting and cleavage activity in mammalian cells, the MG Cas effector protein sequences were cloned into two mammalian expression vector: (a) one with flanking N and C-terminal SV40 NLS sequences, a C-terminal His tag, and a 2A-GFP tag at the C terminus after the His tag (Backbone 1), and (b) one with flanking NLS sequences and C-terminal His tag but no T2A GFP tag (Backbone 2). In some instances, nucleotide sequences encoding the endonucleases were the native sequence, codon-optimized for expression in E. coli, or codon-optimized for expression in mammalian cells.


The corresponding single guide RNA sequence (sgRNA) with targeting sequence attached was cloned into a second mammalian expression vector. The two plasmids were cotransfected into HEK293T cells. 72 hr after co-transfection of the expression plasmid and a sgRNA targeting plasmid into HEK293T cells, the DNA was extracted and used for the preparation of an NGS-library. Percent NHEJ was measured via indels in the sequencing of the target site to demonstrate the targeting efficiency of the enzyme in mammalian cells. About 7-12 different target sites were chosen for testing each protein's activity. An arbitrary threshold of 5% indels was used to identify active candidates.


Example 7—Gene Editing Outcomes at the DNA Level for B2M

Primary T cells were purified from PBMCs using a negative selection kit (Miltenyi) according to the manufacturer's recommendations. Nucleofection of MG3-6 RNPs (106 pmol protein/160 pmol guide) (SEQ ID NOs: 6305-6386) was performed into T cells (200,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared five days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA (SEQ ID NOs: 6387-6468). The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 1).









TABLE 1A







Guide sequences used in Example 7









SEQ




ID




NO:
Entity Name
Sequence





6305
MG3-6-B2M-sgRNA-A1
mC*mG*mC*rUrArCrUrCrUrCrUrCrUrUrUrCrUrGrGrCrCrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6306
MG3-6-B2M-sgRNA-B1
mA*mG*mA*rGrArCrUrCrArCrGrCrUrGrGrArUrArGrCrCrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6307
MG3-6-B2M-sgRNA-C1
mG*mA*mG*rArGrArGrUrArGrCrGrCrGrArGrCrArCrArGrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6308
MG3-6-B2M-sgRNA-D1
mC*mC*mC*rGrArUrArUrUrCrCrUrCrArGrGrUrArCrUrCrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6309
MG3-6-B2M-sgRNA-E1
mA*mU*mU*rCrCrUrCrArGrGrUrArCrUrCrCrArArArGrArUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6310
MG3-6-B2M-sgRNA-F1
mA*mA*mU*rUrUrCrCrUrGrArArUrUrGrCrUrArUrGrUrGrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6311
MG3-6-B2M-sgRNA-G1
mG*mA*mG*rArArUrUrGrArArArArArGrUrGrGrArGrCrArUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6312
MG3-6-B2M-sgRNA-H1
mG*mC*mA*rUrUrCrArGrArCrUrUrGrUrCrUrUrUrCrArGrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6313
MG3-6-B2M-sgRNA-A2
mA*mG*mA*rCrUrUrArCrCrCrCrArCrUrUrArArCrUrArUrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6314
MG3-6-B2M-sgRNA-B2
mU*mU*mC*rArGrUrGrUrArGrUrArCrArArGrArGrArUrArGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6315
MG3-6-B2M-sgRNA-C2
mA*mG*mU*rUrCrUrCrCrUrUrGrGrUrGrGrCrCrCrGrCrCrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6316
MG3-6-B2M-sgRNA-D2
mG*mU*mG*rGrCrCrCrGrCrCrGrUrGrGrGrGrCrUrArGrUrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6317
MG3-6-B2M-sgRNA-E2
mC*mC*mG*rCrCrGrUrGrGrGrGrCrUrArGrUrCrCrArGrGrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUxmU*mU*mU





6318
MG3-6-B2M-sgRNA-F2
mG*mC*mC*rCrCrUrUrUrCrGrGrCrGrGrGrGrArGrCrArGrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6319
MG3-6-B2M-sgRNA-G2
mG*mA*mC*rCrUrUrUrGrGrCrCrUrArCrGrGrCrGrArCrGrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6320
MG3-6-B2M-sgRNA-H2
mG*mC*mG*rUrCrGrArUrArArGrCrGrUrCrArGrArGrCrGrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6321
MG3-6-B2M-sgRNA-A3
mC*mG*mU*rCrArGrArGrCrGrCrCrGrArGrGrUrUrGrGrGrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6322
MG3-6-B2M-sgRNA-B3
mG*mG*mG*rUrUrUrCrUrCrUrUrCrCrGrCrUrCrUrUrUrCrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6323
MG3-6-B2M-sgRNA-C3
mG*mC*mG*rCrArGrCrUrGrGrArGrUrGrGrGrGrGrArCrGrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6324
MG3-6-B2M-sgRNA-D3
mG*mC*mU*rCrGrUrCrCrCrArArArGrGrCrGrCrGrGrCrGrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6325
MG3-6-B2M-sgRNA-E3
mU*mG*mU*rGrArArCrGrCrGrUrGrGrArGrGrGrGrCrGrCrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6326
MG3-6-B2M-sgRNA-F3
mG*mU*mC*rUrGrCrUrGrCrGrGrCrUrCrUrGrCrUrUrCrCrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6327
MG3-6-B2M-sgRNA-G3
mG*mC*mU*rUrCrCrCrUrUrArGrArCrUrGrGrArGrArGrCrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6328
MG3-6-B2M-sgRNA-H3
mA*mA*mG*rUrUrCrGrCrArUrGrUrCrCrUrArGrCrArCrCrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6329
MG3-6-B2M-sgRNA-A4
mU*mC*mC*rUrArGrCrArCrCrUrCrUrGrGrGrUrCrUrArUrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6330
MG3-6-B2M-sgRNA-B4
mC*mC*mU*rCrCrCrCrArCrGrGrUrGrUrGrGrCrCrCrCrArCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6331
MG3-6-B2M-sgRNA-C4
mA*mA*mG*rGrGrArArGrCrArGrArGrCrCrGrCrArGrCrArGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUxmU*mU*mU





6332
MG3-6-B2M-sgRNA-D4
mG*mC*mU*rUrArCrCrCrGrGrGrCrGrArCrGrCrCrUrCrCrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUmU*mU*mU





6333
MG3-6-B2M-sgRNA-E4
mC*mU*mC*rCrArGrCrUrGrCrGrCrUrGrGrGrGrGrArGrCrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6334
MG3-6-B2M-sgRNA-F4
mU*mU*mG*rUrCrCrCrGrArCrCrCrUrCrCrCrGrUrCrGrCrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6335
MG3-6-B2M-sgRNA-G4
mG*mA*mC*rCrCrUrCrCrCrGrUrCrGrCrCrGrUrArGrGrCrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6336
MG3-6-B2M-sgRNA-H4
mG*mU*mG*rCrGrCrArCrCrCrCrCrUrUrCrCrCrCrArCrUrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6337
MG3-6-B2M-sgRNA-A5
mC*mC*mA*rGrGrCrCrArCrCrCrCrGrCrCrGrCrUrUrCrCrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6338
MG3-6-B2M-sgRNA-B5
mG*mC*mC*rGrCrUrUrCrCrCrCrGrArGrArUrCrCrArGrCrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6339
MG3-6-B2M-sgRNA-C5
mC*mC*mA*rGrCrCrCrUrGrGrArCrUrArGrCrCrCrCrArCrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6340
MG3-6-B2M-sgRNA-D5
mU*mC*mA*rCrGrGrArGrCrGrArGrArGrArGrCrArCrArGrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6341
MG3-6-B2M-sgRNA-E5
mA*mG*mA*rGrGrGrUrGrCrArGrArGrCrGrGrGrArGrArGrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6342
MG3-6-B2M-sgRNA-F5
mA*mG*mG*rArCrCrArGrArGrCrGrGrGrArGrGrGrUrArGrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6343
MG3-6-B2M-sgRNA-G5
mC*mG*mA*rGrArUrUrGrArArGrUrCrArArGrCrCrUrArArCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6344
MG3-6-B2M-sgRNA-H5
mA*mG*mA*rArArArArCrGrCrCrUrGrCrCrUrUrCrUrGrCrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6345
MG3-6-B2M-sgRNA-A6
mU*mC*mU*rCrCrArGrArGrCrArArArCrUrGrGrGrCrGrGrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6346
MG3-6-B2M-sgRNA-B6
mG*mG*mC*rCrCrUrGrUrGrGrUrCrUrUrUrUrCrGrUrArCrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6347
MG3-6-B2M-sgRNA-C6
mA*mC*mU*rUrUrCrGrGrUrUrUrUrGrArArArArCrArUrGrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6348
MG3-6-B2M-sgRNA-D6
mA*mA*mA*rGrArGrGrArArGrCrCrCrUrCrUrGrUrArCrGrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6349
MG3-6-B2M-sgRNA-E6
mA*mG*mC*rCrCrUrCrUrGrUrArCrGrArArArArGrArCrCrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6350
MG3-6-B2M-sgRNA-F6
mU*mG*mC*rGrCrUrCrCrCrGrCrArArArArGrCrCrCrUrGrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6351
MG3-6-B2M-sgRNA-G6
mA*mA*mA*rArGrArArArArGrArArArGrArArArGrArArGrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6352
MG3-6-B2M-sgRNA-H6
mA*mA*mA*rGrArUrArArUrCrCrArArGrArUrGrGrUrUrArCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6353
MG3-6-B2M-sgRNA-A7
mU*mA*mC*rCrArArGrArCrUrGrUrUrGrArGrGrArCrGrCrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6354
MG3-6-B2M-sgRNA-B7
mU*mC*mC*rArArArGrUrArArUrArCrArUrGrCrCrArUrGrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUmU*mU*mU





6355
MG3-6-B2M-sgRNA-C7
mA*mU*mU*rArCrUrUrUrGrGrArArArUrUrUrUrCrArArArAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6356
MG3-6-B2M-sgRNA-D7
mA*mA*mA*rUrArArGrArUrUrUrUrUrUrUrUrUrArArArUrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6357
MG3-6-B2M-sgRNA-E7
mU*mG*mC*rCrArGrGrUrArCrUrUrArGrArArArGrUrGrCrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6358
MG3-6-B2M-sgRNA-F7
mC*mU*mC*rArArCrArGrUrCrUrUrGrGrUrArArCrCrArUrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6359
MG3-6-B2M-sgRNA-G7
mU*mG*mA*rUrArCrUrUrGrUrCrCrUrCrUrUrCrUrUrArGrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6360
MG3-6-B2M-sgRNA-H7
mG*mC*mU*rUrUrUrArArUrGrUrUrArUrGrArArArArArArAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6361
MG3-6-B2M-sgRNA-A8
mU*mA*mU*rGrArArArArArArArUrCrArGrGrUrCrUrUrCrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6362
MG3-6-B2M-sgRNA-B8
mG*mA*mU*rUrCrCrCrCrArArUrCrCrArCrCrUrCrUrUrGrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6363
MG3-6-B2M-sgRNA-C8
mG*mG*mC*rArGrCrUrArCrUrCrCrUrCrCrUrUrGrUrCrUrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUxmU*mU*mU





6364
MG3-6-B2M-sgRNA-D8
mG*mC*mU*rGrUrGrGrGrGrArGrArArGrGrArGrGrArGrUrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6365
MG3-6-B2M-sgRNA-E8
mU*mA*mG*rArArArCrArCrCrCrUrArUrCrArUrUrArArGrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUxmU*mU*mU





6366
MG3-6-B2M-sgRNA-F8
mA*mG*mG*rCrUrArCrUrArGrCrCrCrCrArUrCrArArGrArGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6367
MG3-6-B2M-sgRNA-G8
mG*mA*mG*rGrUrGrGrArUrUrGrGrGrGrArArUrCrUrArArUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6368
MG3-6-B2M-sgRNA-H8
mA*mU*mA*rArGrArArCrArUrArUrUrArArArUrGrCrCrUrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6369
MG3-6-B2M-sgRNA-A9
mU*mA*mA*rArUrGrCrCrUrCrArGrGrGrArUrCrArGrArGrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUxmU*mU*mU





6370
MG3-6-B2M-sgRNA-B9
mC*mU*mC*rUrCrUrGrUrUrUrGrArGrGrGrArArGrGrCrGrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUxmU*mU*mU





6371
MG3-6-B2M-sgRNA-C9
mC*mU*mA*rArGrArArGrArGrGrArCrArArGrUrArUrCrArGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6372
MG3-6-B2M-sgRNA-D9
mC*mA*mC*rCrUrArUrCrCrCrUrGrUrUrGrUrArUrUrUrUrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6373
MG3-6-B2M-sgRNA-E9
mA*mU*mU*rUrGrCrCrArGrCrUrCrUrUrGrUrArUrGrCrArUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6374
MG3-6-B2M-sgRNA-F9
mG*mA*mA*rArUrUrArGrGrUrArCrArArArGrUrCrArGrArGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6375
MG3-6-B2M-sgRNA-G9
mU*mA*mU*rArArArArCrCrUrCrArGrCrArGrArArArUrArAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6376
MG3-6-B2M-sgRNA-H9
mU*mG*mU*rUrGrUrUrUrGrGrUrArArGrArArCrArUrArCrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6377
MG3-6-B2M-sgRNA-A10
mA*mA*mC*rArArArArCrCrUrCrUrUrUrArUrUrUrCrUrGrCr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6378
MG3-6-B2M-sgRNA-B10
mA*mU*mU*rUrCrUrGrCrUrGrArGrGrUrUrUrUrArUrArUrGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6379
MG3-6-B2M-sgRNA-C10
mG*mC*mA*rArArUrArCrCrUrUrArArArUrGrGrUrUrGrArGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6380
MG3-6-B2M-sgRNA-D10
mA*mU*mA*rArArArUrArCrArArCrArGrGrGrArUrArGrGrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6381
MG3-6-B2M-sgRNA-E10
mA*mA*mU*rGrGrArGrUrArArUrGrCrArUrGrUrGrArCrArGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6382
MG3-6-B2M-sgRNA-F10
mA*mC*mA*rGrGrUrGrArUrUrGrCrUrGrUrArArArCrUrArGr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6383
MG3-6-B2M-sgRNA-G10
mC*mU*mU*rUrCrCrArArArArUrGrArGrArGrGrCrArUrGrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6384
MG3-6-B2M-sgRNA-H10
mA*mA*mU*rArUrUrGrCrCrArGrGrGrUrArUrUrUrCrArCrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6385
MG3-6-B2M-sgRNA-A11
mU*mG*mC*rCrUrUrUrUrUrUrGrUrUrUrUrUrUrUrUrCrUrAr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





6386
MG3-6-B2M-sgRNA-B11
mU*mC*mU*rArGrCrArGrUrArUrCrUrUrCrUrGrUrCrArCrUr




GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





Notations for chemical modifications: m = 2′O-methyl ribonucleotide (e.g mC = cytosine ribonucleotide with 2′-O Methyl in place of 2′ hydroxyl); f = 2′-fluoro ribonucleotide (e.g fC = cytosine ribonucleotide with 2′ fluorine in place of 2′ hydroxyl); * = phosphorothioate bond; r: native RNA linkage comprising the sugar ribose (for example the ribose or RNA form of the A base is written rA), d: deoxyribose sugar (DNA) linkage (for example a deoxyribose form of the A base is written dA)













TABLE 1B







Sites targeted in Example 7











SEQ





ID





NO:
Entity Name
Sequence







6387
MG3-6-B2M-target site-A1
CGCTACTCTCT





CTTTCTGGCCT







6388
MG3-6-B2M-target site-B1
AGAGACTCACG





CTGGATAGCCT







6389
MG3-6-B2M-target site-C1
GAGAGAGTAGC





GCGAGCACAGC







6390
MG3-6-B2M-target site-D1
CCCGATATTCC





TCAGGTACTCC







6391
MG3-6-B2M-target site-E1
ATTCCTCAGGT





ACTCCAAAGAT







6392
MG3-6-B2M-target site-F1
AATTTCCTGAA





TTGCTATGTGT







6393
MG3-6-B2M-target site-G1
GAGAATTGAAA





AAGTGGAGCAT







6394
MG3-6-B2M-target site-H1
GCATTCAGACT





TGTCTTTCAGC







6395
MG3-6-B2M-target site-A2
AGACTTACCCC





ACTTAACTATC







6396
MG3-6-B2M-target site-B2
TTCAGTGTAGT





ACAAGAGATAG







6397
MG3-6-B2M-target site-C2
AGTTCTCCTTG





GTGGCCCGCCG







6398
MG3-6-B2M-target site-D2
GTGGCCCGCCG





TGGGGCTAGTC







6399
MG3-6-B2M-target site-E2
CCGCCGTGGGG





CTAGTCCAGGG







6400
MG3-6-B2M-target site-F2
GCCCCTTTCGG





CGGGGAGCAGG







6401
MG3-6-B2M-target site-G2
GACCTTTGGCC





TACGGCGACGG







6402
MG3-6-B2M-target site-H2
GCGTCGATAAG





CGTCAGAGCGC







6403
MG3-6-B2M-target site-A3
CGTCAGAGCGC





CGAGGTTGGGG







6404
MG3-6-B2M-target site-B3
GGGTTTCTCTT





CCGCTCTTTCG







6405
MG3-6-B2M-target site-C3
GCGCAGCTGGA





GTGGGGGACGG







6406
MG3-6-B2M-target site-D3
GCTCGTCCCAA





AGGCGCGGCGC







6407
MG3-6-B2M-target site-E3
TGTGAACGCGT





GGAGGGGCGCT







6408
MG3-6-B2M-target site-F3
GTCTGCTGCGG





CTCTGCTTCCC







6409
MG3-6-B2M-target site-G3
GCTTCCCTTAG





ACTGGAGAGCT







6410
MG3-6-B2M-target site-H3
AAGTTCGCATG





TCCTAGCACCT







6411
MG3-6-B2M-target site-A4
TCCTAGCACCT





CTGGGTCTATG







6412
MG3-6-B2M-target site-B4
CCTCCCCACGG





TGTGGCCCCAC







6413
MG3-6-B2M-target site-C4
AAGGGAAGCAG





AGCCGCAGCAG







6414
MG3-6-B2M-target site-D4
GCTTACCCGGG





CGACGCCTCCC







6415
MG3-6-B2M-target site-E4
CTCCAGCTGCG





CTGGGGGAGCC







6416
MG3-6-B2M-target site-F4
TTGTCCCGACC





CTCCCGTCGCC







6417
MG3-6-B2M-target site-G4
GACCCTCCCGT





CGCCGTAGGCC







6418
MG3-6-B2M-target site-H4
GTGCGCACCCC





CTTCCCCACTC







6419
MG3-6-B2M-target site-A5
CCAGGCCACCC





CGCCGCTTCCC







6420
MG3-6-B2M-target site-B5
GCCGCTTCCCC





GAGATCCAGCC







6421
MG3-6-B2M-target site-C5
CCAGCCCTGGA





CTAGCCCCACG







6422
MG3-6-B2M-target site-D5
TCACGGAGCGA





GAGAGCACAGC







6423
MG3-6-B2M-target site-E5
AGAGGGTGCAG





AGCGGGAGAGG







6424
MG3-6-B2M-target site-F5
AGGACCAGAGC





GGGAGGGTAGG







6425
MG3-6-B2M-target site-G5
CGAGATTGAAG





TCAAGCCTAAC







6426
MG3-6-B2M-target site-H5
AGAAAAACGCC





TGCCTTCTGCG







6427
MG3-6-B2M-target site-A6
TCTCCAGAGCA





AACTGGGCGGC







6428
MG3-6-B2M-target site-B6
GGCCCTGTGGT





CTTTTCGTACA







6429
MG3-6-B2M-target site-C6
ACTTTCGGTTT





TGAAAACATGA







6430
MG3-6-B2M-target site-D6
AAAGAGGAAGC





CCTCTGTACGA







6431
MG3-6-B2M-target site-E6
AGCCCTCTGTA





CGAAAAGACCA







6432
MG3-6-B2M-target site-F6
TGCGCTCCCGC





AAAAGCCCTGG







6433
MG3-6-B2M-target site-G6
AAAAGAAAAGA





AAGAAAGAAGT







6434
MG3-6-B2M-target site-H6
AAAGATAATCC





AAGATGGTTAC







6435
MG3-6-B2M-target site-A7
TACCAAGACTG





TTGAGGACGCC







6436
MG3-6-B2M-target site-B7
TCCAAAGTAAT





ACATGCCATGC







6437
MG3-6-B2M-target site-C7
ATTACTTTGGA





AATTTTCAAAA







6438
MG3-6-B2M-target site-D7
AAATAAGATTT





TTTTTTAAATA







6439
MG3-6-B2M-target site-E7
TGCCAGGTACT





TAGAAAGTGCT







6440
MG3-6-B2M-target site-F7
CTCAACAGTCT





TGGTAACCATC







6441
MG3-6-B2M-target site-G7
TGATACTTGTC





CTCTTCTTAGA







6442
MG3-6-B2M-target site-H7
GCTTTTAATGT





TATGAAAAAAA







6443
MG3-6-B2M-target site-A8
TATGAAAAAAA





TCAGGTCTTCA







6444
MG3-6-B2M-target site-B8
GATTCCCCAAT





CCACCTCTTGA







6445
MG3-6-B2M-target site-C8
GGCAGCTACTC





CTCCTTGTCTG







6446
MG3-6-B2M-target site-D8
GCTGTGGGGAG





AAGGAGGAGTA







6447
MG3-6-B2M-target site-E8
TAGAAACACCC





TATCATTAAGG







6448
MG3-6-B2M-target site-F8
AGGCTACTAGC





CCCATCAAGAG







6449
MG3-6-B2M-target site-G8
GAGGTGGATTG





GGGAATCTAAT







6450
MG3-6-B2M-target site-H8
ATAAGAACATA





TTAAATGCCTC







6451
MG3-6-B2M-target site-A9
TAAATGCCTCA





GGGATCAGAGC







6452
MG3-6-B2M-target site-B9
CTCTCTGTTTG





AGGGAAGGCGG







6453
MG3-6-B2M-target site-C9
CTAAGAAGAGG





ACAAGTATCAG







6454
MG3-6-B2M-target site-D9
CACCTATCCCT





GTTGTATTTTA







6455
MG3-6-B2M-target site-E9
ATTTGCCAGCT





CTTGTATGCAT







6456
MG3-6-B2M-target site-F9
GAAATTAGGTA





CAAAGTCAGAG







6457
MG3-6-B2M-target site-G9
TATAAAACCTC





AGCAGAAATAA







6458
MG3-6-B2M-target site-H9
TGTTGTTTGGT





AAGAACATACC







6459
MG3-6-B2M-target site-A10
AACAAAACCTC





TTTATTTCTGC







6460
MG3-6-B2M-target site-B10
ATTTCTGCTGA





GGTTTTATATG







6461
MG3-6-B2M-target site-C10
GCAAATACCTT





AAATGGTTGAG







6462
MG3-6-B2M-target site-D10
ATAAAATACAA





CAGGGATAGGT







6463
MG3-6-B2M-target site-E10
AATGGAGTAAT





GCATGTGACAG







6464
MG3-6-B2M-target site-F10
ACAGGTGATTG





CTGTAAACTAG







6465
MG3-6-B2M-target site-G10
CTTTCCAAAAT





GAGAGGCATGA







6466
MG3-6-B2M-target site-H10
AATATTGCCAG





GGTATTTCACT







6467
MG3-6-B2M-target site-A11
TGCCTTTTTTG





TTTTTTTTCTA







6468
MG3-6-B2M-target site-B11
TCTAGCAGTAT





CTTCTGTCACT










Example 8—Gene Editing Outcomes at the DNA Level for Mouse TRAC

Primary T cells were purified from C57BL/6 mouse spleens. Nucleofection of MG3-6 RNPs (126 pmol protein/160 pmol guide) (SEQ ID NOs: 6469-6508) was performed into T cells (200,000) using the Lonza 4D electroporator and 100 pmol transfection enhancer (IDT). Cells were harvested and genomic DNA prepared five days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA (SEQ ID NOs: 6509-6548). The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 2). For analysis by flow cytometry, 3 days post-nucleofection, 100,000 mouse T cells were stained with anti-mouse CD3 antibody (Clone 17A2, Invitrogen 11-0032-82) for 30 minutes at 4° C. and analyzed on an Attune Nxt flow cytometer.









TABLE 2A







Guide sequences used in Example 8









SEQ




ID




NO:
Entity Name
Sequence





6469
MG3-6-mTRAC-sgRNA-
mA*mG*mA*rArCrCrUrGrCrUrGrUrGrUrArCrCrArGrUrUrArGr



A1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6470
MG3-6-mTRAC-sgRNA-B1
mA*mA*mC*rUrGrUrGrCrUrGrGrArCrArUrGrArArArGrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6471
MG3-6-m TRAC-sgRNA-
mA*mA*mG*rCrUrArUrGrGrArUrUrCrCrArArGrArGrCrArArGr



C1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6472
MG3-6-m TRAC-sgRNA-
mUmC*mA*rCrCrUrGrCrCrArArGrArUrArUrCrUrUrCrArArGrU



D1
rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6473
MG3-6-mTRAC-sgRNA-E1
mA*mG*mU*rUrUrUrGrUrCrArGrUrGrArUrGrArArCrGrUrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6474
MG3-6-mTRAC-sgRNA-F1
mG*mA*mA*rCrArGrGrCrArGrArGrGrGrUrGrCrUrGrUrCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6475
MG3-6-mTRAC-sgRNA-
mC*mA*mG*rArGrGrGrUrGrCrUrGrUrCrCrUrGrArGrArCrCrGr



G1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6476
MG3-6-mTRAC-sgRNA-
mA*mG*mG*rArUrCrUrUrUrUrArArCrUrGrGrUrArCrArCrArGr



H1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6477
MG3-6-mTRAC-sgRNA-
mUmU*mU*rArArCrUrGrGrUrArCrArCrArGrCrArGrGrUrUrGr



A2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6478
MG3-6-mTRAC-sgRNA-B2
mA*mG*mG*rUrUrCrUrGrGrGrUrUrCrUrGrGrArUrGrUrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6479
MG3-6-mTRAC-sgRNA-
mA*mA*mC*rUrUrUrCrArArArArCrCrUrGrUrCrArGrUrUrArGrU



C2
rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6480
MG3-6-mTRAC-sgRNA-
mC*mG*mA*rArUrCrCrUrCrCrUrGrCrUrGrArArArGrUrArGrGr



D2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6481
MG3-6-mTRAC-sgRNA-E2
mG*mG*mA*rUrUrUrArArCrCrUrGrCrUrCrArUrGrArCrGrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6482
MG3-6-mTRAC-sgRNA-F2
mC*mU*mU*rUrCrArUrGrCrCrUrUrCrUrUrArCrCrUrCrArArGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6483
MG3-6-mTRAC-sgRNA-
mG*mA*mC*rCrArCrArGrCrCrUrCrArGrCrGrUrCrArUrGrArGr



G2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6484
MG3-6-m TRAC-sgRNA-
mU*mA*mA*rArUrCrCrGrGrCrUrArCrUrUrUrCrArGrCrArGrGr



H2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6485
MG3-6-mTRAC-sgRNA-
mA*mG*mG*rArUrUrCrGrGrArGrUrCrCrCrArUrArArCrUrGrGr



A3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6486
MG3-6-mTRAC-sgRNA-B3
mA*mU*mA*rArCrUrGrArCrArGrGrUrUrUrUrGrArArArGrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6487
MG3-6-m TRAC-sgRNA-
mG*mU*mA*rCrUrUrCrCrUrCrArCrUrCrCrArGrGrUrCrUrGrGr



C3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6488
MG3-6-mTRAC-sgRNA-
mC*mC*mA*rCrCrUrCrGrUrCrArArGrArCrGrGrCrUrGrUrCrGr



D3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6489
MG3-6-mTRAC-sgRNA-E3
mU*mG*mG*rCrCrCrUrGrArUrUrCrArCrArArUrCrCrCrArCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6490
MG3-6-mTRAC-sgRNA-F3
mU*mU*mC*rArCrArArUrCrCrCrArCrCrUrGrGrArUrCrUrCrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6491
MG3-6-mTRAC-sgRNA-
mC*mU*mG*rGrArUrCrUrCrCrCrArGrArUrUrUrGrUrGrArGrGr



G3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUmU*mU*mU





6492
MG3-6-mTRAC-sgRNA-
mC*mA*mU*rUrCrArCrArArArArArArCrGrGrCrArGrGrGrGrGr



H3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6493
MG3-6-m TRAC-sgRNA-
mA*mA*mC*rGrGrCrArGrGrGrGrCrGrGrGrGrCrUrUrCrUrCrGr



A4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6494
MG3-6-mTRAC-sgRNA-B4
mG*mG*mG*rCrGrGrGrGrCrUrUrCrUrCrCrUrGrGrArUrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6495
MG3-6-mTRAC-sgRNA-
mA*mU*mC*rUrGrArArGrArCrCrCrCrUrCrCrCrCrCrArUrGrGr



C4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6496
MG3-6-mTRAC-sgRNA-
mG*mU*mU*rUrUrUrUrGrUrUrUrUrUrUrUrUrUrUrUrUrUrUrGrU



D4
rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6497
MG3-6-mTRAC-sgRNA-E4
mG*mG*mU*rGrUrArGrArArArUrUrArUrCrUrCrArUrUrGrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6498
MG3-6-mTRAC-sgRNA-F4
mG*mG*mC*rUrCrArArUrArCrArCrArCrArGrUrArGrCrArGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6499
MG3-6-mTRAC-sgRNA-
mA*mU*mU*rUrUrUrUrUrUrArCrArArCrArUrUrCrUrCrCrArGrU



G4
rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6500
MG3-6-m TRAC-sgRNA-
mA*mC*mA*rGrGrGrGrArGrUrCrUrGrCrCrArUrGrGrGrGrGrGr



H4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6501
MG3-6-m TRAC-sgRNA-
mG*mU*mC*rUrGrCrCrArUrGrGrGrGrGrArGrGrGrGrUrCrUrGr



A5
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mU*mU





6502
MG3-6-mTRAC-sgRNA-B5
mA*mG*mC*rArArCrCrUrUrCrCrUrCrArCrArArArUrCrUrGrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6503
MG3-6-mTRAC-sgRNA-
mU*mC*mA*rCrArArArUrCrUrGrGrGrArGrArUrCrCrArGrGrGr



C5
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6504
MG3-6-mTRAC-sgRNA-
mA*mG*mA*rUrCrCrArGrGrUrGrGrGrArUrUrGrUrGrArArUrGr



D5
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6505
MG3-6-mTRAC-sgRNA-E5
mU*mG*mG*rGrArUrUrGrUrGrArArUrCrArGrGrGrCrCrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6506
MG3-6-mTRAC-sgRNA-F5
mG*mA*mC*rArGrCrCrGrUrCrUrUrGrArCrGrArGrGrUrGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6507
MG3-6-mTRAC-sgRNA-
mU*mG*mA*rGrGrArGrGrArUrGrGrArGrCrUrUrGrGrGrArGrGr



G5
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6508
MG3-6-mTRAC-sgRNA-
mG*mG*mA*rGrUrCrArGrGrCrUrCrUrGrUrCrArGrUrCrUrUrGr



H5
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





Notations for chemical modifications: m = 2′O-methyl ribonucleotide (e.g mC = cytosine ribonucleotide with 2′-O Methyl in place of 2′ hydroxyl); f = 2′-fluoro ribonucleotide (e.g fC = cytosine ribonucleotide with 2′ fluorine in place of 2′ hydroxyl); * = phosphorothioate bond; r: native RNA linkage comprising the sugar ribose (for example the ribose or RNA form of the A base is written rA), d: deoxyribose sugar (DNA) linkage (for example a deoxyribose form of the A base is written dA)













TABLE 2B







List of sites targeted in Example 8









SEQ




ID




NO:
Entity Name
Sequence





6509
MG3-6-mTRAC-target site-
AGAACCTGCTGTGTACCAGTTA



A1






6510
MG3-6-mTRAC-target site-
AACTGTGCTGGACATGAAAGCT



B1






6511
MG3-6-mTRAC-target site-
AAGCTATGGATTCCAAGAGCAA



C1






6512
MG3-6-mTRAC-target site-
TCACCTGCCAAGATATCTTCAA



D1






6513
MG3-6-mTRAC-target site-
AGTTTTGTCAGTGATGAACGTT



E1






6514
MG3-6-mTRAC-target site-
GAACAGGCAGAGGGTGCTGTCC



F1






6515
MG3-6-mTRAC-target site-
CAGAGGGTGCTGTCCTGAGACC



G1






6516
MG3-6-mTRAC-target site-
AGGATCTTTTAACTGGTACACA



H1






6517
MG3-6-mTRAC-target site-
TTTAACTGGTACACAGCAGGTT



A2






6518
MG3-6-mTRAC-target site-
AGGTTCTGGGTTCTGGATGTCT



B2






6519
MG3-6-mTRAC-target site-
AACTTTCAAAACCTGTCAGTTA



C2






6520
MG3-6-mTRAC-target site-
CGAATCCTCCTGCTGAAAGTAG



D2






6521
MG3-6-mTRAC-target site-
GGATTTAACCTGCTCATGACGC



E2






6522
MG3-6-mTRAC-target site-
CTTTCATGCCTTCTTACCTCAA



F2






6523
MG3-6-mTRAC-target site-
GACCACAGCCTCAGCGTCATGA



G2






6524
MG3-6-mTRAC-target site-
TAAATCCGGCTACTTTCAGCAG



H2






6525
MG3-6-mTRAC-target site-
AGGATTCGGAGTCCCATAACTG



A3






6526
MG3-6-mTRAC-target site-
ATAACTGACAGGTTTTGAAAGT



B3






6527
MG3-6-mTRAC-target site-
GTACTTCCTCACTCCAGGTCTG



C3






6528
MG3-6-mTRAC-target site-
CCACCTCGTCAAGACGGCTGTC



D3






6529
MG3-6-mTRAC-target site-
TGGCCCTGATTCACAATCCCAC



E3






6530
MG3-6-mTRAC-target site-
TTCACAATCCCACCTGGATCTC



F3






6531
MG3-6-mTRAC-target site-
CTGGATCTCCCAGATTTGTGAG



G3






6532
MG3-6-mTRAC-target site-
CATTCACAAAAAACGGCAGGGG



H3






6533
MG3-6-mTRAC-target site-
AACGGCAGGGGCGGGGCTTCTC



A4






6534
MG3-6-mTRAC-target site-
GGGCGGGGCTTCTCCTGGATCT



B4






6535
MG3-6-mTRAC-target site-
ATCTGAAGACCCCTCCCCCATG



C4






6536
MG3-6-mTRAC-target site-
GTTTTTTGTTTTTTTTTTTTTT



D4






6537
MG3-6-mTRAC-target site-
GGTGTAGAAATTATCTCATTGT



E4






6538
MG3-6-mTRAC-target site-
GGCTCAATACACACAGTAGCAG



F4






6539
MG3-6-mTRAC-target site-
ATTTTTTTTACAACATTCTCCA



G4






6540
MG3-6-mTRAC-target site-
ACAGGGGAGTCTGCCATGGGGG



H4






6541
MG3-6-mTRAC-target site-
GTCTGCCATGGGGGAGGGGTCT



A5






6542
MG3-6-mTRAC-target site-
AGCAACCTTCCTCACAAATCTG



B5






6543
MG3-6-mTRAC-target site-
TCACAAATCTGGGAGATCCAGG



C5






6544
MG3-6-mTRAC-target site-
AGATCCAGGTGGGATTGTGAAT



D5






6545
MG3-6-mTRAC-target site-
TGGGATTGTGAATCAGGGCCAA



E5






6546
MG3-6-mTRAC-target site-
GACAGCCGTCTTGACGAGGTGG



F5






6547
MG3-6-mTRAC-target site-
TGAGGAGGATGGAGCTTGGGAG



G5






6548
MG3-6-mTRAC-target site-
GGAGTCAGGCTCTGTCAGTCTT



H5









Example 9—Gene Editing Outcomes at the DNA Level for HPRT

Primary T cells were purified from PBMCs using a negative selection kit (Miltenyi) according to the manufacturer's recommendations. Nucleofection of MG3-6 RNPs (126 pmol protein/160 pmol guide) (SEQ ID NOs: 6549-6615) was performed into T cells (200,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared five days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA (SEQ ID NOs: 6616-6682). The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 3).









TABLE 3A







Guide sequences used in Example 9









SEQ




ID




NO:
Entity Name
Sequence





6549
MG3-6-HPRT-sgRNA-A1
mU*mU*mC*rCrUrCrUrGrCrArUrCrArGrUrUrUrUrArArUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6550
MG3-6-HPRT-sgRNA-B1
mG*mU*mG*rGrGrCrUrUrGrUrGrUrUrCrUrArArArGrGrArGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mU*mU





6551
MG3-6-HPRT-sgRNA-C1
mA*mG*mG*rArGrUrGrArGrArUrUrGrGrUrUrUrUrUrUrGrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6552
MG3-6-HPRT-sgRNA-D1
mU*mA*mA*rArArArArUrArArUrArUrUrUrArUrArArUrUrUrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6553
MG3-6-HPRT-sgRNA-E1
mG*mA*mG*rUrArUrUrUrUrUrArUrUrGrArArArArGrCrArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6554
MG3-6-HPRT-sgRNA-F1
mA*mA*mA*rArArUrArUrUrUrUrCrCrCrUrArArCrArArArGrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6555
MG3-6-HPRT-sgRNA-G1
mA*mU*mC*rUrCrArGrCrUrArUrUrUrArGrUrCrArArArArGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6556
MG3-6-HPRT-sgRNA-H1
mG*mUmC*rCrUrArCrUrUrUrUrGrArCrUrArArArUrArGrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6557
MG3-6-HPRT-sgRNA-A2
mA*mA*mC*rUrCrUrCrCrArArUrArUrArGrGrUrGrGrCrUrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6558
MG3-6-HPRT-sgRNA-B2
mA*mU*mU*rUrUrUrCrCrCrArUrArArArUrUrCrArArGrArUrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6559
MG3-6-HPRT-sgRNA-C2
mC*mC*mA*rGrGrArCrUrGrGrArUrUrUrUrGrUrArGrGrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6560
MG3-6-HPRT-sgRNA-D2
mU*mG*mC*rArCrCrUrArCrArArArArUrCrCrArGrUrCrCrUrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mU*mU





6561
MG3-6-HPRT-sgRNA-E2
mG*mU*mA*rArGrArArUrGrCrCrArGrCrCrCrCrCrArGrGrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mU*mU





6562
MG3-6-HPRT-sgRNA-F2
mA*mA*mG*rCrArGrUrArArGrArArUrGrCrCrArGrCrCrCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6563
MG3-6-HPRT-sgRNA-G2
mG*mC*mU*rGrGrCrArUrUrCrUrUrArCrUrGrCrUrUrGrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6564
MG3-6-HPRT-sgRNA-H2
mU*mG*mC*rUrUrGrCrUrGrArGrGrGrCrCrArGrArUrGrArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6565
MG3-6-HPRT-sgRNA-A3
mA*mU*mA*rGrArUrUrCrCrArGrArArUrArUrCrUrCrCrArUrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6566
MG3-6-HPRT-sgRNA-B3
mU*mG*mA*rCrArGrUrArUrUrGrCrArGrUrUrArUrArCrArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6567
MG3-6-HPRT-sgRNA-C3
mC*mG*mA*rArArArGrUrArArUrGrUrArArUrCrUrCrArUrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6568
MG3-6-HPRT-sgRNA-D3
mG*mG*mA*rUrUrArUrArUrCrUrUrArArGrUrCrUrUrArUrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6569
MG3-6-HPRT-sgRNA-E3
mA*mA*mC*rArCrArUrGrArCrArArArArUrUrArUrUrUrArArGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6570
MG3-6-HPRT-sgRNA-F3
mG*mU*mU*rUrGrUrCrCrUrGrArArUrArGrCrArUrGrGrCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6571
MG3-6-HPRT-sgRNA-G3
mC*mUmG*rArArUrArGrCrArUrGrGrCrArGrArGrGrArUrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6572
MG3-6-HPRT-sgRNA-H3
mA*mU*mC*rCrUrUrArUrUrCrUrUrArArUrUrUrUrGrCrArArGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6573
MG3-6-HPRT-sgRNA-A4
mG*mC*mC*rCrCrCrUrUrGrCrArArArArUrUrArArGrArArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6574
MG3-6-HPRT-sgRNA-B4
mG*mG*mU*rGrArGrGrArArGrUrGrArUrArGrGrArArGrGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6575
MG3-6-HPRT-sgRNA-C4
mG*mU*mG*rArUrArGrGrArArGrGrGrGrUrGrGrGrCrCrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6576
MG3-6-HPRT-sgRNA-D4
mG*mG*mA*rArGrGrGrGrUrGrGrGrCrCrCrUrGrArArGrArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6577
MG3-6-HPRT-sgRNA-E4
mA*mA*mU*rUrCrCrArGrGrArGrGrUrCrCrArGrArUrCrUrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6578
MG3-6-HPRT-sgRNA-F4
mU*mC*mA*rUrCrArCrUrCrArArUrUrCrCrArGrGrArGrGrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6579
MG3-6-HPRT-sgRNA-G4
mC*mA*mG*rCrArUrUrCrArUrCrArCrUrCrArArUrUrCrCrArGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6580
MG3-6-HPRT-sgRNA-H4
mC*mA*mG*rCrArUrArGrGrUrArArGrGrUrGrArGrGrArGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6581
MG3-6-HPRT-sgRNA-A5
mA*mC*mA*rUrArArArArArCrUrGrCrArGrArCrUrGrArUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6582
MG3-6-HPRT-sgRNA-B5
mA*mC*mC*rUrGrArCrCrCrCrUrArCrArUrArArArArArCrUrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6583
MG3-6-HPRT-sgRNA-C5
mG*mA*mU*rCrArGrUrCrUrGrCrArGrUrUrUrUrUrArUrGrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mUmU





6584
MG3-6-HPRT-sgRNA-D5
mU*mC*mU*rGrCrUrUrUrUrUrCrCrUrArArGrUrGrArUrUrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6585
MG3-6-HPRT-sgRNA-E5
mA*mC*mA*rGrArUrArCrCrGrUrGrArUrUrUrUrUrUrCrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6586
MG3-6-HPRT-sgRNA-F5
mA*mC*mU*rGrCrUrGrArCrArUrArUrGrArCrUrCrArCrUrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mU*mU





6587
MG3-6-HPRT-sgRNA-G5
mC*mA*mU*rArUrGrUrCrArGrCrArGrUrUrUrGrArCrUrGrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6588
MG3-6-HPRT-sgRNA-H5
mU*mA*mU*rCrArGrUrGrArGrUrUrUrUrUrCrUrUrUrUrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6589
MG3-6-HPRT-sgRNA-A6
mG*mC*mU*rUrArUrUrUrUrUrCrUrArCrArUrGrCrUrCrUrUrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6590
MG3-6-HPRT-sgRNA-B6
mU*mU*mA*rArArUrGrUrCrArArCrCrUrArCrUrGrUrGrGrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mUxmU*mU





6591
MG3-6-HPRT-sgRNA-C6
mG*mA*mG*rGrArUrUrArArArGrUrCrUrArUrGrCrCrArCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6592
MG3-6-HPRT-sgRNA-D6
mA*mA*mG*rArArCrArArCrArArArArGrArArUrArCrCrCrArGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6593
MG3-6-HPRT-sgRNA-E6
mU*mG*mG*rUrArUrArUrGrCrUrGrUrGrGrArArUrUrGrArGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6594
MG3-6-HPRT-sgRNA-F6
mG*mA*mG*rArUrArGrArCrUrGrGrUrUrCrGrUrGrArGrCrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mU*mU





6595
MG3-6-HPRT-sgRNA-G6
mG*mU*mA*rGrGrArCrArUrGrCrUrCrArArArCrArArUrArCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6596
MG3-6-HPRT-sgRNA-H6
mA*mU*mU*rArArGrCrArGrCrUrGrCrUrCrArCrUrArCrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6597
MG3-6-HPRT-sgRNA-A7
mG*mA*mG*rArUrGrGrArGrCrUrUrUrArUrUrArArArCrArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6598
MG3-6-HPRT-sgRNA-B7
mG*mA*mA*rCrUrCrArGrCrArCrUrUrCrArUrArUrGrCrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6599
MG3-6-HPRT-sgRNA-C7
mU*mG*mA*rGrUrUrCrUrCrUrUrGrArArCrUrCrCrUrArArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6600
MG3-6-HPRT-sgRNA-D7
mA*mU*mU*rCrCrUrGrArGrUrUrCrArGrGrUrArGrGrGrArGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6601
MG3-6-HPRT-sgRNA-E7
mU*mA*mU*rArUrArUrGrUrUrUrArArArGrArGrCrUrGrGrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6602
MG3-6-HPRT-sgRNA-F7
mG*mG*mU*rArUrGrArArArGrCrArUrArArGrUrUrUrUrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6603
MG3-6-HPRT-sgRNA-G7
mU*mG*mA*rGrArCrUrGrCrCrUrUrUrArArCrArUrCrUrGrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6604
MG3-6-HPRT-sgRNA-H7
mA*mA*mU*rArUrUrUrUrUrCrArArCrArGrGrCrArGrCrArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6605
MG3-6-HPRT-sgRNA-A8
mC*mU*mC*rCrCrArCrArCrCrCrUrUrUrUrArUrArGrUrUrUrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6606
MG3-6-HPRT-sgRNA-B8
mU*mA*mU*rArGrUrUrUrArGrGrGrArUrUrGrUrArUrUrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6607
MG3-6-HPRT-sgRNA-C8
mA*mG*mG*rGrArUrUrGrUrArUrUrUrCrCrArArGrGrUrUrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6608
MG3-6-HPRT-sgRNA-D8
mA*mG*mU*rGrUrCrArArUrGrArGrCrArArArGrArUrGrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6609
MG3-6-HPRT-sgRNA-E8
mC*mC*mA*rUrUrGrArArGrGrGrGrArGrCrUrArArUrArArGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6610
MG3-6-HPRT-sgRNA-F8
mU*mG*mG*rArCrArCrArUrGrGrGrUrArGrUrCrArGrGrGrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6611
MG3-6-HPRT-sgRNA-G8
mC*mC*mU*rGrGrArArCrCrUrGrArArGrGrArCrArGrUrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6612
MG3-6-HPRT-sgRNA-H8
mG*mU*mG*rCrArGrGrUrCrUrCrArGrArArCrUrGrUrCrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6613
MG3-6-HPRT-sgRNA-A9
mA*mU*mG*rArArArUrGrGrArGrArGrCrUrArArArUrUrArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6614
MG3-6-HPRT-sgRNA-B9
mG*mU*mC*rArCrUrUrUrUrArArCrArCrArCrCrCrArArGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6615
MG3-6-HPRT-sgRNA-C9
mU*mA*mG*rArGrArGrGrCrArCrArUrUrUrGrCrCrArGrUrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





Notations for chemical modifications: m = 2′O-methyl ribonucleotide (e.g mC = cytosine ribonucleotide with 2′-O Methyl in place of 2′ hydroxyl); f = 2′-fluoro ribonucleotide (e.g fC = cytosine ribonucleotide with 2′ fluorine in place of 2′ hydroxyl); * = phosphorothioate bond; r: native RNA linkage comprising the sugar ribose (for example the ribose or RNA form of the A base is written rA), d: deoxyribose sugar (DNA) linkage (for example a deoxyribose form of the A base is written dA)













TABLE 3B







Sites targeted in Example 9









SEQ




ID




NO:
Entity Name
Sequence





6616
MG3-6-HPRT-target site-
TTCCTCTGCAT



A1
CAGTTTTAATG





6617
MG3-6-HPRT-target site-
GTGGGCTTGTG



B1
TTCTAAAGGAG





6618
MG3-6-HPRT-target site-
AGGAGTGAGAT



C1
TGGTTTTTTGT





6619
MG3-6-HPRT-target site-
TAAAAAATAAT



D1
ATTTATAATTT





6620
MG3-6-HPRT-target site-
GAGTATTTTTA



E1
TTGAAAAGCAT





6621
MG3-6-HPRT-target site-
AAAAATATTTT



F1
CCCTAACAAAG





6622
MG3-6-HPRT-target site-
ATCTCAGCTAT



G1
TTAGTCAAAAG





6623
MG3-6-HPRT-target site-
GTCCTACTTTT



H1
GACTAAATAGC





6624
MG3-6-HPRT-target site-
AACTCTCCAAT



A2
ATAGGTGGCTA





6625
MG3-6-HPRT-target site-
ATTTTTCCCAT



B2
AAATTCAAGAT





6626
MG3-6-HPRT-target site-
CCAGGACTGGA



C2
TTTTGTAGGTG





6627
MG3-6-HPRT-target site-
TGCACCTACAA



D2
AATCCAGTCCT





6628
MG3-6-HPRT-target site-
GTAAGAATGCC



E2
AGCCCCCAGGA





6629
MG3-6-HPRT-target site-
AAGCAGTAAGA



F2
ATGCCAGCCCC





6630
MG3-6-HPRT-target site-
GCTGGCATTCT



G2
TACTGCTTGCT





6631
MG3-6-HPRT-target site-
TGCTTGCTGAG



H2
GGCCAGATGAT





6632
MG3-6-HPRT-target site-
ATAGATTCCAG



A3
AATATCTCCAT





6633
MG3-6-HPRT-target site-
TGACAGTATTG



B3
CAGTTATACAT





6634
MG3-6-HPRT-target site-
CGAAAAGTAAT



C3
GTAATCTCATA





6635
MG3-6-HPRT-target site-
GGATTATATCT



D3
TAAGTCTTATA





6636
MG3-6-HPRT-target site-
AACACATGACA



E3
AAATTATTTAA





6637
MG3-6-HPRT-target site-
GTTTGTCCTGA



F3
ATAGCATGGCA





6638
MG3-6-HPRT-target site-
CTGAATAGCAT



G3
GGCAGAGGATT





6639
MG3-6-HPRT-target site-
ATCCTTATTCT



H3
TAATTTTGCAA





6640
MG3-6-HPRT-target site-
GCCCCCTTGCA



A4
AAATTAAGAAT





6641
MG3-6-HPRT-target site-
GGTGAGGAAGT



B4
GATAGGAAGGG





6642
MG3-6-HPRT-target site-
GTGATAGGAAG



C4
GGGTGGGCCCT





6643
MG3-6-HPRT-target site-
GGAAGGGGTGG



D4
GCCCTGAAGAT





6644
MG3-6-HPRT-target site-
AATTCCAGGAG



E4
GTCCAGATCTT





6645
MG3-6-HPRT-target site-
TCATCACTCAA



F4
TTCCAGGAGGT





6646
MG3-6-HPRT-target site-
CAGCATTCATC



G4
ACTCAATTCCA





6647
MG3-6-HPRT-target site-
CAGCATAGGTA



H4
AGGTGAGGAGG





6648
MG3-6-HPRT-target site-
ACATAAAAACT



A5
GCAGACTGATC





6649
MG3-6-HPRT-target site-
ACCTGACCCCT



B5
ACATAAAAACT





6650
MG3-6-HPRT-target site-
GATCAGTCTGC



C5
AGTTTTTATGT





6651
MG3-6-HPRT-target site-
TCTGCTTTTTC



D5
CTAAGTGATTA





6652
MG3-6-HPRT-target site-
ACAGATACCGT



E5
GATTTTTTCAA





6653
MG3-6-HPRT-target site-
ACTGCTGACAT



F5
ATGACTCACTA





6654
MG3-6-HPRT-target site-
CATATGTCAGC



G5
AGTTTGACTGT





6655
MG3-6-HPRT-target site-
TATCAGTGAGT



H5
TTTTCTTTTAA





6656
MG3-6-HPRT-target site-
GCTTATTTTTC



A6
TACATGCTCTT





6657
MG3-6-HPRT-target site-
TTAAATGTCAA



B6
CCTACTGTGGC





6658
MG3-6-HPRT-target site-
GAGGATTAAAG



C6
TCTATGCCACA





6659
MG3-6-HPRT-target site-
AAGAACAACAA



D6
AAGAATACCCA





6660
MG3-6-HPRT-target site-
TGGTATATGCT



E6
GTGGAATTGAG





6661
MG3-6-HPRT-target site-
GAGATAGACTG



F6
GTTCGTGAGCG





6662
MG3-6-HPRT-target site-
GTAGGACATGC



G6
TCAAACAATAC





6663
MG3-6-HPRT-target site-
ATTAAGCAGCT



H6
GCTCACTACAA





6664
MG3-6-HPRT-target site-
GAGATGGAGCT



A7
TTATTAAACAT





6665
MG3-6-HPRT-target site-
GAACTCAGCAC



B7
TTCATATGCCT





6666
MG3-6-HPRT-target site-
TGAGTTCTCTT



C7
GAACTCCTAAT





6667
MG3-6-HPRT-target site-
ATTCCTGAGTT



D7
CAGGTAGGGAG





6668
MG3-6-HPRT-target site-
TATATATGTTT



E7
AAAGAGCTGGA





6669
MG3-6-HPRT-target site-
GGTATGAAAGC



F7
ATAAGTTTTCT





6670
MG3-6-HPRT-target site-
TGAGACTGCCT



G7
TTAACATCTGT





6671
MG3-6-HPRT-target site-
AATATTTTTCA



H7
ACAGGCAGCAT





6672
MG3-6-HPRT-target site-
CTCCCACACCC



A8
TTTTATAGTTT





6673
MG3-6-HPRT-target site-
TATAGTTTAGG



B8
GATTGTATTTC





6674
MG3-6-HPRT-target site-
AGGGATTGTAT



C8
TTCCAAGGTTT





6675
MG3-6-HPRT-target site-
AGTGTCAATGA



D8
GCAAAGATGAA





6676
MG3-6-HPRT-target site-
CCATTGAAGGG



E8
GAGCTAATAAG





6677
MG3-6-HPRT-target site-
TGGACACATGG



F8
GTAGTCAGGGT





6678
MG3-6-HPRT-target site-
CCTGGAACCTG



G8
AAGGACAGTTC





6679
MG3-6-HPRT-target site-
GTGCAGGTCTC



H8
AGAACTGTCCT





6680
MG3-6-HPRT-target site-
ATGAAATGGAG



A9
AGCTAAATTAT





6681
MG3-6-HPRT-target site-
GTCACTTTTAA



B9
CACACCCAAGG





6682
MG3-6-HPRT-target site-
TAGAGAGGCAC



C9
ATTTGCCAGTA









Example 10—Gene Editing Outcomes at the DNA Level for Human TRBC1/2

Primary T cells were purified from PBMCs using a negative selection kit (Miltenyi) according to the manufacturer's recommendations. Nucleofection of MG3-6 or MG3-8 RNPs (106 pmol protein/160 pmol guide) (MG3-6: SEQ ID NOs: 6683-6721; MG3-8: SEQ ID NOs: 6761-6781) was performed into T cells (200,000) using the Lonza 4D electroporator. For analysis by flow cytometry, 3 days post-nucleofection, 100,000 T cells were stained with anti-CD3 antibody for 30 minutes at 4° C. and analyzed on an Attune Nxt flow cytometer (FIG. 4).









TABLE 4A







Guide sequences used in Example 10









SEQ




ID




NO:
Entity Name
Sequence





6683
MG3-6-TRBC1/2-sgRNA-
mA*mG*mG*rUrCrCrUrCrUrGrGrArArArGrGrGrArArGrGrUrUr



A6
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6684
MG3-6-TRBC1/2-sgRNA-
mC*mA*mG*rGrUrCrCrUrCrUrGrGrArArArGrGrGrArArGrUrUr



B6
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6685
MG3-6-TRBC1/2-sgRNA-
mC*mC*mA*rCrArCrUrGrGrUrGrUrGrCrCrUrGrGrCrCrGrUrUr



C6
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6686
MG3-6-TRBC1/2-sgRNA-
mG*mA*mA*rUrGrGrGrArArGrGrArGrGrUrGrCrArCrArGrUrUr



D6
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6687
MG3-6-TRBC1/2-sgRNA-
mU*mG*mA*rGrGrGrCrGrGrGrCrUrGrCrUrCrCrUrUrGrGrUrUr



E6
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6688
MG3-6-TRBC1/2-sgRNA-
mA*mG*mU*rArUrCrUrGrGrArGrUrCrArUrUrGrArGrGrGrUrUr



F6
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6689
MG3-6-TRBC1/2-sgRNA-
mA*mU*mA*rCrUrGrCrCrUrGrArGrCrArGrCrCrGrCrCrGrUrUr



G6
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6690
MG3-6-TRBC1/2-sgRNA-
mU*mU*mG*rArCrArGrCrGrGrArArGrUrGrGrUrUrGrCrGrUrUr



H6
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6691
MG3-6-TRBC1/2-sgRNA-
mC*mU*mU*rGrArCrArGrCrGrGrArArGrUrGrGrUrUrGrGrUrUr



A7
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6692
MG3-6-TRBC1/2-sgRNA-
mC*mC*mG*rCrUrGrUrCrArArGrUrCrCrArGrUrUrCrUrGrUrUr



B7
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6693
MG3-6-TRBC1/2-sgRNA-
mU*mC*mG*rGrArGrArArUrGrArCrGrArGrUrGrGrArCrGrUrUr



C7
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6694
MG3-6-TRBC1/2-sgRNA-
mC*mA*mG*rArUrCrGrUrCrArGrCrGrCrCrGrArGrGrCrGrUrUr



D7
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6695
MG3-6-TRBC1/2-sgRNA-
mC*mG*mG*rCrGrCrUrGrArCrGrArUrCrUrGrGrGrUrGrGrUrUr



E7
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6696
MG3-6-TRBC1/2-sgRNA-
mG*mC*mC*rArArCrArGrUrGrUrCrCrUrArCrCrArGrCrGrUrUr



F7
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6697
MG3-6-TRBC1/2-sgRNA-
mC*mU*mU*rCrCrCrUrArGrCrArGrGrArUrCrUrCrArUrGrUrUr



G7
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6698
MG3-6-TRBC1/2-sgRNA-
mA*mU*mA*rCrArGrGrGrUrGrGrCrCrUrUrCrCrCrUrArGrUrUr



H7
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6699
MG3-6-TRBC1/2-sgRNA-
mG*mG*mC*rGrCrUrGrArCrCrArGrCrArCrArGrCrArUrGrUrUr



A8
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6700
MG3-6-TRBC1/2-sgRNA-
mU*mC*mU*rCrUrUrCrUrGrCrArGrGrUrCrArArGrArGrGrUrUr



B8
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6701
MG3-6-TRBC1/2-sgRNA-
mC*mC*mU*rGrCrArGrArArGrArGrArArArGrUrUrUrUrGrUrUr



C8
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6702
MG3-6-TRBC1/2-sgRNA-
mA*mC*mC*rUrGrCrArGrArArGrArGrArArArGrUrUrUrGrUrUr



D8
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6703
MG3-6-TRBC1/2-sgRNA-
mC*mC*mA*rCrArCrUrGrGrUrGrUrGrCrCrUrGrGrCrCrGrUrUr



E8
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6704
MG3-6-TRBC1/2-sgRNA-
mA*mC*mC*rArGrCrUrCrArGrCrUrCrCrArCrGrUrGrGrGrUrUr



F8
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6705
MG3-6-TRBC1/2-sgRNA-
mG*mA*mA*rUrGrGrGrArArGrGrArGrGrUrGrCrArCrArGrUrUr



G8
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6706
MG3-6-TRBC1/2-sgRNA-
mU*mG*mA*rGrGrGrCrGrGrGrCrUrGrCrUrCrCrUrUrGrGrUrUr



H8
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6707
MG3-6-TRBC1/2-sgRNA-
mA*mG*mU*rArUrCrUrGrGrArGrUrCrArUrUrGrArGrGrGrUrUr



A9
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6708
MG3-6-TRBC1/2-sgRNA-
mA*mU*mA*rCrUrGrCrCrUrGrArGrCrArGrCrCrGrCrCrGrUrUr



B9
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6709
MG3-6-TRBC1/2-sgRNA-
mU*mU*mG*rArCrArGrCrGrGrArArGrUrGrGrUrUrGrCrGrUrUr



C9
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6710
MG3-6-TRBC1/2-sgRNA-
mC*mU*mU*rGrArCrArGrCrGrGrArArGrUrGrGrUrUrGrGrUrUr



D9
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6711
MG3-6-TRBC1/2-sgRNA-
mC*mC*mG*rCrUrGrUrCrArArGrUrCrCrArGrUrUrCrUrGrUrUr



E9
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6712
MG3-6-TRBC1/2-sgRNA-
mU*mC*mG*rGrArGrArArUrGrArCrGrArGrUrGrGrArCrGrUrUr



F9
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6713
MG3-6-TRBC1/2-sgRNA-
mC*mA*mG*rArUrCrGrUrCrArGrCrGrCrCrGrArGrGrCrGrUrUr



G9
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6714
MG3-6-TRBC1/2-sgRNA-
mC*mG*mG*rCrGrCrUrGrArCrGrArUrCrUrGrGrGrUrGrGrUrUr



H9
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6715
MG3-6-TRBC1/2-sgRNA-
mG*mU*mC*rArArCrArGrArGrUrCrUrUrArCrCrArGrCrGrUrUr



A10
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6716
MG3-6-TRBC1/2-sgRNA-
mC*mU*mU*rCrCrCrUrArGrCrArArGrArUrCrUrCrArUrGrUrUr



B10
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6717
MG3-6-TRBC1/2-sgRNA-
mG*mC*mU*rGrArUrGrGrCrCrArUrGrGrUrArArGrGrArGrUrUr



C10
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6718
MG3-6-TRBC1/2-sgRNA-
mU*mG*mU*rGrGrArArGrArGrArGrArArCrArUrUrUrUrGrUrUr



D10
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6719
MG3-6-TRBC1/2-sgRNA-
mC*mU*mG*rUrGrGrArArGrArGrArGrArArCrArUrUrUrGrUrUr



E10
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6720
MG3-6-TRBC1/2-sgRNA-
mU*mC*mU*rCrUrUrCrCrArCrArGrGrUrCrArArGrArGrGrUrUr



F10
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6721
MG3-6-TRBC1/2-sgRNA-
mA*mG*mG*rUrCrArArGrArGrArArArGrGrArUrUrCrCrGrUrUr



G10
GrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrGrCr




ArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrCrGr




UrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGrGrUr




ArUrGrU*mU*mU*mU





6761
MG3-8-TRBC1/2-sgRNA-
mA*mG*mG*rUrCrCrUrCrUrGrGrArArArGrGrGrArArGrGrUrUr



D3
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6762
MG3-8-TRBC1/2-sgRNA-
mC*mU*mG*rArArCrArArGrGrUrGrUrUrCrCrCrArCrCrGrUrUr



E3
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6763
MG3-8-TRBC1/2-sgRNA-
mC*mU*mC*rGrGrGrUrGrGrGrArArCrArCrCrUrUrGrUrGrUrUr



F3
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6764
MG3-8-TRBC1/2-sgRNA-
mA*mA*mU*rGrGrGrArArGrGrArGrGrUrGrCrArCrArGrGrUrUr



G3
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6765
MG3-8-TRBC1/2-sgRNA-
mG*mG*mG*rCrUrGrCrUrCrCrUrUrGrArGrGrGrGrCrUrGrUrUr



H3
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6766
MG3-8-TRBC1/2-sgRNA-
mU*mA*mC*rUrGrCrCrUrGrArGrCrArGrCrCrGrCrCrUrGrUrUr



A4
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6767
MG3-8-TRBC1/2-sgRNA-
mU*mU*mG*rArCrArGrCrGrGrArArGrUrGrGrUrUrGrCrGrUrUr



B4
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrUxmU*mU*mU





6768
MG3-8-TRBC1/2-sgRNA-
mG*mU*mG*rArCrGrGrGrUrUrUrGrGrCrCrCrUrArUrCrGrUrUr



C4
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6769
MG3-8-TRBC1/2-sgRNA-
mC*mG*mG*rCrGrCrUrGrArCrGrArUrCrUrGrGrGrUrGrGrUrUr



D4
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6770
MG3-8-TRBC1/2-sgRNA-
mC*mC*mA*rArCrArGrUrGrUrCrCrUrArCrCrArGrCrArGrUrUr



E4
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6771
MG3-8-TRBC1/2-sgRNA-
mC*mC*mU*rGrCrArGrArArGrArGrArArArGrUrUrUrUrGrUrUr



F4
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6772
MG3-8-TRBC1/2-sgRNA-
mC*mU*mG*rArArArArArCrGrUrGrUrUrCrCrCrArCrCrGrUrUr



G4
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6773
MG3-8-TRBC1/2-sgRNA-
mC*mU*mU*rGrGrGrUrGrGrGrArArCrArCrGrUrUrUrUrGrUrUr



H4
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6774
MG3-8-TRBC1/2-sgRNA-
mA*mA*mU*rGrGrGrArArGrGrArGrGrUrGrCrArCrArGrGrUrUr



A5
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6775
MG3-8-TRBC1/2-sgRNA-
mG*mG*mG*rCrUrGrCrUrCrCrUrUrGrArGrGrGrGrCrUrGrUrUr



B5
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrUxmU*mU*mU





6776
MG3-8-TRBC1/2-sgRNA-
mU*mA*mC*rUrGrCrCrUrGrArGrCrArGrCrCrGrCrCrUrGrUrUr



C5
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6777
MG3-8-TRBC1/2-sgRNA-
mU*mU*mG*rArCrArGrCrGrGrArArGrUrGrGrUrUrGrCrGrUrUr



D5
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6778
MG3-8-TRBC1/2-sgRNA-
mG*mU*mG*rArCrArGrGrUrUrUrGrGrCrCrCrUrArUrCrGrUrUr



E5
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6779
MG3-8-TRBC1/2-sgRNA-
mC*mG*mG*rCrGrCrUrGrArCrGrArUrCrUrGrGrGrUrGrGrUrUr



F5
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6780
MG3-8-TRBC1/2-sgRNA-
mU*mC*mA*rArCrArGrArGrUrCrUrUrArCrCrArGrCrArGrUrUr



G5
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrU*mU*mU*mU





6781
MG3-8-TRBC1/2-sgRNA-
mU*mG*mU*rGrGrArArGrArGrArGrArArCrArUrUrUrUrGrUrUr



H5
GrArGrArArUrCrUrUrUrCrGrArArArGrArArArGrArUrUrCrUrUr




ArArUrArArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUr




UrCrUrCrArCrCrGrUrCrCrGrGrCrUrCrCrUrCrUrUrArGrGrArAr




CrGrGrGrCrGrGrUrArUrGrUxmU*mU*mU





Notations for chemical modifications: m = 2′O-methyl ribonucleotide (e.g mC = cytosine ribonucleotide with 2′-O Methyl in place of 2′ hydroxyl); f = 2′-fluoro ribonucleotide (e.g fC = cytosine ribonucleotide with 2′ fluorine in place of 2′ hydroxyl); * = phosphorothioate bond; r: native RNA linkage comprising the sugar ribose (for example the ribose or RNA form of the A base is written rA), d: deoxyribose sugar (DNA) linkage (for example a deoxyribose form of the A base is written dA)













TABLE 4B







Sites targeted in Example 10









SEQ




ID




NO:
Entity Name
Sequence





6722
MG3-6-TRBC1/2-target
AGGTCCTCTGGAAAGGGAAG



site-A6






6723
MG3-6-TRBC1/2-target
CAGGTCCTCTGGAAAGGGAA



site-B6






6724
MG3-6-TRBC1/2-target
CCACACTGGTGTGCCTGGCC



site-C6






6725
MG3-6-TRBC1/2-target
GAATGGGAAGGAGGTGCACA



site-D6






6726
MG3-6-TRBC1/2-target
TGAGGGCGGGCTGCTCCTTG



site-E6






6727
MG3-6-TRBC1/2-target
AGTATCTGGAGTCATTGAGG



site-F6






6728
MG3-6-TRBC1/2-target
ATACTGCCTGAGCAGCCGCC



site-G6






6729
MG3-6-TRBC1/2-target
TTGACAGCGGAAGTGGTTGC



site-H6






6730
MG3-6-TRBC1/2-target
CTTGACAGCGGAAGTGGTTG



site-A7






6731
MG3-6-TRBC1/2-target
CCGCTGTCAAGTCCAGTTCT



site-B7






6732
MG3-6-TRBC1/2-target
TCGGAGAATGACGAGTGGAC



site-C7






6733
MG3-6-TRBC1/2-target
CAGATCGTCAGCGCCGAGGC



site-D7






6734
MG3-6-TRBC1/2-target
CGGCGCTGACGATCTGGGTG



site-E7






5735
MG3-6-TRBC1/2-target
GCCAACAGTGTCCTACCAGC



site-F7






6736
MG3-6-TRBC1/2-target
CTTCCCTAGCAGGATCTCAT



site-G7






6737
MG3-6-TRBC1/2-target
ATACAGGGTGGCCTTCCCTA



site-H7






6738
MG3-6-TRBC1/2-target
GGCGCTGACCAGCACAGCAT



site-A8






6739
MG3-6-TRBC1/2-target
TCTCTTCTGCAGGTCAAGAG



site-B8






6740
MG3-6-TRBC1/2-target
CCTGCAGAAGAGAAAGTTTT



site-C8






6741
MG3-6-TRBC1/2-target
ACCTGCAGAAGAGAAAGTTT



site-D8






6742
MG3-6-TRBC1/2-target
CCACACTGGTGTGCCTGGCC



site-E8






6743
MG3-6-TRBC1/2-target
ACCAGCTCAGCTCCACGTGG



site-F8






6744
MG3-6-TRBC1/2-target
GAATGGGAAGGAGGTGCACA



site-G8






6745
MG3-6-TRBC1/2-target
TGAGGGCGGGCTGCTCCTTG



site-H8






6746
MG3-6-TRBC1/2-target
AGTATCTGGAGTCATTGAGG



site-A9






6747
MG3-6-TRBC1/2-target
ATACTGCCTGAGCAGCCGCC



site-B9






6748
MG3-6-TRBC1/2-target
TTGACAGCGGAAGTGGTTGC



site-C9






6749
MG3-6-TRBC1/2-target
CTTGACAGCGGAAGTGGTTG



site-D9






6750
MG3-6-TRBC1/2-target
CCGCTGTCAAGTCCAGTTCT



site-E9






6751
MG3-6-TRBC1/2-target
TCGGAGAATGACGAGTGGAC



site-F9






6752
MG3-6-TRBC1/2-target
CAGATCGTCAGCGCCGAGGC



site-G9






6753
MG3-6-TRBC1/2-target
CGGCGCTGACGATCTGGGTG



site-H9






6754
MG3-6-TRBC1/2-target
GTCAACAGAGTCTTACCAGC



site-A10






6755
MG3-6-TRBC1/2-target
CTTCCCTAGCAAGATCTCAT



site-B10






6756
MG3-6-TRBC1/2-target
GCTGATGGCCATGGTAAGGA



site-C10






6757
MG3-6-TRBC1/2-target
TGTGGAAGAGAGAACATTTT



site-D10






6758
MG3-6-TRBC1/2-target
CTGTGGAAGAGAGAACATTT



site-E10






6759
MG3-6-TRBC1/2-target
TCTCTTCCACAGGTCAAGAG



site-F10






6760
MG3-6-TRBC1/2-target
AGGTCAAGAGAAAGGATTCC



site-G10






6782
MG3-8-TRBC1/2-target
AGGTCCTCTGGAAAGGGAAG



site-D3






6783
MG3-8-TRBC1/2-target
CTGAACAAGGTGTTCCCACC



site-E3






6784
MG3-8-TRBC1/2-target
CTCGGGTGGGAACACCTTGT



site-F3






6785
MG3-8-TRBC1/2-target
AATGGGAAGGAGGTGCACAG



site-G3






6786
MG3-8-TRBC1/2-target
GGGCTGCTCCTTGAGGGGCT



site-H3






6787
MG3-8-TRBC1/2-target
TACTGCCTGAGCAGCCGCCT



site-A4






6788
MG3-8-TRBC1/2-target
TTGACAGCGGAAGTGGTTGC



site-B4






6789
MG3-8-TRBC1/2-target
GTGACGGGTTTGGCCCTATC



site-C4






6790
MG3-8-TRBC1/2-target
CGGCGCTGACGATCTGGGTG



site-D4






6791
MG3-8-TRBC1/2-target
CCAACAGTGTCCTACCAGCA



site-E4






6792
MG3-8-TRBC1/2-target
CCTGCAGAAGAGAAAGTTTT



site-F4






6793
MG3-8-TRBC1/2-target
CTGAAAAACGTGTTCCCACC



site-G4






6794
MG3-8-TRBC1/2-target
CTTGGGTGGGAACACGTTTT



site-H4






6795
MG3-8-TRBC1/2-target
AATGGGAAGGAGGTGCACAG



site-A5






6796
MG3-8-TRBC1/2-target
GGGCTGCTCCTTGAGGGGCT



site-B5






6797
MG3-8-TRBC1/2-target
TACTGCCTGAGCAGCCGCCT



site-C5






6798
MG3-8-TRBC1/2-target
TTGACAGCGGAAGTGGTTGC



site-D5






6799
MG3-8-TRBC1/2-target
GTGACAGGTTTGGCCCTATC



site-E5






6800
MG3-8-TRBC1/2-target
CGGCGCTGACGATCTGGGTG



site-F5






6801
MG3-8-TRBC1/2-target
TCAACAGAGTCTTACCAGCA



site-G5






6802
MG3-8-TRBC1/2-target
TGTGGAAGAGAGAACATTTT



site-H5









Example 11—MG3-6 Guide Screen for Mouse HAO-1 Gene Using mRNA Transfection

Guides for MG3-6 were identified in exons 1, 2, 3, and 4 of the human HAO1 gene using a guide-finding algorithm that searches for the appropriate PAM sequence. A total of 19 guides were selected for evaluation in mammalian cells. 300 ng mRNA and 120 ng single guide RNA were transfected into Hepa1-6 cells as follows. One day prior to transfection, Hepa1-6 cells that had been cultured for less than 10 days in DMEM, 10% FBS, 1×NEAA media, without Pen/Step, were seeded into a TC-treated 24 well plate. Cells were counted, and the equivalent volume to 60,000 viable cells were added to each well. Additional pre-equilibrated media was added to each well to bring the total volume to 500 μL. On the day of transfection, 25 μL of OptiMEM media and 1.25 μL of Lipofectamine Messenger Max Solution (Thermo Fisher) were mixed in a mastermix solution, vortexed, and allowed to sit for at least 5 minutes at room temperature. In separate tubes, 300 ng of the MG3-6 mRNA and 120 ng of the sgRNA were mixed together with 25 μL of OptiMEM media and vortexed briefly. The appropriate volume of MessengerMax solution was added to each RNA solution, mixed by flicking the tube, and briefly spun down at a low speed. The complete editing reagent solutions were allowed to incubate for 10 minutes at room temperature, then added directly to the Hepa1-6 cells. Two days post transfection, the media was aspirated off of each well of Hepa1-6 cells and genomic DNA was purified by automated magnetic bead purification, via the KingFisher Flex with the MagMAX™ DNA Multi-Sample Ultra 2.0 Kit. The activity of the guides is summarized in Table 5A and FIG. 5, while the primers used are summarized in Table 5B.









TABLE 5A







Average Activity of MG3-6 guides at mouse HAO1 delivered by mRNA


Transfection













SEQ

Editing Activity


Guide

ID

(Average %


Name
PAM
NO.
Spacer Sequence
INDELs)





mH36-1
GCAGACC
11802
CATGCTGTTCATAATCACTGAT
 0





mH36-2
ACAGGTC
11803
CAGAAGTCAGTGTATGACTATT
12.5





mH36-3
CCAGACC
11804
TAACGTCTCCTGATCATTTGCC
 0





mH36-4
ACAGATC
11805
CTCTGTCCTAAAACAGAAGTTG
25





mH36-5
TGGGGCT
11806
GAGTCAGCATGCCAATATGTGT
33.5





mH36-6
TCAGACC
11807
TTCTCCATTTCATTACAGCCTG
 0





mH36-7
ACAGGCT
11808
TCATGCCAGTTCCCATGGTCTG
 0





mH36-8
TTGGGCT
11809
GAACTGGCATGATGCTGAGTTC
 5





mH36-9
CTGGGCC
11810
AGTTGCATCCAGCGAAGTGCCT
28





mH36-10
AAAGACC
11811
CTGGATGCAACTGTACATCTAC
 0





mH36-11
TGAGATC
11812
AACTGTACATCTACAAAGACCG
 0





mH36-12
CAGGGTT
11813
GATAGTGAAGCGAGCTGAGAAG
45.5





mH36-13
CAAGGCC
11814
AGCGAGCTGAGAAGCAGGGTTA
27.5





mH36-14
ACAGGTT
11815
AACCGCATTGATGACGTGCGGA
 0





mH36-15
TCAGGTC
11816
AGGTTCAAGCTGCCACCACAAC
41.5





mH36-16
GTGGACT
11817
AAGGGAAATTTTGGAGACAACA
 0





mH36-17
ATAGACC
11818
TGCTGAATATGTGGCACAAGCT
 0





mH36-18
ATGGGTC
11819
GTAATATCATCCCAGCTGAGAG
35





mH36-19
AGAGGTT
11820
TATTGTTGTAAAGGGCATTTTG
21
















TABLE 5B







Primers designed for the mouse HAO1 gene, used for PCR at each of the first


four exons, and for sanger sequencing











Target


SEQ



Exon
Use
Primer Name
ID NO.
Primer Sequence





Mouse
Fwd PCR
PCR mHE1_F_+233
11821
GTGACCAACCCTACCCGTTT


HAO1
Rev PCR
PCR mHE1_R_−553
11822
GCAAGCACCTACTGTCTCGT


Exon 1
Sequencing
Seq_mHE1_F_+139
11823
GTCTAGGCATACAATGTTTGCTCA





Mouse
Fwd PCR
HAO1_E2_F5721
11824
CAACGAAGGTTCCCTCCAGG


HAO1
Rev PCR
HAO1_E2_R6271
11825
GGAAGGGTGTTCGAGAAGGA


Exon 2
Sequencing
5938F_Seq_HAO1_E2
11826
CTATGCAAGGAAAAGATTTGGCC





Mouse
Fwd PCR
HAO1_E3_F23198
11827
TGCCCTAGACAAGCTGACAC


HAO1
Rev PCR
HAO1_E3_R23879
11828
CAGATTCTGGAAGTGGCCCA


Exon 3
Sequencing
HAO1_E3_F23198
11827
Same as Fwd PCR Primer





Mouse
Fwd PCR
PCR_mHE4_F_+300
11829
GGCTGGCTGAAAATAGCATCC


HAO1
Rev PCR
HAO1_E4_R31650
11830
AGGTTTGGTTCCCCTCACCT


Exon 4
Sequencing
PCR_mHE4_R_−149
11831
TCTGCCATGAAGGCATATGGAC









Example 12—Guide Chemistry Optimization for the MG3-6 Type II Nuclease (Prophetic)

Various chemically modified guides are designed and tested for activity. The most active guide in a guide screen in mouse hepatocytes (Hepa1-6 cells)—targeting albumin intron 1 is chosen as the spacer sequence model to insert various chemical modifications. The gRNA comprises the spacer located in the 5′ followed by the CRISPR repeat and the trans-activating CRISPR RNA (tracr). The CRISPR repeat and the tracr are identical to MG3-6. The CRISPR repeat and tracr form a structured RNA comprising 3 stem loops. Different areas of the stem loops are modified by replacing the 2′ hydroxyl in the ribose by 2′-O-methyl groups or replacing the phosphodiester backbone by a phosphorothioate (PS) bond. Moreover, the spacer in the 5′ of the guide is modified by adding 2′-O-methyls, PS bonds, and 2′-fluoros. The editing activity of guides with the exact same base sequence but different chemical modifications is evaluated in Hepa1-6 cells by co-transfection of mRNA encoding MG3-6 and the guide. A guide with the same base sequence and a commercially available chemical modification called AltR1/AltR2 is used as a control. The spacer sequence in these guides targets a 22 nucleotide region in albumin intron1 of the mouse genome.


In order to test the stability of the chemically modified guides compared to the guide with no chemical modification (native RNA), a stability assay using crude cell extracts is used. Crude cell extracts from mammalian cells are selected because they contain the mixture of nucleases that a guide RNA will be exposed to when delivered to mammalian cells in vitro or in vivo. Hepa 1-6 cells are collected by adding 3 ml of cold PBS per 15 cm dish of confluent cells and releasing the cells from the surface of the dish using a cell scraper. The cells are pelleted at 200 g for 10 min and frozen at −80° C. for future use. For the stability assays, cells are resuspended in 4 volumes of cold PBS (e.g., for a 100 mg pellet cells are resuspended in 400 μL of cold PBS). Triton X-100 is added to a concentration of 0.2% (v/v), cells are vortexed for 10 seconds, put on ice for 10 minutes, and vortexed again for 10 seconds. Triton X-100 is a mild non-ionic detergent that disrupts cell membranes but does not inactivate or denature proteins at the concentration used. Stability reactions are set up on ice and comprise 20 μL of cell crude extract with 2 pmoles of each guide (1 μL of a 2 μM stock). Six reactions are set up per guide comprising: input, 0.5 hour, 1 hour, 4 hours, 9 hours, and in some cases 21 hours (The time in hours referring to the length of time each sample is incubated). Samples are incubated at 37° C. from 0.5 hours up to 21 hours while the input control is left on ice for 5 minutes. After each incubation period, the reaction is stopped by adding 300 μL of a mixture of phenol and guanidine thiocyanate (Tri reagent, Zymo Research) which immediately denatures all proteins and efficiently inhibits ribonucleases and facilitates the subsequent recovery of RNA. After adding Tri Reagent, the samples are vortexed for 15 seconds and stored at −20° C. RNA is extracted from the samples using Direct-zol RNA miniprep kit (Zymo Research) and eluted in 100 μL of nuclease-free water. Detection of the modified guide is performed using Tagman RT—qPCR using the Taqman miRNA Assay technology (Thermo Fisher). Data is plotted as a function of percentage of sgRNA remaining in relation to the input sample.


Example 13—Efficiency of mRNA Electroporation in T Cells

Primary T cells were purified from PBMCs using a negative selection kit (Miltenyi) according to the manufacturer's recommendations. Nucleofection of mRNA was performed as follow: 200,000 cells were co-transfected with 500 ng of mRNA and the indicated amount of guide RNA using a Lonza 4D electroporator (DS-120). Cells were harvested and genomic DNA prepared three days post initial transfection. For conditions labeled “+gRNA”: 15 h post initial transfection, cells were nucleofected with indicated amount of additional guide. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA. The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 6).


Example 14—ELISA Assay to Assess Pre-Existing Antibody Response

MG3-6 and MG3-8 were expressed in and purified from human HEK293 cells using the Expi293™ Expression System Kit (ThermoFisher Scientific). Briefly, 293 cells were lipofected with plasmids encoding the nucleases driven by a strong viral promoter. Cells were grown in suspension culture with agitation and harvested two days post-transfection. The nuclease proteins were fused to a Six-His affinity tag and purified by metal-affinity chromatography to between 50-60% purity. Parallel lysates were made from mock-transfected cells and were subjected to an identical metal-affinity chromatography process. Cas9 was purchased from IDT and was >95% pure.


MaxiSorp® ELISA plates (Thermo Scientific) were coated with 0.5 μg of nucleases or control proteins diluted in 1× phosphate buffered saline (PBS) and incubated overnight at room temperature. Plates were then washed and incubated with a 1% (w/v) bovine serum albumin (BSA) (Sigma-Aldrich)/1×PBS solution (1% BSA-PBS) for an hour at room temperature. After another washing step, wells were incubated for 1 h at room temperature with more than 50 separate serum samples taken from randomly selected donors (1:50 dilution in 1% BSA-PBS). Plates were then washed and incubated for an hour at room temperature with a peroxidase-labeled goat anti-human (Fcγ fragment-specific) secondary antibody (Jackson Immuno Research), diluted 1:50,000 in 1% BSA-PBS. The assay was developed using a 3,3′,5,5′-Tetramethylbenzidine (TMB) Liquid Substrate System kit (Sigma-Aldrich), according to the manufacturer's specifications. Antibody titers are reported as absorbance values measured at 450 nm (FIG. 7). Tetanus toxoid was used as the positive control due to wide-spread vaccination against this antigen and was purchased from Sigma Aldrich.


Example 15—Gene Editing Outcomes at the DNA and Cell-Surface Protein Level for TRAC in Human Peripheral Blood B Cells

Human Peripheral Blood B cells were purchased from STEMCELL Technologies and expanded using ImmunoCult™ Human B Cell Expansion Kit for 2 days prior to nucleofection. Nucleofection of MG3-6 RNPs (106 pmol protein/160 pmol guide) was performed into B cells (200,000) using the Lonza 4D electroporator. Post-nucleofection cells were immediately recovered into media containing AAV-6 sourced from Virovek. Cells were harvested and genomic DNA prepared five days post-transfection. For NGS analysis, PCR primers appropriate for use in NGS-based DNA sequencing were used to amplify the target sequence for the TRAC 6 guide RNA (SEQ ID NO: 6804). The amplicon was sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing. For analysis by flow cytometry, 100,000 cells were stained for viability, expression of B cell surface marker CD19 (CD19 Monoclonal Antibody (HIB19), APC, eBioscience™) and for transgene (SEQ ID NO: 6810) insertion as measured by expression of tLNGFR (CD271 (LNGFR) Antibody, anti-human, REAfinity™). Cells were stained for 30 min at 4° C. and data was acquired on an Attune Nxt flow cytometer. Cells expressing tLNGFR were gated on single, live, CD19+ cells (FIG. 8).









TABLE 6







Guide sequences used in Example 15









SEQ




ID




NO:
Entity Name
Sequence





6804
MG3-6-TRAC-
mC*mG*mA*rArUrCrCrUrCrCrUrCrCrUrGrArArArGrUrGrGrGr



sgRNA-6
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU









Example 16—Gene Editing Outcomes at the DNA Level for TRAC and AAVS1 in Hematopoietic Stem Cells (HSCs)

Mobilized peripheral blood CD34+ cells were acquired from AllCells and cultured in STEMCELL StemSpan™ SFEM II media supplemented with StemSpan™ CC110 cytokine cocktail for 48 hours prior to nucleofection. Nucleofection of MG3-6 RNPs (106 pmol protein/120 pmol guide for standard dose, 52 pmol protein/60 pmol guide for half dose) was performed into HSCs (200,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared three days post-transfection. PCR primers appropriate for use in Sanger and NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA (SEQ ID NOs: 6804, 6806, and 6808). The NGS amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing. The ICE amplicons were sent to Elim Biopharmaceuticals Inc. for Sanger sequencing and analyzed with a proprietary Python script to measure gene editing (FIG. 9).









TABLE 7







Guide sequences used in Example 16









SEQ




ID




NO:
Entity Name
Sequence





6804
MG3-6-TRAC-
mC*mG*mA*rArUrCrCrUrCrCrUrCrCrUrGrArArArGrUrGrGrGr



sgRNA-6
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6806
MG3-6-AAVS1-
mA*mG*mG*rArArUrCrUrGrCrCrUrArArCrArGrGrArGrGrUrGr



sgRNA-B2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6808
MG3-6-AAVS1-
mU*mA*mG*rGrArArGrGrArGrGrArGrGrCrCrUrArArGrGrArGr



sgRNA-D2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU









Example 17—Gene Editing Outcomes at the DNA and Cell-Surface Protein Level for TRAC in Induced Pluripotent Stem Cells (iPSCs) for MG3-6 Delivered as Ribonucleoprotein

ATCC-BXS0116 Human [Non-Hispanic Caucasian Female] Induced Pluripotent Stem (IPS) Cells are cultured on Corning Matrigel-coated plasticware in mTESR Plus media (STEMCELL Technologies) containing 10 μM ROCK inhibitor Y-27632 for 24 hr prior to nucleofection. Nucleofection of MG3-6 RNPs (106 pmol protein/120 pmol guide) was performed into iPSCs (200,000) using the Lonza 4D electroporator. Cells were harvested with Accutase for flow cytometry and genomic DNA extraction five days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were used to amplify the individual target sequences for the TRAC 6 gRNA (SEQ ID NO: 6804). The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing. For analysis by flow cytometry, 5 days post-nucleofection 100,000 iPSCs per sample were stained with LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit and CD271 (LNGFR) Antibody, anti-human, REAfinity™ to measure viability and transgene (SEQ ID NO: 6810) insertion, respectively. Cells were fixed and permeabilized (Inside Stain Kit, Miltenyi) and further stained for pluripotency transcription factors Oct4 and Sox2 (Anti-Oct3/4 Isoform A-APC, human and mouse REA338 1: Anti-Sox2-FITC, human and mouse REA320. Cells were acquired on an Attune NxT flow cytometer, and analyzed for tLNGFR expression based on gating on single, live Oct4+Sox2+ cells (FIG. 10)









TABLE 8







Guide sequences used in Example 17









SEQ




ID




NO:
Entity Name
Sequence





6804
MG3-6-TRAC-
mC*mG*mA*rArUrCrCrUrCrCrUrCrCrUrGrArArArGrUrGrGrGr



sgRNA-6
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU









Example 18—Gene Editing Outcomes at the DNA Protein Level for TRAC in Induced Pluripotent Stem Cells (iPSCs) for MG3-6 Delivered as mRNA

ATCC-BXS0116 Human [Non-Hispanic Caucasian Female] Induced Pluripotent Stem (IPS) Cells are cultured on Corning Matrigel-coated plasticware in mTESR Plus (STEMCELL Technologies) containing 10 μM ROCK inhibitor Y-27632 for 24 hr prior to nucleofection. Nucleofection of MG3-6 RNPs (106 pmol protein/120 pmol guide) or mRNA (250 or 500 ng mRNA/12 pmol guide) was performed into iPSCs (200,000) using the Lonza 4D electroporator. Cells were harvested with Accutase for genomic DNA extraction five days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were used to amplify the individual target sequences for the TRAC 6 gRNA (SEQ ID NO: 6804). The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 11).









TABLE 9







Guide sequences used in Example 18









SEQ




ID




NO:
Entity Name
Sequence





6804
MG3-6-TRAC-
mC*mG*mA*rArUrCrCrUrCrCrUrCrCrUrGrArArArGrUrGrGrGr



sgRNA-6
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU









Example 19—Gene Editing Outcomes at the DNA Level for CD2

Primary T cells were purified from PBMCs using a negative selection kit (Miltenyi) according to the manufacturer's recommendations. Nucleofection of MG3-6 RNPs (106 pmol protein/160 pmol guide) was performed into T cells (200,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared five days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA. The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 12).









TABLE 10A







Guide sequences used in Example 19









SEQ




ID




NO:
Entity Name
Sequence





6811
MG3-6-CD2-sgRNA-A1
mA*mU*mU*rUrArCrArUrGrGrArArArGrCrUrCrArUrCrUrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6812
MG3-6-CD2-sgRNA-B1
mU*mU*mU*rUrUrArUrArGrGrUrGrCrArGrUrCrUrCrCrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6813
MG3-6-CD2-sgRNA-C1
mU*mG*mC*rCrUrUrGrGrArArArCrCrUrGrGrGrGrUrGrCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6814
MG3-6-CD2-sgRNA-D1
mG*mG*mG*rArArArArArArCrUrUrCrArGrArCrArArGrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6815
MG3-6-CD2-sgRNA-E1
mU*mU*mG*rCrArCrArArUrUrCrArGrArArArArGrArGrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6816
MG3-6-CD2-sgRNA-F1
mG*mA*mA*rCrUrCrUrGrArArArArUrUrArArGrCrArUrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6817
MG3-6-CD2-sgRNA-G1
mU*mG*mU*rUrGrGrArArArArArArUrArUrUrUrGrArUrUrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6818
MG3-6-CD2-sgRNA-H1
mU*mG*mA*rUrGrUrCrCrUrGrArCrCrCrArArGrGrCrArCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6819
MG3-6-CD2-sgRNA-A2
mC*mC*mA*rArGrGrCrArUrUrCrGrUrArArUrCrUrCrUrUrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6820
MG3-6-CD2-sgRNA-B2
mU*mU*mU*rUrArGrArGrArGrGrGrUrCrUrCrArArArArCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6821
MG3-6-CD2-sgRNA-C2
mG*mG*mG*rUrCrUrCrArArArArCrCrArArArGrArUrCrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6822
MG3-6-CD2-sgRNA-D2
mG*mG*mA*rArArCrArUrCrUrArArArArCrUrUrUrCrUrCrArGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6823
MG3-6-CD2-sgRNA-E2
mC*mU*mC*rArGrArGrGrGrUrCrArUrCrArCrArCrArCrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6824
MG3-6-CD2-sgRNA-F2
mC*mC*mG*rCrCrArCrGrCrArCrCrUrGrGrArCrArGrCrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6825
MG3-6-CD2-sgRNA-G2
mU*mG*mG*rArCrArGrCrUrGrArCrArGrGrCrUrCrGrArCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6826
MG3-6-CD2-sgRNA-H2
mG*mC*mU*rGrUrGrCrArCrUrUrGrArArUrUrUrUrGrCrArCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6827
MG3-6-CD2-sgRNA-A3
mU*mU*mU*rArGrArUrGrUrUrUrCrCrCrArUrCrUrUrGrArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6828
MG3-6-CD2-sgRNA-B3
mC*mC*mA*rUrCrUrUrGrArUrArCrArGrGrUrUrUrArArUrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6829
MG3-6-CD2-sgRNA-C3
mG*mG*mU*rCrArGrUrUrCrCrArUrUrCrArUrUrArCrCrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6830
MG3-6-CD2-sgRNA-D3
mU*mU*mC*rCrArUrUrCrArUrUrArCrCrUrCrArCrArGrGrUrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6831
MG3-6-CD2-sgRNA-E3
mG*mG*mG*rUrUrGrUrGrUrUrGrArUrArCrArArGrUrCrCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6832
MG3-6-CD2-sgRNA-F3
mA*mA*mG*rUrCrCrArGrGrArGrArUrCrUrUrUrGrGrUrUrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6833
MG3-6-CD2-sgRNA-G3
mG*mG*mC*rArGrCrArUrCrCrUrUrGrGrCrCrArGrArGrUrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6834
MG3-6-CD2-sgRNA-H3
mG*mC*mC*rArGrArGrUrArArUrGrGrGrCrUrCrUrCrUrGrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6835
MG3-6-CD2-sgRNA-A4
mC*mA*mC*rUrUrCrUrCrUrUrCrCrUrUrUrUrGrCrArGrArGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6836
MG3-6-CD2-sgRNA-B4
mU*mA*mU*rArGrArArArArCrGrArGrCrArGrUrGrCrCrArCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6837
MG3-6-CD2-sgRNA-C4
mA*mG*mC*rArGrUrGrCrCrArCrArArArGrArCrCrArUrCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6838
MG3-6-CD2-sgRNA-D4
mA*mU*mG*rCrCrArArUrGrArUrGrArGrArUrArGrArUrGrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUmU*mU*mU





6839
MG3-6-CD2-sgRNA-E4
mG*mA*mA*rGrArGrArArGrUrGrGrGrArUrGrGrCrUrGrGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6840
MG3-6-CD2-sgRNA-F4
mC*mC*mA*rCrArGrArGrUrArGrCrUrArCrUrGrArArGrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6841
MG3-6-CD2-sgRNA-G4
mC*mG*mU*rGrUrUrCrArGrCrArCrCrArGrCrCrUrCrArGrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6842
MG3-6-CD2-sgRNA-H4
mG*mG*mG*rCrArCrArCrArArGrUrUrCrArCrCrArGrCrArGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6843
MG3-6-CD2-sgRNA-A5
mC*mA*mG*rCrArGrArArArGrGrCrCrCrGrCrCrCrCrUrCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6844
MG3-6-CD2-sgRNA-B5
mU*mG*mA*rGrUrUrUrUrCrUrGrCrUrGrCrCrCrCrArUrGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6845
MG3-6-CD2-sgRNA-C5
mA*mU*mG*rGrGrGrArGrGrUrUrUrUrGrGrCrUrGrArArCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6846
MG3-6-CD2-sgRNA-D5
mU*mG*mA*rArCrUrCrGrArGrGrUrCrUrGrGrGrGrArGrGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6847
MG3-6-CD2-sgRNA-E5
mA*mA*mC*rUrUrGrUrGrUrGrCrCrCrGrArCrGrGrArGrCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mUxmU*mU





6848
MG3-6-CD2-sgRNA-F5
mC*mG*mA*rCrGrGrArGrCrArGrGrArGrGrCrCrUrCrUrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6849
MG3-6-CD2-sgRNA-G5
mG*mG*mA*rGrGrArGrGrArUrGrUrUrGrGrGrArArGrUrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6850
MG3-6-CD2-sgRNA-H5
mG*mU*mU*rGrGrGrArArGrUrUrGrCrUrGrGrArUrUrCrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6851
MG3-6-CD2-sgRNA-A6
mA*mG*mG*rGrGrUrUrGrArArGrCrUrGrGrArArUrUrUrGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6852
MG3-6-CD2-sgRNA-B6
mC*mC*mC*rUrUrUrCrUrUrCrArGrUrArGrCrUrArCrUrCrUrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





Notations for chemical modifications: m = 2′O-methyl ribonucleotide (e.g mC = cytosine ribonucleotide with 2′-O Methyl in place of 2′ hydroxyl); f = 2′-fluoro ribonucleotide (e.g fC = cytosine ribonucleotide with 2′ fluorine in place of 2′ hydroxyl); * = phosphorothioate bond; r: native RNA linkage comprising the sugar ribose (for example the ribose or RNA form of the A base is written rA), d: deoxyribose sugar (DNA) linkage (for example a deoxyribose form of the A base is written dA)













TABLE 10B







Sites Targeted in Example 19









SEQ




ID




NO:
Entity Name
Sequence





6853
MG3-6-CD2-target site-A1
ATTTACATGGAAAGCTCATCTT





6854
MG3-6-CD2-target site-B1
TTTTTATAGGTGCAGTCTCCAA





6855
MG3-6-CD2-target site-C1
TGCCTTGGAAACCTGGGGTGCC





6856
MG3-6-CD2-target site-D1
GGGAAAAAACTTCAGACAAGAA





6857
MG3-6-CD2-target site-E1
TTGCACAATTCAGAAAAGAGAA





6858
MG3-6-CD2-target site-F1
GAACTCTGAAAATTAAGCATCT





6859
MG3-6-CD2-target site-G1
TGTTGGAAAAAATATTTGATTT





6860
MG3-6-CD2-target site-H1
TGATGTCCTGACCCAAGGCACC





6861
MG3-6-CD2-target site-A2
CCAAGGCATTCGTAATCTCTTT





6862
MG3-6-CD2-target site-B2
TTTTAGAGAGGGTCTCAAAACC





6863
MG3-6-CD2-target site-C2
GGGTCTCAAAACCAAAGATCTC





6864
MG3-6-CD2-target site-D2
GGAAACATCTAAAACTTTCTCA





6865
MG3-6-CD2-target site-E2
CTCAGAGGGTCATCACACACAA





6866
MG3-6-CD2-target site-F2
CCGCCACGCACCTGGACAGCTG





6867
MG3-6-CD2-target site-G2
TGGACAGCTGACAGGCTCGACA





6868
MG3-6-CD2-target site-H2
GCTGTGCACTTGAATTTTGCAC





6869
MG3-6-CD2-target site-A3
TTTAGATGTTTCCCATCTTGAT





6870
MG3-6-CD2-target site-B3
CCATCTTGATACAGGTTTAATT





6871
MG3-6-CD2-target site-C3
GGTCAGTTCCATTCATTACCTC





6872
MG3-6-CD2-target site-D3
TTCCATTCATTACCTCACAGGT





6873
MG3-6-CD2-target site-E3
GGGTTGTGTTGATACAAGTCCA





6874
MG3-6-CD2-target site-F3
AAGTCCAGGAGATCTTTGGTTT





6875
MG3-6-CD2-target site-G3
GGCAGCATCCTTGGCCAGAGTA





6876
MG3-6-CD2-target site-H3
GCCAGAGTAATGGGCTCTCTGC





6877
MG3-6-CD2-target site-A4
CACTTCTCTTCCTTTTGCAGAG





6878
MG3-6-CD2-target site-B4
TATAGAAAACGAGCAGTGCCAC





6879
MG3-6-CD2-target site-C4
AGCAGTGCCACAAAGACCATCA





6880
MG3-6-CD2-target site-D4
ATGCCAATGATGAGATAGATGT





6881
MG3-6-CD2-target site-E4
GAAGAGAAGTGGGATGGCTGGG





6882
MG3-6-CD2-target site-F4
CCACAGAGTAGCTACTGAAGAA





6883
MG3-6-CD2-target site-G4
CGTGTTCAGCACCAGCCTCAGA





6884
MG3-6-CD2-target site-H4
GGGCACACAAGTTCACCAGCAG





6885
MG3-6-CD2-target site-A5
CAGCAGAAAGGCCCGCCCCTCC





6886
MG3-6-CD2-target site-B5
TGAGTTTTCTGCTGCCCCATGG





6887
MG3-6-CD2-target site-C5
ATGGGGAGGTTTTGGCTGAACT





6888
MG3-6-CD2-target site-D5
TGAACTCGAGGTCTGGGGAGGG





6889
MG3-6-CD2-target site-E5
AACTTGTGTGCCCGACGGAGCA





6890
MG3-6-CD2-target site-F5
CGACGGAGCAGGAGGCCTCTTC





6891
MG3-6-CD2-target site-G5
GGAGGAGGATGTTGGGAAGTTG





6892
MG3-6-CD2-target site-H5
GTTGGGAAGTTGCTGGATTCTG





6893
MG3-6-CD2-target site-A6
AGGGGTTGAAGCTGGAATTTGG





6894
MG3-6-CD2-target site-B6
CCCTTTCTTCAGTAGCTACTCT









Example 20—Gene Editing Outcomes at the DNA Level for CD5

Primary T cells were purified from PBMCs using a negative selection kit (Miltenyi) according to the manufacturer's recommendations. Nucleofection of MG3-6 RNPs (106 pmol protein/160 pmol guide) was performed into T cells (200,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared five days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA. The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 13).









TABLE 11A







Guide sequences used in Example 20









SEQ




ID




NO:
Entity Name
Sequence





6895
MG3-6-CD5-sgRNA-A1
mA*mG*mA*rArGrGrCrCrArGrArArArCrCrArUrGrCrCrCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6896
MG3-6-CD5-sgRNA-B1
mG*mU*mA*rCrArArGrGrUrGrGrCrCrArGrCrGrGrUrUrGrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mU*mU





6897
MG3-6-CD5-sgRNA-C1
mU*mU*mC*rUrGrArCrCrCrCrCrArGrArUrUrUrCrCrArGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6898
MG3-6-CD5-sgRNA-D1
mC*mA*mC*rCrCrGrUrUrCrCrArArCrUrCrGrArArGrUrGrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6899
MG3-6-CD5-sgRNA-E1
mA*mC*mU*rCrGrArArGrUrGrCrCrArGrGrGrCrCrArGrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6900
MG3-6-CD5-sgRNA-F1
mG*mC*mA*rCrArUrGrGrUrUrUrGrCrArGrCrCrArGrArGrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6901
MG3-6-CD5-sgRNA-G1
mG*mG*mG*rCrCrGrGrArGrCrUrCrCrArArGrCrArGrUrGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6902
MG3-6-CD5-sgRNA-H1
mC*mU*mC*rArArUrCrArUrCrUrGrCrUrArCrGrGrArCrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6903
MG3-6-CD5-sgRNA-A2
mC*mA*mG*rArArArUrGrArCrArUrGrUrGrUrCrArCrUrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6904
MG3-6-CD5-sgRNA-B2
mG*mG*mC*rUrGrGrCrUrArGrUrUrArCrCrCrArCrCrUrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6905
MG3-6-CD5-sgRNA-C2
mG*mC*mU*rArGrUrUrArCrCrCrArCrCrUrArArGrCrArGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6906
MG3-6-CD5-sgRNA-D2
mU*mG*mA*rGrGrUrGrUrGrUrArGrGrUrGrArCrArArGrGrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6907
MG3-6-CD5-sgRNA-E2
mG*mU*mG*rUrArGrGrUrGrArCrArArGrGrArArGrGrGrGrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6908
MG3-6-CD5-sgRNA-F2
mG*mC*mA*rCrCrCrCrArCrArGrUrUrCrArGrCrCrGrCrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6909
MG3-6-CD5-sgRNA-G2
mU*mG*mG*rCrArGrArCrUrUrUrUrGrArCrGrCrUrUrGrArCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6910
MG3-6-CD5-sgRNA-H2
mC*mC*mA*rUrGrUrGrCrCrArUrCrCrGrUrCrCrUrUrGrArGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6911
MG3-6-CD5-sgRNA-A3
mG*mG*mU*rGrArGrCrCrUrUrGrCrCrUrGrGrArArArUrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6912
MG3-6-CD5-sgRNA-B3
mC*mA*mG*rArArGrArCrArArCrArCrCrUrCrCrArArCrGrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6913
MG3-6-CD5-sgRNA-C3
mC*mA*mA*rCrUrCrCrArGrArGrCrCrCrArCrArGrGrUrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6914
MG3-6-CD5-sgRNA-D3
mG*mG*mG*rCrUrCrUrGrGrArGrUrUrGrUrGrGrUrGrGrGrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6915
MG3-6-CD5-sgRNA-E3
mU*mG*mU*rCrGrUrUrGrGrArGrGrUrGrUrUrGrUrCrUrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6916
MG3-6-CD5-sgRNA-F3
mC*mU*mC*rUrCrUrCrCrUrCrUrCrCrUrArGrCrUrCrCrUrCrGrU




rUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGrG




rCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCrC




rGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mU*mU





6917
MG3-6-CD5-sgRNA-G3
mG*mC*mC*rUrGrGrGrGrGrGrUrArCrCrArUrCrArGrCrUrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6918
MG3-6-CD5-sgRNA-H3
mC*mC*mA*rUrCrArGrCrUrArUrGrArGrGrCrCrCrArGrGrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6919
MG3-6-CD5-sgRNA-A4
mC*mU*mA*rUrGrArGrGrCrCrCrArGrGrArCrArArGrArCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6920
MG3-6-CD5-sgRNA-B4
mG*mC*mU*rCrCrUrUrCrUrUrGrArArGrCrArUrCrUrGrCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6921
MG3-6-CD5-sgRNA-C4
mA*mG*mA*rGrArCrUrGrArGrGrCrArGrGrCrArGrArGrCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6922
MG3-6-CD5-sgRNA-D4
mA*mC*mC*rArGrCrCrCrUrUrGrCrCrArArUrCrCrArArUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6923
MG3-6-CD5-sgRNA-E4
mU*mG*mC*rCrCrUrCrCrUrUrUrGrCrUrCrArGrGrUrArArGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6924
MG3-6-CD5-sgRNA-F4
mG*mG*mC*rArArGrArArCrUrCrGrGrCrCrArCrUrUrUrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6925
MG3-6-CD5-sgRNA-G4
mC*mC*mA*rGrGrGrArGrGrUrArCrArGrCrUrUrGrArGrUrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6926
MG3-6-CD5-sgRNA-H4
mA*mG*mC*rUrUrGrArGrUrUrCrUrGrGrArUrCrUrUrCrCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6927
MG3-6-CD5-sgRNA-A5
mC*mU*mG*rGrArUrCrUrUrCrCrArUrUrGrGrArUrUrGrGrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6928
MG3-6-CD5-sgRNA-B5
mG*mG*mC*rUrGrGrUrGrUrUrCrCrCrGrUrGrGrCrUrCrCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mU*mU





6929
MG3-6-CD5-sgRNA-C5
mG*mU*mU*rCrCrCrGrUrGrGrCrUrCrCrCrCrUrGrGrGrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6930
MG3-6-CD5-sgRNA-D5
mU*mG*mC*rUrUrCrArArGrArArGrGrArGrCrCrArCrArCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6931
MG3-6-CD5-sgRNA-E5
mA*mG*mG*rUrUrGrUrUrGrCrArGrArGrGrArArGrUrUrCrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6932
MG3-6-CD5-sgRNA-F5
mU*mG*mC*rArGrArGrGrArArGrUrUrCrUrCrCrArGrGrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUxmU*mU*mU





6933
MG3-6-CD5-sgRNA-G5
mU*mC*mU*rCrCrArGrGrUrCrCrUrGrGrGrUrCrUrUrGrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6934
MG3-6-CD5-sgRNA-H5
mG*mC*mC*rUrCrArUrArGrCrUrGrArUrGrGrUrArCrCrCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6935
MG3-6-CD5-sgRNA-A6
mC*mA*mC*rGrCrCrGrGrCrArCrArGrUrGrCrUrGrGrCrCrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6936
MG3-6-CD5-sgRNA-B6
mA*mA*mG*rGrCrArCrCrGrUrGrGrArGrGrUrGrCrGrCrCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6937
MG3-6-CD5-sgRNA-C6
mG*mA*mC*rGrCrUrGrGrUrGrArCrCrCrArArCrArUrCrCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6938
MG3-6-CD5-sgRNA-D6
mG*mG*mA*rCrArGrArArGrArGrCrCrCrCrCrGrGrGrArUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6939
MG3-6-CD5-sgRNA-E6
mU*mC*mC*rUrGrGrCrUrGrArArGrArGrCrUrGrUrCrArCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6940
MG3-6-CD5-sgRNA-F6
mC*mC*mC*rCrArCrCrArGrArCrGrGrCrUrCrUrGrCrArCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6941
MG3-6-CD5-sgRNA-G6
mC*mC*mC*rArGrGrCrCrArGrGrArUrCrCrArArArCrCrCrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6942
MG3-6-CD5-sgRNA-H6
mU*mU*mC*rArCrUrArGrCrUrUrCrUrUrGrUrArGrGrCrArArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6943
MG3-6-CD5-sgRNA-A7
mC*mC*mA*rGrCrArGrCrArCrCrArCrCrArGrGrArGrCrArCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6944
MG3-6-CD5-sgRNA-B7
mA*mU*mG*rCrUrUrGrCrCrArCrCrGrUrGrCrCrUrGrCrGrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6945
MG3-6-CD5-sgRNA-C7
mA*mC*mC*rGrUrGrCrCrUrGrCrGrGrCrCrArGrGrCrCrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6946
MG3-6-CD5-sgRNA-D7
mC*mC*mU*rGrCrGrGrCrCrArGrGrCrCrUrGrCrGrGrGrGrUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6947
MG3-6-CD5-sgRNA-E7
mU*mC*mC*rGrCrCrArGrArArGrArArGrCrArGrCrGrCrCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUmU*mU*mU





6948
MG3-6-CD5-sgRNA-F7
mU*mU*mA*rCrUrGrUrUrUrUrGrGrUrUrCrArUrUrCrCrCrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6949
MG3-6-CD5-sgRNA-G7
mU*mC*mC*rArCrUrGrGrCrGrCrUrGrCrUrUrCrUrUrCrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6950
MG3-6-CD5-sgRNA-H7
mA*mG*mC*rUrGrArCrArGrGrUrGrGrGrArGrUrUrCrCrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6951
MG3-6-CD5-sgRNA-A8
mG*mG*mC*rUrGrUrArUrUrCrGrUrUrArUrCrCrArCrGrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6952
MG3-6-CD5-sgRNA-B8
mUmC*mG*rUrUrArUrCrCrArCrGrUrGrGrGrArGrGrCrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6953
MG3-6-CD5-sgRNA-C8
mG*mG*mA*rGrGrCrUrGrUrGrGrGrGrUrUrCrUrCrArGrCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6954
MG3-6-CD5-sgRNA-D8
mC*mC*mU*rUrUrCrUrUrUrCrCrCrCrArGrCrUrCrUrGrGrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6955
MG3-6-CD5-sgRNA-E8
mC*mC*mG*rArCrArGrUrGrArCrUrArUrGrArUrCrUrGrCrArGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrUmUxmU*mU





6956
MG3-6-CD5-sgRNA-F8
mG*mA*mC*rUrArUrGrArUrCrUrGrCrArUrGrGrGrGrCrUrCrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6957
MG3-6-CD5-sgRNA-G8
mC*mU*mU*rUrArCrArGrCrCrUrCrUrGrArGrCrCrCrCrArUrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





6958
MG3-6-CD5-sgRNA-H8
mA*mU*mA*rGrUrCrArCrUrGrUrCrGrGrArGrGrArGrUrUrGrGr




UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArGr




GrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrArCr




CrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGrCrGr




GrUrArUrGrU*mU*mU*mU





Notations for chemical modifications: m = 2′O-methyl ribonucleotide (e.g mC = cytosine ribonucleotide with 2′-O Methyl in place of 2′ hydroxyl); f = 2′-fluoro ribonucleotide (e.g fC = cytosine ribonucleotide with 2′ fluorine in place of 2′ hydroxyl); * = phosphorothioate bond; r: native RNA linkage comprising the sugar ribose (for example the ribose or RNA form of the A base is written rA), d: deoxyribose sugar (DNA) linkage (for example a deoxyribose form of the A base is written dA)













TABLE 11B







Sites Targeted in Example 20









SEQ




ID




NO:
Entity Name
Sequence





6959
MG3-6-CD5-target site-A1
AGAAGGCCAGAAACCATGCCCA





6960
MG3-6-CD5-target site-B1
GTACAAGGTGGCCAGCGGTTGC





6961
MG3-6-CD5-target site-C1
TTCTGACCCCCAGATTTCCAGG





6962
MG3-6-CD5-target site-D1
CACCCGTTCCAACTCGAAGTGC





6963
MG3-6-CD5-target site-E1
ACTCGAAGTGCCAGGGCCAGCT





6964
MG3-6-CD5-target site-F1
GCACATGGTTTGCAGCCAGAGC





6965
MG3-6-CD5-target site-G1
GGGCCGGAGCTCCAAGCAGTGG





6966
MG3-6-CD5-target site-H1
CTCAATCATCTGCTACGGACAA





6967
MG3-6-CD5-target site-A2
CAGAAATGACATGTGTCACTCT





6968
MG3-6-CD5-target site-B2
GGCTGGCTAGTTACCCACCTAA





6969
MG3-6-CD5-target site-C2
GCTAGTTACCCACCTAAGCAGG





6970
MG3-6-CD5-target site-D2
TGAGGTGTGTAGGTGACAAGGA





6971
MG3-6-CD5-target site-E2
GTGTAGGTGACAAGGAAGGGGC





6972
MG3-6-CD5-target site-F2
GCACCCCACAGTTCAGCCGCTG





6973
MG3-6-CD5-target site-G2
TGGCAGACTTTTGACGCTTGAC





6974
MG3-6-CD5-target site-H2
CCATGTGCCATCCGTCCTTGAG





6975
MG3-6-CD5-target site-A3
GGTGAGCCTTGCCTGGAAATCT





6976
MG3-6-CD5-target site-B3
CAGAAGACAACACCTCCAACGA





6977
MG3-6-CD5-target site-C3
CAACTCCAGAGCCCACAGGTAA





6978
MG3-6-CD5-target site-D3
GGGCTCTGGAGTTGTGGTGGGC





6979
MG3-6-CD5-target site-E3
TGTCGTTGGAGGTGTTGTCTTC





6980
MG3-6-CD5-target site-F3
CTCTCTCCTCTCCTAGCTCCTC





6981
MG3-6-CD5-target site-G3
GCCTGGGGGGTACCATCAGCTA





6982
MG3-6-CD5-target site-H3
CCATCAGCTATGAGGCCCAGGA





6983
MG3-6-CD5-target site-A4
CTATGAGGCCCAGGACAAGACC





6984
MG3-6-CD5-target site-B4
GCTCCTTCTTGAAGCATCTGCC





6985
MG3-6-CD5-target site-C4
AGAGACTGAGGCAGGCAGAGCC





6986
MG3-6-CD5-target site-D4
ACCAGCCCTTGCCAATCCAATG





6987
MG3-6-CD5-target site-E4
TGCCCTCCTTTGCTCAGGTAAG





6988
MG3-6-CD5-target site-F4
GGCAAGAACTCGGCCACTTTTC





6989
MG3-6-CD5-target site-G4
CCAGGGAGGTACAGCTTGAGTT





6990
MG3-6-CD5-target site-H4
AGCTTGAGTTCTGGATCTTCCA





6991
MG3-6-CD5-target site-A5
CTGGATCTTCCATTGGATTGGC





6992
MG3-6-CD5-target site-B5
GGCTGGTGTTCCCGTGGCTCCC





6993
MG3-6-CD5-target site-C5
GTTCCCGTGGCTCCCCTGGGTC





6994
MG3-6-CD5-target site-D5
TGCTTCAAGAAGGAGCCACACT





6995
MG3-6-CD5-target site-E5
AGGTTGTTGCAGAGGAAGTTCT





6996
MG3-6-CD5-target site-F5
TGCAGAGGAAGTTCTCCAGGTC





6997
MG3-6-CD5-target site-G5
TCTCCAGGTCCTGGGTCTTGTC





6998
MG3-6-CD5-target site-H5
GCCTCATAGCTGATGGTACCCC





6999
MG3-6-CD5-target site-A6
CACGCCGGCACAGTGCTGGCCG





7000
MG3-6-CD5-target site-B6
AAGGCACCGTGGAGGTGCGCCA





7001
MG3-6-CD5-target site-C6
GACGCTGGTGACCCAACATCCC





7002
MG3-6-CD5-target site-D6
GGACAGAAGAGCCCCCGGGATG





7003
MG3-6-CD5-target site-E6
TCCTGGCTGAAGAGCTGTCACA





7004
MG3-6-CD5-target site-F6
CCCCACCAGACGGCTCTGCACC





7005
MG3-6-CD5-target site-G6
CCCAGGCCAGGATCCAAACCCC





7006
MG3-6-CD5-target site-H6
TTCACTAGCTTCTTGTAGGCAA





7007
MG3-6-CD5-target site-A7
CCAGCAGCACCACCAGGAGCAC





7008
MG3-6-CD5-target site-B7
ATGCTTGCCACCGTGCCTGCGG





7009
MG3-6-CD5-target site-C7
ACCGTGCCTGCGGCCAGGCCTG





7010
MG3-6-CD5-target site-D7
CCTGCGGCCAGGCCTGCGGGGT





7011
MG3-6-CD5-target site-E7
TCCGCCAGAAGAAGCAGCGCCA





7012
MG3-6-CD5-target site-F7
TTACTGTTTTGGTTCATTCCCG





7013
MG3-6-CD5-target site-G7
TCCACTGGCGCTGCTTCTTCTG





7014
MG3-6-CD5-target site-H7
AGCTGACAGGTGGGAGTTCCTG





7015
MG3-6-CD5-target site-A8
GGCTGTATTCGTTATCCACGTG





7016
MG3-6-CD5-target site-B8
TCGTTATCCACGTGGGAGGCTG





7017
MG3-6-CD5-target site-C8
GGAGGCTGTGGGGTTCTCAGCA





7018
MG3-6-CD5-target site-D8
CCTTTCTTTCCCCAGCTCTGGA





7019
MG3-6-CD5-target site-E8
CCGACAGTGACTATGATCTGCA





7020
MG3-6-CD5-target site-F8
GACTATGATCTGCATGGGGCTC





7021
MG3-6-CD5-target site-G8
CTTTACAGCCTCTGAGCCCCAT





7022
MG3-6-CD5-target site-H8
ATAGTCACTGTCGGAGGAGTTG









Example 21—Targeted RNA Cleavage by MG3-6 and MG3-8

A 101 ft RNA containing the spacer (GGUCAGGGCGCGUCAGCGGGUGUUGGCGGGUGUCGGGGCUGGCUUAAAUUUUG GACCAGUCGAGGCUUGCGACGUGGUGGCUUUUCCAGUCGGGAAACCUG) with 5′ adjacent sequence UUGGACCA were prepared via transcription of a T7 promoter-containing PCR product using the T7 Megascript kit (NEB) according to manufacturer instructions. The resulting RNA was purified using a Monarch RNA prep spin column (NEB) and then labeled with the 5′ EndTag kit (Vector labs) using a FAM-maleimide dye per recommended instructions. The resulting RNA has one 5′ label and an expected band size of 60 nt if cleaved at a single position in the spacer. For testing RNA cleavage, 2 pmol of protein and sgRNA were pre-incubated for 15 minutes before adding ssRNA target. The RNP complex was added to the labeled RNA at a 10:1 ratio (200 nM RNA: 2 μM RNP) in cleavage buffer (10 mM Tris, 100 mM NaCl, and 10 mM MgCl2) and incubated at 37° C. for 1 hr. Reactions were quenched with proteinase K and resolved on a 1500 TBE Urea-PAGE gel (Bio-rad). The gel shows site-directed RNA cleavage by MG3-6 and MG3-8 as well as commercial positive control SauCas9 (NEB) (FIG. 14). The results indicated that MG3-6 and MG3-8 are capable of targeted RNA cleavage and are comparable in terms of RNA cleavage to SauCas9.


Example 22—Gene Editing Outcomes at the DNA Level for FAS

Primary T cells were purified from PBMCs using a negative selection kit (Miltenyi) according to the manufacturer's recommendations. Nucleofection of MG3-6 RNPs (104 pmol protein/120 pmol guide) (SEQ ID NOs: 7023-7056) was performed into T cells (200,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared three days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA (SEQ ID NOs: 7057-7090). The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 15).









TABLE 12







Guide RNAs and Sequences Targeted for Example 22









SEQ




ID




NO:
NAME
SEQUENCE





7023
MG3-6-FAS-sgRNA-
mC*mU*mG*rArUrGrArGrUrGrGrUrUrUrCrCrCrUrGrArGrCrG



A1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUxmU*mU*mU





7024
MG3-6-FAS-sgRNA-
mU*mU*mA*rGrArUrGrCrUrCrArGrArGrUrGrUrGrUrGrCrArG



B1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7025
MG3-6-FAS-sgRNA-
mG*mU*mG*rUrGrCrArCrArArGrGrCrUrGrGrCrArCrGrCrCrG



C1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7026
MG3-6-FAS-sgRNA-
mG*mA*mG*rArCrArArGrCrCrUrArUrCrArArCrArCrCrUrArGr



D1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7027
MG3-6-FAS-sgRNA-
mA*mC*mC*rArCrCrArGrUrCrUrUrGrUrArGrGrUrGrUrUrGrG



E1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7028
MG3-6-FAS-sgRNA-
mC*mU*mU*rGrUrCrUrCrUrGrUrUrCrCrArCrCrUrUrUrCrArGr



F1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7029
MG3-6-FAS-sgRNA-
mA*mG*mU*rArGrArCrUrGrUrUrArGrUrGrCrCrArUrGrArGrG



G1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mUxmU*mU





7030
MG3-6-FAS-sgRNA-
mU*mU*mA*rCrArGrGrUrUrCrUrUrArCrGrUrCrUrGrUrUrGrGr



H1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7031
MG3-6-FAS-sgRNA-
mC*mA*mA*rGrUrGrArCrUrGrArCrArUrCrArArCrUrCrCrArGr



A2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUxmU*mU*mU





7032
MG3-6-FAS-sgRNA-
mA*mC*mU*rCrCrArArGrGrGrArUrUrGrGrArArUrUrGrArGrG



B2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7033
MG3-6-FAS-sgRNA-
mU*mG*mA*rGrGrArArGrArCrUrGrUrUrArCrUrArCrArGrUrG



C2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7034
MG3-6-FAS-sgRNA-
mU*mA*mC*rArGrUrUrGrArGrArCrUrCrArGrArArCrUrUrGrGr



D2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUmU*mU*mU





7035
MG3-6-FAS-sgRNA-
mU*mU*mU*rGrUrGrUrArArCrArUrArCrCrUrGrGrArGrGrArG



E2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7036
MG3-6-FAS-sgRNA-
mU*mG*mG*rCrArGrArArUrUrGrGrCrCrArUrCrArUrGrArUrG



F2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7037
MG3-6-FAS-sgRNA-
mU*mU*mG*rGrGrCrArGrGrUrGrArArArGrGrArArArGrCrUrG



G2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7038
MG3-6-FAS-sgRNA-
mC*mU*mG*rCrArCrArGrUrCrArArUrGrGrGrGrArUrGrArArG



H2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7039
MG3-6-FAS-sgRNA-
mU*mU*mU*rUrCrUrUrCrCrArArArUrGrCrArGrArArGrArUrGr



A3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7040
MG3-6-FAS-sgRNA-
mA*mU*mC*rUrUrCrUrGrCrArUrUrUrGrGrArArGrArArArArGr



B3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7041
MG3-6-FAS-sgRNA-
mU*mA*mG*rArArGrUrGrGrArArArUrArArArCrUrGrCrArCrGr



C3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7042
MG3-6-FAS-sgRNA-
mA*mA*mG*rArCrUrArArArArCrUrUrArCrUrUrGrGrUrGrCrGr



D3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUxmU*mU*mU





7043
MG3-6-FAS-sgRNA-
mG*mU*mU*rUrArCrArUrCrUrGrCrArCrUrUrGrGrUrArUrUrGr



E3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7044
MG3-6-FAS-sgRNA-
mA*mA*mG*rArArGrArCrArArArGrCrCrArCrCrCrCrArArGrGr



F3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7045
MG3-6-FAS-sgRNA-
mA*mC*mA*rArArGrCrCrArCrCrCrCrArArGrUrUrArGrArUrGr



G3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7046
MG3-6-FAS-sgRNA-
mC*mC*mC*rCrArArGrUrUrArGrArUrCrUrGrGrArUrCrCrUrGr



H3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7047
MG3-6-FAS-sgRNA-
mC*mA*mG*rArArArGrCrArCrArGrArArArGrGrArArArArCrGr



A4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7048
MG3-6-FAS-sgRNA-
mA*mA*mU*rArCrCrUrArCrArGrGrArUrUrUrArArArGrUrUrGr



B4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7049
MG3-6-FAS-sgRNA-
mC*mA*mG*rUrGrGrCrArArUrArArArUrUrUrArUrCrUrGrGrGr



C4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7050
MG3-6-FAS-sgRNA-
mA*mG*mU*rCrArUrGrArCrArCrUrArArGrUrCrArArGrUrUrGr



D4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUmUmU*mU





7051
MG3-6-FAS-sgRNA-
mG*mU*mG*rUrCrArArUrGrArArGrCrCrArArArArUrArGrArGr



E4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7052
MG3-6-FAS-sgRNA-
mA*mG*mA*rArGrCrGrUrArUrGrArCrArCrArUrUrGrArUrUrGr



F4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mUxmU*mU





7053
MG3-6-FAS-sgRNA-
mU*mU*mU*rGrUrArCrUrCrUrUrGrCrArGrArGrArArArArUrGr



G4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7054
MG3-6-FAS-sgRNA-
mG*mU*mU*rUrUrUrCrArCrUrCrUrArGrArCrCrArArGrCrUrGr



H4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7055
MG3-6-FAS-sgRNA-
mU*mG*mA*rArUrUrUrUrCrUrCrUrGrCrArArGrArGrUrArCrGr



A5
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7056
MG3-6-FAS-sgRNA-
mA*mG*mA*rGrUrArCrArArArGrArUrUrGrGrCrUrUrUrUrUrGr



B5
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUxmU*mU*mU





7057
MG3-6-FAS-target
CTGATGAGTGGTTTCCCTGAGC



site-A1






7058
MG3-6-FAS-target
TTAGATGCTCAGAGTGTGTGCA



site-B1






7059
MG3-6-FAS-target
GTGTGCACAAGGCTGGCACGCC



site-C1






7060
MG3-6-FAS-target
GAGACAAGCCTATCAACACCTA



site-D1






7061
MG3-6-FAS-target
ACCACCAGTCTTGTAGGTGTTG



site-E1






7062
MG3-6-FAS-target
CTTGTCTCTGTTCCACCTTTCA



site-F1






7063
MG3-6-FAS-target
AGTAGACTGTTAGTGCCATGAG



site-G1






7064
MG3-6-FAS-target
TTACAGGTTCTTACGTCTGTTG



site-H1






7065
MG3-6-FAS-target
CAAGTGACTGACATCAACTCCA



site-A2






7066
MG3-6-FAS-target
ACTCCAAGGGATTGGAATTGAG



site-B2






7067
MG3-6-FAS-target
TGAGGAAGACTGTTACTACAGT



site-C2






7068
MG3-6-FAS-target
TACAGTTGAGACTCAGAACTTG



site-D2






7069
MG3-6-FAS-target
TTTGTGTAACATACCTGGAGGA



site-E2






7070
MG3-6-FAS-target
TGGCAGAATTGGCCATCATGAT



site-F2






7071
MG3-6-FAS-target
TTGGGCAGGTGAAAGGAAAGCT



site-G2






7072
MG3-6-FAS-target
CTGCACAGTCAATGGGGATGAA



site-H2






7073
MG3-6-FAS-target
TTTTCTTCCAAATGCAGAAGAT



site-A3






7074
MG3-6-FAS-target
ATCTTCTGCATTTGGAAGAAAA



site-B3






7075
MG3-6-FAS-target
TAGAAGTGGAAATAAACTGCAC



site-C3






7076
MG3-6-FAS-target
AAGACTAAAACTTACTTGGTGC



site-D3






7077
MG3-6-FAS-target
GTTTACATCTGCACTTGGTATT



site-E3






7078
MG3-6-FAS-target
AAGAAGACAAAGCCACCCCAAG



site-F3






7079
MG3-6-FAS-target
ACAAAGCCACCCCAAGTTAGAT



site-G3






7080
MG3-6-FAS-target
CCCCAAGTTAGATCTGGATCCT



site-H3






7081
MG3-6-FAS-target
CAGAAAGCACAGAAAGGAAAAC



site-A4






7082
MG3-6-FAS-target
AATACCTACAGGATTTAAAGTT



site-B4






7083
MG3-6-FAS-target
CAGTGGCAATAAATTTATCTGG



site-C4






7084
MG3-6-FAS-target
AGTCATGACACTAAGTCAAGTT



site-D4






7085
MG3-6-FAS-target
GTGTCAATGAAGCCAAAATAGA



site-E4






7086
MG3-6-FAS-target
AGAAGCGTATGACACATTGATT



site-F4






7087
MG3-6-FAS-target
TTTGTACTCTTGCAGAGAAAAT



site-G4






7088
MG3-6-FAS-target
GTTTTTCACTCTAGACCAAGCT



site-H4






7089
MG3-6-FAS-target
TGAATTTTCTCTGCAAGAGTAC



site-A5






7090
MG3-6-FAS-target
AGAGTACAAAGATTGGCTTTTT



site-B5





r = native ribose base, m = 2′-O methyl modified base, F = 2′ Fluro modified base, * = phosphorothioate bond






Example 23—Gene Editing Outcomes at the DNA Level for PD-1

Primary T cells were purified from PBMCs using a negative selection kit (Miltenyi) according to the manufacturer's recommendations. Nucleofection of MG3-6 RNPs (104 pmol protein/120 pmol guide) (SEQ ID NOs: 7091-7128) was performed into T cells (200,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared three days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA (SEQ ID NOs: 7129-7166). The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 16).









TABLE 13







Guide RNAs and Sequences Targeted for Example 23









SEQ




ID




NO:
NAME
SEQUENCE





7091
MG3-6-PD-1-sgRNA-
mG*mG*mU*rGrGrCrCrArArGrGrArArGrCrCrGrGrUrCrArGrG



A1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7092
MG3-6-PD-1-sgRNA-
mG*mG*mG*rCrCrArArGrArGrCrArGrUrGrUrCrCrArUrCrCrG



B1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUxmU*mU*mU





7093
MG3-6-PD-1-sgRNA-
mG*mG*mC*rCrCrUrCrGrGrArGrUrGrCrCrCrArGrCrCrArCrG



C1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7094
MG3-6-PD-1-sgRNA-
mG*mG*mC*rCrUrCrArGrUrGrGrCrUrGrGrGrCrArCrUrCrCrG



D1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7095
MG3-6-PD-1-sgRNA-
mG*mG*mG*rCrArCrCrUrCrArUrCrCrCrCrCrGrCrCrCrGrCrGr



E1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7096
MG3-6-PD-1-sgRNA-
mC*mU*mG*rCrUrCrArGrGrGrArCrArCrArGrGrGrCrArCrGrG



F1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7097
MG3-6-PD-1-sgRNA-
mG*mG*mA*rCrArCrArGrGrGrCrArCrGrGrGrGrGrGrCrUrCrG



G1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7098
MG3-6-PD-1-sgRNA-
mA*mG*mC*rUrGrGrArUrUrUrCrCrArGrUrGrGrCrGrArGrArG



H1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7099
MG3-6-PD-1-sgRNA-
mG*mU*mU*rCrUrCrUrGrUrGrGrArCrUrArUrGrGrGrGrArGrG



A2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7100
MG3-6-PD-1-sgRNA-
mC*mU*mC*rArGrCrCrGrUrGrCrCrUrGrUrGrUrUrCrUrCrUrGr



B2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7101
MG3-6-PD-1-sgRNA-
mA*mC*mA*rGrArGrArArCrArCrArGrGrCrArCrGrGrCrUrGrG



C2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7102
MG3-6-PD-1-sgRNA-
mG*mG*mG*rUrCrCrUrGrGrCrCrGrUrCrArUrCrUrGrCrUrCrG



D2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7103
MG3-6-PD-1-sgRNA-
mC*mG*mG*rCrCrCrGrGrGrArGrCrArGrArUrGrArCrGrGrCrG



E2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mUxmU





7104
MG3-6-PD-1-sgRNA-
mG*mG*mG*rArGrCrArGrArUrGrArCrGrGrCrCrArGrGrArCrG



F2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7105
MG3-6-PD-1-sgRNA-
mU*mG*mG*rGrCrArGrCrCrUrGrGrUrGrCrUrGrCrUrArGrUrG



G2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7106
MG3-6-PD-1-sgRNA-
mG*mC*mC*rArGrGrArCrCrCrArGrArCrUrArGrCrArGrCrArG



H2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7107
MG3-6-PD-1-sgRNA-
mA*mC*mU*rArGrCrArGrCrArCrCrArGrGrCrUrGrCrCrCrArGr



A3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7108
MG3-6-PD-1-sgRNA-
mG*mG*mC*rCrGrCrCrCrArCrGrArCrArCrCrArArCrCrArCrGr



B3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7109
MG3-6-PD-1-sgRNA-
mA*mA*mC*rUrGrGrCrCrGrGrCrUrGrGrCrCrUrGrGrGrUrGrG



C3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7110
MG3-6-PD-1-sgRNA-
mA*mC*mA*rGrCrCrCrArCrCrCrCrArGrCrCrCrCrUrCrArCrGr



D3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7111
MG3-6-PD-1-sgRNA-
mC*mU*mG*rGrCrCrUrGrGrGrUrGrArGrGrGrGrCrUrGrGrGrG



E3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7112
MG3-6-PD-1-sgRNA-
mC*mC*mU*rGrUrCrArCrCrCrUrGrArGrCrUrCrUrGrCrCrCrGr



F3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7113
MG3-6-PD-1-sgRNA-
mG*mG*mC*rUrCrUrCrUrUrUrGrArUrCrUrGrCrGrCrCrUrUrGr



G3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7114
MG3-6-PD-1-sgRNA-
mC*mC*mA*rUrCrUrCrCrCrUrGrGrCrCrCrCrCrArArGrGrCrGr



H3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7115
MG3-6-PD-1-sgRNA-
mA*mU*mG*rArCrArGrCrGrGrCrArCrCrUrArCrCrUrCrUrGrGr



A4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mUxmU*mU





7116
MG3-6-PD-1-sgRNA-
mG*mG*mU*rArGrGrUrGrCrCrGrCrUrGrUrCrArUrUrGrCrGrG



B4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7117
MG3-6-PD-1-sgRNA-
mG*mU*mG*rArCrUrUrCrCrArCrArUrGrArGrCrGrUrGrGrUrG



C4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7118
MG3-6-PD-1-sgRNA-
mG*mA*mC*rArCrGrGrArArGrCrGrGrCrArGrUrCrCrUrGrGrG



D4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUmU*mU*mU





7119
MG3-6-PD-1-sgRNA-
mC*mG*mA*rGrGrArCrCrGrCrArGrCrCrArGrCrCrCrGrGrCrG



E4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7120
MG3-6-PD-1-sgRNA-
mG*mG*mA*rCrArArGrCrUrGrGrCrCrGrCrCrUrUrCrCrCrCrG



F4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7121
MG3-6-PD-1-sgRNA-
mG*mC*mC*rArGrCrUrUrGrUrCrCrGrUrCrUrGrGrUrUrGrCrG



G4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7122
MG3-6-PD-1-sgRNA-
mU*mG*mU*rCrCrCrCrUrUrCrGrGrUrCrArCrCrArCrGrArGrGr



H4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7123
MG3-6-PD-1-sgRNA-
mA*mG*mC*rArGrGrGrCrUrGrGrGrGrArGrArArGrGrUrGrGrG



A5
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7124
MG3-6-PD-1-sgRNA-
mU*mG*mG*rGrGrArGrArArGrGrUrGrGrGrGrGrGrGrUrUrCr



B5
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArA




rGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





7125
MG3-6-PD-1-sgRNA-
mC*mU*mC*rCrArUrCrUrCrUrCrArGrArCrUrCrCrCrCrArGrGr



C5
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7126
MG3-6-PD-1-sgRNA-
mG*mC*mC*rArGrGrArUrGrGrUrUrCrUrUrArGrGrUrArGrGrG



D5
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7127
MG3-6-PD-1-sgRNA-
mA*mG*mU*rCrGrUrCrUrGrGrGrCrGrGrUrGrCrUrArCrArArG



E5
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7128
MG3-6-PD-1-sgRNA-
mA*mG*mA*rCrGrArCrUrGrGrCrCrArGrGrGrCrGrCrCrUrGrG



F5
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7129
MG3-6-PD-1-target
GGTGGCCAAGGAAGCCGGTCAG



site-A1






7130
MG3-6-PD-1-target
GGGCCAAGAGCAGTGTCCATCC



site-B1






7131
MG3-6-PD-1-target
GGCCCTCGGAGTGCCCAGCCAC



site-C1






7132
MG3-6-PD-1-target
GGCCTCAGTGGCTGGGCACTCC



site-D1






7133
MG3-6-PD-1-target
GGGCACCTCATCCCCCGCCCGC



site-E1






7134
MG3-6-PD-1-target
GGACACAGGGCACGGGGGGCTC



site-F1






7135
MG3-6-PD-1-target
GGACACAGGGCACGGGGGGCTC



site-G1






7136
MG3-6-PD-1-target
AGCTGGATTTCCAGTGGCGAGA



site-H1






7137
MG3-6-PD-1-target
GTTCTCTGTGGACTATGGGGAG



site-A2






7138
MG3-6-PD-1-target
CTCAGCCGTGCCTGTGTTCTCT



site-B2






7139
MG3-6-PD-1-target
ACAGAGAACACAGGCACGGCTG



site-C2






7140
MG3-6-PD-1-target
GGGTCCTGGCCGTCATCTGCTC



site-D2






7141
MG3-6-PD-1-target
CGGCCCGGGAGCAGATGACGGC



site-E2






7142
MG3-6-PD-1-target
GGGAGCAGATGACGGCCAGGAC



site-F2






7143
MG3-6-PD-1-target
TGGGCAGCCTGGTGCTGCTAGT



site-G2






7144
MG3-6-PD-1-target
GCCAGGACCCAGACTAGCAGCA



site-H2






7145
MG3-6-PD-1-target
ACTAGCAGCACCAGGCTGCCCA



site-A3






7146
MG3-6-PD-1-target
GGCCGCCCACGACACCAACCAC



site-B3






7147
MG3-6-PD-1-target
AACTGGCCGGCTGGCCTGGGTG



site-C3






7148
MG3-6-PD-1-target
ACAGCCCACCCCAGCCCCTCAC



site-D3






7149
MG3-6-PD-1-target
CTGGCCTGGGTGAGGGGCTGGG



site-E3






7150
MG3-6-PD-1-target
CCTGTCACCCTGAGCTCTGCCC



site-F3






7151
MG3-6-PD-1-target
GGCTCTCTTTGATCTGCGCCTT



site-G3






7152
MG3-6-PD-1-target
CCATCTCCCTGGCCCCCAAGGC



site-H3






7153
MG3-6-PD-1-target
ATGACAGCGGCACCTACCTCTG



site-A4






7154
MG3-6-PD-1-target
GGTAGGTGCCGCTGTCATTGCG



site-B4






7155
MG3-6-PD-1-target
GTGACTTCCACATGAGCGTGGT



site-C4






7156
MG3-6-PD-1-target
GACACGGAAGCGGCAGTCCTGG



site-D4






7157
MG3-6-PD-1-target
CGAGGACCGCAGCCAGCCCGGC



site-E4






7158
MG3-6-PD-1-target
GGACAAGCTGGCCGCCTTCCCC



site-F4






7159
MG3-6-PD-1-target
GCCAGCTTGTCCGTCTGGTTGC



site-G4






7160
MG3-6-PD-1-target
TGTCCCCTTCGGTCACCACGAG



site-H4






7161
MG3-6-PD-1-target
AGCAGGGCTGGGGAGAAGGTGG



site-A5






7162
MG3-6-PD-1-target
TGGGGAGAAGGTGGGGGGGTTC



site-B5






7163
MG3-6-PD-1-target
CTCCATCTCTCAGACTCCCCAG



site-C5






7164
MG3-6-PD-1-target
GCCAGGATGGTTCTTAGGTAGG



site-D5






7165
MG3-6-PD-1-target
AGTCGTCTGGGCGGTGCTACAA



site-E5






7166
MG3-6-PD-1-target
AGACGACTGGCCAGGGCGCCTG



site-F5





r = native ribose base, m = 2′-O methyl modified base, F = 2′ Fluro modified base, * = phosphorothioate bond






Example 24—Gene Editing Outcomes at the DNA Level for hRosa26

Primary T cells were purified from PBMCs using a negative selection kit (Miltenyi) according to the manufacturer's recommendations. Nucleofection of MG3-6 RNPs (104 pmol protein/120 pmol guide) (SEQ ID NOs: 7167-7198) was performed into T cells (200,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared three days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA (SEQ ID NOs: 7199-7230). The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 17).









TABLE 14







Guide RNAs and Sequences Targeted for Example 24









SEQ




ID




NO:
NAME
SEQUENCE





7167
MG3-6-hRosa26-
mA*mU*mC*rUrGrUrCrUrGrGrUrUrUrCrGrCrGrArGrArCrArG



sgRNA-A1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7168
MG3-6-hRosa26-
mU*mU*mU*rCrGrCrGrArGrArCrArCrCrArGrGrCrUrArCrCrGr



sgRNA-B1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7169
MG3-6-hRosa26-
mA*mG*mC*rArArGrUrArCrArArCrArArArUrGrGrArArArArGr



sgRNA-C1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7170
MG3-6-hRosa26-
mG*mC*mA*rArArArGrCrUrArArArArUrUrUrUrUrCrUrArUrGr



sgRNA-D1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7171
MG3-6-hRosa26-
mU*mG*mC*rUrArCrArCrUrUrUrGrGrUrGrGrUrGrCrArGrCrG



sgRNA-E1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7172
MG3-6-hRosa26-
mA*mC*mU*rCrCrCrCrUrGrCrArGrGrGrCrArArCrGrCrCrCrGr



sgRNA-F1
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7173
MG3-6-hRosa26-
mC*mG*mA*rCrUrCrGrArCrArUrGrGrArGrGrCrGrArUrGrArG



sgRNA-G1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7174
MG3-6-hRosa26-
mA*mU*mC*rArCrGrCrGrArGrGrArGrGrArArArGrGrArGrGrG



sgRNA-H1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7175
MG3-6-hRosa26-
mA*mG*mG*rArArArGrGrArGrGrGrArGrGrGrCrUrUrCrUrUrG



sgRNA-A2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7176
MG3-6-hRosa26-
mA*mC*mC*rUrCrCrUrCrCrArCrCrGrCrArGrCrUrCrCrCrUrGr



sgRNA-B2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUmUmU*mU





7177
MG3-6-hRosa26-
mG*mC*mG*rCrCrUrCrCrCrArCrCrCrArCrArArArCrCrArGrGr



sgRNA-C2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUxmU*mU*mU





7178
MG3-6-hRosa26-
mC*mC*mC*rArCrCrCrCrCrArCrGrArGrUrGrCrCrUrGrUrArGr



sgRNA-D2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7179
MG3-6-hRosa26-
mC*mU*mC*rGrUrGrGrGrGrGrUrGrGrGrGrGrArGrGrArGrCr



sgRNA-E2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArA




rGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





7180
MG3-6-hRosa26-
mG*mC*mU*rGrCrGrGrUrGrGrArGrGrArGrGrUrGrGrArGrArG



sgRNA-F2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7181
MG3-6-hRosa26-
mU*mC*mU*rCrUrGrCrUrGrCrCrUrCrCrCrGrUrCrUrUrGrUrGr



sgRNA-G2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7182
MG3-6-hRosa26-
mC*mU*mC*rCrCrGrUrCrUrUrGrUrArArGrGrArCrCrGrCrCrGr



sgRNA-H2
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7183
MG3-6-hRosa26-
mC*mG*mA*rGrUrCrGrCrUrUrCrUrCrGrArUrUrArUrGrGrGrG



sgRNA-A3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7184
MG3-6-hRosa26-
mA*mU*mU*rArUrGrGrGrCrGrGrGrArUrUrCrUrUrUrUrGrCrG



sgRNA-B3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mUxmU*mU





7185
MG3-6-hRosa26-
mG*mG*mG*rArUrUrCrUrUrUrUrGrCrCrUrArGrGrCrUrUrArG



sgRNA-C3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrUxmUxmU*mU





7186
MG3-6-hRosa26-
mC*mC*mU*rGrCrArGrGrGrGrArGrUrGrArGrCrArGrCrUrGrG



sgRNA-D3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7187
MG3-6-hRosa26-
mA*mC*mU*rCrCrGrArUrUrArGrUrUrUrArUrCrUrUrCrCrCrGr



sgRNA-E3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7188
MG3-6-hRosa26-
mU*mC*mC*rCrArCrGrGrArCrUrArGrArGrUrUrGrGrUrGrUrG



sgRNA-F3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7189
MG3-6-hRosa26-
mA*mA*mA*rUrGrGrArGrCrUrUrArGrUrCrArUrUrCrArCrCrGr



sgRNA-G3
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7190
MG3-6-hRosa26-
mA*mC*mC*rUrGrGrGrGrCrUrGrArUrUrUrUrArUrGrCrArArG



sgRNA-H3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7191
MG3-6-hRosa26-
mG*mC*mU*rGrArUrUrUrUrArUrGrCrArArCrGrArGrArCrUrGr



sgRNA-A4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7192
MG3-6-hRosa26-
mA*mU*mC*rArCrCrUrGrArGrUrUrUrUrArUrArCrCrArUrUrGr



sgRNA-B4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7193
MG3-6-hRosa26-
mG*mC*mU*rGrCrArCrCrArCrCrArArArGrUrGrUrArGrCrArGr



sgRNA-C4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7194
MG3-6-hRosa26-
mU*mU*mC*rCrCrUrCrCrCrUrCrArCrCrCrUrCrUrCrUrCrCrGr



sgRNA-D4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7195
MG3-6-hRosa26-
mG*mC*mC*rUrGrGrUrGrUrCrUrCrGrCrGrArArArCrCrArGrG



sgRNA-E4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrA




rCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7196
MG3-6-hRosa26-
mA*mC*mA*rGrArUrUrGrGrUrUrCrCrArCrCrArCrArArArUrGr



sgRNA-F4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7197
MG3-6-hRosa26-
mC*mA*mC*rCrArCrArArArUrUrArArGrGrCrUrUrGrArGrCrGr



sgRNA-G4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7198
MG3-6-hRosa26-
mC*mA*mU*rUrUrUrArUrCrCrUrUrUrUrUrCrCrUrUrArGrCrGr



sgRNA-H4
UrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArArG




rGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCrAr




CrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGrGr




CrGrGrUrArUrGrU*mU*mU*mU





7199
MG3-6-hRosa26-
ATCTGTCTGGTTTCGCGAGACA



target site-A1






7200
MG3-6-hRosa26-
TTTCGCGAGACACCAGGCTACC



target site-B1






7201
MG3-6-hRosa26-
AGCAAGTACAACAAATGGAAAA



target site-C1






7202
MG3-6-hRosa26-
GCAAAAGCTAAAATTTTTCTAT



target site-D1






7203
MG3-6-hRosa26-
TGCTACACTTTGGTGGTGCAGC



target site-E1






7204
MG3-6-hRosa26-
ACTCCCCTGCAGGGCAACGCCC



target site-F1






7205
MG3-6-hRosa26-
CGACTCGACATGGAGGCGATGA



target site-G1






7206
MG3-6-hRosa26-
ATCACGCGAGGAGGAAAGGAGG



target site-H1






7207
MG3-6-hRosa26-
AGGAAAGGAGGGAGGGCTTCTT



target site-A2






7208
MG3-6-hRosa26-
ACCTCCTCCACCGCAGCTCCCT



target site-B2






7209
MG3-6-hRosa26-
GCGCCTCCCACCCACAAACCAG



target site-C2






7210
MG3-6-hRosa26-
CCCACCCCCACGAGTGCCTGTA



target site-D2






7211
MG3-6-hRosa26-
CTCGTGGGGGTGGGGGAGGAGC



target site-E2






7212
MG3-6-hRosa26-
GCTGCGGTGGAGGAGGTGGAGA



target site-F2






7213
MG3-6-hRosa26-
TCTCTGCTGCCTCCCGTCTTGT



target site-G2






7214
MG3-6-hRosa26-
CTCCCGTCTTGTAAGGACCGCC



target site-H2






7215
MG3-6-hRosa26-
CGAGTCGCTTCTCGATTATGGG



target site-A3






7216
MG3-6-hRosa26-
ATTATGGGGGGATTCTTTTGC



target site-B3






7217
MG3-6-hRosa26-
GGGATTCTTTTGCCTAGGCTTA



target site-C3






7218
MG3-6-hRosa26-
CCTGCAGGGGAGTGAGCAGCTG



target site-D3






7219
MG3-6-hRosa26-
ACTCCGATTAGTTTATCTTCCC



target site-E3






7220
MG3-6-hRosa26-
TCCCACGGACTAGAGTTGGTGT



target site-F3






7221
MG3-6-hRosa26-
AAATGGAGCTTAGTCATTCACC



target site-G3






7222
MG3-6-hRosa26-
ACCTGGGGCTGATTTTATGCAA



target site-H3






7223
MG3-6-hRosa26-
GCTGATTTTATGCAACGAGACT



target site-A4






7224
MG3-6-hRosa26-
ATCACCTGAGTTTTATACCATT



target site-B4






7225
MG3-6-hRosa26-
GCTGCACCACCAAAGTGTAGCA



target site-C4






7226
MG3-6-hRosa26-
TTCCCTCCCTCACCCTCTCTCC



target site-D4






7227
MG3-6-hRosa26-
GCCTGGTGTCTCGCGAAACCAG



target site-E4






7228
MG3-6-hRosa26-
ACAGATTGGTTCCACCACAAAT



target site-F4






7229
MG3-6-hRosa26-
CACCACAAATTAAGGCTTGAGC



target site-G4






7230
MG3-6-hRosa26-
CATTTTATCCTTTTTCCTTAGC



target site-H4





r = native ribose base, m = 2′-O methyl modified base, F = 2′ Fluro modified base, * = phosphorothioate bond






Example 25—Gene Editing Outcomes at the DNA Level for TRAC and AAVS1 in K562 Cells

Nucleofection of MG21-1, MG23-1, MG73-1, MG89-2, and MG71-2 mRNA along with the matching guide RNA (500 ng mRNA/150 pmol guide) was performed into K562 cells (200,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared three days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA. The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 18).









TABLE 15







Guide RNAs and Sequences Targeted for Example 25 When Targeting TRAC









SEQ




ID




NO:
NAME
SEQUENCE





7231
MG21-1-TRAC-
mC*mA*mC*rCrUrUrCrUrUrCrCrCrCrArGrCrCrCrArGrGrUrGr



sgRNA-H9
UrUrGrUrArGrUrUrCrCrCrCrUrUrUrUrGrArArArArArArArGrU




rGrUrGrUrUrArCrUrGrCrArArUrArArGrGrUrArArArArCrArCr




CrArCrGrArArGrCrUrCrUrGrCrCrCrUrArArCrUrGrCrCrUrUrA




rGrCrArGrUrUrArGrGrGrCrArUrC*mU*mU*mU





7232
MG21-1-TRAC-
mC*mA*mA*rGrArGrCrArArCrArGrUrGrCrUrGrUrGrGrCrCrG



sgRNA-B7
rUrUrGrUrArGrUrUrCrCrCrCrUrUrUrUrGrArArArArArArArGr




UrGrUrGrUrUrArCrUrGrCrArArUrArArGrGrUrArArArArCrArC




rCrArCrGrArArGrCrUrCrUrGrCrCrCrUrArArCrUrGrCrCrUrUr




ArGrCrArGrUrUrArGrGrGrCrArUrC*mU*mU*mU





7233
MG21-1-TRAC-
mA*mG*mA*rCrArUrGrArGrGrUrCrUrArUrGrGrArCrUrUrCrG



sgRNA-D6
rUrUrGrUrArGrUrUrCrCrCrCrUrUrUrUrGrArArArArArArArGr




UrGrUrGrUrUrArCrUrGrCrArArUrArArGrGrUrArArArArCrArC




rCrArCrGrArArGrCrUrCrUrGrCrCrCrUrArArCrUrGrCrCrUrUr




ArGrCrArGrUrUrArGrGrGrCrArUrC*mU*mU*mU





7234
MG21-1-TRAC-
mC*mC*mA*rArArGrCrUrGrCrCrCrUrUrArCrCrUrGrGrGrCrGr



sgRNA-C10
UrUrGrUrArGrUrUrCrCrCrCrUrUrUrUrGrArArArArArArArGrU




rGrUrGrUrUrArCrUrGrCrArArUrArArGrGrUrArArArArCrArCr




CrArCrGrArArGrCrUrCrUrGrCrCrCrUrArArCrUrGrCrCrUrUrA




rGrCrArGrUrUrArGrGrGrCrArUrC*mU*mU*mU





7235
MG21-1-TRAC-target
CACCTTCTTCCCCAGCCCAGGT



site-H9






7236
MG21-1-TRAC-target
CAAGAGCAACAGTGCTGTGGCC



site-B7






7237
MG21-1-TRAC-target
AGACATGAGGTCTATGGACTTC



site-D6






7238
MG21-1-TRAC-target
CCAAAGCTGCCCTTACCTGGGC



site-C10






7239
MG23-1-TRAC-
mC*mC*mG*rUrGrUrArCrCrArGrCrUrGrArGrArGrArCrUrCrG



sgRNA-E1
rUrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7240
MG23-1-TRAC-
mU*mU*mG*rGrGrUrUrCrCrGrArArUrCrCrUrCrCrUrCrCrUrGr



sgRNA-H8
UrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7241
MG23-1-TRAC-
mA*mC*mA*rGrUrGrCrUrGrUrGrGrCrCrUrGrGrArGrCrArArG



sgRNA-A3
rUrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7242
MG23-1-TRAC-
mU*mG*mA*rArArGrUrUrUrArGrGrUrUrCrGrUrArUrCrUrGrG



sgRNA-C10
rUrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7243
MG23-1-TRAC-
mG*mC*mU*rUrGrArCrArUrCrArCrArGrGrArArCrUrUrUrCrGr



sgRNA-H7
UrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7244
MG23-1-TRAC-
mA*mA*mC*rCrCrArArUrCrArCrUrGrArCrArGrGrUrUrUrUrGr



sgRNA-B10
UrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7245
MG23-1-TRAC-
mC*mC*mU*rGrUrGrArUrGrUrCrArArGrCrUrGrGrUrCrGrArG



sgRNA-H6
rUrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrUxmU*mU*mU





7246
MG23-1-TRAC-
mU*mA*mG*rArCrCrCrCrUrGrUrCrUrUrArCrCrUrGrUrUrUrGr



sgRNA-E7
UrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7247
MG23-1-TRAC-
mA*mG*mC*rCrGrCrArGrCrGrUrCrArUrGrArGrCrArGrArUrG



sgRNA-C9
rUrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7248
MG23-1-TRAC-target
CCGTGTACCAGCTGAGAGACTC



site-E1






7249
MG23-1-TRAC-target
TTGGGTTCCGAATCCTCCTCCT



site-H8






7250
MG23-1-TRAC-target
ACAGTGCTGTGGCCTGGAGCAA



site-A3






7251
MG23-1-TRAC-target
TGAAAGTTTAGGTTCGTATCTG



site-C10






7252
MG23-1-TRAC-target
GCTTGACATCACAGGAACTTTC



site-H7






7253
MG23-1-TRAC-target
AACCCAATCACTGACAGGTTTT



site-B10






7254
MG23-1-TRAC-target
CCTGTGATGTCAAGCTGGTCGA



site-H6






7255
MG23-1-TRAC-target
TAGACCCCTGTCTTACCTGTTT



site-E7






7256
MG23-1-TRAC-target
AGCCGCAGCGTCATGAGCAGAT



site-C9






7269
MG73-1-TRAC-
mU*mC*mU*rUrGrGrUrUrUrUrArCrArGrArUrArCrGrArArCrCr



sgRNA-G3
UrGrUrUrArUrArGrUrGrGrGrArArArUrCrArCrUrArUrArArUrA




rArGrUrGrArArArUrCrGrCrArArGrGrCrUrCrUrGrUrUrCrUrUr




GrArArCrArUrCrCrUrUrUrArUrUrArUrArArArArCrUrCrCrUrG




rCrCrArArUrCrGrGrUrUrGrGrGrArGrU*mU*mU*mU





7270
MG73-1-TRAC-target
TCTTGGTTTTACAGATACGAACCT



site-G3






7271
MG89-2-TRAC-
mA*mU*mA*rUrCrCrArGrArArCrCrCrUrGrArCrCrCrUrGrCrCr



sgRNA-F1
GrGrUrUrGrUrArGrCrUrUrCrCrUrUrGrArArGrArArArUrUrCrA




rArCrGrUrUrGrUrUrArCrArArUrArArGrGrUrUrUrUrCrGrArAr




ArGrArUrUrArCrCrGrArArCrCrCrGrCrCrCrUrCrArCrUrUrArG




rGrUrGrArGrGrGrCrU*mU*mU*mU





7272
MG89-2-TRAC-
mG*mG*mC*rCrArCrUrUrUrCrArGrGrArGrGrArGrGrArUrUrC



sgRNA-G5
rGrGrUrUrGrUrArGrCrUrUrCrCrUrUrGrArArGrArArArUrUrCr




ArArCrGrUrUrGrUrUrArCrArArUrArArGrGrUrUrUrUrCrGrArA




rArGrArUrUrArCrCrGrArArCrCrCrGrCrCrCrUrCrArCrUrUrAr




GrGrUrGrArGrGrGrCrU*mU*mU*mU





7273
MG89-2-TRAC-
mC*mG*mC*rArGrCrGrUrCrArUrGrArGrCrArGrArUrUrArArAr



sgRNA-E5
CrGrUrUrGrUrArGrCrUrUrCrCrUrUrGrArArGrArArArUrUrCrA




rArCrGrUrUrGrUrUrArCrArArUrArArGrGrUrUrUrUrCrGrArAr




ArGrArUrUrArCrCrGrArArCrCrCrGrCrCrCrUrCrArCrUrUrArG




rGrUrGrArGrGrGrCrU*mU*mU*mU





7274
MG89-2-TRAC-
mC*mG*mG*rCrCrArCrUrUrUrCrArGrGrArGrGrArGrGrArUrU



sgRNA-F5
rCrGrUrUrGrUrArGrCrUrUrCrCrUrUrGrArArGrArArArUrUrCr




ArArCrGrUrUrGrUrUrArCrArArUrArArGrGrUrUrUrUrCrGrArA




rArGrArUrUrArCrCrGrArArCrCrCrGrCrCrCrUrCrArCrUrUrAr




GrGrUrGrArGrGrGrCrU*mU*mU*mU





7275
MG89-2-TRAC-
mG*mC*mC*rGrUrGrUrArCrCrArGrCrUrGrArGrArGrArCrUrC



sgRNA-G1
rUrGrUrUrGrUrArGrCrUrUrCrCrUrUrGrArArGrArArArUrUrCr




ArArCrGrUrUrGrUrUrArCrArArUrArArGrGrUrUrUrUrCrGrArA




rArGrArUrUrArCrCrGrArArCrCrCrGrCrCrCrUrCrArCrUrUrAr




GrGrUrGrArGrGrGrCrU*mU*mU*mU





7276
MG89-2-TRAC-
mC*mC*mC*rArCrArGrArUrArUrCrCrArGrArArCrCrCrUrGrAr



sgRNA-E1
CrGrUrUrGrUrArGrCrUrUrCrCrUrUrGrArArGrArArArUrUrCrA




rArCrGrUrUrGrUrUrArCrArArUrArArGrGrUrUrUrUrCrGrArAr




ArGrArUrUrArCrCrGrArArCrCrCrGrCrCrCrUrCrArCrUrUrArG




rGrUrGrArGrGrGrCrU*mU*mU*mU





7277
MG89-2-TRAC-
mA*mU*mC*rCrUrCrUrUrGrUrCrCrCrArCrArGrArUrArUrCrCr



sgRNA-B1
ArGrUrUrGrUrArGrCrUrUrCrCrUrUrGrArArGrArArArUrUrCrA




rArCrGrUrUrGrUrUrArCrArArUrArArGrGrUrUrUrUrCrGrArAr




ArGrArUrUrArCrCrGrArArCrCrCrGrCrCrCrUrCrArCrUrUrArG




rGrUrGrArGrGrGrCrUxmU*mU*mU





7278
MG89-2-TRAC-target
ATATCCAGAACCCTGACCCTGCCG



site-F1






7279
MG89-2-TRAC-target
GGCCACTTTCAGGAGGAGGATTCG



site-G5






7280
MG89-2-TRAC-target
CGCAGCGTCATGAGCAGATTAAAC



site-E5






7281
MG89-2-TRAC-target
CGGCCACTTTCAGGAGGAGGATTC



site-F5






7282
MG89-2-TRAC-target
GCCGTGTACCAGCTGAGAGACTCT



site-G1






7283
MG89-2-TRAC-target
CCCACAGATATCCAGAACCCTGAC



site-E1






7284
MG89-2-TRAC-target
ATCCTCTTGTCCCACAGATATCCA



site-B1





r = native ribose base, m = 2′-O methyl modified base, F = 2′ Fluro modified base, * = phosphorothioate bond













TABLE 16







Guide RNAs and Sequences Targeted for Example 25 When Targeting AAVS1









SEQ




ID




NO:
NAME
SEQUENCE





7257
MG23-1-AAVS1-
mG*mC*mU*rArCrUrGrGrCrCrUrUrArUrCrUrCrArCrArGrGrGr



sgRNA-B1
UrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7258
MG23-1-AAVS1-
mC*mU*mA*rCrUrGrGrCrCrUrUrArUrCrUrCrArCrArGrGrUrGr



sgRNA-C1
UrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7259
MG23-1-AAVS1-
mA*mC*mU*rGrArCrGrCrArCrGrGrArGrGrArArCrArArUrArG



sgRNA-G1
rUrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7260
MG23-1-AAVS1-
mG*mG*mA*rArCrArArUrArUrArArArUrUrGrGrGrGrArCrUrG



sgRNA-B2
rUrUrUrGrArGrArArCrCrUrGrArArArArGrGrUrGrArGrUrGrCr




ArArArUrArArGrGrUrUrUrArArCrCrGrArArArUrUrGrUrUrUrA




rCrCrUrGrCrArUrUrGrUrGrCrArGrUrArUrArArGrArArArGrAr




CrCrGrCrGrArGrGrUrCrU*mU*mU*mU





7261
MG23-1-AAVS1-target
GCTACTGGCCTTATCTCACAGG



site-B1






7262
MG23-1-AAVS1-target
CTACTGGCCTTATCTCACAGGT



site-C1






7263
MG23-1-AAVS1-target
ACTGACGCACGGAGGAACAATA



site-G1






7264
MG23-1-AAVS1-target
GGAACAATATAAATTGGGGACT



site-B2






7265
MG71-2-AAVS1-
mG*mG*mA*rGrArGrGrGrUrArGrCrGrCrArGrGrGrUrGrGrUrU



sgRNA-C3
rUrGrArGrArGrUrGrArGrArArArUrCrArCrGrArGrUrUrCrArAr




ArArArArCrArUrGrArUrUrUrArUrUrCrArArArCrCrGrUrCrUrU




rCrUrUrCrGrGrArArGrGrCrCrCrCrArCrArGrUrGrUrGrUrGrGr




ArCrArGrUrArArArGrCrUrUrGrCrUrUrCrGrGrCrArArGrCrU*




mU*mU*mU





7266
MG71-2-AAVS1-
mG*mC*mC*rCrUrGrCrCrArGrGrArCrGrGrGrGrCrUrGrGrUrU



sgRNA-E2
rUrGrArGrArGrUrGrArGrArArArUrCrArCrGrArGrUrUrCrArAr




ArArArArCrArUrGrArUrUrUrArUrUrCrArArArCrCrGrUrCrUrU




rCrUrUrCrGrGrArArGrGrCrCrCrCrArCrArGrUrGrUrGrUrGrGr




ArCrArGrUrArArArGrCrUrUrGrCrUrUrCrGrGrCrArArGrCrU*




mU*mU*mU





7267
MG71-2-AAVS1-target
GGAGAGGGTAGCGCAGGGTG



site-C3






7268
MG71-2-AAVS1-target
GCCCTGCCAGGACGGGGCTG



site-E2





r = native ribose base, m = 2′-O methyl modified base, F = 2′ Fluro modified base, * = phosphorothioate bond






Example 26—MG3-6 Nuclease Guide Screen for Human HAO-1 Gene Using mRNA Transfection of Hep3B Cells

Guide RNAs for the MG3-6 nuclease targeting exons 1 to 4 of the human HAO-1 gene (encodes glycolate oxidase) were identified in silico by searching for the PAM sequence 5′ NNRGRYY 3′. A total of 21 guides with the fewest predicted off-target sites in the human genome were chemically synthesized as single guide RNAs with AltR1/AltR2 end-modifications (IDT). The full sequences of the sgRNA are SEQ ID NOs: 11352-11372.









TABLE 17







Guide sequences used in Example 26









SEQ




ID




NO:
Entity Name
Sequence





11352
hH36-1
AAUUAGCCGGGGGAGCAUUUUCGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11353
hH36-2
CCCAGACCUGUAAUAGUCAUAUGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11354
hH36-3
CCAAAGUCUAUAUAUGACUAUUGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11355
hH36-4
CAAAGUUUCUUCAUCAUUUGCCGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11356
hH36-5
GAUGCUCCGGAAUGUUGCUGAAGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11357
hH36-6
CUCUGUCCUAAAACAGAAGUCGGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11358
hH36-7
UGUCGACUUCUGUUUUAGGACAGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11359
hH36-8
GGGUCAGCAUGCCAAUAUGUGUGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11360
hH36-9
UCAUGCCCGUUCCCAGGGACUGGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11361
hH36-10
ACUCAACAUCAUGCCCGUUCCCGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11362
hH36-11
GAACGGGCAUGAUGUUGAGUUCGUUGAGAAUCGAAAGAUUCUUAAUAAG




GCAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGG




CGGUAUGUUUU





11363
hH36-12
AGUUGCAGCCAACGAAGUGCCUGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11364
hH36-13
UUGGCUGCAACUGUAUAUCUACGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11365
hH36-14
GCUAGUGCGGCAGGCAGAGAAGGUUGAGAAUCGAAAGAUUCUUAAUAAG




GCAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGG




CGGUAUGUUUU





11366
hH36-15
GGCAGGCAGAGAAGAUGGGCUAGUUGAGAAUCGAAAGAUUCUUAAUAAG




GCAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGG




CGGUAUGUUUU





11367
hH36-16
AACCGUCUGGAUGAUGUGCGUAGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11368
hH36-17
GAGGAAAAUUUUGGAGACGACAGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11369
hH36-18
UGCUGCAUAUGUGGCUAAAGCAGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11370
hH36-19
UUGAUAUCUUCCCAGCUGAUAGGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11371
hH36-20
UGGGAAGAUAUCAAAUGGCUGAGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU





11372
hH36-21
AAUUGUUGCAAAGGGCAUUUUGGUUGAGAAUCGAAAGAUUCUUAAUAAGG




CAUCCUUCCGAUGCUGACUUCUCACCGUCCGUUUUCCAAUAGGAGCGGGC




GGUAUGUUUU









Hep3B Transfection Protocol

The mRNA encoding MG3-6 was generated by T7 polymerase in vitro transcription of a plasmid in which the coding sequence of MG3-6 had been cloned. The MG3-6 coding sequence was codon optimized using human codon usage tables and flanked by nuclear localization signals derived from SV40 (at the N-terminus) and from Nucleoplasmin (at the C-terminus). In addition, a 5′ untranslated region (5′ UTR) was included at the 5′ end of the coding sequence to improve translation. A 3′ UTR followed by an approximately 90 to 110 nucleotide poly A tract was included in the mRNA (encoded in the plasmid) at the 3′ end of the coding sequence to improve mRNA stability in vivo. The DNA sequence that encodes the MG3-6 mRNA without the polyA tail is shown in SEQ ID 22. The in vitro transcription reaction included the Clean Cap® capping reagent (Trilink BioTechnologies) and the resulting RNA was purified using the MEGAClear™ Transcription Clean-Up kit (Invitrogen) and purity was evaluated using the TapeStation (Agilent) and found to be composed of >90% full length RNA.


300 ng of MG3-6 mRNA and 120 ng of each single guide RNA were transfected into Hep3B cells as follows. One day prior to transfection, Hep3B cells that had been cultured for less than 10 days in EMEM-10% FBS-2 mM glutamine-1% NEAA media, without Pen/Step, were seeded into a TC-treated 24 well plate. Cells were counted, and the equivalent volume to 60,000 viable cells were added to each well. Additional pre-equilibrated media was added to each well to bring the total volume to 500 μL. On the day of transfection, 25 μL of OptiMEM media and 1.25 μL of Lipofectamine Messenger Max Solution (Thermo Fisher) were mixed in a master mix solution, vortexed, and allowed to sit for at least 5 minutes at room temperature. In separate tubes, 300 ng of the MG3-6/3-4 mRNA and 120 ng of the sgRNA were mixed with 25 μL of OptiMEM media and vortexed briefly. The appropriate volume of MessengerMax solution was added to each RNA solution, mixed by flicking the tube, and briefly spun down at a low speed. The complete editing reagent solutions were allowed to incubate for 10 minutes at room temperature, then added directly to the Hep3B cells. Two days post transfection, the media was aspirated from each well of Hep3B cells and genomic DNA was purified by automated magnetic bead purification on the KingFisher Flex robot with the MagMAX™ DNA Multi-Sample Ultra 2.0 Kit.


PCR Amplification and Editing Analysis by Sanger Sequencing

HAO-1 gene sequences targeted by the different sgRNA were amplified by PCR from purified genomic DNA using the exon-specific primers of Table 18 and Phusion Flash High-Fidelity PCR Master Mix (Thermo Fisher).









TABLE 18







Primers designed for the human HAO1 gene, used for PCR at each of the first


four exons, and for Sanger sequencing.










Target





Exon
Use
Primer Name
Primer Sequence





Human
Fwd PCR
PCR_hHe1_F_+490
TTTCATGGATGCCCCGTTCA


HAO1
Rev PCR
PCR_hHe1_R_−412
ACGAAAAGCCAGCAGGAAGA


Exon 1
Sequencing
Seq_hHe1_R_−121
AGCCCCAAGAACTTTTCCCT





Human
Fwd PCR
PCR_hHe2_F_+391
TGCATCAGTGGTTGTCAGGG


HAO1
Rev PCR
PCR_hHe2_R_−387
CCTAGCTGTGACTTTGGGCA


Exon 2
Sequencing
Seq_hHe2_R_−152
TGGAAAGAAGAGGAGCAGGAC





Human
Fwd PCR
PCR_hHe3_F_+238
AGGCTGGATGTTCAGGTTCTT


HAO1
Rev PCR
PCR_hHe3_R_−212
TCCCAAAGCCAAAGCCCTTA


Exon 3
Sequencing
Seq_hHe3_F_+186
AGCAGAAATAACTCCAGTAGCCA





Human
Fwd PCR
PCR_hHe4_F_+324
GCTGGCTGAAAATCGTGTCAA


HAO1
Rev PCR
PCR_hHe4_R_−348
TCCTTGGGGCTTCTCTTTGG


Exon 4
Sequencing
Seq_hHe4_F_+174
ACTGATTAAGACCACTAGAGTATCACA









PCR products were purified and concentrated using DNA clean & concentrator 5 (Zymo Research) and 40 ng of PCR product subjected to Sanger sequencing (ELIM Biosciences).


The Sanger sequencing chromatograms were analyzed for insertions and deletions (INDELS) at the predicted target site for each sgRNA by an algorithm called Tracking of Indels by DEcomposition (TIDE) as described by Brinkman et al. (Nucleic Acids Res. 2014 Dec. 16; 42(22): e168. Published online 2014 Oct. 9. doi: 10.1093/nar/gku936). From this screen guides hH364-1, 14, and 15 were identified as having the highest editing activity in Hep3B cells (FIG. 19 and Table 19).









TABLE 19







Editing activity of MG3-6 guides at human HAO1 gene delivered by mRNA


transfection














Editing






Activity in



Guide


Hep3B (Average
Spacer Sequence


Name
PAM
Spacer Sequence
% indels)
SEQ ID NO:





hH36-1
ACAGG
AATTAGCCGGGGGAGCA
34.0
11773



TT
TTTTC







hH36-2
ATAGA
CCCAGACCTGTAATAGT
 0.0
11774



CT
CATAT







hH36-3
ACAGG
CCAAAGTCTATATATGA
 4.0
11775



TC
CTATT







hH36-4
CCAGA
CAAAGTTTCTTCATCATT
 0.0
11776



CC
TGCC







hH36-5
ACAGA
GATGCTCCGGAATGTTG
 0.0
11777



TC
CTGAA







hH36-6
ACAGA
CTCTGTCCTAAAACAGA
 0.0
11778



TC
AGTCG







hH36-7
GAGGG
TGTCGACTTCTGTTTTAG
 1.0
11779



TC
GACA







hH36-8
GGGGG
GGGTCAGCATGCCAATA
10.5
11780



CT
TGTGT







hH36-9
ACAGG
TCATGCCCGTTCCCAGG
 0.0
11781



CT
GACTG







hH36-10
AGGGA
ACTCAACATCATGCCCG
 0.0
11782



CT
TTCCC







hH36-11
CTGGG
GAACGGGCATGATGTTG
 0.0
11783



CC
AGTTC







hH36-12
CAGGA
AGTTGCAGCCAACGAAG
 0.0
11784



CC
TGCCT







hH36-13
AAGGA
TTGGCTGCAACTGTATAT
 0.0
11785



CC
CTAC







hH36-14
ATGGG
GCTAGTGCGGCAGGCAG
19.5
11786



CT
AGAAG







hH36-15
CAAGG
GGCAGGCAGAGAAGATG
14.5
11787



CC
GGCTA







hH36-16
ACAGA
AACCGTCTGGATGATGT
 0.0
11788



TT
GCGTA







hH36-17
GTGGA
GAGGAAAATTTTGGAGA
 0.0
11789



CT
CGACA







hH36-18
ATAGA
TGCTGCATATGTGGCTA
 0.0
11790



CC
AAGCA







hH36-19
ATGGG
TTGATATCTTCCCAGCTG
 8.5
11791



TC
ATAG







hH36-20
GAAGA
TGGGAAGATATCAAATG
 0.0
11792



CT
GCTGA







hH36-21
AGAGG
AATTGTTGCAAAGGGCA
 5.0
11793



TT
TTTTG









Example 27—Gene Editing Outcomes at the DNA Level for Human GPR146

Nucleofection of MG3-6 RNPs (104 pmol protein/120 pmol guide) (SEQ ID NOs: 11374-11405) was performed into Hep3B cells (100,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared three days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA (SEQ ID NOs: 11406-11437). The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 20).









TABLE 20







Guide RNAs and Sequences Targeted for Example 25 When Targeting GPR146









SEQ




ID NO:
NAME
SEQUENCE





11374
MG3-6-human
mA*mG*mC*rUrGrCrArGrCrUrGrGrUrUrCrArArCrGrGrCrAr



GPR146-A1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11375
MG3-6-human
mG*mG*mU*rGrGrArGrGrArGrCrUrGrCrCrUrGrCrCrUrGrCr



GPR146-B1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUxmU*mU*mU





11376
MG3-6-human
mC*mC*mU*rGrCrCrUrGrCrCrArGrGrArCrCrUrGrCrArGrCrG



GPR146-C1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11377
MG3-6-human
mG*mG*mG*rGrCrUrGrUrCrArCrUrGrUrUrGrUrCrGrCrUrGr



GPR146-D1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11378
MG3-6-human
mG*mG*mG*rCrCrUrGrGrUrGrGrUrGrGrGrCrGrUrGrCrCrAr



GPR146-E1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11379
MG3-6-human
mU*mG*mG*rUrGrCrUrGrGrCrCrArArCrCrUrArCrArCrArGrG



GPR146-F1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11380
MG3-6-human
mG*mU*mA*rCrUrUrUrGrUrCrArArCrArUrGrGrCrArGrUrGrG



GPR146-G1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11381
MG3-6-human
mG*mC*mG*rGrCrGrArArGrUrCrCrArCrGrUrGrGrCrArCrUr



GPR146-H1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11382
MG3-6-human
mA*mC*mU*rArCrArUrCrGrArGrCrGrUrGrCrArCrUrGrCrCrG



GPR146-A2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11383
MG3-6-human
mC*mG*mU*rCrCrGrCrArGrGrGrArGrGrArCrArCrGrCrCrCr



GPR146-B2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11384
MG3-6-human
mG*mG*mA*rCrArCrGrCrCrCrCrUrGrGrArCrCrGrGrGrArCr



GPR146-C2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11385
MG3-6-human
mG*mG*mC*rCrGrGrCrUrGrGrArGrCrCrCrUrCrGrGrCrArCr



GPR146-D2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11386
MG3-6-human
mG*mU*mG*rGrCrCrArCrCrGrUrGrUrGrCrArCrGrCrArGrUr



GPR146-E2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11387
MG3-6-human
mA*mA*mG*rCrCrCrGrUrGrGrArCrGrCrArCrArCrUrArCrCrG



GPR146-F2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11388
MG3-6-human
mC*mC*mU*rGrGrGrGrCrUrArCrUrGrCrArCrUrUrUrGrUrGr



GPR146-G2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11389
MG3-6-human
mG*mC*mU*rGrArUrGrArArArArArGrCrUrGrCrCrCrUrGrCrG



GPR146-H2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11390
MG3-6-human
mC*mU*mG*rCrGrGrGrGrArCrCrGrGrCrArCrUrGrCrUrCrCr



GPR146-A3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11391
MG3-6-human
mG*mU*mG*rGrUrGrUrCrArCrArArArGrCrUrGrCrUrGrGrAr



GPR146-B3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11392
MG3-6-human
mU*mA*mG*rCrCrCrCrArGrGrUrArGrUrGrUrGrCrGrUrCrCr



GPR146-C3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11393
MG3-6-human
mA*mG*mA*rUrGrArUrGrArCrCrGrUrGrUrGrCrCrCrCrArGr



GPR146-D3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11394
MG3-6-human
mG*mG*mC*rCrArCrCrArGrCrArGrCrCrUrGrUrGrUrGrCrCr



GPR146-E3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11395
MG3-6-human
mG*mC*mG*rUrGrUrUrGrUrArCrArCrGrCrUrGrGrCrCrArUr



GPR146-F3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11396
MG3-6-human
mA*mG*mU*rGrCrArCrGrCrUrCrGrArUrGrUrArGrUrGrGrUr



GPR146-G3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11397
MG3-6-human
mC*mC*mA*rCrCrArGrUrGrArGrGrArCrArCrArUrUrGrArArG



GPR146-H3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11398
MG3-6-human
mU*mG*mA*rArGrGrGrGrArUrCrUrGrCrArGrUrGrCrCrArCr



GPR146-A4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11399
MG3-6-human
mC*mA*mC*rArGrCrGrCrCrCrArCrCrGrGrGrArGrCrUrCrGr



GPR146-B4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11400
MG3-6-human
mU*mC*mG*rGrGrGrGrGrCrCrGrArGrCrArGrGrUrGrCrArCr



GPR146-C4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11401
MG3-6-human
mA*mC*mA*rGrGrGrGrCrCrArGrGrGrCrGrCrUrGrArGrCrAr



GPR146-D4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUmU*mU*mU





11402
MG3-6-human
mA*mU*mG*rGrUrCrArUrGrCrUrGrGrCrCrUrUrGrCrUrGrUr



GPR146-E4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11403
MG3-6-human
mA*mG*mC*rArCrCrArGrCrArGrGrGrCrGrUrUrGrUrArGrCr



GPR146-F4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11404
MG3-6-human
mA*mG*mG*rCrCrCrArCrUrGrGrCrArCrGrCrCrCrArCrCrArG



GPR146-G4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11405
MG3-6-human
mG*mA*mC*rArArCrArGrUrGrArCrArGrCrCrCrCrArGrCrUrG



GPR146-H4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11406
MG3-6-human
AGCTGCAGCTGGTTCAACGGCA



GPR146-A1






11407
MG3-6-human
GGTGGAGGAGCTGCCTGCCTGC



GPR146-B1






11408
MG3-6-human
CCTGCCTGCCAGGACCTGCAGC



GPR146-C1






11409
MG3-6-human
GGGGCTGTCACTGTTGTCGCTG



GPR146-D1






11410
MG3-6-human
GGGCCTGGTGGTGGGCGTGCCA



GPR146-E1






11411
MG3-6-human
TGGTGCTGGCCAACCTACACAG



GPR146-F1






11412
MG3-6-human
GTACTTTGTCAACATGGCAGTG



GPR146-G1






11413
MG3-6-human
GCGGCGAAGTCCACGTGGCACT



GPR146-H1






11414
MG3-6-human
ACTACATCGAGCGTGCACTGCC



GPR146-A2






11415
MG3-6-human
CGTCCGCAGGGAGGACACGCCC



GPR146-B2






11416
MG3-6-human
GGACACGCCCCTGGACCGGGAC



GPR146-C2






11417
MG3-6-human
GGCCGGCTGGAGCCCTCGGCAC



GPR146-D2






11418
MG3-6-human
GTGGCCACCGTGTGCACGCAGT



GPR146-E2






11419
MG3-6-human
AAGCCCGTGGACGCACACTACC



GPR146-F2






11420
MG3-6-human
CCTGGGGCTACTGCACTTTGTG



GPR146-G2






11421
MG3-6-human
GCTGATGAAAAAGCTGCCCTGC



GPR146-H2






11422
MG3-6-human
CTGCGGGGACCGGCACTGCTCC



GPR146-A3






11423
MG3-6-human
GTGGTGTCACAAAGCTGCTGGA



GPR146-B3






11424
MG3-6-human
TAGCCCCAGGTAGTGTGCGTCC



GPR146-C3






11425
MG3-6-human
AGATGATGACCGTGTGCCCCAG



GPR146-D3






11426
MG3-6-human
GGCCACCAGCAGCCTGTGTGCC



GPR146-E3






11427
MG3-6-human
GCGTGTTGTACACGCTGGCCAT



GPR146-F3






11428
MG3-6-human
AGTGCACGCTCGATGTAGTGGT



GPR146-G3






11429
MG3-6-human
CCACCAGTGAGGACACATTGAA



GPR146-H3






11430
MG3-6-human
TGAAGGGGATCTGCAGTGCCAC



GPR146-A4






11431
MG3-6-human
CACAGCGCCCACCGGGAGCTCG



GPR146-B4






11432
MG3-6-human
TCGGGGGGCCGAGCAGGTGCAC



GPR146-C4






11433
MG3-6-human
ACAGGGGCCAGGGCGCTGAGCA



GPR146-D4






11434
MG3-6-human
ATGGTCATGCTGGCCTTGCTGT



GPR146-E4






11435
MG3-6-human
AGCACCAGCAGGGCGTTGTAGC



GPR146-F4






11436
MG3-6-human
AGGCCCACTGGCACGCCCACCA



GPR146-G4






11437
MG3-6-human
GACAACAGTGACAGCCCCAGCT



GPR146-H4





r = native ribose base, m = 2′-O methyl modified base, F = 2′ Fluro modified base, * = phosphorothioate bond






Example 28—Gene Editing Outcomes at the DNA Level for Mouse GPR146 in Hepa1-6 Cells

Nucleofection of MG3-6 RNPs (104 pmol protein/120 pmol guide) (SEQ ID NOs: 11438-11472) was performed into Hepa1-6 cells (100,000) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared five days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA (SEQ ID NOs: 11473-11507). The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 21).









TABLE 21







Guide RNAs and Sequences Targeted for Example 25 When Targeting GPR146









SEQ




ID NO:
NAME
SEQUENCE





11438
MG3-6-mouse
mG*mU*mG*rGrCrCrCrArCrUrCrArArCrArGrCrArCrArGrCrG



GPR146-A1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11439
MG3-6-mouse
mC*mC*mG*rCrUrGrUrGrCrCrGrGrArArCrCrUrGrCrGrCrCr



GPR146-B1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11440
MG3-6-mouse
mG*mC*mC*rGrGrArArCrCrUrGrCrGrCrCrUrGrGrGrGrCrUr



GPR146-C1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11441
MG3-6-mouse
mU*mC*mU*rCrGrCrUrGrCrUrCrUrArCrCrUrGrGrGrGrGrCr



GPR146-D1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11442
MG3-6-mouse
mG*mG*mG*rGrGrCrArGrGrGrGrUrCrCrCrUrGrUrGrArGrCr



GPR146-E1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11443
MG3-6-mouse
mU*mA*mC*rUrUrCrGrUrGrArArCrArUrGrGrCrCrGrUrGrGr



GPR146-F1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11444
MG3-6-mouse
mG*mG*mC*rArCrUrGrGrCrArCrCrUrGrCrGrUrArCrCrUrGr



GPR146-G1
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11445
MG3-6-mouse
mU*mG*mU*rUrGrGrGrCrCrCrUrGrCrCrCrArCrUrCrCrArGrG



GPR146-H1
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11446
MG3-6-mouse
mG*mG*mG*rCrCrCrUrGrUrGrGrArGrCrCrUrCrArGrCrArGr



GPR146-A2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11447
MG3-6-mouse
mU*mG*mU*rGrCrUrCrArUrCrGrGrCrUrArCrGrUrGrGrUrGr



GPR146-B2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11448
MG3-6-mouse
mA*mA*mU*rCrGrGrGrArArGrGrArArGrArCrArCrArCrCrCrG



GPR146-C2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11449
MG3-6-mouse
mA*mC*mA*rCrCrCrCrUrGrGrArCrCrArGrGrArCrArCrCrArG



GPR146-D2
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11450
MG3-6-mouse
mC*mC*mU*rGrGrArCrCrArGrGrArCrArCrCrArGrCrArGrGr



GPR146-E2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11451
MG3-6-mouse
mA*mG*mC*rArGrGrCrUrGrGrArCrCrCrCrUrCrGrGrUrGrCr



GPR146-F2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11452
MG3-6-mouse
mA*mC*mA*rCrArGrUrGrCrUrGrArCrGrUrCrArCrGrGrGrGr



GPR146-G2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11453
MG3-6-mouse
mA*mG*mG*rGrGrCrArUrUrArUrCrUrGrGrGrCrArUrCrCrUr



GPR146-H2
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11454
MG3-6-mouse
mU*mC*mU*rGrGrGrCrArUrCrCrUrArCrArGrGrUrUrGrCrUrG



GPR146-A3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11455
MG3-6-mouse
mG*mC*mC*rArUrCrArCrCrUrGrCrUrGrUrArUrCrCrCrCrGrG



GPR146-B3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11456
MG3-6-mouse
mU*mC*mA*rGrCrCrGrCrCrGrGrArGrCrUrUrGrCrCrGrGrGr



GPR146-C3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11457
MG3-6-mouse
mG*mU*mG*rGrUrGrUrCrArCrArGrArArCrUrGrCrUrUrGrAr



GPR146-D3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11458
MG3-6-mouse
mC*mU*mU*rGrArGrArArGrGrCrCrArGrGrArArCrUrUrGrGr



GPR146-E3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11459
MG3-6-mouse
mC*mG*mU*rGrArCrGrUrCrArGrCrArCrUrGrUrGrUrGrCrCr



GPR146-F3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11460
MG3-6-mouse
mA*mG*mG*rCrUrCrArArGrUrArGrUrArArGrGrUrGrUrCrCr



GPR146-G3
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUmU*mU*mU





11461
MG3-6-mouse
mG*mC*mC*rArCrCrArGrCrArGrCrCrUrGrUrGrCrArCrCrGrG



GPR146-H3
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11462
MG3-6-mouse
mA*mG*mU*rGrCrCrArGrGrGrCrArUrArCrArArCrArCrArGrG



GPR146-A4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11463
MG3-6-mouse
mA*mG*mG*rGrCrArCrGrCrUrCrGrArUrGrUrArGrUrArGrUr



GPR146-B4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrUxmU*mU*mU





11464
MG3-6-mouse
mU*mG*mA*rArCrArGrGrArUrGrArGrCrArGrUrGrUrCrArCr



GPR146-C4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11465
MG3-6-mouse
mA*mG*mU*rGrUrCrArCrArUrGrGrGrCrCrUrCrArCrUrGrCrG



GPR146-D4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11466
MG3-6-mouse
mG*mG*mG*rCrCrUrCrArCrUrGrCrUrGrArGrGrCrUrCrCrAr



GPR146-E4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11467
MG3-6-mouse
mC*mA*mC*rArGrGrGrCrCrCrArCrCrUrGrGrArGrUrGrGrGr



GPR146-F4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11468
MG3-6-mouse
mA*mU*mG*rGrUrCrArUrGrGrUrGrUrUrCrUrUrGrCrUrGrGr



GPR146-G4
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11469
MG3-6-mouse
mG*mA*mG*rCrArUrUrArUrArGrCrCrUrArArGrCrUrCrArCrG



GPR146-H4
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11470
MG3-6-mouse
mC*mU*mG*rCrCrCrCrCrArGrGrUrArGrArGrCrArGrCrGrAr



GPR146-A5
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11471
MG3-6-mouse
mG*mA*mG*rArGrGrArCrCrCrArCrArGrCrCrCrCrArGrGrCr



GPR146-B5
GrUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrAr




ArGrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUr




CrArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGr




GrGrCrGrGrUrArUrGrU*mU*mU*mU





11472
MG3-6-mouse
mU*mC*mA*rGrCrCrCrArCrGrCrUrGrUrGrCrUrGrUrUrGrArG



GPR146-C5
rUrUrGrArGrArArUrCrGrArArArGrArUrUrCrUrUrArArUrArAr




GrGrCrArUrCrCrUrUrCrCrGrArUrGrCrUrGrArCrUrUrCrUrCr




ArCrCrGrUrCrCrGrUrUrUrUrCrCrArArUrArGrGrArGrCrGrGr




GrCrGrGrUrArUrGrU*mU*mU*mU





11473
MG3-6-mouse
GTGGCCCACTCAACAGCACAGC



GPR146-A1






11474
MG3-6-mouse
CCGCTGTGCCGGAACCTGCGCC



GPR146-B1






11475
MG3-6-mouse
GCCGGAACCTGCGCCTGGGGCT



GPR146-C1






11476
MG3-6-mouse
TCTCGCTGCTCTACCTGGGGGC



GPR146-D1






11477
MG3-6-mouse
GGGGGCAGGGGTCCCTGTGAGC



GPR146-E1






11478
MG3-6-mouse
TACTTCGTGAACATGGCCGTGG



GPR146-F1






11479
MG3-6-mouse
GGCACTGGCACCTGCGTACCTG



GPR146-G1






11480
MG3-6-mouse
TGTTGGGCCCTGCCCACTCCAG



GPR146-H1






11481
MG3-6-mouse
GGGCCCTGTGGAGCCTCAGCAG



GPR146-A2






11482
MG3-6-mouse
TGTGCTCATCGGCTACGTGGTG



GPR146-B2






11483
MG3-6-mouse
AATCGGGAAGGAAGACACACCC



GPR146-C2






11484
MG3-6-mouse
ACACCCCTGGACCAGGACACCA



GPR146-D2






11485
MG3-6-mouse
CCTGGACCAGGACACCAGCAGG



GPR146-E2






11486
MG3-6-mouse
AGCAGGCTGGACCCCTCGGTGC



GPR146-F2






11487
MG3-6-mouse
ACACAGTGCTGACGTCACGGGG



GPR146-G2






11488
MG3-6-mouse
AGGGGCATTATCTGGGCATCCT



GPR146-H2






11489
MG3-6-mouse
TCTGGGCATCCTACAGGTTGCT



GPR146-A3






11490
MG3-6-mouse
GCCATCACCTGCTGTATCCCCG



GPR146-B3






11491
MG3-6-mouse
TCAGCCGCCGGAGCTTGCCGGG



GPR146-C3






11492
MG3-6-mouse
GTGGTGTCACAGAACTGCTTGA



GPR146-D3






11493
MG3-6-mouse
CTTGAGAAGGCCAGGAACTTGG



GPR146-E3






11494
MG3-6-mouse
CGTGACGTCAGCACTGTGTGCC



GPR146-F3






11495
MG3-6-mouse
AGGCTCAAGTAGTAAGGTGTCC



GPR146-G3






11496
MG3-6-mouse
GCCACCAGCAGCCTGTGCACCG



GPR146-H3






11497
MG3-6-mouse
AGTGCCAGGGCATACAACACAG



GPR146-A4






11498
MG3-6-mouse
AGGGCACGCTCGATGTAGTAGT



GPR146-B4






11499
MG3-6-mouse
TGAACAGGATGAGCAGTGTCAC



GPR146-C4






11500
MG3-6-mouse
AGTGTCACATGGGCCTCACTGC



GPR146-D4






11501
MG3-6-mouse
GGGCCTCACTGCTGAGGCTCCA



GPR146-E4






11502
MG3-6-mouse
CACAGGGCCCACCTGGAGTGGG



GPR146-F4






11503
MG3-6-mouse
ATGGTCATGGTGTTCTTGCTGG



GPR146-G4






11504
MG3-6-mouse
GAGCATTATAGCCTAAGCTCAC



GPR146-H4






11505
MG3-6-mouse
CTGCCCCCAGGTAGAGCAGCGA



GPR146-A5






11506
MG3-6-mouse
GAGAGGACCCACAGCCCCAGGC



GPR146-B5






11507
MG3-6-mouse
TCAGCCCACGCTGTGCTGTTGA



GPR146-C5





r = native ribose base, m = 2′-O methyl modified base, F = 2′ Fluro modified base, * = phosphorothioate bond






Example 29—Gene Editing Outcomes at the DNA Level for Mouse GPR146 in Primary Mouse Hepatocytes

Lipofection with MessengerMax of MG3-6 mRNA and guide (0.42 ug mRNA, 1:20 nuclease:guide molar ratio) was performed in primary mouse hepatocytes (1E5 viable cells/guide) using the guide RNAs described in Example 29 above. Cells were harvested and genomic DYNA prepared three days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were used to amplify the individual target sequences for each guide RNA. The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing (FIG. 22). The results indicated that the GPR146-H2 sgRNA was highly effective for editing in mouse hepatocytes.


Example 30—Gene Editing Outcomes at the DNA Level for TRAC and AAVS1 in K562 Cells

Nucleofection of MG14-241 and MG99-1 mRNA along with the matching guide RNA (500 ng mRNA/150 pmol guide) was performed into 200,000 human lymphoblasts (K562 cells) using the Lonza 4D electroporator. Cells were harvested and genomic DNA prepared three days post-transfection. PCR primers appropriate for use in NGS-based DNA sequencing were generated, optimized, and used to amplify the individual target sequences for each guide RNA. The amplicons were sequenced on an Illumina MiSeq machine and analyzed with a proprietary Python script to measure gene editing. (FIG. 23).









TABLE 22







Guide RNAs and Sequences Targeted for Example 30









SEQ




ID




NO:
NAME
SEQUENCE





11508
MG14-241-AAVS1-E2
mU*mG*mG*rCrArCrArGrGrCrCrCrCrArGrArArGrGrArGrUr




CrUrUrGrCrCrGrGrArArArCrGrGrCrUrArGrArCrArArGrGrG




rArArUrCrGrCrUrUrUrUrArCrGrCrGrArUrUrArCrCrCrGrCrA




rArGrGrUrArArGrCrCrCrGrUrCrArGrCrArCrCrCrUrUrGrGr




UrGrUrCrGrGrCrGrGrGrCrGrArUrCrCrUxmU*mU*mU





11509
MG14-241-AAVS1-F2
mC*mC*mA*rCrUrArGrGrGrArCrArGrGrArUrUrGrGrUrGrUr




CrUrUrGrCrCrGrGrArArArCrGrGrCrUrArGrArCrArArGrGrG




rArArUrCrGrCrUrUrUrUrArCrGrCrGrArUrUrArCrCrCrGrCrA




rArGrGrUrArArGrCrCrCrGrUrCrArGrCrArCrCrCrUrUrGrGr




UrGrUrCrGrGrCrGrGrGrCrGrArUrCrCrUxmU*mU*mU





11510
MG14-241-AAVS1-B2
mA*mG*mG*rArGrArArCrGrGrGrGrUrGrUrCrCrArGrGrGrUr




CrUrUrGrCrCrGrGrArArArCrGrGrCrUrArGrArCrArArGrGrG




rArArUrCrGrCrUrUrUrUrArCrGrCrGrArUrUrArCrCrCrGrCrA




rArGrGrUrArArGrCrCrCrGrUrCrArGrCrArCrCrCrUrUrGrGr




UrGrUrCrGrGrCrGrGrGrCrGrArUrCrCrUxmU*mU*mU





11511
MG14-241-AAVS1-E2
TGGCACAGGCCCCAGAAGGA





11512
MG14-241-AAVS1-F2
CCACTAGGGACAGGATTGGT





11513
MG14-241-AAVS1-B2
AGGAGAACGGGGTGTCCAGG





11514
MG99-1-TRAC-G1
mG*mA*mC*rArCrCrUrUrCrUrUrCrCrCrCrArGrCrCrCrArGr




GrUrGrUrUrUrUrArGrUrUrCrUrCrUrGrArUrGrArArArArUrCr




ArGrUrArArGrUrUrCrUrArArArArUrArArGrGrCrArUrUrArUr




GrCrCrGrUrGrGrGrGrUrArUrGrGrUrGrGrUrArUrCrCrUrCrG




rUrUrCrArArArUrArUrCrCrArCrCrGrUrUrUrCrUrArArArArA




rArArUrCrGrCrGrCrGrCrCrGrCrCrGrGrCrGrUrGrCrU*mU*m




U*mU





11515
MG99-1-TRAC-H6
mC*mC*mC*rGrGrCrCrArCrUrUrUrCrArGrGrArGrGrArGrGr




ArUrGrUrUrUrUrArGrUrUrCrUrCrUrGrArUrGrArArArArUrCr




ArGrUrArArGrUrUrCrUrArArArArUrArArGrGrCrArUrUrArUr




GrCrCrGrUrGrGrGrGrUrArUrGrGrUrGrGrUrArUrCrCrUrCrG




rUrUrCrArArArUrArUrCrCrArCrCrGrUrUrUrCrUrArArArArA




rArArUrCrGrCrGrCrGrCrCrGrCrCrGrGrCrGrUrGrCrUxmU*m




U*mU





11516
MG99-1-TRAC-G1
GACACCTTCTTCCCCAGCCCAGGT





11517
MG99-1-TRAC-H6
CCCGGCCACTTTCAGGAGGAGGAT





r = native ribose base, m = 2′-O methyl modified base, F = 2′ Fluro modified base, * = phosphorothioate bond






Example 31—Novel Type II CRISPR Effectors are Active Nucleases with Diverse PAM Requirements

Novel nucleases of the MG3, MG15, MG150, MG123, MG124, and MG125 families were identified from phylogenetic analysis. The MG150 family of nucleases is more closely related to the MG3 family than to any other family identified (FIG. 24), and a new group of divergent effectors expanded the MG15 family of nucleases (FIG. 25). In vitro cleavage activity assays show that nucleases reported here generally have preference for cleavage at positions three or four from the PAM (Table 23). In addition, PAM sequence determination for Type II nucleases indicates diverse PAM requirements, as shown by the SeqLogo images from NGS data. (FIGS. 26-35)









TABLE 23







Cut sites of MG Family Variants











Cut Site from

Cut Site from


Candidate
NGS
Candidate
NGS





MG1-2 (SEQ ID
3
MG71-2
2 or 3


NO: 6)








MG1-4 (SEQ ID
4
MG72-1
3


NO: 1)








MG1-5 (SEQ ID
4
MG73-1 (SEQ
3


NO: 2)

ID NO: 11720)






MG1-6 (SEQ ID
4
MG73-2 (SEQ
3


NO: 3)

ID NO: 11721)






MG1-7 (SEQ ID
4
MG74-1 (SEQ
3


NO: 4)

ID NO: 11722)






MG14-1 (SEQ ID
1 or 3
MG86-1 (SEQ
3


NO: 678)

ID NO: 11723)






MG14-241 (SEQ ID
3
MG86-2 (SEQ
3


NO: 914)

ID NO: 11724)






MG14-244 (SEQ ID
3
MG87-1 (SEQ
3


NO:917)

ID NO: 11725)






MG14-246 (SEQ ID
3
MG87-2 (SEQ
3


NO: 919)

ID NO: 11726)






MG14-248 (SEQ ID
3
MG87-3 (SEQ
3


NO: 921)

ID NO: 11727)






MG14-5 (SEQ ID
3
MG88-1 (SEQ
3


NO: 681)

ID NO: 11728)






MG15-1 (SEQ ID
1 or 3
MG88-2 (SEQ
3


NO: 930)

ID NO: 11729)






MG15-115 (SEQ ID
3
MG88-3 (SEQ
3


NO: 1042)

ID NO: 11730)






MG15-135 (SEQ ID
3
MG89-2 (SEQ
3


NO: 1062)

ID NO: 11731)






MG15-54 (SEQ ID
3
MG89-3 (SEQ
3


NO: 981)

ID NO: 11732)






MG15-66 (SEQ ID
3
MG94-1 (SEQ
3


NO: 993)

ID NO: 11733)














MG15-94 (SEQ ID
3
MG94-2 (SEQ
3


NO: 1021)

ID NO: 8748)






MG16-1 (SEQ ID
1 or 3
MG95-1 (SEQ
3


NO: 11718)

ID NO: 8782)






MG16-2 (SEQ ID
3
MG95-2 (SEQ
3


NO: 1093)

ID NO: 8783)






MG16-3 (SEQ ID
3
MG96-1 (SEQ
3


NO: 11734)

ID NO: 8786)






MG17-2 (SEQ ID
3
MG98-1 (SEQ
3


NO: 7700)

ID NO: 8819)






MG18-1 (SEQ ID
1 or 3
MG98-2 (SEQ
3


NO: 1354)

ID NO: 8820)






MG2-4 (SEQ ID
1 or 3
MG99-1 (SEQ
3


NO: 11735)

ID NO: 11748)






MG2-5 (SEQ ID
3
MG100-1 (SEQ
3


NO: 323)

ID NO: 8960)






MG2-55 (SEQ ID
3
MG100-2 (SEQ
3


NO: 371)

ID NO: 8961)






MG2-7 (SEQ ID
3
MG111-1 (SEQ
3


NO: 321)

ID NO: 9037)






MG21-1 (SEQ ID
1 or 3
MG111-2 (SEQ
3


NO: 1512)

ID NO: 9038)






MG21-2 (SEQ ID
3
MG112-3 (SEQ
3


NO: 11736)

ID NO: 11749)






MG21-3 (SEQ ID
3
MG116-1 (SEQ
3


NO: 1513(

ID NO: 9150)






MG21-97 (SEQ ID
3
MG123-1 (SEQ
3


NO: 1607)

ID NO: 11750)






MG22-1 (SEQ ID
1 or 3
MG124-2 (SEQ
3


NO: 1656)

ID NO: 11751)






MG22-2 (SEQ ID
3
MG125-1 (SEQ
3


NO: 11737)

ID NO: 11752)






MG22-3 (SEQ ID
3
MG125-2 (SEQ
3


NO: 1657)

ID NO: 11753)














MG23-1 (SEQ ID
3
MG125-3 (SEQ
3


NO: 1756)

ID NO: 11754)






MG23-2 (SEQ ID
3
MG125-4 (SEQ
3


NO: 11738)

ID NO: 11755)






MG23-3 (SEQ ID
3
MG125-5 (SEQ
3


NO: 1757)

ID NO: 11756)






MG3-1_long (SEQ
3
MG150-5 (SEQ
3


ID NO: 424)

ID NO: 7363)






MG3-3 (SEQ ID
3
MG150-6 (SEQ
3


NO: 11739)

ID NO: 7364)






MG3-4 (SEQ ID
3
MG150-7 (SEQ
3


NO: 11740)

ID NO: 7365)






MG3-42 (SEQ ID
3 or 4
MG150-8 (SEQ
3


NO: 429)

ID NO: 7366)






MG3-6 (SEQ ID
3
MG150-9 (SEQ
3


NO: 426)

ID NO: 7367)






MG3-7 (SEQ ID
3
MG3-18 (SEQ
3


NO: 422)

ID NO: 11757)






MG3-8 (SEQ ID
3
MG3-89 (SEQ
3


NO: 428)

ID NO: 11758)






MG4-2 (SEQ ID
2 or 3
MG3-90 (SEQ
3


NO: 11741)

ID NO: 11759)






MG4-5 (SEQ ID
1 or 3
MG3-91 (SEQ
3


NO: 432)

ID NO: 11760)






MG40-1 (SEQ ID
3
MG3-92 (SEQ
3


NO: 5718)

ID NO: 11761)






MG40-2 (SEQ ID
3
MG3-93 (SEQ
3


NO: 5719)

ID NO: 11762)






MG40-3 (SEQ ID
3
MG3-95 (SEQ
3


NO: 5720)

ID NO: 11763)






MG40-4 (SEQ ID
3
MG3-96 (SEQ
3


NO: 5721)

ID NO: 11764)






MG40-5(SEQ ID
3
MG3-103 (SEQ
3


NO: 5722)

ID NO: 11765)






MG40-6 (SEQ ID
3
MG15-130 (SEQ
3


NO: 5723)

ID NO: 1057)






MG43-3 (SEQ ID
3
MG15-146 (SEQ
3


NO: 8359)

ID NO: 1073)






MG44-1 (SEQ ID
3
MG15-164 (SEQ
3


NO: 11742)

ID NO: 1091)






MG46-1 (SEQ ID
3
MG15-166 (SEQ
3


NO: 11743)

ID NO: 11766)






MG47-1 (SEQ ID
3
MG15-171 (SEQ
3


NO: 5751)

ID NO: 7605)






MG47-2 (SEQ ID
3
MG15-172 (SEQ
3


NO: 5752)

ID NO: 7606)






MG48-1 (SEQ ID
3
MG15-174 (SEQ
3


NO: 5769)

ID NO: 7608)






MG48-3 (SEQ ID
3
MG15-184 (SEQ
3


NO: 5771)

ID NO: 7618)






MG49-1 (SEQ ID
3
MG15-187 (SEQ
3


NO: 5805)

ID NO: 7621)






MG49-2 (SEQ ID
3
MG15-191 (SEQ
2


NO: 5806)

ID NO: 11767)






MG50-1 (SEQ ID
3
MG15-193 (SEQ
3


NO: 5824)

ID NO: 11768)






MG51-1 (SEQ ID
3
MG15-195 (SEQ
3


NO: 5827)

ID NO: 11769)






MG52-1 (SEQ ID
2
MG15-217 (SEQ
3


NO: 5831)

ID NO: 11770)






MG6-3 (SEQ ID
1
MG15-218 (SEQ
4


NO: 11744)

ID NO: 11771)






MG6-5 (SEQ ID
3
MG15-219 (SEQ
4


NO: 11745)

ID NO: 11772)






MG7-1 (SEQ ID
3
MG15-177 (SEQ
3


NO: 11746)

ID NO: 7611)






MG71-1 (SEQ ID
3




NO: 11747)









Embodiments

The following embodiments are illustrative in nature and are not intended to be limiting in any way:

    • 1. A method of editing a B2M locus in a cell, comprising contacting to said cell
      • (a) an RNA-guided endonuclease; and
      • (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said B2M locus,
        • wherein said region of said B2M locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6387-6468.
    • 2. The method of embodiment 1, wherein said RNA-guided endonuclease is a class 2, type II Cas endonuclease.
    • 3. The method of embodiment 1, wherein said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244.
    • 4. The method of embodiment 3, wherein said RNA-guided endonuclease further comprises an HNH domain.
    • 5. The method of embodiment 1, wherein said engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6305-6386.
    • 6. The method of embodiment 1, wherein said region of said B2M locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6388, 6399, 6401, 6403, 6410, 6413, 6421, 6446, and 6448.
    • 7. A method of editing a TRAC locus in a cell, comprising contacting to said cell
      • (a) an RNA-guided endonuclease; and
      • (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said TRAC locus,
        • wherein said region of said TRAC locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6509-6548.
    • 8. The method of embodiment 7, wherein said RNA-guided endonuclease is a class 2, type II Cas endonuclease.
    • 9. The method of embodiment 7, wherein said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244.
    • 10. The method of embodiment 9, wherein said RNA-guided endonuclease further comprises an HNH domain.
    • 11. The method of embodiment 7, wherein said engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6469-6508.
    • 12. The method of embodiment 7, wherein said region of said TRAC locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6517, 6520, and 6523.
    • 13. A method of editing a HPRT locus in a cell, comprising contacting to said cell
      • (a) an RNA-guided endonuclease; and
      • (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said HPRT locus,
        • wherein said region of said HPRT locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6616-6682.
    • 14. The method of embodiment 13, wherein said RNA-guided endonuclease is a class 2, type II Cas endonuclease.
    • 15. The method of embodiment 13, wherein said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244.
    • 16. The method of embodiment 15, wherein said RNA-guided endonuclease further comprises an HNH domain.
    • 17. The method of embodiment 13, wherein said engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6549-6615.
    • 18. The method of embodiment 13, wherein said region of said HPRT locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6619, 6634, 6673, 6675, and 6679.
    • 19. A method of editing a TRBC1/2 locus in a cell, comprising contacting to said cell
      • (a) an RNA-guided endonuclease; and
      • (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said TRBC1/2 locus,
        • wherein said region of said TRBC1/2 locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 6722-6760 or 6782-6802.
    • 20. The method of embodiment 19, wherein said RNA-guided endonuclease is a class 2, type II Cas endonuclease.
    • 21. The method of embodiment 19, wherein said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% sequence identity to SEQ ID NO: 2242 or SEQ ID NO: 2244.
    • 22. The method of embodiment 21, wherein said RNA-guided endonuclease further comprises an HNH domain.
    • 23. The method of embodiment 19, wherein said engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6683-6721 and 6761-6781.
    • 24. The method of embodiment 19, wherein said region of said TRBC1/2 locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 6734, 6753, 6790, and 6800.
    • 25. A method of editing a HAO1 locus in a cell, comprising contacting to said cell
      • (a) an RNA-guided endonuclease; and
      • (b) an engineered guide RNA, wherein said engineered guide RNA is configured to form a complex with said endonuclease and said engineered guide RNA comprises a spacer sequence configured to hybridize to a region of said HAO1 locus,
        • wherein said region of said HAO1 locus comprises a targeting sequence having at least 85% identity to at least 18 consecutive nucleotides of any one of SEQ ID NOs: 11802-11820.
    • 26. The method of embodiment 25, wherein said RNA-guided endonuclease is a class 2, type II Cas endonuclease.
    • 27. The method of embodiment 25, wherein said RNA-guided endonuclease comprises a RuvCIII domain comprising a sequence having at least 75% sequence identity to SEQ ID NO: 2242.
    • 28. The method of embodiment 27, wherein said RNA-guided endonuclease further comprises an HNH domain.
    • 29. The method of embodiment 25, wherein said region of said HAO1 locus comprises a sequence at least 75%, 80%, or 90% identical to at least 19 of the non-degenerate nucleotides of any one of SEQ ID NOs: 11806, 11813, 11816, and 11819.
    • 30. The method of embodiment 1 wherein said RNA-guided endonuclease is a Cas endonuclease.
    • 31. The method of embodiment 2, wherein said class 2, type II Cas endonuclease comprises an endonuclease having at least 75% sequence identity to any one of SEQ ID NOs: 421-431.
    • 32. The method of any one of embodiments 1-4, 30-31, wherein said RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421.
    • 33. The method of any one of embodiments 1-4, 30-32, wherein said engineered guide RNA comprises a sequence having at least 80% identity to any one of SEQ ID NOs: 6305-6386.
    • 34. The method of any one of embodiments 1-4, 30-32, wherein said engineered guide RNA comprises a sequence at 80%, or at least 90% identical to any one of SEQ ID NOs: 6306, 6317, 6319, 6321, 6328, 6331, 6339, 6364, and 6366.
    • 35. The method of embodiment 7, wherein said RNA-guided endonuclease is a Cas endonuclease.
    • 36. The method of embodiment 8, wherein said class 2, type II Cas endonuclease comprises an endonuclease having at least 75% sequence identity to any one of SEQ ID NOs: 421-431.
    • 37. The method of any one of embodiments 7-10, 35-36, wherein said RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421.
    • 38. The method of any one of embodiments 7-10, 35-37, wherein said engineered guide RNA comprises a sequence at 80%, or at least 90% identical to any one of SEQ ID NOs: 6477, 6480, and 6483.
    • 39. The method of embodiment 13, wherein said RNA-guided endonuclease is a Cas endonuclease.
    • 40. The method of embodiment 14, wherein said class 2, type II Cas endonuclease comprises an endonuclease having at least 75% sequence identity to any one of SEQ ID NOs: 421-431.
    • 41. The method of any one of embodiments 13-16, 39-40, wherein said RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421 or SEQ ID NO: 423.
    • 42. The method of any one of embodiments 13-16, 39-40, wherein said engineered guide RNA comprises a sequence at 80%, or at least 90% identical to any one of SEQ ID NOs: 6552, 6567, 6606, 6608, and 6612.
    • 43. The method of embodiment 19, wherein said RNA-guided endonuclease is a Cas endonuclease.
    • 44. The method of embodiment 20, wherein said class 2, type II Cas endonuclease comprises an endonuclease having at least 75% sequence identity to any one of SEQ ID NOs: 421-431.
    • 45. The method of any one of embodiments 19-22, 43-44, wherein said RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421 or SEQ ID NO: 423.
    • 46. The method of any one of embodiments 19-22, 43-45, wherein said engineered guide RNA comprises a sequence at 80%, or at least 90% identical to any one of SEQ ID NOs: 6695, 6714, 6769, and 6779.
    • 47. The method of embodiment 25, wherein said RNA-guided endonuclease is a Cas endonuclease.
    • 48. The method of embodiment 26, wherein said class 2, type II Cas endonuclease comprises an endonuclease having at least 75% sequence identity to any one of SEQ ID NOs: 421-431.
    • 49. The method of any one of embodiments 25-28, 47-48, wherein said RNA-guided endonuclease comprises a sequence at least 75%, 80%, or 90% identical to SEQ ID NO: 421.
    • 50. The method of any one of embodiments 1-24, 30-46, wherein said cell is a peripheral blood mononuclear cell (PBMC).
    • 51. The method of any one of embodiments 1-24, 30-46, wherein said cell is a T-cell or a precursor thereof or a hematopoietic stem cell (HSC).


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. It is not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the embodiments herein are not meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is therefore contemplated that the invention shall also cover any such alternatives, modifications, variations or equivalents. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.









TABLE 24







Listing of additional protein and nucleic acid sequences referred to herein not included in the sequence listing













SEQ






Category
ID:
Description
Type
Organism
Sequence





MG123 active
11518
MG123-1 3′ PAM
Nucleotide
artificial
nnnnCAAa


effectors PAM



sequence






MG124 active
11519
MG124-2 3′ PAM
Nucleotide
artificial
nnnnATAA


effectors PAM



sequence






MG125 active
11520
MG125-1 3′ PAM
Nucleotide
artificial
nnnnATAA


effectors PAM



sequence






MG125 active
11521
MG125-2 3′ PAM
Nucleotide
artificial
nnGTACAA


effectors PAM



sequence






MG125 active
11522
MG125-3 3′ PAM
Nucleotide
artificial
nnnnRCAC


effectors PAM



sequence






MG125 active
11523
MG125-4 3′ PAM
Nucleotide
artificial
nnnnGnnA


effectors PAM



sequence






MG125 active
11524
MG125-5 3′ PAM
Nucleotide
artificial
nnnnCnnn


effectors PAM



sequence






MG150 active
11525
MG150-5 3′ PAM
Nucleotide
artificial
nnnMCMnn


effectors PAM



sequence






MG150 active
11526
MG150-6 3′ PAM
Nucleotide
artificial
nnRMYTnn


effectors PAM



sequence






MG150 active
11527
MG150-7 3′ PAM
Nucleotide
artificial
nnwMCrnn


effectors PAM



sequence






MG150 active
11528
MG150-8 3′ PAM
Nucleotide
artificial
nnwMCCnn


effectors PAM



sequence






MG150 active
11529
MG150-9 3′ PAM
Nucleotide
artificial
nnnMCMnn


effectors PAM



sequence






MG3 active
11530
MG3-18 3′ PAM
Nucleotide
artificial
nnRGGTY


effectors PAM



sequence






MG3 active
11531
MG3-89 3′ PAM
Nucleotide
artificial
nnRwwYYn


effectors PAM



sequence






MG3 active
11532
MG3-90 3′ PAM
Nucleotide
artificial
nnRmwYnn


effectors PAM



sequence






MG3 active
11533
MG3-91 3′ PAM
Nucleotide
artificial
nnRwYCCn


effectors PAM



sequence






MG3 active
11534
MG3-92 3′ PAM
Nucleotide
artificial
nnRGnCAn


effectors PAM



sequence






MG3 active
11535
MG3-93 3′ PAM
Nucleotide
artificial
nnCACnn


effectors PAM



sequence






MG3 active
11536
MG3-95 3′ PAM
Nucleotide
artificial
nnnMYAY


effectors PAM



sequence






MG3 active
11537
MG3-96 3′ PAM
Nucleotide
artificial
nRwYAYn


effectors PAM



sequence






MG3 active
11538
MG3-103 3′ PAM
Nucleotide
artificial
nnRGCCCn


effectors PAM



sequence






MG15 active
11539
MG15-130 3′ PAM
Nucleotide
artificial
nnnnCwAC


effectors PAM



sequence






MG15 active
11540
MG15-146 3′ PAM
Nucleotide
artificial
nnnnGTRY


effectors PAM



sequence






MG15 active
11541
MG15-164 3′ PAM
Nucleotide
artificial
nnRnRYAW


effectors PAM



sequence






MG15 active
11542
MG15-166 3′ PAM
Nucleotide
artificial
nnnnGYTA


effectors PAM



sequence






MG15 active
11543
MG15-171 3′ PAM
Nucleotide
artificial
nnnnCWAW


effectors PAM



sequence






MG15 active
11544
MG15-172 3′ PAM
Nucleotide
artificial
nnCCRCAT


effectors PAM



sequence






MG15 active
11545
MG15-174 3′ PAM
Nucleotide
artificial
nnRGAYA


effectors PAM



sequence






MG15 active
11546
MG15-184 3′ PAM
Nucleotide
artificial
nnRnRYAA


effectors PAM



sequence






MG15 active
11547
MG15-187 3′ PAM
Nucleotide
artificial
nnnnCAAn


effectors PAM



sequence






MG15 active
11548
MG15-191 3′ PAM
Nucleotide
artificial
GnnnnCMA


effectors PAM



sequence






MG15 active
11549
MG15-193 3′ PAM
Nucleotide
artificial
nnRnRYAY


effectors PAM



sequence






MG15 active
11550
MG15-195 3′ PAM
Nucleotide
artificial
nnnnGAAA


effectors PAM



sequence






MG15 active
11551
MG15-217 3′ PAM
Nucleotide
artificial
nnRnRTGA


effectors PAM



sequence






MG15 active
11552
MG15-218 3′ PAM
Nucleotide
artificial
nnnCnAT


effectors PAM



sequence






MG15 active
11553
MG15-219 3′ PAM
Nucleotide
artificial
nnnRTATW


effectors PAM



sequence






MG15 active
11554
MG15-177 3′ PAM
Nucleotide
artificial
nnnSRYTA


effectors PAM



sequence






MG71 effectors
11711
MG71-2 effector
protein
unknown
MFDNLDASKVNDFNAVFSEVENYVRDEMGIEDWSCQNIDELAKVLCD







VNLGRTTKQKAMQSLLPAQTKQQKAIIQLFSGGKAKLAELFVDEELD







ECEKKSVSFQDDDLNEFEPVLTAALGERYEGLLRFKAIYDWSLLAKIL







HLDTSKKDEDEQHLLSECKMQVYEDHKRDLAVLKSMLKGKPLYNKIF







RQDGDISYEKYAKGIKGRNQIDFCKDLKKQLEGIAEYKKIMQEITSIDD







AKTEEERLLFRITNGFAFPKQTTKDNGHIPIQVHLAELKCILDNAEGYLP







FLGETDNNGLSVREKIEQIVKFRIPYYVGPLAGTRMSREQGRCWVVRK







NEKIYPWNFTEIVNLEESAEKFITNMTAKCTYLVGEDVLPKESLLYSEF







MVRNAINNITVDGERLPVDVLEKIFKQLFLAKTSKVTKKTLERFFRQE







NISFQNIGGIDDKINASMKSYNDFRRIFGEDYIQLHRDEIENIIRWITLFC







DEKKCWSLK





MG73 effectors
11712
MG73-1 effector
protein
unknown
MTKILGLDLGIASVGYAVVNLDEQKFDGGEILTAGVRIFEAAENPKDG







ASLSAPRREARALRRILRRKTIRLQQIRNLFIKYQILTTEELNHLYASPL







PSVWEIRTLSLYEKQPLQHIARALLHIAKRRGFRSMRKSAEEKNYETG







QLLQGISLLQNLLKQSGRQTIGEFLYHLPQSEPKRNKAGSYNHSIARSM







LEEEVRLILEKQRTYGNTALSSEFEQEFRAIAFDQQPLKPSSPGKCTFLP







DEDRAPKQAYTAELFAALSKINHIRIVSQGTSRALSADERQIALDLCLE







KENNNFAQLRKLLELQENEFFNISYIIPRAKQNTDYQPEKKTAVYKMT







GYHALRKALKDHKPLWTTYMDNPNGGLDQIAVVLATFKSDKEIINAL







EKLQFPSELIEAVKSLSFSGFMHLSLKAMRNINPFLLEGHTYDKACELA







GYNFQAAKRNAGLTKLPPLTEEENFSITSPVVKRSIAQTRKVVNALNRK







YGPFDAVHIELAREMGRNWAQRKELTQQQKENQEERDLIKAQGIEGL







FPKNSLDIKKIRLWKEQGGYCIYSNQYIKPEQILEEGYCQVDHIIPYSRS







FDNTLSNQVLCLTKENQDKRNDIPFDYFQRIQRDWDSFVTLVNASPTM







RPNKKQKLLRTELSEEDLAGFKDRNLNDTRFISSFVRKYLLQNLQLTN







KYKQGVFCRNGKITADLRNMWGLSKIREQDDKHHALDAIVLACCSNA







MMQQISTQYTHNKETAALKIKPLFPWPWKEFRTDVENALLSIFVSRPP







RKKITGAFHKETYYSAKHLARGFKTLKTDINTLTAEKLAKQRDLEIKY







YGVERNKKLYDAIEQALLARTDAKQPLKVYLGPAQTPVKKIKLIMEG







NKGVPVLKGTAVAENGAMPRVDVFYKNGTYFLVPVYTIDFTKEKLPLI







SIPDNQPMDVRDFRFSLYKDDYVQIKNKTGETFEGYFKQYNAQTGQIY







LETHDRSDSYTVSGKPASEKKFSKSTFVDFTKYQIDILGNQHRVEKEKY







TGITRKNKGFGG





MG89 effectors
11713
MG89-2 effectors
protein
unknown
MSYVLGLDLGIASVGWSIVEPGNRIIDLGVRVFKKAETDKEGDPLNLIR







RESRLSRRRLYRRAHRLSRLLNFLISSGLIHSKDEVLKNVYNENPWALR







TLGLNSVLTNNQLARVIYHICKHRGFYWASSADDGQADNGKIKKSLSS







NQLVMKEKGYKTVGQMIFTEYPNCQRNKSGEYSKSLPRTDLDKELRA







IFKAQQSFSNPIVTKDFINAIVGCGDRKTGFLWEQRPALQGEDLLKMV







GHCRFEKDELRAPAANFYSEQLVWLTKINNLRVYDEDSQERPLTREER







DLILNMPLEMKSDIKYSSLTSAFEKANLWKSGQFKYKSVDYEQKTQKK







KNTAKSVDITKSSKKNPEDKVFYKSSHLHEIRKALGSSLSEEWEKIRTE







VLSGKYDRYNRIAYVLTVYKEDSDVIEQLSPYESRTLIEALLPVRFSGFV







ALSEKSLKKIIPHMVLGKRYDEACSEANYKHYKQNQAEFKKLKYLPPL







FSGREPNGTLIFNEEIGDIPRNPVVLRVINQTRKVVNAIVKKYGSPKSVH







IELARDLAKSRAERNEIEKRNEEAASRHIKERDEFEKLFGSKCLNGTNL







LKYRLYKEQDCKSMYSSKEIDHKRLFEKGYVQIDHILPYSRSYDDSQSN







KVLVLTNENQDKGNRIPFEYFEAKQHGFSWYEFEQWVKSCKNLNQKK







KRNLLRCSLSKDAKKDFLERNLNDTRYACRFVKNYIDSFLCLSENSDNS







GCVVVAGQLTAYLRNCWGLNKVREENDRHHALDATVIACCTRKIVQ







KVGAWSKSREMNSYNSSYVDPDSPVDEDEKLLQKLYVNTRKPDFPKP







WECFRSEVESRVFESALEKLKEKLKLQCSYTESELKNVRTLFVSRACE







KIGKGALHGDTVYRQTSEMRKENVAVKKVSLKKLKYARIEAIVDADT







RNKNLCDALKKRYEEYARKIGKKIEDFVDKDIAKIFADDNPLHMPNSD







GQEDPCNPIVKSVRVKEAFSGVPIRNGVAGNSTIIRVDLFKKDGKYYCI







PVYAWNKTLPNRAYVSGKKETDWALVDDSFEWCFSIRQNELLKIKLK







GETIFGYYNGFDRDRGSFNILLHDRQDGKDHKQGLIRKGIKTAISITKY







DVDVLGNYYLSKPEKRLELA





MG73-1 sgRNA
11714
MG73-1 sgRNA
Nucleotide
unknown
(N24)GUUAUAGUGGGAAAUCACUAUAAUAAGUGAAAUCGCAAGGCU





(RNA)

CUGUUCUUGAACAUCCUUUAUUAUAAAACUCCUGCCAAUCGGUUG







GGAGUUUU





MG89-2 sgRNA
11715
MG89-2 sgRNA
Nucleotide
unknown
(N24)GUUGUAGCUUCCUUGAAGAAAUUCAACGUUGUUACAAUAAGG





(RNA)

UUUUCGAAAGAUUACCGAACCCGCCCUCACUUAGGUGAGGGCUUU







U





MG99 effectors
11716
MG99-1 effector
protein
unknown
MRDLSYRIGLDIGIGSIGWAVVSSETEDHPARIENFGTRIFDSGEDPKTR







ESLCQARRADRGVRRLERRRAFRKEMLKNHFQNIGLLNNTENDDYES







CRDDDVYLLKVKGLDGKLEAAELFKCLAHTCNHRGYKDFYEPEDDDE







NEESGVNEKAANLFEKEFAASGKRTVSEYLVEKYFNNGFVKFRNRSGS







DAPYMLIRRSLLKDEAEKIIKKQSEYYPCLGGINAERTVSIIFSQRDFED







GPGDPNDPHRRYHGFLETLGRCPYYKDEKRGFRGTVISDVFAVTNTLS







QYVFFEKETGECRLDPKIANELVSYLLTNAGLTMTEVKKILKSHGYEL







KKSEKSDDKAISKAVKFLSIAKKCVEEAGKSWEALISEDQFDAANLSTL







HRIGELISKFQTPSRRVQEMKKAGIDGDLIKAFSGKKISGTSSVSYKYM







TDSINAFLSGDIYGNFQANFIKENAAVKEEERSYKLEPRHIDDPEVRDN







RVVFKAINETRKVVNAIIDIYGSPEDIVIEVASELGKSVEARIEETKRQR







ANEKENDRIKSEIAKLLSIDVQSVKTTMIERYKLYNIQEGKCAYSLEPL







GDLKDVVENVNKVYEIDHIVPFSLILDNTLNNKALVFTRENQTKGQRT







PLMYLSEEKAKEFLAFSNHLFSKKTGGISKTKLEYLKLETIYGEAAAEK







LNAWKSRNINDTRYITKYIAGLFDKQLIFAGDKKQHVFTVKGSVTQKF







RREWFRGTEWGKDEKDRTTYLNHALDALVAANLTKAYIEIGSDAIKLS







QIYRAHRYQITEEYESYLDKCVKKMSKYYGFSEGYTKKLLSKPERIPSF







VPRLKEEVAVRENDSDSEAFDKGVSKLYSAEAPFIDPPHIPITSHKQNKK







FKGCIADSNPIRVEEIDGEAHKIRRIDIKTLSAKKLKDLYTGDVSLREEL







AAMLDGKPESYTVGDSLKESGKEFFLSKSGAVIRKVSVDDGIVSNYYR







KEIKDGQYSTLGMLKYYCIEVYKDAKGKTRIYGIRFVDVVKKNKKLY







QKAESYPEDYASHVMYLFTGDFVRITDKKGKLKFEGFYQAVKNINSSI







LYFSPVNLANTVIKGISLTDNIEKYYVDILGRIGGKIRCSEPLQSTAEKK







SL





MG14 sgRNA
11717
MG14-241 sgRNA
Nucleotide
unknown
N(20)GUCUUGCCGGAAACGGCUAGACAAGGGAAUCGCUUUUACGCG





(RNA)

AUUACCCGCAAGGUAAGCCCGUCAGCACCCUUGGUGUCGGCGGGC







GAUCCUUUU





MG16 effectors
11718
MG16-1 effector
protein
unknown
MIKNILGLDLGVGSIGWALIQTEDDQPKQIIGMGSRIVPLTKDDSDQFT







KGQAISKNAERTARRTTRKGYDRYQLRRALLTQVLRQNGMLPECMD







ENMIDLWKLRSDAATEGKQLTLQQIGRVLYHINQKRGYKHAKSDDNG







DSKQTKYVEAVNLRYKEIQEKNVTVGQHFYAELLNSKVESGNGPYYTF







RIKDKVFPRAAYIAEFDQIMGVQKEYYPNVLTDELIETLRNRIIFYQRPL







KSCKHLVGLCEFEMRPYKKDGKIVYGGPKCAPRTSPLAQLCAMWET







VNNITLTNRNNERLEISNEQRRQLVQFLCTHETLKLTDLYKILGITKKD







GWYGGKAIGKGIKGNVTLNQLRKALDGKYSQWLEMPIERIDVVDRNT







AEAFWAVSPKVEETPLFQLWHAVYSLQNVEELTKTLQNRFSITDPQVI







DALCKIDFVKPGYANKSHKFIRRLLPYLMEGMMYSEACACIQINHSNS







MTKAEREARPLAERIELLQKNALRQPVIEKILNQMINLVNRLQQEYGPI







DEARVELARELKQSREERKDAFDRNNKNEKRNKEISALISEQGIRPSRS







RIQKYKMWEESEHRCMYCGKVVNLSEFLNGADVEIEHIIPRSILFDDSF







SNKVCACRDCNREKDNMTAMDYMASKPEGEFEAYKQRVDEAFNAHR







ISKTKRDHLLWRRADIPQDFIDRQLRLSQYIATKAVEILQQGIRQVWTS







GGGVTDFLRHQWGYDEILHTLNLPRYRQVEDLTEMVHYEHAGQEHD







EERIKNWSKRIDHRHHAIDALTVALTRQSYIQRLNTLEASHEHMEKLV







KEANTPYKEKKSLLEKWVALQPHFSVEEVTTQVDGILVSFRAGKRVTT







PARRAVYHGGKRTIVQRGIQVPRGALTEDTIYGKLGDKFVVKYALDH







PSMKPENIVDPTIRLLVENRITALGKKDAFKTPLYSAEGMEIKSVRCYT







SLSEKGVVPIKYNEKGNAIGFAKKGNNHHVAIYKDQSGQYQEMVVSF







WDAVERKLYGVPTVITNPKTVWDELLEKELPQDFLEKLPKDNWQYVL







SMQENEMFVLGMEEDEFNDAIDTQDYNTLNKHLYRVQKLSHADYTFR







FHTETKVDDKYDGVENGRNTSMSLKALVRIRSFNGLFTQFPHKVKIDI







MGRITKA





MG16-1 sgRNA
11719
MG16-1 sgRNA
Nucleotide
unknown
N(22)GUUGUGUAUGGAAACAUACACAAUAAGGAUUAUUCCGUUGUG





(RNA)

AAAACAUUCAGGGUGGGACGCAAGUCUCGCCCUUUU





MG73 effectors
11720
MG73-1 effector
protein
unknown
MTKILGLDLGIASVGYAVVNLDEQKFDGGEILTAGVRIFEAAENPKDG







ASLSAPRREARALRRILRRKTIRLQQIRNLFIKYQILTTEELNHLYASPL







PSVWEIRTLSLYEKQPLQHIARALLHIAKRRGFRSMRKSAEEKNYETG







QLLQGISLLQNLLKQSGRQTIGEFLYHLPQSEPKRNKAGSYNHSIARSM







LEEEVRLILEKQRTYGNTALSSEFEQEFRAIAFDQQPLKPSSPGKCTFLP







DEDRAPKQAYTAELFAALSKINHIRIVSQGTSRALSADERQIALDLCLE







KENNNFAQLRKLLELQENEFFNISYIIPRAKQNTDYQPEKKTAVYKMT







GYHALRKALKDHKPLWTTYMDNPNGGLDQIAVVLATFKSDKEIINAL







EKLQFPSELIEAVKSLSFSGFMHLSLKAMRNINPFLLEGHTYDKACELA







GYNFQAAKRNAGLTKLPPLTEEENFSITSPVVKRSIAQTRKVVNALNRK







YGPFDAVHIELAREMGRNWAQRKELTQQQKENQEERDLIKAQGIEGL







FPKNSLDIKKIRLWKEQGGYCIYSNQYIKPEQILEEGYCQVDHIIPYSRS







FDNTLSNQVLCLTKENQDKRNDIPFDYFQRIQRDWDSFVTLVNASPTM







RPNKKQKLLRTELSEEDLAGFKDRNLNDTRFISSFVRKYLLQNLQLTN







KYKQGVFCRNGKITADLRNMWGLSKIREQDDKHHALDAIVLACCSNA







MMQQISTQYTHNKETAALKIKPLFPWPWKEFRTDVENALLSIFVSRPP







RKKITGAFHKETYYSAKHLARGFKTLKTDINTLTAEKLAKQRDLEIKY







YGVERNKKLYDAIEQALLARTDAKQPLKVYLGPAQTPVKKIKLIMEG







NKGVPVLKGTAVAENGAMPRVDVFYKNGTYFLVPVYTIDFTKEKLPLI







SIPDNQPMDVRDFRFSLYKDDYVQIKNKTGETFEGYFKQYNAQTGQIY







LETHDRSDSYTVSGKPASEKKFSKSTFVDFTKYQIDILGNQHRVEKEKY







TGITRKNKGFGG





MG73 effectors
11721
MG73-2 effector
protein
unknown
MNKILGIDMGIASLGYAVVNIDDENFVNGDILASGVRIFDVAESPDGSSL







AAPRRAARSVRRILRRKVMRIKAIKQLFLDENLLSPQELDLLSKQDFKT







LYQATPEGQPIPSVWEIRARALDNPCSLVDICRALLHIAKRRGFRSMRK







SEKLTGEAGKLLKGVEEMQKKLQESNFRTIGELLFHLPATEPKRNKD







GSYSHSVARSLLEEEVHLILQVQRAKGANALSQEFETQFCKIAFLQNPL







QPSDPGFCTLEPTEPRAPKNAYTAELFAALCKINHIYLEEDGQSHALSA







AQRALALEKCFSTQKTNYKQLRELFNLPNDIKFNISYTAPAKKKSKKK







EEAQSPEQAVQAPQEYDAEKNTTLYNMAGFHALKKALKSSPLWAEYQ







TNPNGILDKIAEVLSRYKSDGEIRQHLTALGLPAEAVEKLQNVNFSGFM







NLSLVAMNKIIPFLKEGFRYDVACKKAGYNFQAPQQNKGLSKLPPLTE







EDNHTITSPVAKRSLAQARKVINALNKKYGPFDAVHIEVAREIGKSFEK







RKEIEAEQKAHAEERARLKEVGIDGIIPQTETDLKKLRLWKEQDGRC







MYSLQYIEPRKILEEGYCQVDHIIPYSLSFDNSLNNQVLCLTSENQHKK







NQIPYEYFHSGKAQITWEDFEGYVNSLQNIRMAKKHRLLKQELTEDDL







QGFKERNLSDTKLISRFMKNYLLANLRLTGKYKQGVFCVNGKHTSTL







RGFWRLQKIREDGDKHHALDAIVIACCTNRLMQYISTKYRQNRELEL







QRKEVAVPWPFPHFKHAVENSLLSIFVSRPPRKKVTGALHKNTFFSAK







HIKKGIKTLRTDIQKLTLDSLKKQRELEVKYFGVERNKPLYDLIETALN







NRPNDKTPIQVQMPTKNGGFVPVRHIKLISESTSGIPVLGGTALAENDS







MPRVDVFLEDGQYYVVPVYTMDFAKGVLPLVAQPSGRLMKKENFVFS







LYKDDYVNLVNKQGETWEGYFKQLNAQTGQIYLESHDRSAQYTVSGK







PSNQKKIASSTLKLIEKYQIDIFGGKHLVKKEKYIGIIRKNKGFGG





MG74 effectors
11722
MG74-1 effector
protein
unknown
MQVHDDVILGLDIGVGSLGWALLEEDLQTGEQRLLQRQTPQGETTYA







LGVRLFHVPENAKTKELLNVKRRTARMQRRTTARRAQRMRRVRALL







DSLGVPGVRDADAFHLGKGRGAQCDPWQLRREGLERRLEAREWAVV







LLHIAKHRGFRSNSKTDRSGSDKEMGQVLQAVSNLQQEVEASGLTVG







ALLASRERRRNRADHTGAPRYDLCMLRSLQENEVDILFTRQRELGNPL







AGEEVRCRYAELAFAQRPLAPVSHMVGPCAFLEGERRAPRFAPTAELF







RYVQALCNMRLRQETGEETPLSEEQRQAACAVFGSVQSVTYKKLRQV







LRLPAGCRFAGLSYGVTEKGNVQDPEKADVVMRTGKCCQGTACLRGI







LGDAYEALHEQRLDEADAARLAATGALSAPAAALLARGMAGLRLTDA







VARIVSELNDLDQIRAVLALLPLAAPRIAALSQAAGEGKLGIFQGTARL







SLRAMEAILPHMLACGEYAAACELAGFDPRAAQKTDVTDIRNPVVLRV







FREVRRQFSAICREFGFLPGRVHVELLREVGKSGEERNRISRGLERRTK







EKEAARKAVAQLLGKSPETVSAGEVQRYELWRQQDGKCAYYMLWR







HAGGERAYGDAMPQGSIPPDWLADGVNAVQVDHILPRSRTFDNSFHN







LCLCCHAANQAKGGRTPWEWLGAAQPQAWHDFEQWVQSLPLKGLK







KRNYLLRDLNAEVQGRFHARNLTDSGYVARLTLRWLEEEYARHDVP







MQDADGRTRRRFFARPGQVTDFLRRHWGVQALKKIDGQRSGDRHHA







LDALLVAACSEGMLQRMVRAFQREENGPERLHIPCPWQDFSATVGRA







LGSVFVSRVERGRTKGPLHEETLRAIREERQPDGETRRVLYERKAVAR







LTAADLDKIKDAARCPDVVAALRRWLDAGKPGDALPRSAHGDIIRHVR







VCAGEFSSGVVLQRGSGQAQASNGGMVRTDIYSRDGKFYMVPVYAKD







VADKRLPLRACVAAKAEKDWREMTADYRFLFSLTPDCYVLTENRKGE







VKEGYFAGANRNTSAISLSLAHDKQNVIQGIGITTLKRFEKYRVDRFGR







LSLVRREADPRGRS





MG86 effectors
11723
MG86-1 effector
protein
unknown
MKKILSFDLGITSIGYSVLTEDEAQKYSLLDYGVSMFDKPTDKDGNSK







KLLHAQALSTKKLYKLRKERKKNLALLFEKYALAKASKLLEQEKKNL







YMYKWQLRAKKVFEERLSIGEIFTILYHIAKHRGYKSLDSGDLLEELC







VELGIKIDVKKEKKDDEKGKIKQALSTIESLRKEYPKKTVAQIIYEVEL







QKERPVFRNHDNYNYMIRREHINDEIATIIRKQKEFGNFENIDSEVFIVD







IIAAIDDQKESTNDMSLFGKCEYYPKEHVAHQYSLLSDIFKMYQAVANI







TFNKEKIKITKEQIRLLTEDFLNKIKKGKSVKELKYKDVRKILKLDESV







KIFNKEDSYQRAGKKVEHTITKFHFVDNLSKIDKSFIEDIFNADESYVL







MREIFDVIHKEKSPKRIYEQLKSKVSSEAVIIDLIRYKKGSSLNISSYAMA







KFLPYFEEGMTLDAIKEKLDLGRKEDYSVYKKGIKYLHISTYEKDDDL







EINNHPVKYVVSAVLRVVKHLHAKHGTFDEIKVESTRELSLNDKVKKE







IDKANKAREKEIEKIISNDEYQKIAKEYGKNIHKYARKILMWEAQERFD







VYSGKSIGIDDIFSNRVDVDHIVPQSLGGLYVQHNLVLVHRDENLQKSN







QLPMNYITDKEAYINRVEHLFSEHKINWKKRKNLLASNLDEIYKDTFES







KDLRATSYIEALTANILKRYYPFIDEKKSVDGSAVRHIQGRATANIRKV







LGVKTKSRESNIHHGVDALLIGVTNPSWLQKLSNIFRENFGKIDDEARK







NIKKALPYIDGVEVKDIVKEIEQKYNSYGEDSIFYKDIWGKAKTVNFW







VSKKPMISKVHKDTIYADKGNGIFTVRESIIAKFINLKITPTTFPEDFMK







KFHKEILEKMYLYKTNSNDVICKIVQQRAEEIKELLWSFEFLDVKNKE







EMQEAKANLESLVHRELFDNNGNVVRKVKFYQTNLTGFKVRGGLAT







KEKTFIGFRAFKKDKKLEYKRIDVSNFEKIKKSNDGSFKVYKNDIVFFV







FDEEKYKGGKIVSFLEDKKMAAFSNPKYPANIQAQPESFLTIFKGKANS







HKQVSVGKAKGIIKLKVDILGNIESYQVLGNAKSKLLDEIKSIVSH





MG86 effectors
11724
MG86-2 effector
protein
unknown
MKKILSLDLGITSIGYSVIEEFGNDRYSLIDYGVSMFDKATDKDGNSKK







LLHSASTSTSKLYDLRKKRKKDLAQLFHNFGLGDKNSLLSQEKQNIYK







NKWYLRCHKAFKEKLNINELFTIFYTLAKHRGYKSLDSSDLLEELCEK







LNIPLETKTKKDDERGKIKKALKTIEELKQNSTKTVAQIIYEIELKKENP







TFRNHDNYNYMIRREYIDQEIEKIIKTQKDFGLFDDKFDIDNFIEKLKDI







ITYQNPSTNDMRLFGNCEYYEDEKAAHQYSVISDIFKMYESVSNITFNT







KPSIKITKEQINKIADDFFTKIKKGKNIADIKYKDIRKILALSDDTKIFNK







DDSYISKGKKVEHTIIKFHFVNNLSKFDNSFIVENLNSLENLKEIFEVLQ







FEKDPTAIYEKLKDKIEDKQTIINLIKHKSGNSLNISAKAMVEFIPYFKD







GLTTDKIKEKLELNRCEDYSKFYKGIKYLNIRQFEQDDNLDINNHPVK







YVVSATLRVIKYLHIVCGTFDEIRVESTRELSQNEETKKAIEKANKELE







KQINDIVQNKEYQNIAQHYGKNLQKYARKILLYEAQNRRDIYTGEGIE







FEDIFTKKVDIDHIVPQSVGGLSVKHNLVLVFRDTNIQKSNQLPMNFVK







DKQDFINRVEHLFSEHKINWKKRKNLLATNLDEIYKDTFESKSLRATSY







IEALTAQILKRYYPFKDKEKQENGKAVSYIQGRATSNIRKILKVKTKTR







DTNIHHAIDAILIGLTNQSWLQKLSNTFRENFGKIDEEARANIKKDMPIF







EIIIDDEVKYLEPKELVELIEKNYNYDGENSIFYKDIWGKIKSVNFWVSK







KPMVSKIHKDTIYSKKDDGIYTVRENIINHFINLKITPKTSSKKFEEEFN







KKILNKMYLFKTNPKDAVCKAIIKRANDIKTLLDSFIDIDTKDKEAMNN







AKTKLDELIHKDIPDNNGKPIRKIKFYQTNLTGFDVRGGLATKEKTFIG







FKAQIINGKLNYTRIDVANIDKIKKENDNSFKVYKNDLVFFIYTDGTNK







GGKIVSFLEDKRIAAFSNPRFPSSIGFQPHFFVTIFNGKANSHKQHSLNK







AIGIIKLNLDILGNIKSYQKIGSCESELLEFIKKVIKD





MG87 effectors
11725
MG87-1 effector
protein
unknown
MEKYIIGLDLGINNVGWSVVDAQTNKIKYLGVKQFEASDSAKDRRTQR







NTRRRLKRRETRKTDILKILSNINFPNNLTIDTMLIETRCKGINEQISKQ







DITNILCYMATHRGYIPFGDEEVSFVDLDGKYPCEYYYEMFKSSTNNK







YRALRNTVKNEENINEVKKMLETQRKYYPEITNETIENIVTTLQRKRK







FWEGPGSINALTDYGRFKTPEDVVEYLDKKKENPEYEKYIFEDLIGKCS







VIPNEKCVSQINFYAEKFNLLNDFINISFKSIEELNNKDDFYETQVKTYK







LRESGLNKVFDYCMSKDTLTIKGLFKDLFATTIDNISGYRQDGHDPNK







PEMSTMNTFRSIRKTFKECNANMDIFKPENTDLYNEIINYMMLVPGQV







ELINMLSTIMPLSENDKEALKKVFKSKKTNLKYHSLCEKILIRACNDML







SLQKNYMQVYKLKDYGKESRKEFVKRYEESNKGEKLMNPTFIDDIISS







PQVKKTLRQSVKVINEIIKNEKSLPDVIVVESTKDTLNSEKMRKVYIDIN







KKQKALHDKAIKTLSSIGYSEKDISKKKIEKLMLYEEFDGLCPYCNNQI







TLKYLINGSDEIEHILPRSNSFDDSFDNRTVSCANCNKNKNNQTPLEFLK







GNEKESFIERIKSNKNISEFKKENFLFAGDISKYRTRFFNRNLRDTAYAT







KEMINQINIFNLYLESKNKDERIKTLSTPGQITHSIRKRYDLEKDRDTDI







PYHHAIDASILALLPTTKIGSKVVMFQNDNKFFLNENNKDKMTEIGLEL







KYYDTSEGKIEYDDYIADFKNINDTSNIFMYSPEVKKEPNKGLFNANMY







KVIKIDDKYYKIDQINDIYNLSDSDKKLLPKLFDDAKNETLLCKLQHKE







FYEKLKNIYIKYSDSKNSPFEDYQREINNLSKEDKFDYLKHGLKMSENA







PSVKRLRYYTPISEPYLIDKKSINKKDGTYLAFDSLAQAGIEVYYNETK







NCFAFVPIPSVCYNLKTRKVNRKHKLYKRYKELNLKDYKVKYIVTLYN







GNTIEVLKKDNTIIKGVVSSYHKTNDKIVLKNGSYFTKSDLEFSIIDYNPI







GKSQKRLTKRIK





MG87 effectors
11726
MG87-2 effector
protein
unknown
MKKYTIGLDLGINNVGWAKYDLETKKVIDKGVVRFKESSTAQDRRIIR







GSRRLRKRKQHRVERLAIQLSNINFCTSRSYEPELLNKRIKGLNESLSE







QEITNIIYWFAIHRGYIPFDEEKPEREVHKFAEDEYPCQYIFDYYKEYG







VYRGQCDLISLKDNLKELKQILLTQQKYHSKLTDEVIDNILYIIQSKREF







WEGPGASKENQLSPYGRYRTLEDLEKYKADPTYHQYLYEMLIGKCEL







SIDKDGFMDQVAPKCNFYAEEFNFYNDFINMSVKEPSQIDEEYRNKITL







KGKFTEDTIEEIKKEIISTKKVSLDKLVKKILGLELKDIQGYRIDKKYKP







EISQFEFYKYLLKSFKDEKLNPSWLENDDKTIYNQIVYILTVAPSTYAIE







DMLKDRVKEVEFKKEEIDVLIDIKKKKNPDLKYHSLSERILKKALDDIK







RHNCEYNFMQIMKRLEYEKEMKEYFQNNYSTKTQSPYTIEDQYIDHLI







ANPQVKKTLRKAIKIINAIIKEEKNYPETIVIESATSLNSKERKKQIEEEQ







KTFNQLNKEVKKELEDNGYEATDKNMQLLINWKETNESCIYCGESISL







KEVLITEIEHILPKSKSMDNSHNNTTCSCLKCNKEKNNRTPYQYLTSKN







MYEGFKNRVMNQYDKMSQDKKSNLLFEGDIDKYSIKFINRNLRDTSYA







SVALVQELKKYNEYLGAKEGYKINIITSPGQLTSKIRQYLKIKDKDRTY







LYHHVVDAMILASIPDTEIGKVLIEAQNDSQYWFKDKNKENKYKEEVY







NMLNNVWLSNRDQIQKFNQDCDNMPDNNKEGLIKRSYEVLKNPVRQF







SQYTEYAKYIKQNDVYYKISQIDNIYNLLIRKKDGSADKDKKLLDELFD







LSNKKNKTLLCEKKDPKLYQKLKNIYEKNSFSINPFVDESKYMYGLED







GDKFDCLKQGIRKTDNSNSPLVIKLRYLEKVTNPYIKNNITTRRKNLYN







EFTINKPKKDTLIGLDGLKQVSTRIFYSYEDKKFIFLPICAISFVNGKLN







KKEKNYQTTYNRLIGNKNVKEMGNIYVGEWVGVYKKNGEYFEGRYK







GYHKTSNVLEYYINGLDTLSCATIGSSDLRIIIYTTDILGNRHIRLDTQKE







I





MG87 effectors
11727
MG87-3 effector
protein
unknown
MTKNYSIGIDMGVNNIGWSILNNDTKKLENYGVRLFPTSNDAKERREV







RNTRRRLKRKETRLDDTLYLLKKYGFNEDNTIEENLIEKRVKGLNEKL







EKQDIVNILCYMIKHRGYIPFGDEEVTLVDLNGKYPCEFYYEMYKNGG







KYRNRKMTVRITDNEKEIKKILETQSKYYKNINQDFINKYLNILTRKRK







YWEGPGSINDLTPFGRFKTQEDVENYLEEKRKNPSYEKYIYEDLIKKC







DYELEERCCCKLNIYYELFNMYQDFINVSFKNIEELENKDCFYETKNGL







YKLNKKGLLMVKDYCMNNFKLKYTDILKKLFNTDKDNISGYRIDKDH







KPEFSTLNSYRKIMLEFTEKGFDTTWVSDYNCYNEIMEKMTLTPGGVE







FIKEIENNKLVPYKFNEEEKSLFKELKEYFNKKTLLSYGSLSQKILQKAI







NDMLDLEKNFMQVSRIKDYGKEARENFIKQYKKTSNKLEINASFVDDII







ASPQVKKSLRQAIKIINAIIEKEGCLPVSIAIESTKELNSDKKKKEIEKEQ







KIQENLRKQASNYLSTVFGDSSVTETNILKVMLYNETNGHCAYCNKPL







SINDIFADNIQVDHILPISKSENDSENNKIISCKKCNDDKKNNTPYQFLKN







KNYFEEFEKRVLENKNISDYKKDNLLYKDDLDKYKTRFFNRNLRDTAY







ATTELINQIEIFNNYLEILDKKRINTLSVPGQITSSIRNRYVKNEDKTSLE







KNRDAGVFHHAVDASIVVSVSDTHIGQIMLKAQNDKEYWIKNKSNYDD







IYKYLINLRIDDTINQIEKINNENIKVSKQVSKNPQGKLANSNIYKMIKK







DNEQYIINQIDNIYTFDFKKDENKKLFEKLLNEENNEFTLLCYDNDKNT







FNYIKKIYNEYKNEKGNPFVNYLIDKGEIPDGNSFDYDITGIRMVTKKG







NGPIIKRLRYYSKKNDLYILNKKNINKKDSNYLALDSLKQFCVKVYVD







NDNKKFVFLPIYTISLDPKTKKVNENDEFYKLFYNKYIGNKNVTFFADI







YNGNKLEITKKDGTIVSGYYSTFNKANNKLILNNGDTFTLSDKKISIIHT







DILGNEKKG





MG88 effectors
11728
MG88-1 effector
protein
unknown
MKYKIGLDLGSTSLGWAVVELNEADQITSLVDMGVRIFPDGRDAKSH







KPINVIRREHRQMRRRGDRVLLRKKRVLQLIHKYGLDFDISADIKLED







PYVLRARAVSDKLSSAELGRVLFHLALRRGFKSNRKETRGDSGGKLK







KATLALHDAIGDKTLGEFQVDSKRYRFADQFDGNKIKDGALYPTRDM







YLDEFNRICSVQNMSDDMRQQFEYAIFHQRPLVPPEIGTCMFELDQPR







AYKFEPVFQRFRVLQQINQLRIINNGEIKELTAEQREKLQDALLATFCG







VKRDKSGRPKITFAEVKKLLGLSRNTKFNLESEKRKDMDVDATAFAFA







ECELADFWRACTDNVKSQVLAHLNDDELSDSDLVDYLAHEYGISQDK







AEKLIQQPFEDGVANLSVCAMQKMLPFLEQGHLYHIAAKEAGYDHAD







RGIVHLDTLPYYGDVMALRPSLVQDKMGRYRTMNATVHIALNQLRAV







VNDLIARFDGEPYAINIEMGRDVSAGADERAEIEKQQAANKRENDRIAT







ELVAMGVRVCRENIQKYKLWENLGKSPLDRRCVYTGEIISKEKLFSPE







FEIEHILPFSRTLDDSMANKTISAAVANRFKGNRSPDEAFSDPKSPWKY







EDVVARAQNLPDATKWRFNRGAMDVFLQGKECIARAMNDTRFMTRM







AVTYLQHVCADKNRVNGMPGRLTASLRDEWHLNWWKNKAEESKYR







GNHIHHAIDAFVIACTDENILRKLADAKSDMHTPFPGFDYFDFKMRCE







NTIISYRQSQKNPKDAHSTVGCLHEDTAYNLECFEDGGCGVNAVMSHR







EELPTTDKDKKAFAKDFKNVNPKTLQMFLNDAGVANEEPDIAIKFLD







WCAMRNIRKVRMYKTGVDVTTYVPVFRTKKQRDVYRAAYLNWYVN







TGVASGIVDKKLRAVQQEKEKHLLQEFQDAAKQAYKWYVGGNNFCA







EIFEIRDDDTRYPKLRGRWQVEILSNYNAQLNAGAPLWRHKYATAKRI







MSLRINDMVMAEFSKDDPKLPKGLVETVAHQCAIEKTDKVNVVFRVK







KLNSSGTVYLRPHFIAKEDADTKSWIASATSLQEHKARKVCVSPSGKIL







GLK





MG88 effectors
11729
MG88-2 effector
protein
unknown
MNYRLGLDMGATSIGWSIYDVETEKLLDTGVRIFDDGREDKSKASLCV







KRRNARGARKLNNRRHIKTQELLKILTTLGLFPQEQNKREDLKNDNP







YKLRKEALDRQLSTYELGRTLMQLAKRKGFKSNRKDNREEGGKLKK







GFAELKDIMQKENARTYGEFLYNCMQRNPDKPIRLKNTFDESGKYKG







GLFPFREIYVNEFEQIWHKQKEYYPQILTDENKEKLKNIIFFQRPLKEA







EEGECQFEKGEKRIPRAHPLFQEFRIWQNVLNLTFSAENEPDYKPLEK







VQELIKLLMNPQEVKPNKQGIIIYANLKKALGLDKNGVFNFERQNNRD







TDLEKGLLVNTTQNAINESEFLAPYWNNFSDAQKGELINVIMRPHNYIP







FPKTRISIEEEDDLIINYVRKRFNLPQEAAEELLFDIDLEDDFGSLSEKAI







SKILPFMKQGTPYHDACQSAGYHHSYKEYEHIDKLPYYGEILGQSCLG







KKNNPKCVEEEFGKINNATVHVALNQIRHLINEHIMRYGKPYDIAVEYA







RDLNASTQERLAMTDTRDKNELENQRIIKELQSKLGNHPYSKNDIQKY







KIWKKLPFYDKNPLIRECPFSGEQIPLSELLNGQKFQIEHLIPFSRSLDD







SLNNKVIATVEANRYKGNRTPFEAFGQSKDGYNWKDIQHRAKKLSVE







QQWRFAPDAMQRFEKQEGPIVRSLIDTRYMTRLLQDYLQPIVKEDGK







QRVQAVVGQLTSLVRKAWGLNVYKEKADKDKYREFHNHHAIDAIVIS







AINRAQIKDVVGILAHVRDDIREEYKDELFQLSDNNVPEDKKREIKKEI







RDVTAKREIAIAKKYFPLPKSFNIPDILQQVAAINISHKPNLKNIKQKDS







TIGQLHQDTAYGLQKFVDDKSLKAIFKTKKAGDEASDDKTTPKDITQY







IPMFRNKEDKKAYYDAFREWFKFNGKAASMDAKTKEDKKLKAEIAQ







KEQAAIQTLRQTALKAFKWFVGGNNFCAEIYEINPNNKIEGVASKDRG







EWKTEIVSNYNATVRNSRGEDIAYWRYKYPNAKRIMSLRGNDMVMAT







FSREQAFDEKFPKGIQEYVREKFQQKSDCQELDILFRVKKMGSNGICF







TPHNIAKENADTKSWIASAGAMQKYRVRKIHISYMGRIQNA





MG88 effectors
11730
MG88-3 effector
protein
unknown
MKYKFAFDLGSTSCGWAVVNTDEDGNVVGLADMGVRIFPDGRNAKT







KEPLQVARRNARGARVRNDRILQRRHKIIDLLKENGMIYDCSDERENP







YKLRSDAVDKEITLKQLGRIMYNLSLRRGFKSNRKPTQKENDSDLKKA







TEKLKQELKGQTLGQYLWGKMKKNLDKEKENKGKDVKNKIGKVRF







SNLFDGNKIKDGSVYPSREMYEDEFNRIWSKQAEFHDILTDELKGKFY







NAIFFQRPLKPQQRGFCMFEDGELRIYKAHPLFQRFRALQTINQMEID







DKPLTEEQREALKKELFEEFKTKNTKAGTVSFSDIRTILGLKKGVKINL







EKNDDDENDGDNTRADKTPEDKDNKKDDDKEYDNIYADKTAYLLSRP







ECFGEKWFEIPFDEQCSIVDILTDCVYNNIEEKKKYDEQQEQNGKHILE







DDEIKQFLQEHYNLDDEQCNAIMNAPLEEGTGSLSQKAIEKILPYLEEG







QLYNDACKSAGYHHSLFDGDVEMLGELPYYGDVLKKSCVQDKDGNY







RITNISVHVALNQLRLVVNELIKKYGNPDFVAVEIARDLKMGTEELKN







LNNKQNSNKKENDKITKAIKEANGNPNNAKDREKFKLWELCQKRCVY







TGKQISATELFSDRVHVDHILPFSRTFNNGFFNKVVCFGDANEDKGNST







PYEAFKNGYQGQSYEEILDRVKKIVEAMKEKKMFKKKTVKDKDGKK







KKVDIDEFSWRFKEDAMEKFKEQEGLIARQLNDTKYMSRLAVQYLKH







ICKVEYYTDEEGKEHRKNNCYGLPGTMTDFCRKGWGVNWLKDKSNK







EGYRSSHAHHAVDAFVVACMTRGQLQKIASMANWIEEHGGQCQDDK







LYLSILFKKCKKPFDTFDRERIYELCDKMPISFKPKLKDPKQENSTVGA







LCEDTAYSLLEFDKGLNGVFVKREDVGSLVLKDLPNIIDTQADKLIKEY







VETEEAFNKFKEYCEKNGIKKIRCKSFADVSTYIPIFKTKEERDEYHKA







YEDWFIFEGRSPANETEEQKQERKEKEQELLKIVQQKALKAYKWFVG







GNNFCADVYQISPRDKVYTDKKEQGSWKVEVLSNYMATLNKGQALW







RKKHPTARLVMRLKIDDMVMGENFTKEEAEQKLQQEIEKWEKSKEM







KKYKDKLTEWEKTHEGKEPKKPEKPKSINEIIIEKCNKEKTSSTSFLFR







VKKISSDGSVYIRPDFITKEESDKKSVKLSASSYQKYKIRKVFVSPAGKL







VDNGFSDKWNDTKCN





MG89 effectors
11731
MG89-2 effector
protein
unknown
MSYVLGLDLGIASVGWSIVEPGNRIIDLGVRVFKKAETDKEGDPLNLIR







RESRLSRRRLYRRAHRLSRLLNFLISSGLIHSKDEVLKNVYNENPWALR







TLGLNSVLTNNQLARVIYHICKHRGFYWASSADDGQADNGKIKKSLSS







NQLVMKEKGYKTVGQMIFTEYPNCQRNKSGEYSKSLPRTDLDKELRA







IFKAQQSFSNPIVTKDFINAIVGCGDRKTGFLWEQRPALQGEDLLKMV







GHCRFEKDELRAPAANFYSEQLVWLTKINNLRVYDEDSQERPLTREER







DLILNMPLEMKSDIKYSSLTSAFEKANLWKSGQFKYKSVDYEQKTQKK







KNTAKSVDITKSSKKNPEDKVFYKSSHLHEIRKALGSSLSEEWEKIRTE







VLSGKYDRYNRIAYVLTVYKEDSDVIEQLSPYESRTLIEALLPVRFSGFV







ALSEKSLKKIIPHMVLGKRYDEACSEANYKHYKQNQAEFKKLKYLPPL







FSGREPNGTLIFNEEIGDIPRNPVVLRVINQTRKVVNAIVKKYGSPKSVH







IELARDLAKSRAERNEIEKRNEEAASRHIKERDEFEKLFGSKCLNGTNL







LKYRLYKEQDCKSMYSSKEIDHKRLFEKGYVQIDHILPYSRSYDDSQSN







KVLVLTNENQDKGNRIPFEYFEAKQHGFSWYEFEQWVKSCKNLNQKK







KRNLLRCSLSKDAKKDFLERNLNDTRYACRFVKNYIDSFLCLSENSDNS







GCVVVAGQLTAYLRNCWGLNKVREENDRHHALDATVIACCTRKIVQ







KVGAWSKSREMNSYNSSYVDPDSPVDEDEKLLQKLYVNTRKPDFPKP







WECFRSEVESRVFESALEKLKEKLKLQCSYTESELKNVRTLFVSRACE







KIGKGALHGDTVYRQTSEMRKENVAVKKVSLKKLKYARIEAIVDADT







RNKNLCDALKKRYEEYARKIGKKIEDFVDKDIAKIFADDNPLHMPNSD







GQEDPCNPIVKSVRVKEAFSGVPIRNGVAGNSTIIRVDLFKKDGKYYCI







PVYAWNKTLPNRAYVSGKKETDWALVDDSFEWCFSIRQNELLKIKLK







GETIFGYYNGFDRDRGSFNILLHDRQDGKDHKQGLIRKGIKTAISITKY







DVDVLGNYYLSKPEKRLELA





MG89 effectors
11732
MG89-3 effector
protein
unknown
MDLIFGLDLGIASVGWSVVDDENKRIVDLGVRAFKAAETEDKGKSLNL







VRRTSRLSRRRIYRRANRLNSLLNYLIKSGLISSKDEILNNEHHENPWNL







RVKGLDGVLSNNQLARIIYHICKHRGFYWSSSAEETEDTEKGKIKKCL







AQNSLALTNEHFRTIGETILNKYPDAQRNKADEYTKSISRVLLNEELKQ







ILTVQKEVFHNPLLTDDFFKAILGTGDKKSGFLWKQKPPLQGEQLLK







MVGHCRFEKDELRSPKANYFAERHVWLTKLLNLRIYSEDCEDRALTV







EEISIVINKIYEQKSDIRYSSLTTAFVKSGIWPKNHQYKYKGLNYDQLTS







SKKKKVEDTASTSEDSTDTKKTAKKTNPESKIFYKSSCYQNIKDAYMSN







SLEQEWNILSTQISQGNYDRYNRIAYILSIYKDDEEVKKHLLDCGEKSE







VAEALLKIRFNGFSALSEKALKKIVPIMEQGKRFDVACSEAGYAHYKQ







SQDSKEKRKYLPPLFSGREPNGTLIINSELDDLPRNPVVMRVINQTRKV







VNALVKKYGSPKSVHIELARDLSKTFEERIDIQKRQEEIKERRQKEQEE







FDRIFGVGIRSGKNLEKYSLYKQQDCKSIYSGETIDLGRLFEQGYVEVD







HVLPYSRSFNDSQDNKVLVLTKENQNKGNMLPYEYFMSHNLDWNQFE







ARVLSNKKLRKNKRCNLLKKSLNRNSKKEFLDRNLNDTRYACRFVKN







FIDKYLRLSDKADKSGCVVVSGQLTAYLRKHWGLNKNRSENDRHHAV







DATVVACCSRRMVQLIGYWSKHKERQYLKDSQSDPDLESDEELLLKK







SIGSQKLYFPYPWVKFRKELNLRVFSSDIEELKNELSLFESYTEEDISKV







KTLFVSRAIQKIGRGALHADTVRSQTEEMNKEKVAVSRVKLSELSYDR







ISKIVDSDTRNKNLCNALKRRFEAYCKSNNINEISKLKAKDSAKIFTTNN







PMHMPNSNGEEDPLNPVVRTVRVKETFSGVPIRHGIAGNGDIFRVDIFF







KEGKYYLVPIYAIAKELPNRACVAKKHESEWTVIDDTYQWCFSVTQYD







LIKIELKKETYFGYFNGFDRATGAVNIILHDRSTEKYKKGLIRSIGLKTA







KSVTKYRVDVLGNYYLAGAEKRLELA





MG94 effectors
11733
MG94-1 effector
protein
unknown
MRKKIRYVIGLDIGIASVGWAALLLDENDNVCGIVRAGVHTFDEAVVG







QSKITGAAYRRGYRSGRRSIRRKVNRIQRVKNLLQRLNIISKKDLEEYF







SGAVENIYYLRCAAIQNEPAYILNNKELAQLLIYYAKHRGYKSNTSYEQ







KTDDSKKVLSALSENKKYMLEKGYQTAGEMLYRDEKFRRKRYGSSEE







CELLLVRNSGDDYSHSISRELLVEEVHVIFARQRELGNKLTTKELEDQF







VEIMQSQRNYDEGSGEGSPYGGNLIEKMVGECTFEKGEKRACKASYTS







ERFVLLEKLNHLRIQSKNGDVRALTEEERDAIIKLAYKNKDVKYKALR







TILKLNPDERFGGLTYSRGDIENSTEGKSVFVSLEYWYEIKKVLGLFYD







DLDNEETQQLLDSIGTILTCYKSDDLRRRKFEQLHLEQEKIEHLLALNY







TKFQNLSFKAMKNIMPELEKGLSYTEACSNAGYGDKETIEGKNKYISK







ELLNNTLDSIMNPTVKRAVRRTIRILNELIKQYGSPVEVHVEMARDLTH







SQTVTNKMKKRQDENKAEKEEAKRFICENFGKTEAQVSGKDILRYRL







WKSQNQIDIYSNTMIPVSDILDYEKYEVDHIIPYSCSFNDSFNNKMLVRK







KDNQDKKNRTPYEYIGSDEKKWEAFATCANTYVMNYGKRKNMLTKV







PASNTGEWMSRNLNDTRYTTKVVTDLIRKHLKFEAYVDQKRKKHIYPI







NGGITAKLRYEWGLEKDREKSDKHHAQDAVVIACCTDGMIQRLSRQY







MLQEIGIVTWKNHKLVDRRTGEIVEETNLPWECFREEVEMFMADSPE







DYIEKAKKNGYKGEAPKPIFVSRLPQKKTTGKINEDTLRSVRIDSKGKA







RFVNKTKLQDLKLVEVDGKKQIKDYYRPEDDKLLYDKLLERLVKNDD







AKVVFAEPFYKPKKDGSDGPIVRSVKTYGKTVKNQVLVGDGVAERGG







IYRCDVFKRKDEYYAVVVYYRDLYIGNLPNNAAHFDIEMKKGEFEFSL







YKDDLIRFVKDGKEQYAYYKYINANNSQITYTEHDTSKETKCTTIRTLD







KFQKMNVDLLGNIYSSDKEEREWN*





MG16 effectors
11734
MG16-3 effector
protein
unknown
MATKKILGLDLGTNSIGWALIETEDSNPKSILAMGSRIVPLSTDDSTQFA







KGQAITKNADRTQKRTARKGLNRYQMRRAMLTEELRRHGMLPERTD







ENIMDLWRLRSDAATDGKQLSLPQIGRVLYHINQKRGYKHSKADNSA







NTKQTKYVEAVNQRYRDIQACHQTIGQYFYEQLLSSAVQTPSGSYYTY







RIKDKVLPREAYIAEFDQIMKVQRVFYPDVLTDELVDTLRNHIIFYQRP







LKSCKHLVSLCEFEKRPFKREDGQIVYSGPKCAPRTSPLAQFCTVWEA







VNNITLTNRQNETFEITQEQRVAMADFLNQHDKMGVKDLQKILGISPK







DGWWAGKAIGKGLKGNTTFTQLREALGNLPNAEHLLKMKLSMVDAA







VDTTTGELIRQVSPQVEEEPLFRLWHLVYSLQNEDELRKALRKQFGID







DEEVLDKLCKIDFVKPGYANKSHKFIRKLLPYLMEGYQYHEACAHIGV







NHSDSLTAEQNAARPLLDKIPLLEKNELRQPVIEKILNQMINVVNALKA







EYGDIDDVRIELARELKSSKDEREAAFKRNNENERQNKIYENRIREYGI







QPSRSRIQKYKMWEESNHLCFYCGKPVNVTDFLAGAEVEIEHIIPQSVL







FDDSYSNKVCACRACNQAKGNLTAREFMEKHSKEEYDSYLRRVDDAF







NAHRISKTKRDHLLWRKEDIPQDFIDRQLLQSQYIAKKAAEILRQGYR







NVYATSGSVTDFLRHQWGYDEILHRLNLPRYQQVEGLTEDVTYDHCG







QEHQQERIKGWTKRLDHRHHAIDALTIALTQQSVIQRLNTLNNSREQ







MFDELGKRTDTPEYTEKRSLLEKWVDAQPHFSVQEVTDKVDGILVSFR







AGKRAATPAKRAVYQNGKRHIVQTGLQVPRGALSEETVYGKLGNKY







VVKYPLGHQSMKMDDIVDPTIREIVRTRLNAFGGKAKDAFAEPLYSDA







AHQMQIKTVRCYTGLQDKAVVPVRFNAQGEPVGFVKMGNNHHIAIYR







DAKGQYQESVVSFWQAVERKRYGIPVVIEQPHEVWDKLINSDNIPQDF







LETLPHDDWQFVVSLQQNEMFILGMDDADFEAAMEQKDYRTLNKYL







YRVQKISSKEYCFRYHTETSVDDKYDGVINKSISMELQKLKRLTSISAFF







SQHPHKVRVNLLGEVSAL





MG2 effectors
11735
MG2-4 effector
protein
unknown
MNSTRSTPLVLSFDIGYASIGWSVAEVVDPANNLQAGVVTFPSDDVLNS







ERAGHRRARRNIAARRNRVQRLKLASVGAGFVTAEEIETLDRMERKS







APEWRHCPWFLAARVLGESPESTLTGLQLFHVLRWYAHNRGYAPPSW







GLFDEADGEQEEDFEKVRNAEKAMHEFGADTMAQTWCALLDADPTA







GRWPEPRHWAKGENMAFPRERVQAEVTRLLVAHVGKLPGVTSDFVR







CLIDDWEHHPKIRSWLQGADPRTGKLRDYALPKRYEGGLLFGQHIPR







FDNKIIPWCPFTLKEDTNSGKISGRNVPKKHSRAFLDFKVAMRLNDLA







LSELGESGGRLSAGQRMTLFKRIEGYGDVTVRQFADLVAEVCAIPKPD







LTTRIPEREGSDRPFELRPERKALIAILTGGRSLPSWPLIHSIWDCFEDA







EAVLRPVFHGKPTSWADLIEQAKAPDVLLERLEELFRLGKGKPSRSKK







AQPPPDFEVLLRCKITITKAHGRARYCSDKLRAATDEALGGLDPRRAP







TTETSDDAGCLYLNERQRDLQDRLPLSKLINNHLVRHRLLIFRRLLQD







LVNTYANGDRERIDAIVVEVARDLNEYSGKNTKQRVALFQEKQRPFND







AAEAFAQALIDDAQYTPEQAQALATYANVRRFRLMREQNFECPFTGR







HLSAEDIAKDRVDFEHIIPRSLKPTDSLDAMVITYRAVNQAKRNRTAMR







FIKDMAGERLDADDAGWSYHTPQQFETAVNRMRPKGRLNTAAKRSQ







ANRCDALLVEDYEPREADFLQRDLTQTGYLMKYAVGEARKFFRSAPR







QPRFIHLEGRVTTFFKKAWRLTETLAPISPLFLREYADPRTGRWQSTV







RPKAELRRFTQLHHALDALTLGLATALVPGIERKELRRALSLRQAKGD







DATLLRSDPKLGEALRWRTEDRFEAAPLSGKLESAVRRALAEGRVVQ







HVPAKRQGMKVDSNFFGFVEFDETGRLRVRQKMRSPTTRRREIKTTV







KNGKNLHTLSHLSLDPKSWLGAPDHPLRRKQLEHGLRTENDLANPKL







GNIRGMLPIRENWGIALITKDGSPRLDVIPYINVHQWLEVLALENGGGS







PVVLRKGHLVGFDAEKCPEEYCGAWMLLGVKDGRSGTTLELIRPWM







VAPRKGGTKESSAKQAIKPASGYSEKEGKASGVFLQRSADVFLKLGLR







PLDHDLTGIAAF





MG21 effectors
11736
MG21-2 effector
protein
unknown
HNTSGVYDLTVARTFIEEEAHKLFAAQRQFGNAFATENIENEYCEILLS







QRHFSDGPGGERTFKFDLRGNCTFEKDELRAFKACYTFEFFKLLQDIN







HLRIIPEYRKGSNKQTRPLTPEERQKIIDLCLKSSSIDFSKLRKELKLAD







DEIFNRVGYDVKKKKSKKKDAEEQPEEQLTPEQQRTKCEEATKFTQM







QSYHEMRKALDKVAKGTISKFSHDKLDEIGEILSLYKADDKRRERLEQ







IGLSNEEIEALLPLTFTKAGNLSLGAMRKLIPYLEQGLTYDKACEIVYG







DHRAQYKGERMPLLSFGKLKEEGALDSVNNPVVLRAIAQTFKVVNAII







RRYGSPQAIHIELARDMKRNFADRQDIKSKQKDNWSENNRRREKVEEI







KGSVATGQDIVKMKLYEDQNGVCLYSGKQLELHRLFEVGYAEVDHIV







PYSKCFDDSYNNKVLVFSSENQRKGNRLPLEYMLAEGDEDKLDDYVTL







VEANIKNTRKKQRLLKPCLTEQDITDWKARNLTDTQYITKAVADILRN







YLAFEEDSPFIKKPVRSINGAVTDQVRKRLGLQKHREEGDLHHAMDA







AVIAVTTDGYINRISRYTQRREFGKRIGCYKDKQTGEKVEIERQKGQA







PLYIDPETGEKLTEQVFDHKYAPTFPAPWKEFTKELKARMAPNADEAI







RQLYLPSYGSEEIKPIFVSQMPDRKISGQAHAETIRSARIDVDESGKERII







AVAKTPLTSLKLDKDGEIDGYYMPSSDRLLYEELKNRLIKTKTSGKTY







GNAEQAFKEPVYKPKKDGSQGPRVYKVKTWKPTTSNVKVAGGIAKK







GDIVRVDIFHITGGKDQGYYFVPIYVADTIKNTLPKHAVVTNFKSSKVE







WKEMDDSNFIFSLYKGDLIHIELCADCRDKDSNNKIRKAKDMYVYYDG





MG22 effectors
11737
MG22-2 effector
protein
unknown
MKNILGLDLGTNSIGWAWIQSKVPQQTDDCPSSSEYLMPDCATIRMAG







SRVLPMDGKMLSGFESGLAVSKTKERTTYRMARRVNERFQLRRERLN







RVLRILGFLPAHYEACLDRYGKIDEEKNVTIPWVPTADGKRKFLFYAS







FLEMKERFHEHHPNLEKIPLDWTLYYLRTKALQQAITKEELAWVLHS







FNQKRGYNQSRDEVKDEDASQKEEYVKVKVVSVVDSGEKKKGKTSYI







VTTESNLQFTTENAAAPSWLDKEREFIVTTKLNPTGLPKMNQEGRIDC







TVRIPKEEDWELKKKRTEALIADSHMTVGEYIFHSLLDNPDAKIKGAK







VGTIDRHFYKEELIAILKKQAAFHPELKDAERYAECVSALYASNEMHR







NILSAWDMPRLIVNDIIFYQRPLKSKKSDIAECPFESRYFMDKEKKLQK







QGIKCIPTSHPHFQEYRIWQFLSNLRVLRREVRENGRYMTDVDVSAHY







LTDKVKVELYEWLAGKANVKQKELLSKLRMSEKEFRWNYVEDNIYP







CGETRSLLSTRLKKAKLPLSLLDSPSSDGSHTFEFELWHILYSVSDLAEL







RKALRRFARKHDFTAEQQEAFVETFVKCPPFKKDYGAYSDKALVKLL







SLMRIGKYWNADRIDTNTRRRIACLLDGEACDSISLRTREKVAERGLQ







QSIEQFQGLPQSLACYVVYDRHAEASEVVRWESPADLQQFTRQFKQYS







LRNPIVEQVVLETLRVVHDLWEEIQKDGGTIDEIHLEMGRDLKNTAEQ







RARIMRRNRENEMTNFRIKLLLQELHDCQPDIEGIRPYSPSQQELLRLY







EETVWESESGKLGGKEASKDIPDDIKKIRDLLSKPSDKPIPQSAIQRYRL







WLDQKYLSPYTGRPIPLARLFTADYEIEHIIPRSIFFDDSYANKVICESAV







NKLKNNRLGMQFIREMDGRVETVKLGEGRETSILSVDGYVDLVNDLF







RNNPRKRNNLLAEEITEDFCHRQLSDTRYIARYIKGILSNIVRQRAADG







TLEQEATSKNLIVCTGQITDRVKQDWGLNDVWNHIITPRFERLNRMTG







SNDYGEWCCKEGKRYFQTRVPLHLQIGFNKKRIDHRHHAMDAIAIAC







VNRNVVNYLNNAAAHATDRMDLRMRICRPSGNGQTKKEIRSPWKNFA







HDAECALQAITVSFKQNVRIITKATNTYEGYDASGKKVRRCQTSSDHY







SIRKPLHKDTVYGEVVLPVVNQVPLKKALLRVNRIVNGKLRKKIQEM







QSSGLTDKQIVDFFMKTCADSPEWNSINFKKIEVRAYSNEEGQTRMAAI







RTAIDESFSEKVIGSITDVSIQRILLNHLRECNGDSEEAFSPEGIETMNRN







IVRLNGGKPHLPIYKVRLGEAMGKKFAVGQRGNKGKKFVITAKNTNL







FFAVYANDEGKRSFETIDLHCALEMQKQGSSVAPPINENGDKLLFVLSP







NDLVYVPSESELQHDIDSEDLKLDHVFKVVSFSENRCCFVPHSMSSPIAA







GFEFNSPNKIEVVSRLGLFEQDKETVSIKNICLPIKMDRLGHLHLVKI





MG23 effectors
11738
MG23-2 effector
protein
unknown
MSEKIPYYIGLDMGTNSVGWAVTDENYKILRGKGKDMWGVRLFDEA







QTAAERRTNRVSRRRRQREVARIGLVKEYFADALNAVDPGFMVRLEE







SKYWLEDRSEENQQKFALFNDKDFTDKEYYTVYPTIFHLRKELIESTE







QHDVRLVYLAILNLFKRRGHFLNKSLESDGETMSMAEAYAALVDEAA







ALEITLPMPIDAKKLEEVLSQKGVSRKFVEQDTNEFFGFSKKASEAREL







VKLMCGLTGKMRNIYGEELIDDDNKKLALSFRSNDYEEKMNEVAELV







GDENMRLLEAVKEVHDIALLANILSGEQYLSVARVKQYNKHKEDLQQ







LKRVLRTYDKAAYKKMFRVMGKDNYSAYVGSVNYKEHKERRNAGA







GKDGESFRKAVEKVIDALPEEAQLDQDVIEIREKIKNEAFLPKQLTSAN







GIIPNQVHLRELKRILENASGYLPFLNEIDESGLTVKERIAQLYEFQIPY







YVGPLSKQNSKNAWANRRPGEEKGRILPWNFEQKIDVNQAAEDFIKR







MVRHCSYLDAEFTLPKQSLMYEKYMVLNELNNLRINGEKPTVLQKQQ







IYNELFGKGKRITQKALINYLKDEGIVEKDSEPIISGIDGDFKASLSTFG







KLRTVLKEEARKDSSQEMMDQIVFWATVYGDDKRFIRARIEEHYSEIL







DDHAIKQLLGMKFNGWGNLSKAFLEMEGASKEDGVYRSVIQALWET







NDNLMELLGQRYTYKEELEKRVQTKEKPLAEWTIDDLDGMYLSPSVK







RMVWQTLKIIREITEVRGSAPSKIFVEMARDDAQTKAKNKGKRTKSRK







DELLECYKDDKAWKDELTSVDDGELRAKKLYLYYLQMGRCMYSGEA







IDLASLMSGNTMYDIDHIHPRHFVKDDSLENNLVLVKKDKNAHKSDNY







PLESEIRNKQFGFWKSLLDKGLITKTKFTRLIRSEDFSPEELAGFINRQL







VETRQGTKAITKILQQAFPDDDMEVVFTKAGVAAKLRHDFDLVKVRC







VNDTHHAHDAYLNIVAGNVYNAKFTSNPLRFIKNEVKKGNASYHMDKI







FFRDVKRGNKLVWQAPNNEEKTPGTIAIVREQLARRTVLQTRRSYMA







HGILSDATIYSKDTAKTESYRPVKSSDERLSDVKKYGGMTSIKNTAYAL







VEYTVKGKTIRSLEGVPIYLGNCSKDDKKLLQYLQEILQRENKNKQVE







NVSVRMYPIRQRSYLKVDGYYYYLGGATGSSVYLLDAMSVYLSKEDM







GYVKKVEKAVAQQRYDECTKEGEFVLTREKNMDLYNKLVDKFSHGV







FIKRKASILKTLEEGIDVFSELNIEKQCGIIMQIFAWITTSQQNVNLTDIG







GVAHAGTLLISKKLSTSREALLIEQSLTGLWSKTTDLLTV





MG3 effectors
11739
MG3-3 effector
protein
unknown
MSADSLNYRIGVDVGDRSVGLAAIELDDDGFPLKKLAMVTFRHDGGK







DPATGKTPKSRKETAGVARRTMRMRRRKKKRLKDLDKKLRDLGYFV







PRDEEPQTYEAWSSRARLAESRFEDPHERGEHLVRAVRHMARHRGW







RNPWWSFSQLEEASQEPSETFGRILERAQHEWGERVSDNATLGMLGA







LAANNNILLRPRRYEHNPKTGKNAEKLNVRGQEPILLDKVRQEDVLAE







LRRICKVQGIEDQYPELAHAVFTQVRPYVPTERVGKDPLQPMKIRASR







ASLEFQEFRIRDAVANLRIRVGGSERRPLTEEEYDRAVDYLMEYSDTTP







PTWGEVADELEIAENTLIAPVIDDVRLNVAPYDRSSAIVEAKLKRKTQA







RQWWDDDANLDLRSQLILLVSDATDDTARVAENSGLLEVFESWSDEE







KQTLQDLKFDSGRAAYSIDTLNKLNAYMHEHRVGLHEARQNVFGVSD







TWRPPRDRLDEPTGQPTVDRVLTIVRRFILDCERAWGRPQKIVVEHAR







TGLMGPSQRADVLKEIARNRNANERIRQELREGGIEAPNRADIRRNSII







QDQESQCLYCGKEIGVLTAELDHIVPRAGGGSSKRENLAAVCRACNAS







KGSRPFAVWAGPARLERTIQRLRELQAFKTKSKKRTLNAIIRRLKQRE







EDEPIDERSLASTSYAATSIRERLEQHENDDLPDGFAPVAVDVYGGSLT







RESRRAGGIDKSIMLRGQSDKNRFDVRHHAIDAAVMTLLNPSVAVTLE







QRRMLKQENDYSSPRGQHDNGWRDFIGRGEASQSKFLHWKKTAVVL







ADLISEAIEQDTIPVVNPLRLRPQNGSVHKDTVEAVLERTVGDSWTDK







QVSRIVDPNTYIAFLSLLGRKKELDADHQRLVSVSAGVKLLADERVQIF







PEEAASILTPRGVVKIGDSIHHARLYGWKNQRGDIQVGMLRVFGAEFP







WFMRESGVKDILRVPIPQGSQSYRDLAATTRKFIENGQATEFGWITQN







DEIEISAEEYLATDKGDILSDFLGILPEIRWKVTGIEDNRRIRLRPLLLSS







EAIPNMLNGRLLTQEEHDLIALVINKGVRVVVSTFLALPSTKIIRRNNL







GIPRWRGNGHLPTSLDIQRAATQALEGRD





MG3 effectors
11740
MG3-4 effector
protein
unknown
MSTDPKNYRIGVDVGDRSVGLAAIEFDDAGFPIQKLALVTFRHDGGLD







PTKNKTPVSRKKTRGDARRTMRMNRRRKQRLRDLDMMLTNLGYTVP







EGPEPETYEAWTSRALLASIKLANVDELNEHLVRAVRHMARHRGWAN







PWWSIDRLENASREPSETFEIILARARELFGEKVPADPTLGMLGALAAN







NEVLLRPRDGKKKKTGYVRGTPLLVAKVRQEDQLAELRRICEIQGIEG







QYDALRSAIFTHKMAYVPTERVGKDPLNPSKNRTIRASLEFQEFRILDS







VANLRVRTDSRSKRELTEAEYDVAVEFLMSYTANEQPSWADVAEVIGV







PGNRLIAPVLEDVQQKTAPFDRSSAAFEKAMGKKTEARQWWESTDDD







QLRSLFISFLVDATDDTEEAAAEAGLPELYMSWPAEEREVLSDIDFEKG







RVAYSQETLSKLSEYMHEYRVGLHEARKAVFGVDDTWRPPLDKLDEQ







TGQPTVDRVLTILRRFVLDCERQWGRPRAITVEHARTGLVGPAQRQEI







LNEQKKNRENNELIRGDLRKSGVENPSRAEVRRHLIVQEQESQCLYCG







AVIRTDTSELDHIVPRAGGGSSRRENMAAVCHYCNSKKKRTLFYDWA







GPVKLQETVDRVRQLEAFKDSKKAKMFKNQIRRLKQTEADVPIDERSL







ASTSYAAVAVRERLEQHFNEGLAPDDKSRVVLDVYAGAVTRESRRAG







GIDERILLRGERDKNRFDVRHHAIDAAVMTLLNRSVALTLEQRSQLRR







AFYELELDKLDRDQLKPGEDWRNFTGLYEASQNKFSEWKKAATVLGD







LLAEAIEDDAIAVVSPLRLRPQNGSVHDDTINAVKKLTLGSAWPADAV







KRIVDPEIYLAMKDVLGKLKELPEDSARSLELSDGRYIEADDEVLFFPK







KAASILTPRGAAEIGNSIHHARLYSWLTKKGELKFGMLRVYGAEFPWL







MRESGSRDVLHMPIHPGSQSFRGMQDGVRKAVESGEAVEFGWITQDD







ELEFDPEDYIAHGGDDELNRLLRVMPERRWRVDGFYNAGTLRIRPALL







SAEQLPSELQKKVADKTLSDVELILLRAVQRGLFVAISSFLPLESLKVIR







RNNLGFPRWRGNGNLPTSFEVRSSALRALGVEG





MG4 effectors
11741
MG4-2 effector
protein
unknown
MLREPGNSVKSKIMGQQAKRRSYVLGLDIGTHSVGWALLKFRDGRPC







GVERAGVRIFEPGVEEVAFERGRAEPPGQKRRQARALRRQTERRARR







KAKLLHILQRAGLLPKGEADEILPALDRDILARHSAAWPGARDALPYW







LRSGALDHRLEPHEFGRALYHLGQRRGFLSNRRAPMRKNEEDGKVKA







GISTLKEQMEKAGARTLGEFFAGLDPHQERIRQRYTSREMYEQEFEAV







WSAQAAHHPAILTDDLKARVHHAVFHQRPLHNQSYLAGSCTLEPDRK







RTPWACLIAQRFRMLQKLNDTRVLPASGPERPLSDEERQTVLTELDRK







KELKFDRVRKLLGLSADSSFNWESGGEDRLVGNTTNARLAKVFGKRW







WSLSPDDRDQVVEDVRSYEKAEALARRGREHWGLDEKAAGELSKLSL







EDGYCRLSRQAIERLLPGMEKGTAYMELVRKLYPDRWAAGKPVDLLP







ALAETDLDMRNPVVRRCLTELRKVVNAVVRHYGKPSAIRIELARDLRK







SAKQREQTWRRNRRNQQDREAAAEKLLQEARIANPSRADVEKVLLAE







ECGWHCPYTGHGFGMADLFGPHPHFDVEHIVPFSRSLDNSFLNKTICE







ARENRDRKRNHTPYEAYGADAERWDQIIARVQSFRGTASREKLRRFQ







QHEVEDLDGVAQRELNDTRYASLLAVQYVGMLYGGAVDAGHVRRVQ







AAKGGTTGYLRDMYGLGFVLGEGRKERSDHRHHAVDAVAIALTDPA







ALKSISQAASDERRGGRVSFGAVALPWVDFIGDVQAAIEAINVSHRPSR







KVNGALHEETFYGPRGMDGDGRPTGYVQRKPVERLSAKEIPNIPDPAV







REAVQAKLDEVGGTPAQAFKDPANHPVRKRGIPVHKVRLRLNINPVQ







VGSGATERHVLTGSNHHMEIIEVRDAKGGKKWTGRLVHRLEAKRRA







LGRETIVDRAVQAGRQFQFSLSPGDMIELTGEDGERKLHVVRSISEGRI







EYVDARDARKKADIRASGDWRKPAVGSLLRLHCRKVVVTPFGEIRYA







ND





MG44 effectors
11742
MG44-1 effector
protein
unknown
MEKFYLGADIGTNSVGIACTDENYELIRAKGKDCWAVRLFDESKTAET







RRNFRTSRRRLERRKQRISWLQALFAPYINDETFFIRLNNSQFLPEDKD







EILQADKNALFGDEGYTDKNYHVEFPTIYHLREKLIEGGKYDLKLYYL







TIHHIVKYRGHELFEGATMEEIRDIKRLFENLNAVWEATYAENVPHINL







AKSDEAKEILLDTKKGLRDKQIALEKLFGENTALMKESIKAMLGGKIS







PETLFGEEYKDEKSFSFKDMDEEAFDALQSTYGDNFECLNALRSIYNFV







AFEKLLCGHKNISSAMIAVYNKHAADLSLLKSFIRSERPNDYNKIFKSTT







EKANYVNYIGYTKKGGEKKKVAKCKSDDEFFAYMKKYLSSLDDIKDG







ATRDKILGEIENGSFLPKILHSDKGLFPRQVNEAELKAIASNMVKYYPE







TKEIADKIIPLFEYRIPYFVGPLAGVNSWAVRKSGEITPWNIGEKIDLAA







SNEEFMRKMTSKCSYIFGEDVLPKCSIIYQKFDVLNQLNKLRVNDRPLT







VDLKKGIFNELFLKYPKVSDKKIKDYLIRNGHFSPTDGEITLSGKDGEF







KASMSSYIQLKRILGDFVDKDLENGGEVCENIILWHTLNTDKKIVYDLI







EKRYKNIPEIADSVKALKGLSFKNFGRLSKKFLVDLYSADNETGELVNI







LDVLYETNENLNEILNDEKYAFGKLVDEANGVADSKITYEDIEKLYVSP







AVRRGIWQTVTMIDEYVEAIGRTPDKIFVEVTREDGVKGDAGRTQPRK







RQLQEKYKNVSKTYADVISELGDEKYSDMKLRQERLFLYFRQLGKCM







YSGQRIDLDRLDTDTYDVDHILPRTFIKDDSLDNKVLVLRSKNAEKADR







YPLPQGFSDQQDFWKMLLDKNLIAKTTYDRLTRTEPLGDNDYKDFINR







QKVITDQTVKAVAELMKRKYPTAKIVYSKAKNVNDFKNKFDIFKCRET







NDLHHARDAYLNVVVGNVYDTVFSNPLDMFRKDGDMWRTYNLKKLF







TRDVKGAWDCSRIARIKSICGSHTMAVTRYAYCNKGEFYNQTVYGKD







DAGVSSPRKSNGPLSDTKKYGGYKSQTTAYFAIVSSLDKKDNRVKTIEA







VPVLVAYRLKNNPKAVEEYFNSYLKSPEVLIPKIKNKQLVSYNGSLVYI







AGVTGDRISVHNATQLFTDNKMDEYVNGLLKLLDMDAKKMLVGDEP







RYVIKTNRNKEEKLVIDKEKNVELYGYLKNKLCDKIYSGLSAFATFAK







NIENGKEKFIDLTIVEQAKVLIQILMMFKRKDILSDLTLIGGSSHSGKIL







FNKKIDDVNFEIIHLSPAGLRVIKNKV





MG46 effectors
11743
MG46-1 effector
protein
unknown
MKENYYLGLDIGTNSVGYAVTDGGFNLLKYKGEPMWGSHVFEEGKQ







CSDRRMHRTARRRLDRRQQRVHLTQEIFAKAISEVDERFFVRLKESAL







FREDTSGRDTYIFFQDENYTDKEYHRDYPTIHHLIKELMEDTTPHDVRL







VYLAVAWLMAHRGHFLSEVNKDNITELLDFDSIYGNLMELFTTPPWIC







SDKEEFKNILLLHQTIKNKERKFWGLLYEGKKPKTDEEDYINKEGMIR







LLSGGTVEAGKLFNQKEFQEKISISLKKSEEDFQLLLDEMDEEDSEYLI







RLRALYDWALLVDSLHGCSSISEAKVQDYAQHEADLKMLKNFVRKYC







PNEYAAIFKNAEKENYASYVYNIPKGKRTKEYKKKITQEEFCDYLKKK







LKDIQIEEEDQEIYQDMMFRLETYTFMPKQVTGDNRVIPYQLYYDELK







KILENAENYLPFLKKVDEQGISNKTKLLSIFEFRIPYYVGPLCSASKYA







WLKRKAEGKIYPWNFEEKVDLDQSEKAFINRMTNNCSYLPGETVLPQ







NSLLYCKFTVLNEINNIKINGIPISVECKQEIYRLFEENKKVTVDKIKKY







LISNNYMEKEDVLGGIDITIKSSLKPQHDFKRLLHSKILNEKEVEQIIECI







TYSEEKSRVLRRLEREFPKLSDEDRRYLSKLKYSGFGRLSREFFTGIHG







ANKETGESFSIIQALWDTNDNLMQLLSDRYTFKDSIEEEQRQYYEEHP







MTVESLLEEMYVSNAVKRPIYRTLDVIKDIQSVCKAAPKKIYIEMARG







QEEGSNRKRSRKDQILELYKNMDKGEVRELSKQLEDCSDRELRSEVLF







LYFMQLGRSMYSGKPIDIEKLKTNAYDVDHIYPQCRVKDDSLSNKVLV







LSEENRAKGDKYPISAVIRQNMGEMWRVYHEKGLISDEKYRRLTRVS







AFSNAEKMEFINRQLVETRQSTKALTRIFRYIFPETEIVFVKAGLVSDFR







NEVLKCAKSRIVNDLHHAKDAYLNIVAGEVYHARFTSKFFKIDQDEYS







VKTKAIFGNKVWNGKELVWDGEKDIARVKKILTKNSVHYTRYAFERK







GGLFDQQPLRAASGLIERKAGLDTEKYGGYNKSTASYFLLVKYAEAG







KKPKQDVMFVPIDLMESEQIIKSESYAKYYVRNAIAHIIGKSREIVQEVS







FPLGMRKMKVNTLLTLDGFEAILASKSNGGKTLVFGSMMPLFVNNKK







EIYIKRLESFSKKKKQNNFLFVDEVYDKITKEENRELFLFLINKVEEEP







YCLIFGSQLQVLHDKENEFENLNLEQQVETLLNLLSIFKTGRTTGCDL







KLLGGAGQAGIFTESSKLSNWKKSYKDVRIVDISAAGLHRKTSQNLLE







LL





MG6 effectors
11744
MG6-3 effector
protein
unknown
MKKVLGIDLGVASIGWGIIETDEKNENGRILKSGVRIFQGNEQRADAA







PGESSNADRRNKRSVRRQRDRRTRRKINLYVTLKKNGLAPNKSEWDK







WVSINPYTIRAKALDEKVSLHEFGRALYHLNQRRGYKSNRKAGSDKE







GAVKEGISKVRNHMAKHNARTIGEYFHEIYDNHLQNDTEHDDFDWRI







RDKYTHRKMFKEEFDALWDAQSVFHKELTNDLGEVLKKIIFHQRKM







KSQSHLIGKCELETDKKRIAKAHLLFQEFRVLKNINNLSISDENGFPIKL







TEGDRKLFKEIFDKKDKVSWSQLKTALINSGTIGNKNAVFNLERGGRK







NIEGNRTNAALSHKKAFGEKWYELEDDFKKHVVDVLIHVDKPEIVKNL







ALNKWDRTEEQAEYITHKLTLEQRYGGFSEKAIKKLLPYLKKGMEES







SAIKKAGYSLFEQNPGKMNQLPMPDQTIKNPVVYHALIELRKVVNGIIR







EYGMPDVIRVELARDLKAGYERRQKMTKKMRELEKKNDKAYKALQ







KEPFNIQYPGYNDIIWFNLWEECDKTCPYTGKTIPAEAFNSGEFQIEHIL







PFSRSLDNSYANKTLCEADFNRKKGNRTPWECVEAGIMEEDTMLQRIR







NLPWNKRNKFTQKEIDEDKFLNRQLSDTRYISKEASSYLKHLSCERVE







VVKGQTTSLLRHLWGLNGVLNKEGPDMKNRDDHRHHAIDAIVVAFTN







RSTLKRLSDENKRIGTAEWMDADESGRATNDEIKRRLGGRIDLSEPWP







TFRNDVEVSINNITVSHRVNRKVSGALHEETYYGPTDEPAPKNKEMMV







LRKSVHQLSKKDLGLIRDETIRQIVNDEVQKRMDNGESQANAIASLEA







DPPFIISPKAKVPIRKVRLLMKKDPQIMHYFENKNGEEDRAALYGNNH







HIAIYETSDKNGVKKQIGIVIPMMEAARRVKDGDPIVMKDYRPDHTFL







YSLAKNDMIFNHEDEQIYRVQKINSDGTIMFRQNNVAMKGQSDPGVYF







KSGSRLGASKIKISPIGEIFPAND





MG6 effectors
11745
MG6-5 effector
protein
unknown
MDSYTLGLDIGSNSIGWSLIKEDKNPTIIDIGVRVFPEGIDRDTKGAEISK







NKTRRNARSSRRMHQRRSYRKSKLVKISREQGILPQEDKELDKLFLKD







PYELRAKGIDEKISLFEFGRALFHLNQRRGFLSNRKSGKSKEDGVVTKS







ASELQSTIKKTGCRTLGEYLNKLDSTEERRRSYYTFRSMYEEEFEKLW







EKQKEFYPKILNDDLKKVIKDETIFFQRPIRWDRDTIRDCDLEPGEKVC







PRSDWHARRFRILQDINNLEIYNTDGSSDKLSDERRKVLLEELLNKKD







MTFGALRKKYGLFESQTFNLEEGSADKKKAKLKGDEFAAQMRSAKIL







GKKGWEKLNESQRIEINDLIVDDDIEDNELVKILIDKYRFSQTQAEATL







DISLPSKYSSFSKVALQKLLIYMEKGKLVHEAIQAVYGKPQAITNKGEI







MDFLPMPEDLRNPIANRGLFEVRKLVNAIIREYGKPKKINIEMAREVK







GSKRERDEIHLKQYKNERINEEARKTLIDDFKIPNPSRDDIIKYKLWVE







CNKVCPYTGKSISQHQLFGPNPEFQIEHIIPYSRCLDDSYMNKTLCFVD







ENKEKGNETPYEYYSEKIPKQYEQILQRIRTLPYPKRRRFSQQEVKLDN







FIERQLNDTRYISREVVKYLKKLGVIVKGTRGQVTSELRHQWGLNNIL







DLAGEGLKNRDDNRHHSIDAAVTAVIGNEHLRELARTKFRKNNKEFK







QPWPDFREELEEKIKHINVSYRVQRKVSGALHEETSYGPTGRKDEKGQ







DIFVYRKKLEDLTISMVNKIVDLVVRDIVKKRLVERGIDPEKDKKIPKE







VWNEPLYMKTTKSDKKVQIRKVRIQDVFNNMIMLKDKKGKPCRAVA







PGNNHHIEIFEYKDKKGGKKRDGRVITMFDAVQRSQKRESVVKRDYG







DGKEFVCSLATNEMFIMDNVDGNTELYRIQKITQSGNNKTIILRPHTYA







GKLSDSDKPPLIQRKSPNTLKGHKVTVDMLGRFHMAND





MG7 effectors
11746
MG7-1 effector
protein
unknown
MSNKTILGLDLGVSSIGWAIIERNDENGRIVKSGVRVIPSSKSELSVFKD







FDKGKPASFSKERTEKRGIRRSYFRKKLRRAKLIEHLKENNMFDPELL







GPKYSIDVWEWREKATKEKITLAQLGRVLLHINQKRGYKSNRKAIVD







EESDSNWLNAINDNSKLLREKGITVGEYFYQEGKLHERKPKVKFALHF







RMKVRIFNRKDYLDEIEQIWKKQSEFYPELTDELKESIIDHTIFYQRPL







KSAKHLLSECRYEKMHKVIARSNPLFQLFRVLEKVNNLRAEDAFGNNR







EITDEEKLKIIEACTSAQSWKLLDKKKNLSKSKIKSILGLGKDYEINLDS







IEGSKTLHSIWEVLMKSWGEAGDWIDFDWSIQGNDFSKQKSYQLWHA







LYSIDEPQYLRKKLCEGFGFDLDTARLLMNIRLESDYGALSARAIKRIIP







ELLKFPKDATKAIENAGYKFTDSETKEERESRELKDRIEHLKKGALRN







PVVEKVLNQLVTLVNAIYAHPELPNPDEIRVELARELKSGAKERRRAE







LGMARAAKDNDRIRELLQTEFGIPYPGRRDILRYRFWEEQDMRCVYS







GDVIPRNKLFVGEEYELDHIIPRARLENDSNSNLVLVKSSENKDKSDMT







AADYMKSKGEKAFEEYLVRVKNLYDKGAKKKAGERGSGINKGKRNF







LIMKKEEIPQDFIERQLRESQYIVKEAVKLLKEVCRDVTTTTGKITDLL







KHQWGANDVFRNIQVPKYRKWGMTETIVDRKTGEVIERIIDWSKRKD







HRHHALDAIIVACTRQSYIQQLNRLNVLYENDYESLKSYRKFELPWPSF







HNDLISSLESLLVSFRNKRRVATMNKNRIKVGGKKKYIVQKTLTPRDA







FHLETTYGRRLVNNYKLVKLNKKFSMELAELVIDPDLKEKILNRLMEF







GNDPQKAFANLKKNPFKWKNENLEEVLIYDEVFTTRKKLDEKENNPSE







IIDPEVREIVTQRLKEFDNNPKKAFADIENKPVWYNKDKQIRIKTVNTR







AKASDLYPVRTKENGNPKDFVFTRNNHHITVYQKEDGKYYDKVTSFW







EAFELKKAKMPIYKENDDAAKAVLHLKINDMVLVDLNPEDLDQNDPE







FFNTLSEHLYRVQKLASGDVTFRHHLETELSNKNTEVRVTNAESLYNR







VVMYPLDVLGLPK





MG71 effectors
11747
MG71-1 effector
protein
unknown
MDNLILRREKMLVTKIKNTYPQISDDEIKAIKKLKYKDWGRLSATLLN







SSTIAYEDKAFGELVTIISALRHTNKNFMELLSSYCSYDFIGKIKEFNGS







RQSSNGKLTYKDVEELYVSPSAKRSIWQTLTILEEIKKIMGCEPKRIFIE







MARSKEESKRTDSRLKKLQDLYKKCREENIDFMPRKDEFNALKTQLSS







KKEEDLRSDKLYLYYTQMGRCMYTGERIELASLYDNNLYDIDHIYPRS







KTKDDSLSNRVLVKKQVNAAKTDIYPLDAAIRTKMHSFWKLLYDKGFI







DERKYERLTRSTQLRDEELAGFISRQLVETRQSTKAVAAILKTAYQNSE







VVYVKAGNVSDFRQQFKFVKCRDVNDLHHAKDAYLNIVVGNCYHVKF







TANPLNFITKNQDNRRYSLKPEIFYKFSIKRDGEIAWLGGEDGTMATV







ARTMHKNNILFTRQPLEGKGELFKQNPLKAKSGQLPLKAGLSVEKYG







GYDSLTTAYFALVKSEGKQGSVQLSIEGIPLVYAKQGEKAVQDYLTEV







VQLCKPEIKIPKIKKYSLFKINGFPMHISGRTGKQLVFYGAGQLCIADD







VADYLKKALKHETDIAEKEKTLADQNADDIQKQKAQKGLDFYEQKW







GISGAVNVQLYDMFIAKSANNLYKNRPASQTITLKEKREHFVKLTLSK







QIHIIKEILNLFKCASASADFKLIDKGTSCGTLKISNNITKLKECILINQSP







TGVFEQEVDLMKL





MG99 effectors
11748
MG99-1 effector
protein
unknown
Same as SEQ ID 11716 above





MG112 effectors
11749
MG112-3 effector
protein
unknown
MGYNKVVLGLDVGVGSIGWGLVQLDEEKYADEKQDGTVEEKYKITD







GKIIAAGVRRFQLPQDRQKKSLALIRGTARRSRRTIKRRARRLKRLIEL







GKEFNLLGNDFDRDKFLIPKKGDKKEKWDTWRFRKEALERKLTDEEF







FRVLYHIAKHRGAYFQTRAERLELEKDSKAAKDQGEKGEEKQDNEKK







KEREKMKKGLKRIQELLKRSQYKTVGAMFYEMFKNGRKRNAPDKYS







NSIRRELLHDEINEIFKAQRALGNEKADPDLEKQYLRAVLMQEKGPDD







EKMQKMIGRCEIIKELCSQAGKECTADCPDLNRCRCAPKESYTAERFV







LFNRLNSLKIIGGQAIDLAKHRDNIEKLAYTHDKIDFSQIRKELCLTDKP







HLRFNLCSYSEKNPEYEKTLKYEVSNGQLQFGPEHRVQMDNFDTGET







KVFDKEIRAIFQKRLATTPNYKKINVRYSDIRKELQGPQVDLAGFKFTA







LKKEYTKSSAQLESEFFTKPKNKGKNFNGDAAYIKQFEDDAIFVELKG







YHKIRKVLENRDGTWEKLKSDGTRIDTIAEALTYCKKDETRTAYLKER







GITDESVIDAALTLNMEKIATYSKEAMVKLLEHMEKGLLVNDAKARC







GYDKFEHKKQAYLAPYSGFFENNPVVARVIAQTRKVVNAIVRKYGEQ







YPIDQIHIEVATELANSEKTRKRIKDAQDKNKDEKSRARSICEEFGINSD







EGQNLTMVRLLDEQGHFCPYTGKAIVLRSTGAANEVHINDCEIDHIIP







MSRSENDGMNNKILCCAKANQDKRNRIPFEWFEETHGPNSQQWFEFT







RRVEKMYDVPYSKKKNLLRKSWTDEEMKKFMDRNLNDTRYATRHIA







DYLRKYFDFSNRRDDIKDVSRIKLRSGGVTAFLRYLCGLNKNRDENDL







HHATDALITACATDGHVFLVSNLSKQIEEKGKNWYKHFGMEKFKPLR







PWETVREDILEATQKIFVSRMPRHKVTSAAHEDEVWSFDEKKRTKKA







QKKKKSSIPKDTARVMKINNGYAKIGEIVRADVFEDGKHKNYVVPIYA







VDIFSKKPLPDKYLKKNNTPYDEWPSAAADNLTFKFSLFKDDLITINGT







PYYVDFVEGTQANIKVRNINGSKFESTNEKTRKFGYRNIELKKFSVDM







LGNYKEVKEEKRLGNEGVKWTKKRPKK*





MG123 effectors
11750
MG123-1 effector
protein
unknown
MRILGLDLGIASCGWALIDQAKDGEEGRILALGVRCFDAPEDSKDRTP







NNQARRQHRGLRRVLRRRRQRMQELRHLFLAHGLLASAGPDALALP







GIDPWAMRAEALDRALAPCELAVALGHIARHRGFRSNRNQRSNEAED







RTMLAAIAARQERTGHYRTIGEAFARDPEFARRKRNRDGDYGRSILRE







EHEREVRLIFARQRALGSQCATEALEQAFTDIAFFQRPLAASEDRVGPC







PFEPGERRSARFAPSFELFRFLARLTTLRIGTRREERALTAEEIARAEQG







FGTQQGMTFKRLRKLLNLAEAEGFIGISPEDEGRDVVNRSPGNGCMR







GSAALRQAIGEGAWLRLLSTPERLDAIAFVLSFAAAKEFPERLAALGIE







EDVIAAVLAGVEQGMFDHFAGAGHISAKACRKIIPGLRRGLVYSEACQ







EAGYDHARRPETSLSDVANPVARKAIGETLKQVRAIVAEYGLPERIHIE







LARDVGKSAEERAEIARGIEKRNRERDRLRRIFVETVGREPAGSEDML







RFELWLEQAGRCLYTDHCIPPDAIVAADNRVQVDHILPWSRFGDDSFA







NKTLCFATANQEKRGRTPFEWLGADQERWNRFVAVVEGCKGMKGR







KKRIYLLKDAVSSEEKFRTRNLNDTRYAARIVLEHLAHFYPEDGSRRVF







ARPGALTDRLRRGWGLQDLKKKLEPDGEKRHEDDRHHALDALIVAA







TSESALQRLTRAFQEAETRGSHRDFSALTSPWPGFVDQAQEAFKTILVS







RAERGRARGEAHEATIRQVRKDEDGPVVYERKSVEALTEKDLARVKD







PERNAALIESLRAWIAAGKPKASPPLSPKGDPIAKVRLRTDKKPAIEVR







GGVAERGEMVRVDVFRARNRHGRWEFYLVPIYPHQVADKVRWPTPP







DRAVQGNTPEEQWPVMDAGYEFLFSLHQRSFIEVEKRDRTVITGYFM







GLDRHTGSIAISTPHSTKALARGIGARTLMRFEKFRVDRLGRTFAVRQ







ETRTWHGVPCT*





MG124 effectors
11751
MG124-1 effector
protein
unknown
MTLTLGLDIGTNSIGHALVETDEQGNVISLKHIGVRIFSDSRTDKEKKP







LNEARRTARQARRQRERKKSRMKAVLRVLREHGLDPQDSLLESPYAA







RAAALTGPLSRSQVGRAIWHIAKHRGPRLVRKDDKEQGVIKEGIRSLE







TEMLAQKARTYGELLERIRLNGGSVRLRANSEGSYNRYPSRQVMEAEF







NHLWESQVPHHPEVMTEALRERLITAIFYQRPLKPVYPGRCTLEPDEY







RMPKAMPMAHEFRIRSEVANLTLKQGDEVRTLTANERQIVVDGLLNS







EKLTFTAIAKLLGFRAGVKFNLEGDDGDGGKARNYLIGDLTSSKIRSV







WPNFSKMPENMRLSLILALLDIDDELELKCKLRSDFGISPEVVDQLSSL







MLPAGYINLSQKAVRAVLPYLQQGMGYAQACAAAGYHHSDHRPEEL







TPILPFYNELPGMKRYLGQEQKGKPGRISNPTVHVALNQVRKVYNTLV







EVFGVPDCVNIEVTRELKQTAKQKIAANKQNAANKKVRDAFKEKFPE







RANSDQDLVRWRLWNELPEERKVCVYSGKEITLNDLFSPRVEIDHIIPH







SISFDNSPSNLVLCAQGANRLKTNKTPHEAFAPGLHKEFNWSAIEQRVF







ELAADKCGTWAKKKLRFKPDYLDVGGDFATRQLNDTAYLSKVVRIYL







GHSCPKVLAVRGAVTAICRKEWGLDRLLRDTVSDHADLFCLSSVKSTG







VFMAPHHVTGGSHDIREDCSVNKLLKFGAEVVRVDPIGRFQTPGEIRRI







EPRGPKVNFQNLRTTTRKPLTSLTANSISQIKDDGLRTKITAHIKEVNP







KLLTDTLNREAKVELSRLLGEFGQKHSVGRVRIVANKSGVIVRHGAAN







QHTKVLIADTNHHGDVVVRDGKVKMLLTTYAELNHPPEVEAGWTLK







MRLHKGDMIRVPGYVYNKYPKKPNYGKDRSDHRHHAVDAFVIACITP







SLLRKISRSIALSKYNQLHEFPEPYERFKQELKTHLRKLVVSNKLDHSIS







APIFTETNYGFTA*





MG125 effector
11752
MG125-1 effector
protein
unknown
MRPYGIGLDIGISSVGWAAIALDHQDSPCGILDMGARIFDAAENPKDGA







SLAAPRREKRSQRRRLRRHRHRNERIRRMLLKEGLLSEAELTGLFDGA







LEDIYALRTRALDEALTKQEFARVLLHLSQRRGFRSNRRATAAQEDGK







LLDAVSENAKRMADCGYRTVGEMLYRDAVFAKHKRNKGGEYLTTVS







RAMIEDEVKLVFASQRRLGSAFASEALEQGYLDILLSQRSFDEGPGGNS







PYGGAQIERMIGKCTFYPEEPRAARACYSFEYFSLLQKVNHIRLQKDG







ESTPLTSEQRLQLIELAHKTENLDYARIRRALQIPDAYRENTVSYRIESD







PAAAEKKEKFQYLRAYHTMRKAIDGASKGRFALLSQEQRDQIGTVLT







LYKSQERISEKLTEAGIEPCDIAALESVSGFSKTGHISLRACKELIPYLEQ







GMNYNEACAAAGIEFHGHSGTERTVVLHPTPDDLADITSPVVRRAVAQ







TVKVINAVIRRYGSPVFVNIELARELAKDFTERKKLEKDNKTNRAENE







RLMRRIREEYGKMNPTGLDLVKLRLYEEQAGVCPYSQKQMSLQRLFE







PNYAEVDHIIPYSISFDDSRRNKVLVLAEENRNKGNRLPLQYLTGERRD







NFIVWVNSSVRDYRKKQKLLKPTVTDEDKQQFKERNLQDTKTMSRFL







MNYINDHLQFGVSAKERKKRVTAVNGIVTSYLRKRWGITKIRGDGDL







HHAVDALVIACATDGMIRQITRYAQYRECRYMQTDTGSAAIDEATGEV







LRIFPYPWEHFRKELEARLSSDPARAVNALRLPFYLDSGEPLPKPLFVS







RMPRRKVSGAAHKDTVKSPKAMAEGKVIVRRALTDLKLKNGEIENYF







DPGSDRLLYDALKARLAAFGGDGAKAFREPFYKPRHDGTPGPLVKKV







KLCEPTTLNVAVHGGKGVADNDSMVRIDVFRVEGDGYYFVPIYIADTL







KPVLPNKACVAFKPYSEWRTMDDRDFIFSLYPNDLIRVTHKSALKLSR







VSKESTLPESIESKTALLYYVSAGISGAAVSCRNHDNSYEIKSMGIKTLE







KLEKYTVDVLGEYHKVEKERRMPFTGKRS*





MG125 effector
11753
MG125-2 effector
protein
unknown
MLSYAIGLDIGISSVGWATVALDGEDRPSGIIGMGSRIFDAAEQPKTGD







SLAAPRREARSARRRLRRRRHRKERIRALILREGLLNETQLAALFDGQ







LEDIYALRVRALDEAITAEALARIMLHLSQRRGFLSNRKTAASKEDGEL







LAAVSANRARMQAHGYHTVGEMLLKDESYREHRRNKGGAYISTVGR







DMIVEEVRQIFAAQRTFGNVAASEALEANYLEILLSQRSFDAGPGEPSP







YAGSQIENMVGKCTLEPDESRAARATYSFEYFALLEAVNHIRLTGAGV







SAPLTAEQRERLIALAHKTADLSYAKIRKELNIPAEQRFNAVSYGKSDS







PDEAEKKTKLKQLKAYHQMRGAFEKASKGSFVLLTKEQRNAIGQTLS







IYKTGDNIRRSLRDAGLSEEQIAIVEGLSFSGFGHLSVKACDKLIPCLEQ







GMNYNDACAAAGYAFRAHEGQEKKKLLPPLNAEAKDTITSPVVLRAV







SQTIKVVNAIIRERGGSPTFINIELAREMAKDFSERTQIKHEHDENRKQN







ERLMERIKNEYGKSAPTGLDLVKLKLYEEQAGVCAYSLRQMSLEHLF







DPNYAEIDHIIPYSISFDDGYKNKVLVLAKENRDKGNRLPLEYLNGKRR







EDFIVWVNSAVRDWKKKQRLLKEHITQEDEAKFKERNLQDTKTASRF







LLNYIADNLAFAPFQTERKKHVTAVNGSVTAYLRKRWGITKTRANGD







LHHAVDALVIACTTDGLIQKVSRYAQYQENRYSADGGLVVDLHTGEV







VAQFPEPWAHFRQELDARLSDDPARAVRGLGLAHYATGEIRPRPLFVS







RMPRRKITGAAHKETIKSPRALDEGLLITKTPLDALKLDKDSEIAGYYK







PESDRLLYEALKERLRQFGGDGKKAFAEPFRKPKHDGTPGPLVTKVK







LCEPTTLSVAVHGGLGAANNDSMVRIDVFHVEGDGYYFVPIYIADTLK







PELPNKACVAGKKPSEWKRMNPNDFVFSLFPNDLIYVSHRKGICLSLV







NKESTLPASREEKCTFLYLVKGKSSTASLECRNHDNTYHIKSLGIKTLE







KIEKYTVDVLGEVHKIEKEPRMPFTNMEG*





MG125 effector
11754
MG125-3 effector
protein
unknown
MYPYAIGFDIGITSVGWAVVALDGEDKPFGIINMGSRIFDAAEQSKTGA







SLAAPRREARSMRRRLRRHRHRLERIRHLLVAENVISQAELDALFEGK







LEDIYTLRVKALDTAVSHADFARILLHIAQRRGFKSNRKSSTSKEDGEL







LAAVSANRALMAEKGYRTVGEMLLKDPQYSGSKRNKGGKYLATVGR







DMVEEEVRAIFKAQREQGQAFAATELEEQYLEILLSQRSFDEGPGEGS







PYRGSQIEKMIGKCTLEAGEPRAAKASYSFEYFTLLQNINHLRLICGGE







SRPLSDAQREFLIALAHKTKDLNFSRIRKELDIPADTTFNAVSYKSADGY







EDAEKKAKFCYLKAYHQMKAAFNKLSKGHFDSLARQQKNELGRVLS







TYKTSANIRPRLAAAGLSEMEIDIAETMSFSKFGHISVKACDKLIPFLEK







GLKYNDACAAAGYDFKGYDSETRTRLLHPTEDDFADVTSPVVRRAISQ







TAKVLNAIIRERGNSPTFINIELAREMARDFTERSKMKKDMDENHARN







ERIMERIRTEYGKEHPTGQDLVKFKLWEEQHGECAYSQKHLSLKHLF







DPDYAEVDHIIPYSISFDDGYKNKVLVLAEENRNKGNRLPLLYLQGERR







ADFIVWVENSIHDYRKKQRLLKETITAEDEKGFKERNLQDTKTMSRFL







LNYISDHLEFSDFSTGRKKHVTAVNGAITSYLRKRWGIAKIRENGDLH







HAVDALVVVCTTDGMIQQLSRYSTLRECEYVQTEAGSIAVSMHTGEVL







KRFPYPWPEFRRELEARLGDDPRRAVISQRFPVYANGDIPVRKLFVSR







MPRRKVTGAAHKETIKSPKALNDGIVVVKRALTDLKLDPKTGEISNYY







MPQSDRLLYEALKEALKKHGGDAAKAFAAPFHKPKSDGTPGPVVNKV







KLCEPTTLNVAVLNGAGVADNDSMVRIDVFRVENDGYYFVPIYIADTL







KAELPNKACTRGKPYAEWREMDAEDFLFSLYPNDLIRVTSQKGLTLSK







AQKESTLPDTYETKQEMLYYTSASINTAAVACRTHDNSYEIKSMGIKTL







EKLEKFTVDVLGEYHKVEKEPRMAFCRK*





MG125 effector
11755
MG125-4 effector
protein
unknown
MRSYAIGLDIGITSVGWATLALDGNENPCGIIGMGARIFDAAEQPKTGE







SLAAPRRAARSSRRRLRRHRHRNERIKNLMVSKGVLSSDELETLFDGR







LEDIYALRVKALDGKVSRSEFARILLHLSQRRGFRSNRKNPSSKEDGAL







LKAVSENAERMEKHGYRTVGEMLLCDEAFKQHKRNKGGNYLTTVTR







DMVADEARAIFAAQRSFGSEYASEEFENEYLEILLSQRSFDEGPGGNSP







YGGSQIERMIGRCTFFPEERRAARATYSFEYFSLLQKVNHIRIVINGAA







ERLTAEQRNTVIELAHTTKDLSYAKIRKALKLSDGQLFNIRYSDKASAE







DTEKKEKLGVMKAYHQMRSAFEKQSKGRFDFVTTPQRNDIGTALSLY







KTSDKIREYLKDSGFDEIDMDAVESIGSFSKFGHISVKACDMLIPFLERG







MNYNEACAAAGLNFKAHDTGEKTRFLHPTEDDYEDITSPVVRRAISQT







VKVINAIIRKEGGSPTFINIELAREMAKDFTERNKLKKENDENRAKNEK







LLERIRTEYGKSDPSGLDLVKLRLYEEQGGVCMYSLRQMSLEKLFSPN







YAEVDHIVPYSKSFDDSRKNKVLVLTEENRNKGNRLPLQYLTGQRRDD







FIVWVNNNVRDYRKRRLLLKETLTDEDELGFKERNLQDTKTMSRFLL







NYISDNLEFAESTCGRKKKVTAVNGAVTAYMRKRWGITKIREDGDLH







HAVDAVVIACTTDGMIQRVSKYARLRECRYMPTEEGSLVIDDGTGEVL







HQFPYPWRDFRKELEARIGTDPARTINDLRLPFYMSSGMPLPEPIFVSR







MPKRKVTGAAHKDTVKSPKELDKGCVVVKRPLTDLKLKDGKIENYY







NPQSDRLLYDALKKALIEHGGDANKAFAGEFHKPKSDGTPGPIVSKVK







LLEPTTLNVPVHGGAGVADNDSMVRVDVFLTKGKYNLVPIYVADTLK







PELPNKAIAAHKPYSEWPEMSDDDFIFSLYPNDLVCVTHKKGIKLTVTN







KNSTLPPTVEGKSFMLYYISTNISGGSIKGITHDNTYEIGGLGAKTLEKL







EKYTVDVLGEYHKVGKEVRQPFNIKRR*





MG125 effector
11756
MG125-5 effector
protein
unknown
MRPYAIGLDIGITSVGWAALALDADENPCGIIDLGSRIFYAAEHPQTGE







SLAAPRREARGSRRRLRRHRHRNERIRSLMLEERLISQDELETLFDGRL







EDIYALRVKALDEIVSRTDFARILLHISQRRGFKSNRKNPTTKEDGILLA







AVNENKQRMSEHGYRTVGEMFLLDETFKDHKRNKGGNYITTVARDM







VADEVRAIFSAQRELGASFASEEFEERYLEILLSQRSFDEGPGGNSPYGG







SQIERMVGRCTFFPDEPRAAKATYSFEYFTLLQKVNHIRIVENGVSSKL







TDEQRRIIIELAHTTKDVSYTKIRKALKLSDKQLFNIRYTDNLPAEDSEK







KEKLGLMKAYHQMRSAIDRISKGRFAMMPRAQRNAIGTALSLYKTSD







KIRKYLTDAGLDEIDINSADSIGSFSRFGHISVKACDMLIPFLEQGMNYN







EACAAAGLNFKGHDAGEKSKLLHPKEEDYEDITSPVVRRAIAQTIKVIN







AIIRKEGSSPTFINIELAREMAKDFRERNRIKKENDDNRAKNERLLERIR







TEYGKNNPTGLDLVKLRLYEEQSGVCMYSLKQMSLEKLFEPNYAEVD







HIVPYSISFDDSRKNKVLVLTEENRNKGNRLPLQYLKGRRREDFIVWV







NNNVKDYRKRRLLLKEELTAEDESGFKERNLQDTKTMSRFLLNYIADN







LEFAESTRGRKKKVTAVNGAVTAYMRKRWGITKIREDGDCHHAVDA







VVIACTTDAMIRQVSRYARFRECEYMQTESGSVAVDTGTGEVLRTFPY







PWPDFRKELEARLANDPAKVINDLHLPFYMSAGRPLPEPVFVSRMPRR







KVTGAAHKDTIKSARELDNGYLIVKRPLTNLKLKNGEIENYYNPQSDK







CLYDALKNALIEHGGDAKKAFADEFRKPKSDGTPGPIVNKVKLLESAT







MCVPVHGGKGAAYNDSMVRVDVFLSGGKYYLVPIYVADTLKPELPNK







AVTRGKKYSEWLEMADENFIFSLYPNDLICATSKNGITLSVCRKDSTLP







PTVENKSFMLYYRGTDISTGSISCITHDNAYKLRGLGVKTLEKLEKYTV







DVLGEYHKVGKEVRQPFNIKRRKACPSEML*





MG3 effector
11757
MG3-18 effector
protein
unknown
MSTDMKNYRIGVDVGDRSVGLAAIEFDDDGLPIQKLALVTFRHDGGLD







PTKNKTPMSRKETRGIARRTMRMNRERKRRLRNLDNVLENLGYSVPE







GPEPETYEAWTSRALLASIKLASADELNEHLVRAVRHMARHRGWANP







WWSLDQLEKASQEPSETFEIILARARELFGEKVPANPTLGMLGALAAN







NEVLLRPRDEKKRKTGYVRGTPLMFAQVRQGDQLAELRRICEVQGIE







DQYEALRLGVFDHKHPYVPKERVGKDPLNPSTNRTIRASLEFQEFRILD







SVANLRVRIGSRAKRELTEAEYDAAVEFLMDYADKEQPSWADVAEKIG







VPGNRLVAPVLEDVQQKTAPYDRSSAAFEKAMGKKTEARQWWESTD







DDQLRSLLIAFLVDATNDTEEAAAEAGLSELYKSWPAEEREALSNIDFE







KGRVAYSQETLSKLSEYMHEYRVGLHEARKAVFGVDDTWRPPLDKLE







EPTGQPAVDRVLTILRRFVLDCERQWGRPRAITVEHTRTGLMGPTQR







QKILNEQKKNRADNERIRDELRESGVDNPSRAEVRRHLIVQEQECQCL







YCGTMITTTTSELDHIVPRAGGGSSRRENLAAVCRACNAKKKRELFYA







WAGPVKSQETIERVRQLKAFKDSKKAKMFKNQIRRLNQTEADEPIDER







SLASTSYAAVAVRERLEQHFNEGLALDDKSRVVLDVYAGAVTRESRRA







GGIDERILLRGERDKNRFDVRHHAVDAAVMTLLNRSVALTLEQRSQLR







RTFYEQGLDKLDRDQLHPGEDWRNFTGLYPASQKKFLEWKDAATAL







GNVLAEAIEDDSIAVVSPLRLRPQNGSVHDETIDPVKKQTLGSDWPADA







VKRIVDPEIYLAMKDALGKLKELPEDSARSLELPDGRFVEADDEVLFFP







ENAASILTPRGVAEIGGSIHHARLYGWLTKKGELKVGMLRVYGAEFP







WLMRESGSRNVLSMPIHRGSQSFRDMQDTTRKAVESGEAVEFAWITQ







NDELEFDPDDYIAHGGKDELRQFLGFMPECRWRVDGFKKNYQIRIRPA







MLSREQLPSDIQRRLESKTLTKNESLLLKALDTGLVVAIGGLLPLETLK







VIRRNNLGFPRWRGNGNLPTSFEVRSSALRALGVEG





MG3 effector
11758
MG3-89 effector
protein
unknown
MSAPLNYRLGFDVGERSVGFAAVEYDDQGYPLKFLAIGSYLHDGGMD







PTTNKNPKSRKETRGVARRTMRMRRQKIKRLKKTDKVLRELGYQVS







HYTDEPQTYEAWYSRRLLATQKLSSEELNDHMVRAVRHMARHRGWR







NPWWSLTQLESASAEPSETFVQMFEKAQERWADELILPIEETTLGMLG







ALSDDNKVLLRPRTYDSKKEKHKEKLNVKGEEPVFFAKVRQEDILREL







RIICVRQGVESQYEELRKALFDQIRPHVPQENVGRDPLDPSQYRALRAS







LEFQRYRILDALANLGVREGRGKPRSLTGEERTQAWKFLSTYRDQKN







APTWGDVAEAMGVEPALLVAPVIDEVRLNKAPYFSSLVAVEKKLKKK







HQIYKWWVEASVESRGLLIRVLADATNATLDEASEAGLLELIEGLPEE







EREVLDGLSFETGRAAYSADTLTKLADYMEEHLAEGIGVHEARKAVF







GVDDSWQPPKATLEEATGQPTVDRVLTIVRRVVLSAQRQWGDPAEIM







VEYARTGLMGPAQLAEVKREIAKNRKERDRIRQDLKDGGVSEPKKRH







IMAHRIVQDQNCQCMYCGAMITAASCELDHIVPRAAGGSSRRENLAG







VCRDCNASKGGRMFADWAADNPRGVSLKDTLGRLRSWEPFKKADKK







RLLKLIERRLKQSVMSPEQIDERSLAPTAYAATAIRERLRRHFEDDAKP







IPRKDVVKAYAGGLTRESRRAGLIDEKLLLRGSRDKSRLDVRHHAIDA







AVLTMLNVPVARTLEERRLMKRERDLSARDNDWRDYTGTAEDKPKF







VQWKQAAGEMADLLIDAVDQDSIAVINPLRLRPQNGAVHDDTIRPLEE







RALGAEWDPATIKRVVDPSIYLALVDALGKSKSLPADSQRELVLDDGT







LMSADDSIALFSTNAASILTPRGAAEIGGSVHHVRLYAWRDRKGEIEVG







MQRVFGAEFPWLMRESGVKDVFKVPVHRGSQSYRDLQDGVRKQIESG







AAVEIGWITQGDEIQLNLDEVRDSMRSKELLTFLEIFPETRWRVDGLPD







NRRLRMRPVLLASEGIEEFLKNAPEDIQTIVVNFFKNGALLSVSKVLAL







TETKIIRYNHLGFPRWRGVGRPVSLDIQRAAREALEGKK





MG3 effector
11759
MG3-90 effector
protein
unknown
MSQEATKYRIGIDVGDRSVGLAAFEFDDAGFPLRKLAMVTYRHDGGL







DPTQNKSPKSRKETAGVARRVRRLRKRRKERLKKLDLKLLELGYPLP







EGEEAQTYQAWKSRALLTSQKIEDKAEQAEHLVRALRHMARHRGWR







NPWWQFGQLDSAPVPSETMVENLNHARLLWPGYITDQTTVGELGALA







ASPDILLRPRTRDIKKKPNGLHHQEGVRAVLGSKVRQEDLLAEVKKIW







QVQELPVSHYEELARALFEQVRPYVPAQNVGRDPLPGRHHLPRAPRAS







LEFTEFRIRQAVANLRVREGREKVPLTSGQHIAAVNYLMNYADKQPPT







WGDVAEQIGVEPTRLVAPVIDDVRLNKAPYNHSTSVFTRALPKKSEAM







QWWNSADVSLRSLLIIFLSDPTEEATAAADESGLSAIFESWPEKEREKL







EGLDFESGRAAYSIQSLIDLNQYMEEHQSDLHTARKEVFGVDDSWQPP







RENLHEPTGQPAVDRVLTIVRRFVMACERKWGKPDRIVIEHARTALM







GPTQRHEVLREIQRNRDANERIREELRADGLTSPTRADVRRHRVVQNQ







DCKCLYCGTMITTATAELDHIVPRAGGGSSKIDNLVAVCRGCNADKGR







IPFAVWAEQTSREGVSLDDALNRLWSFDKVVYKGVAGRKLKAQIARR







LRQAEEDEPIDERSLESTAYSAVAIRHRLETYFNTSRGLNRGDDGFTFID







VYAGALTREARRAGGIDEQILLRGQRDKNRFDVRHHAVDAAVMTVLD







HSVARTLAQRNLIYREDRLKRRENQDDTRWREFTGLGGEAQEKFLVW







KQKSYVLADLLAEAIAEDSIPVINPLRLTPRNGSVHKDTLSSLDKMYLG







GSWSSKDIARVVDPDIYLALMELLGRATTLDEDPQRSLTVKGKVLQAD







QEIKLFPESAASILAGTGAVKIGDSLHHARLYAWPTKKGHEIGMLRVF







GAEFPWLFKTYGTKNALTVPIHPGSQSYRDMKDTLRKKIESGEAREIG







WITQGDEIEIKIESYLQENDELGRFINLIPENRWKIDGENDNGRLRLRPI







LLSYEEIPESYGEDVLGAKNHQLIRKVLERGAIITAGKILGAEGTKVLR







RNHLGAPVWQGQQEARSLDISRAITEKLEG





MG3 effector
11760
MG3-91 effector
protein
unknown
MSMISTNDDRVEGMHMARYGERKYRVGIDVGDRSVGLAFIEFDEQDM







PSELLRMFTVRHDGGIDPTTNKTPKSRKETAGVARRVRKMRKRRTKR







LQELDALLMASGFPIVDVSVGETYECWQARAAAVEGFITDEQTRLETV







SRAIRHMARHRGWRNPWLTWQGFRELEVPTANHRKNIESANSKLHLD







LEDTSTLGQIAASASASNWMLRPRNGQKRKEASNPVLVAQVQQADQL







AELYKILEVQRIDSTITEKIARAVFDQVRPYVPKGNIGLDELPGMGAYY







RASKASLAFQEFRVRAAVANLRVKNSPRGQERLRLDPQDAQAVAEYL







LTWREDQPPQWGDVANALSIDENLLVIPVFEDAFLKLAPYDRTSSDLE







QRLSSSANKKKLAGVREWWDSADTQMRELFIEFITSPNESVYEEADES







GFSDVFNGWSDEAKEVLLGMQFESGRSAYSVESLRRLNLRLRTGEVDL







HEARRLEFGVDDTWRPSLPSIDERTGQPAVDRVLTIVRRAIMGAVDKW







GVPEAVVVEHARSGFMGASARNDYLNEVSRRTATRAKLREIVKQQGV







ERPSDGDIHKWECINRQRCTCAYCGNEITFTTAEMDHIVPRAGGGSNV







RENLVAVCRRCNSEKRNIPFAIFAESDAHPYTSLNETLTRVRNWDWSR







DRSEQRLKNRMLQRLKRRESDPEIDERSLASTAYAAVEVRQRIAEYLG







RITGEDELNRVQVYTGGATREARRAGKIDARIRIRGKDEKDRFDVRHH







AIDAAVMATLNHSVAFTLRERAEMKRSATMNRYLDPNEEWKDYSGRT







SSAQKRFTVWRQQAHRLADLIVDAVEADSVPVAQQLRLSASRGSVHK







DTVSALVRKQLGAPWTAQEILQIVDPEIYVHLRDLAAQNKGVLELDPS







RRIQLLSGVWISGSELVEVFPKAAASMKVSSGSVEIGEQIHHARVYAW







RGTKGEFQYGILRVFTAELPWLQRQAQSKDLFTMNIDDRSMSYRDLL







QTVRKKIESDEARCIGWLTQNDELVLNVEVLRQGSDKIAHFLSTYPESR







WKLDGFPENRRFRIRPLYLSREGSDHLDPICAEILEKGAIVGTSNLLSNV







HQIIRRDSLGFERWRSQGGLPASWSVPDSTADTVETGLK





MG3 effector
11761
MG3-92 effector
protein
unknown
MAQRRYRVGIDVGDRSVGAALVAFDDDGIPERVLHAVSYRHDGGIDPT







TNKTPQSRKHTAGVARRVRRMRARRTKRLAALDRALIELGLPVRDVS







DGETYEPWRMRARCVEGFIEDDAERRDAVSRALRHIARHRGWRNPW







HSVRRERLESVPTATHQKNVAAAQAVFPGEIAADATVGQLGEVASRFN







HMIRPRTGKKNPKQKTAVLNERVMQADQMAEVVAIWTTQRMPEAEL







NAVLELVFGQERPVVKAENIGRDELPGMGHLPRAPKASFEFQEFRIRA







TAATIGVRARQGSSKAERLDADAVDAVSHWLLEWDADDDPTWADVA







VEALNLDPRFIKAPVFDDVRRMTAPVNRTARILRKALKKRHNAPVRT







WWESASAESRAALVAFLVDPTDENEDLLDRTGLSDVVAAWPEEVLDD







LTNLNYEVGRAAYSRESLSKMNTIMAEQRVGLHDARKIAFGVDDTWA







PALPQLSEPTGQPTVDRVLPIVRRIVMAAYERYGVPEAVYIEHARSALL







GPAARAEHQREVNANRREREKNRQILIEQGIDDPNRSDIRRWHQVQLQ







NCLCLYCGQTISAAAGGAELDHVVPRAGGGSNRRENLVAVCRQCNSE







KGKLPFAVFAARTQREGVSVEAALERVRGFQWRPADRAVKRGLVHR







LKQTAADDPIDERSLESTAYSAVEVRRRLERFYSDHASPEAPRPEIFVFG







GSITSEARKAGGIDAIIRLRGKDVKDRFDARHHAVDAAVMTLVDRSVA







RTLQQRSDMRYAHRLTGSEPAWREHAGDSAAAQSRFAEWKKKSYRL







AELLREAISADAIPVIFPLRLGVNRGSVHKDTVRAAVPKRLGDAWSAAE







LDAVVSPAAHMALSSVFDGAAELPHDDGRMLTVRKRRLHADDTISLLP







GHAAAIEVNGGVVEIGESIHHARLVAWRDRKGVIQFGMVRVFTAEIPF







MQRLAGKKDVFSIPVHPSTLSYRGVQLRVRKALDAGIAVELGWITQGD







EIEIGLDDVASMTPEFRQFIAEIPEQRWRVDGFKDGGRLRVRPALLSAE







GDAAVSDLVSKTLDKGSFVNAAGFIGAPSSVVIRRSALGVPRWRSAQG







HLPVSFSPYQRAENLL*





MG3 effector
11762
MG3-93 effector
protein
unknown
MNEGVIQYRIGIDVGQNGVGLAAIAFEAGNPSEVLAMVTHRHDAGLDP







AAAKQGYSRKKTSGVARRTRRLRRNRARRLKKLDEILTSLGLEVPAH







EVPQTWEAWEARAELQEFPIDNEQELHEKLVLAVRHMARHRGWKNP







WWSWNTLWEAPTPTSNMNEIRDNARKVFADLPPTATIGQIGFVAAAT







NRLLRPRKDTTKAKTKRPTPVLNAKVMQEDQLAELRSYWDKQNLPD







EWLEKIAKAVFYQTRPKVKPELVGHDDLPGMTKLPRASRSSLEFQEFR







IRAAIANLKVKVPGSRQENFLSVGDKNRIVDLLMGWDDDEAPTWADV







AEELNISVRDLKRPEFDDSPLRVAPYDRSSNAIRNKLVSLRKDGKEALE







WWDTADRDQRSLFATWLGDQSQHDDAFLETSGLSDIIASWSEGVMEK







IDSLSLEPGRAAYSIESLKILNRHLAEGDNLHEARKHGFNVDDSWTPSL







PRFEDRTGQPVVDRVIRIVHRFINGCVYKWGVPESIVIEHVRSGLLGPE







ALLDYKRETTRHRNEREQIARDLKDQGISERPSSGDITRMRIVQEQQG







VCLYCGTAINIHCELDHIVPRAGGGSNFRENLAAVCRECNRLKGKTPF







ARWARETSQEGVSLEGALDRVKNFSVNGSTADLRNLKRRVSQRLRQT







DEDQPIDERSMASTAYAALEVRDRVREFTSRFTDTDIPVEVYRGSITSAA







RKAGHIDKLILLRDKDIKDRGDFRHHAIDAAVMTVINRSNSQVFAIREA







MRSAHAMTGSEPNWKDFRGNSPRQEEKFIEFETRAAHLARIIRERIDA







DRIPVISPLRLKPETGKVHADTIVPFDYKALESEWTDKDIVRVVDNELY







LALVDALGGKKVLPTDKISVIDQDLAKDHRQVALYGTPSPQIPVRGGS







AAISDSLHHFRVYAWKDKKGAIQFGQQRVFGAEFRAMWGDPRQVDV







FTAPVPRWAFAHREMPPKVKAAIEAGNAKQIGWYTRNDEIELDLSEL







MAQSNVLGEFLRELPEKSWRIRGSHSLSRLSLSPLYLSSEGTDLSEQSRP







VQDAVSKGIPVSASSILDSESMIIRRGPLGIPKWNGGNATSYSFRQVAEE







VLGTD





MG3 effector
11763
MG3-95 effector
protein
unknown
MTNHSPAGSISSTDWVLGVDLGQRSVGLAAVALDPDGTPTEILASNVV







RIDGGLLPGSEESPVSRKAAAGMARRVRRLHRRRRARLKALDRRLMD







LGFPVDDGPETYESWLDRARLVEGRIANETERKRATSRAVRHIARHRG







WRNPWLSWSAFAELSTPSDNHRRNLAAAAERFDRETEGWTVGQLGA







AGTDPRITIRPRTAKDSRRIVHGEAALLEHRVLQEDQLAELRQIWTTQ







EWDPAELPELEKAVFTQAEPFVPPGNVGRDALPGMQTHPRAPRASLEF







QRFRIQSVVGNLRVPVTERSGDLRPLTPEERERVTGLLERWHEREGHV







PGERPTWRDVAEAVGVSLRNLRGRDTSDYATATPPTMETLDRLKAGI







AALKPAAVRRDVAAWFDEAEDDQISAFVSYLADSTDASNEALDEAGLT







DIITGWDEAALEKLGDLPLEPGRAAYSLESLNRLTGRMQADAVDLQEA







RKREFGVDDSWTPPTPSIETPTGMPAVDRNLVAVRRFVMSMVSQFGM







PQLVVIEHVRESFLGVTAVEELRRQQRLDRRRRETAAKEVAAASGKEP







RAADVRRYSLIQRQNGQCAYCGTAIGLRNSELDHIVPRAVGGASTRAN







LLAVCRACNNLKGKQPFAVWAAADTRTDEDGEKLVSVEAALARTRS







WMAPRPSIRERNELREIRQRLRQRESDEPIDERSMESTAYAATALVERV







QNYLESQTPEGVQTPPVRVYRGSITASARKSSGVDKVIRLRGKSMKHR







GDFRHHAIDAAVCALITPSVARTLAIRESLRTAHRFTGDEHDWKSFTG







DSPQARAEHTAWTARMQTLAKLLRDAVDADQVPVSIPLRLGRRVGRV







HEDKVRPFDSRPLGGTWSAKELERIVDRRLYTALHHVAASATSGVEVT







PELCTELGSSMGATVKLYGSPAAQIPVRGGSARLGAIHHARLYAWRGT







RGIEFGMMRVFAGELTAMWPSPATDVLTAPVPEWSMSYRRTAPAVM







QQLRSDTAVQVGWIAPGDEIVVLPPREGARASSLDSLVSSVGEDRWTV







TGFERATTINVAPRLLSAEGISEETPKAVTSVLNRPGRLAASSLLPRIRVI







RRDALGRERRRGGGRLPSSFVPFEVAEQRLQGD





MG3 effector
11764
MG3-96 effector
protein
unknown
MSTDMKNYRIGVDVGDRSVGLAAIEFDDAGFPIQKLALVTFRHDGGLD







PTDNPKSRKETRGEARRRMRMTRRRKQRLCDLDKVLENLGYTVPEGP







EPETYEAWTSRALLASIKLASADELNEHLVRAVRHMARHRGWANPW







WSLDQLERASQEPSETFEIILARARELFGEKVPANPTLGMLGALAANN







EVLLRPRAEKKKKTGYVRGTPLLAAQVRQIDQVAELRRICEVQDIEEQ







YETLRNAIFAHKVAYVPTERVGKDPLAPSKNRTIRASLEFQEFRILDSV







ANLRVRTDSRAKRELTEGEYDAAVEFLMGYTAKEQPSWADVAEEIGV







PGNRLIAPVLEDVQQKTAPFDRSSAAFEKAMSKKTEARQWWESNDDD







QLRSLFIMFLADATNDTEEAAAVAGLPELYMSWPAEEREALSNIDFEK







GRVAYSHETLSKLSEYMHEYRVGLHEARKAVFGVDDTWRPPLAKLEE







PTSQPTVDRVLTILRRFVLDCERQWGRPQAITVEHARIGLMGPVQRQK







ILNEQKKNRGENERIRNELRESGVENPNRAEVRRHLIVQEQECQCLYC







GTMITTTTSELDHIVPRAGGGSSRRENLAAVCRYCNGKKNRKLFYEW







AGPVKMQETIDRVRQLRAFKDSKKAKMFKNQIRRLKQTEADEPIDERS







LASTSYAAVAVRERLEQHFNEGLTLDDKSRVVLDVYAGAVTRESRRAG







GIDERILLRGERDKNRFDVRHHAVDAAVMTLLNRSVALTLEQRSQLRR







AFYEQGLDKLDRDQLKPEEDWRDFIGLYPASKEKFLEWKKTATVLGD







VLAEAIEEDSIAVVSPLRLRPQNGSVHKETIAAVKKQTLGSSWSADAVK







RIVDPEIYLAMKDALGKLKELPEDSARSLELSDGRYIEADDEVLFFPEN







AASILTPRGVAEIGGSIHHARLYSWLTKKGDLKVNVLRVYGAEFPWL







MRESGSSDVLRMPIHPGSQSFRDVQEETIEMIEGGFAKEIAWITQNDEL







EFDPVEYINLPGRSDKLTRFLIYMPETRWRVDGFPESRNLRIRPLMLSQ







EDLPSEIKKHKEEKQLSDEEKLLVEALEKGLIITSSKLLGLKSIKVIRRN







NLGFPRWRGNGNLPTSFEVRSSALRALGVEG





MG3 effector
11765
MG3-103 effector
protein
unknown
MSADSLNYRIGVDVGDRSVGLAAIEFDDDGFPIKKLAMVTFRHDGGM







DPATGKTPKSRKETAGVARRTMRMRRRKKKRLKDLDKKLRDLGYFV







PRDEEPQTYEAWSSRARLAESRFEDPHERGEHLVRAVRHMARHRGW







RNPWWSFSQLEEASQEPSETFGRILERAQHEWGERVSDNATLGMLGA







LAANNNILLRPRRYEHNPKTGKNAEKLNVRGQEPILLDKVRQEDVLAE







LRRICKVQGIEDQYPELAHAVFTQVRPYVPTERVGKDPLQPMKIRASR







ASLEFQEFRIRDAVANLRIRVGGSERRPLTEEEYDRAVDYLMEYSDTTP







PTWGEVADELEIAENTLIAPVIDDVRLNVAPYDRSSAIVEAKLKRKTQA







RQWWDDDANLDLRSQLILLVSDATDDTARVAENSGLLEVFESWSDEE







KQTLQDLKFDSGRAAYSIDTLNKLNAYMHEHRVGLHEARQNVFGVSD







TWRPPRDRLDEPTGQPTVDRVLTIVRRFILDCERAWGRPQKIVVEHAR







TGLMGPSQRADVLKEIARNRNANERIRQELREGGIEAPNRADIRRNSII







QDQESQCLYCGKEIGVLTAELDHIVPRAGGGSSKRENLAAVCRACNAS







KGSRPFAVWAGPARLERTIQRLRELQAFKTKSKKRTLNAIIRRLKQRE







EDEPIDERSLASTSYAATSIRERLEQHENDDLPDGFAPVSVDVYGGSLTR







ESRRAGGIDKSIMLRGQRDKNRFDVRHHAIDAAVMTLLNPSVAVTLEQ







RRMLKQENDYSSPRGQHDNGWRDFIGRGEASQSKFLHWKKTAVVLA







DLISEAVEQDTIPVVNPLRLRPQNGSVHKDTVEAVLERTVGDSWTDKQ







VSRIVDPNTYIAFLSLLGKKKELEADHQRLVSVSAGVKLLADERVQIFP







EEAASILTPRGVVKIGDSIHHARLYGWKNQRGDIQVGMLRVFGAEFP







WFMRESGVKDILRVPIPQGSQSYRDLAATTRKFIENGQATEFGWITQN







DEIEISAEEYLATDKGDILSDFLTVLPENRWKVVGIGDNRRFKIRPLLLS







NEIIPDTLNGRSIKSEERDLIVSVLDKGVRVVASTLLTLPSTKIIRRNNLG







IPRWRGNSHLPTSLDIQRAATQALEGRD





MG15 effector
11766
MG15-166 effector
protein
unknown
MKYIIGLDMGITSVGFASMMLDDNDEPCRIIHMGSRIFEAAENPKDGSS







LAAPRRENRSMRRRLRRKRHRKERIKNLIIQNNMMTADEIDAIYNSGK







ELPDIYKVRAEALDRKLDTEEFVRLLIHLSQRRGFKSNRKVDAKEKGS







EAGKLLSAVKSNKELMVERNYRTIGEMLYKDEKFAEFKRNKADDYSN







TFARSEYEEEIREIFRAQQEYGNPYATEELKDSYLEIYLSQRSFDEGPGG







DSPYAGNQIEKMVGSCTLEPDEKRAAKATFSFEYFNLLTKVNSIKVVSS







AGKRSLNEDERKRVIKLAFAKNAISYASIRKELNLGDGERFNISYSQSD







KSIEEIEKKTKFTYLTAYHTFKKAYGSVFNEWSAEKKNHLAYALTAYK







NDNKIKKYLTENGFDAVETDIALTLPSFSKWGNLSEKALNKIIPYLEQG







MLYHDACTAAGYNFKADDTDKRMYLPAHEKEAPELGDITNPVVRRAI







SQTIKVVNAIIREMGESPCFVNIELARELSKNKAERSKIEKGQKENQAR







NDRIMERLRNEFGLLSPTGQDLIKLKLWEEQDGICPYSLKPIKIENLFD







VGYTDIDHIIPYSLSFDDTYNNKVLVMSSENRQKGNRIPMQYLDGKRR







DDFWLWVGSSNLSRRKKQNLLKETLSDDDLSGFKKRNLQDTQYLSRF







MLNYLKKYLTVAPNATGRKNTIQAVNGAVTSYMRKRWGIQKVREDG







DTHHAVDAVIISCVTAGMTKRISEYAKYKETEYQNPETGEYFDVNKNT







GEVINRFPMPYAWFRNELLMRCSEDPSRILHEMPLPNYATDEAVAPIFV







SRMPKHKVRGSAHKETIRQSFEEDGKKFTVSKTPLTDLKLKNGEIENY







FNPESDVLLYNALKERLIAFGGDAKKAFEAPFHKPKSDGSEGPLVKKV







KLICKSTLTVPVLKNTAVADNGSMVRVDVFFVEGEGYYLVPIYVSDTV







KKELPNKAIVAHKPYEEWKEMREENYVESLYQNDLIGIKLKKEMKFS







LVQKNSTLPKNINVKDGLFYYKGTNISGANISVINNDNTYTVESLGVKR







IPVIEKYQVDVLGNVSKVGKEKRVRFQ*





MG15 effector
11767
MG15-191 effector
protein
unknown
MKYIIGLDMGISSVGFATMMLNEKDEPCRIMHMGSRIFEAAEHPKDGS







SLAAPRRENRSMRRRLRRKCHRKERIKNLIVSNNILTADEIDTIYNSGK







DLTDIYQIRAESLDRKLNTEEFVRLLIHLSQRRGFKSNRKVDAKEKGSE







AGKLLSAVNSNKELMTEKNYRTIGEMLYKDDKFAVFKRNKADDYTNT







FAREEYEEEIQKIFSAQQEYGNQYATDELKEGYLEIYLSQRSFDEGPGG







NSKYAGDQIEKMVGFCTLEPDEKRAAKATYSFEYFNLLTKVNSFKILS







AEGKRSLNENERQKIIKLAFNKNAISYASLRKELSVGYSERFNISYSQSD







KSIDEIEKKTKFTYLTAYHTFKKAYGSALIEWSTEKKNHLAYALTAYK







NDNKIKNCLTEHGFNETECEIALTLPSFSKWGNLSEKALNKIIPYLEQG







MLYHDACTAAGYNYKADDTDKRMYLPAHEKEAPELENISNPVVRRAV







SQTIKVINAIIREIGESPCFVNIELARELSKNKTERNKIEKGQKDNQARN







DRIMERLRNEFGLISPTGQDLIKLKLWEEQDGICPYSLQAISIERLFEAG







YTDIDHIIPYSISFDDTYNNKVLVMSSENRQKGNRIPMQYLQGKRRDEF







WLWVDSSNLSRRKKQNLLKETLSDDDLSGFKKRNLQDTQYLSRFMLN







YLKKYLKLAPNATGRKNTIQAVNGAVTSYMRKRWGIQKVRENGDTH







HAVDAAVISCVTAGMTKRISEYAKYKETEYQYPENGEYFDVDKRTGE







VINRFPMPYPWFRNELLMRCSENPSRILQEMPLPNYAADEAVDPIFVSR







MPKHKAKGSAHKETIRKAFEEDGKKYTVSKVPLEDLKLKNGEIENYF







NPKSDTLLYNALKSRLIEFCGDAKKAFEAPFYKPKSDGSKGPLVKKVKI







VNKATLTVPVLKNTAVADNGSMVRVDVFFVEGEGYYLVPIYVADTVK







KELPQKAIIANKTYENWKEMKEENFVFSLYPNDLIRIKSKKEMKFNLV







NKESTLAPHYQSKDAYVYYKGSDISTAAITAITHDNTYKLRGLGVKTLL







AIEKYQVDVLGNIIKIGREKRMRFR*





MG15 effector
11768
MG15-193 effector
protein
unknown
MNYRLGLDIGITSVGWAVLEHDSSEEPFRIADLGVRIFDRAEHPKDGSA







LALPRREARSSRRRIRRHRHRLERIKALLESQGIITIEKLQEVYHGSKEL







TDIYELRCLGLDNLLTQEEWARVLIHLAQRRGFKSNRKKEIKENKKEK







NEDGKLLAAVRDNQALMQEKNYRTIGEMFYRDDKFSLNKRNKSELYS







HTVGREQILDEIAQLFTAQRRLGNSYAGEKVEQLYTDIVSRQRSFDEGP







GTPSPYAGNLIERMRGKCTFEKEEPRAAKACYSFELFNLLQKINSLRID







DKNSASRPLNKEERQLLIQSAHEKADIKYTDLRKKLQLSPEQRENTLSY







GRDDVEEIEKKNKFNYLKAYHDIRIALDKVSKGRIKQLPVEHIDMIGEI







LTLYKNEDRITSKLRKTGLTEYDIEELLSLSYSGFGRLSLKAIKNILPYL







QEGHIYSEASTLAGYNFRGHDNVVKQMYLPANNEQLQDITNPVVRRA







VSQTIKVINAVIRKYGSPQLICIELSREMGKNFFDRKRIEKQIKENTDLN







DAVRNKIIEYGHLNPTGLDIVKMKLWQEQDGRCAYSGEPISIQDLFDA







GIADVDHIIPYSVSFDDSYANKVLVKSSENRQKGNLLPLEYMKNNPNKQ







EKFIVWVNTNVRNFRKQQRLLKKTITEEDRNKWKERQLNDTKYISRF







MLNYIRDYLEFAPAENIGKRKVISVNGNITAYMRKRWGLKKDRLAGD







LHHAQDAVVVACVTEGMIQKITRYSQYCEAKNNRSHFVDYETGEVIDT







LRNRFGADFVEPWDNFKIEMVSRLSDDPALRIDAYKLDNYLDLKDIKPI







FISRMPNRKNKGAAHQETIRSSRLTGEGLVVSKINITKLKLDADGEIAN







YYNPKSDMRLYNALKNRLQQFNGNGEAAFKEPVYKPAAPGKTISPVK







KVKVIDKSNLNVAVGKGVAANGDMLRIDVFKKGDGYYWVPIYVADTV







KETLPNKACVHSKPYELWKEMDDNDFIFSLYPNDLIRFIPNNGEEAFM







YYIKAGISTASITVESHDRSQSIPSLGVKTLKILEKWNVDVLGNRTLVKN







EKRQYYPGQTTR*





MG15 effector
11769
MG15-195 effector
protein
unknown
MKYGIGLDIGIASVGSAIVLLDGSDEPYKIYRLSSRVFPKAETDKGESLA







SDRRNNRGMRRRLRRRRHRKERIRNLIYDVFDVNEDYITEIYAESGLK







DIYQIRYEALDRKLDKDEFIRLLIHLSQRRGFKSNRKSDVGKKDDGKLL







DAVKKNTELRQKMYRTIGEMLYCDDRFADSKRNTEGNYKNTFSRSEY







GEEIKCIFENQRAFGNEYATEDFEEKFIGIIMSQRSFDEGPGPGKDSKYS







GNLIERLVGKCTFEREEMRAPKASYTFEYFNLLSKINAIKIVSANNTRC







LTEEQRAIIKNLAFSKNDLSYKSLRKALGLNEDELFNISYTDSDTNKKK







AKNKKGTADKFSERDAVEDKTKFSYLKAYHTFKKAYGDEYDRWSTD







KKNYLGYVLTVFKTDKNVELKLRERNFSDDEINIAQTIPSFSKLGNLSV







KAMNKMIPFLENGEIYNKAAEMAGYNFKADDKCAGMYLPANESKAPE







LGDIANPVVRRSVSQTIKVINAIVREMGESPVYVNIELARDLAKSHDER







EKIEKNNNANRQKNDKLMEELRKEFKLANPKGEDLIKLKLWNEQNGR







CMYSYEPIVRERLFEPGYAEIDHIIPYSISFDDTMSNKVLVKAKENRDK







GDRLPLQYMTGKKADDFRVRVSNSILSRKKKNNLLKEQLTEEDRKSF







KQRNLQDTQYISRFMMNFIKKYLKFAGEAKIVAVNGRATDYMRKRW







GIRKIRADGDTHHAVDACVVACATHGMVQRISEYSKYKETEYIDDDGR







IYDINKKTGELTDRFPMPYPMFRKELEMLTSNDPQRILSQSKFPNYSGD







EQLEPIFVSRMPQHKVTGAAHEDTLRKPVTENGQNYVVQKVKLTKLK







LNDNGEIENYYMPQSDKLLYNALKERLAEYGGDGEKAFKNLTEPFRK







PKSDGTPGPIVTKVKTIEKQTCGVPLADNTTIADNGPMVRVDVFYVAG







EGYYLVPIYVSDTVKKELPNRACVANKPYSEWKVMDDKNFLFSLYNN







DLVKITFKREKKFSLVNKDSTLDKEHRTKSELLYYKGTNIHTASITVIT







HDNTYIFEGMGVKTLISIEKYEVDVLGRVRKVNKEKRMGF*





MG15 effector
11770
MG15-217 effector
protein
unknown
MRYVLGLDIGIASVGWAVLELDSFDEPFKIIDLNSRIFTKAENPQDGSSL







AKPRREARGNRRRLRRRRHRLDRIKHLIYVVGLMSKEGYDKLYTSGF







DKDVYTLRAEGLDRSLSAAEWTRVLIHIAKHRGFKSNRKSTTVAGEDG







KVLQAVKENQEILSKYRTVGEMFHNDDKFKSRKRNTTDSYILCVSRH







MLKDEIKALFTAQRSFNNPFTDEKFEAKYIEIFESQRAFDEGPGSESPYG







GNQIEKMIGQCTFEDGEKRAPKASYSFMRFNLLQKVNHIRIKSSSATRA







LSEEERSIIIALAYKSPNFTYGSIRKAIKLPYDMTFSDVYYKYEKGLSEE







ELIDKNEKSNKIKSLEPYHTIRKALDKVYKNRIEELSEDNINDIAYAFSV







YKTNAKISQKLKECGIDNKDIEALINNLGTFAKFGHLSVKACKKINKYL







ETGMTYDKACEAAGYDFKGHCGEKTKFLSGAADEIKEIPNPVVKRALS







QTIKVINAVVRKYGSPVEVHVELAREMARSKKDRDKINSIMKDNQAAN







DRIRGILKNEFNINNPTGIDILKYRLYQEQQGICVYSQKVMDLERVMK







DGKYAEIDHILPYSRSFDDSYNNKVLVKTEENRLKRNRTPYEYMQDNE







VKYKGFCEIVKSIIHNPTKVSNLLRENYNPQLVKDWKARNINDTRYISK







FVYNFLNDHLLLADGMRKRRIIAVNGAVTGYIRKRLGINKIRANGDTH







HAVDAVVIACVTQGVISKVTKYSQWQEVFYKNNNTGKLVDYETGEIIT







KDNFDEFIDSKFPEPWPLFRKELEARAGTNPKYEIECLRLDTYSPEEVT







SLRPMFVSRMPNRKVTGQAHQETIRSSRMANDGMTVSKVPLTSLKLS







KDGQSIEGYFSPESDRLLYEALLNRLQGFGGKADKAFTEPFYKPKNDG







SKGPIVKAVKITAPSTLNVRINNGKGLADNGSMVRIDVFHITAGKGAGY







YLVPIYVADTKKDKLPSKAIVAHKKYDEWKLMDEKDFVFSLYPNDLIY







VEKKGNIELSLDKKIEKDSTLPKKISSPQGYFYYVKAGIGDGSVQIKSH







DGVYLLPSMGVKTLKLLRKCVVDELGNISFVGKEKRQHF





MG15 effector
11771
MG15-218 effector
protein
unknown
MNKSVKFGLGLDVGIASIGWATVALDEKGEPYKLLNLGSRIFDKAENP







KDGSSLAMQRRQFRSQRRLIRRRRHRLDRVIFLFQKIGLCTNDELNKL







FQTPAPKNVYELRVDALDRKLDKQEWIRVLYSVLKHRGFKSNRKNAK







SEDGLLLKAIQSNEEIIFNNGYRTVGEMLFKDPLFTNSKRNKGGSYKNC







VSRISIQKELDLLFEKQREYGNEFTSDYFKESFLNIFLAQRNFDEGPGAP







SCYGGNLIEKMIGYCALKKDKKRAPKASLSFALFSFWSKINNIRYYDSN







RCKEYSISTEQARKVLQKALIKSDLNYSDIRKIIGLDDGCYFKDITYTSK







KSKKTKKKQQAKNNNESYLSIDGLTLVEDVLTPEKDANEQSVDTILDIE







KKSKIKFFNSFISIKKAANGMLDHLNPFDPEDRKIFNRISYAFTVSKNDD







GIAGYLNEIDISAEIKESLINNLDGFSQFGHISEEACEKLLPFLENGCDYT







SACVEAGYVSSSDDVVGKDLLPARSSELDDIVNPVVRRSVSQLIKVVNSI







IRENGKPEYINVEFARDLARSFADRREITKEQEDRKAHNEKVRKIIEET







FGRARASSKDILIYKLWMEQESKCIYSGKHIDAHRLFEPGYVEVDHILP







FSKSFDDSMTNKVLVFKEENQNKANRTPLEYMRASKPMYVDSYLAMV







KFLYKSNFKKLQNLTTEFCGNDREEWSTSNLNDTRYIAKFIHKYIKDH







LYPAKTGIKRVRAVNGRITSLLRHFWGIKKIRENGDLHHAVDAAVISV







TTDMIIKKFSEASKRHEEYDEKIMVEKPWEMFVDEISARISENPADQVE







RLGLSTYSDEEKSSLKTPFVSRMPRHKVTGSVHDSTLRSPVLLKQGINA







YVSKREINDKLLKVFDDKKCEFFNMQLDAKFYASLKSYLEDKNENKG







EFHKIKKDGSLGPVVRKVKVVENCSSGVFLNNGKAFAKNGDMIRIDVF







QVKEGKDKGFYFVPIYVADKVKDKLPSRAVIQGKDPKDWKEMKDEDF







IYSLYPNDLIYFSSKKIVGFKNNNKSSEILGVDMSEGYLYYTGADISTASI







NVDFVDNSFSKHGLGVKTLKEFRKFTIDVLGNIHEVKKEKRLVFGRK





MG15 effector
11772
MG15-219 effector
protein
unknown
MNYILGLDIGIASVGWAAVALDANDEPCKILDLNARIFEAAEQPKTGAS







LAAPRREARGSRRRTRRRRHRMERLRHLFAREELISAENIAALFEAPA







DVYRLRAEGLSRRLDEGEWARVLYHIAKRRGFKSNRKGAASDADEGK







VLEAVKENEALLKNYKTVGEMMERDEKFQTAKRNKGGSYTFCVSRG







MLAEEIGELFAAQREQGNPHASETFETAYSKIFADQRSFDDGPDANSRS







PYAGNQIEKMIGTCSLETDPPEKRAAKASYSFMRFSLLQKINHLRLKD







AKGEERPLTDEERAAVEALAWKSPSLTYGAIRKALPLPDELRFTDLYY







RWDKKPEEIEKKKLPFAAPYHEIRKALDKREKGRIQSLTPDALDAVGY







AFTVFKNDAKIEAALSAAGIDGEDAVALMAAGLTFRGFGHISVKACRK







LIPHLEKGMTYDKACKEAGYDLQKTGGEKTKLLSGNLDEIREIPNPVV







RRAIAQTVKVVNAVIRRYGSPVAVNVELAREMGRTFQERRDMMKSME







DNNAENEKRKEELKGYGVVHPSGLDIVKLKLYKEQGGVCAYSLAAMP







IEKVLKDHDYAEVDHILPYSRSFDDSYANKVLVLSKENRDKGNRTPME







YMANMPGRRHDFITWVKSAVRNPRKRDNLLLEKFGEDKEAAWKERH







LTDTKYIGSFIANLLRDHLEFAPWLNGKKKQHVLAVNGAVTDYTRKR







LGIRKIREDGDLHHAVDAAVIATVTQGNIQKLTDYSKQIERAFVKNRD







GRYVNPDTGEVLKKDEWIVQRSRHFPEPWPGFRHELEARVSDHPKEM







IESLRLPTYTPEEIDGLKPPFVSRMPTRKVRGAAHLETVVSPRLKDEGM







IVKKVSLDALKLTKDKDAIENYYAPESDHLLYEALLHRLQAFGGDGEK







AFAESFHKPKADGTPGPVVKKVKIAEKSTLSVPVHHGRGLAANGGMV







RVDVFFIPEGKDRGYYLVPVYTSDVVRGELPMRAVVQGKSYAEWKLM







REEDFIFSLYPNDLVYIEHEKGVKVKIQKKLREISTLPREKTMTSGLFY







YRTMGIAVASIHIYAPDGVYVQESLGVKTLKEFKKWTIDILGGEPHPV







QKEKRQDFASVKRDPHAAKSTSSG





MG3 effectors
11794
MG3-42 effectors
protein
unknown
HGDVLTATIPASTFSFRNTPATLRKKLLAGEAVSVGWLTQNDEIEIEVD




PI domain


EFACGNTSFAKFLTEIPEKRWRVDGFYDNRRLRIRPAYLSAEGLTDNHS







KVVHETLEKGQFVNAGALLSASRTLLIRRTALGAPRWKLDSSGLPVSF







SPLKLAEEAL





MG3 effectors
11795
MG3-42 effector
Nucleotide
unknown
(N22)


sgRNA

sgRNA
(RNA)

GTTGGGAATCGTCACTGAAAAGTGACGATTCTCAACAAAAGACTTT







TGTCTTGATTTCTTTATCCCCCGGCATTTTGTGCCGGGGGATTCGTT







ATT





MG3 effectors
11796
MG3-42 effector
Nucleotide
unknown
GCATCGTTTGAAGAAGTGACGATTCTCAACAAAAGACTTTTGTCTT


tracr

tracr
(RNA)

GATTTCTTTATCCCCCGGCATTTTGTGCCGGGGGATTCGTTATT





MG16 effectors
11797
MG16-3 effector
protein
unknown
MATKKILGLDLGTNSIGWALIETEDSNPKSILAMGSRIVPLSTDDSTQFA







KGQAITKNADRTQKRTARKGLNRYQMRRAMLTEELRRHGMLPERTD







ENIMDLWRLRSDAATDGKQLSLPQIGRVLYHINQKRGYKHSKADNSA







NTKQTKYVEAVNQRYRDIQACHQTIGQYFYEQLLSSAVQTPSGSYYTY







RIKDKVLPREAYIAEFDQIMKVQRVFYPDVLTDELVDTLRNHIIFYQRP







LKSCKHLVSLCEFEKRPFKREDGQIVYSGPKCAPRTSPLAQFCTVWEA







VNNITLTNRQNETFEITQEQRVAMADFLNQHDKMGVKDLQKILGISPK







DGWWAGKAIGKGLKGNTTFTQLREALGNLPNAEHLLKMKLSMVDAA







VDTTTGELIRQVSPQVEEEPLFRLWHLVYSLQNEDELRKALRKQFGID







DEEVLDKLCKIDFVKPGYANKSHKFIRKLLPYLMEGYQYHEACAHIGV







NHSDSLTAEQNAARPLLDKIPLLEKNELRQPVIEKILNQMINVVNALKA







EYGDIDDVRIELARELKSSKDEREAAFKRNNENERQNKIYENRIREYGI







QPSRSRIQKYKMWEESNHLCFYCGKPVNVTDFLAGAEVEIEHIIPQSVL







FDDSYSNKVCACRACNQAKGNLTAREFMEKHSKEEYDSYLRRVDDAF







NAHRISKTKRDHLLWRKEDIPQDFIDRQLLQSQYIAKKAAEILRQGYR







NVYATSGSVTDFLRHQWGYDEILHRLNLPRYQQVEGLTEDVTYDHCG







QEHQQERIKGWTKRLDHRHHAIDALTIALTQQSVIQRLNTLNNSREQ







MFDELGKRTDTPEYTEKRSLLEKWVDAQPHFSVQEVTDKVDGILVSFR







AGKRAATPAKRAVYQNGKRHIVQTGLQVPRGALSEETVYGKLGNKY







VVKYPLGHQSMKMDDIVDPTIREIVRTRLNAFGGKAKDAFAEPLYSDA







AHQMQIKTVRCYTGLQDKAVVPVRFNAQGEPVGFVKMGNNHHIAIYR







DAKGQYQESVVSFWQAVERKRYGIPVVIEQPHEVWDKLINSDNIPQDF







LETLPHDDWQFVVSLQQNEMFILGMDDADFEAAMEQKDYRTLNKYL







YRVQKISSKEYCFRYHTETSVDDKYDGVINKSISMELQKLKRLTSISAFF







SQHPHKVRVNLLGEVSAL





MG86 effectors
11798
MG86-1 effector
protein
unknown
MKKILSFDLGITSIGYSVLTEDEAQKYSLLDYGVSMFDKPTDKDGNSK







KLLHAQALSTKKLYKLRKERKKNLALLFEKYALAKASKLLEQEKKNL







YMYKWQLRAKKVFEERLSIGEIFTILYHIAKHRGYKSLDSGDLLEELC







VELGIKIDVKKEKKDDEKGKIKQALSTIESLRKEYPKKTVAQIIYEVEL







QKERPVFRNHDNYNYMIRREHINDEIATIIRKQKEFGNFENIDSEVFIVD







IIAAIDDQKESTNDMSLFGKCEYYPKEHVAHQYSLLSDIFKMYQAVANI







TFNKEKIKITKEQIRLLTEDFLNKIKKGKSVKELKYKDVRKILKLDESV







KIFNKEDSYQRAGKKVEHTITKFHFVDNLSKIDKSFIEDIFNADESYVL







MREIFDVIHKEKSPKRIYEQLKSKVSSEAVIIDLIRYKKGSSLNISSYAMA







KFLPYFEEGMTLDAIKEKLDLGRKEDYSVYKKGIKYLHISTYEKDDDL







EINNHPVKYVVSAVLRVVKHLHAKHGTFDEIKVESTRELSLNDKVKKE







IDKANKAREKEIEKIISNDEYQKIAKEYGKNIHKYARKILMWEAQERFD







VYSGKSIGIDDIFSNRVDVDHIVPQSLGGLYVQHNLVLVHRDENLQKSN







QLPMNYITDKEAYINRVEHLFSEHKINWKKRKNLLASNLDEIYKDTFES







KDLRATSYIEALTANILKRYYPFIDEKKSVDGSAVRHIQGRATANIRKV







LGVKTKSRESNIHHGVDALLIGVTNPSWLQKLSNIFRENFGKIDDEARK







NIKKALPYIDGVEVKDIVKEIEQKYNSYGEDSIFYKDIWGKAKTVNFW







VSKKPMISKVHKDTIYADKGNGIFTVRESIIAKFINLKITPTTFPEDFMK







KFHKEILEKMYLYKTNSNDVICKIVQQRAEEIKELLWSFEFLDVKNKE







EMQEAKANLESLVHRELFDNNGNVVRKVKFYQTNLTGFKVRGGLAT







KEKTFIGFRAFKKDKKLEYKRIDVSNFEKIKKSNDGSFKVYKNDIVFFV







FDEEKYKGGKIVSFLEDKKMAAFSNPKYPANIQAQPESFLTIFKGKANS







HKQVSVGKAKGIIKLKVDILGNIESYQVLGNAKSKLLDEIKSIVSH





MG86 effector
11799
MG86-1 effector
Nucleotide
unknown
(N20)GUUUUAAUACCCGAAAGGGUAUUAAACUAAGGUCACUUUUUA


sgRNA

sgRNA
(RNA)

GUGGCUGACUUUAGAGUAUGGCUUUGGCUAUACUCCAUUUU





MG94 effector
11800
MG94-1 effector
protein
unknown
MRKKIRYVIGLDIGIASVGWAALLLDENDNVCGIVRAGVHTFDEAVVG







QSKITGAAYRRGYRSGRRSIRRKVNRIQRVKNLLQRLNIISKKDLEEYF







SGAVENIYYLRCAAIQNEPAYILNNKELAQLLIYYAKHRGYKSNTSYEQ







KTDDSKKVLSALSENKKYMLEKGYQTAGEMLYRDEKFRRKRYGSSEE







CELLLVRNSGDDYSHSISRELLVEEVHVIFARQRELGNKLTTKELEDQF







VEIMQSQRNYDEGSGEGSPYGGNLIEKMVGECTFEKGEKRACKASYTS







ERFVLLEKLNHLRIQSKNGDVRALTEEERDAIIKLAYKNKDVKYKALR







TILKLNPDERFGGLTYSRGDIENSTEGKSVFVSLEYWYEIKKVLGLFYD







DLDNEETQQLLDSIGTILTCYKSDDLRRRKFEQLHLEQEKIEHLLALNY







TKFQNLSFKAMKNIMPELEKGLSYTEACSNAGYGDKETIEGKNKYISK







ELLNNTLDSIMNPTVKRAVRRTIRILNELIKQYGSPVEVHVEMARDLTH







SQTVTNKMKKRQDENKAEKEEAKRFICENFGKTEAQVSGKDILRYRL







WKSQNQIDIYSNTMIPVSDILDYEKYEVDHIIPYSCSENDSFNNKMLVRK







KDNQDKKNRTPYEYIGSDEKKWEAFATCANTYVMNYGKRKNMLTKV







PASNTGEWMSRNLNDTRYTTKVVTDLIRKHLKFEAYVDQKRKKHIYPI







NGGITAKLRYEWGLEKDREKSDKHHAQDAVVIACCTDGMIQRLSRQY







MLQEIGIVTWKNHKLVDRRTGEIVEETNLPWECFREEVEMFMADSPE







DYIEKAKKNGYKGEAPKPIFVSRLPQKKTTGKINEDTLRSVRIDSKGKA







RFVNKTKLQDLKLVEVDGKKQIKDYYRPEDDKLLYDKLLERLVKNDD







AKVVFAEPFYKPKKDGSDGPIVRSVKTYGKTVKNQVLVGDGVAERGG







IYRCDVFKRKDEYYAVVVYYRDLYIGNLPNNAAHFDIEMKKGEFEFSL







YKDDLIRFVKDGKEQYAYYKYINANNSQITYTEHDTSKETKCTTIRTLD







KFQKMNVDLLGNIYSSDKEEREWN*


MG94 effector
11801
MG94-1 effector
protein
unknown
KTVKNQVLVGDGVAERGGIYRCDVFKRKDEYYAVVVYYRDLYIGNLP




PI domain


NNAAHFDIEMKKGEFEFSLYKDDLIRFVKDGKEQYAYYKYINANNSQI







TYTEHDTSKETKCTTIRTLDKFQKMNVDLLGNIYSSDKEEREWN*








Claims
  • 1. An engineered nuclease system comprising: a. an endonuclease or a ribonucleic acid encoding said endonuclease, wherein said endonuclease comprises a sequence having at least 80% sequence identity to SEQ ID NO: 1433; andb. an engineered guide ribonucleic acid structure configured to form a complex with said endonuclease, said engineered guide ribonucleic acid structure comprising: i. a guide ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; andii. a tracr ribonucleic acid sequence configured to bind to said endonuclease;wherein said guide ribonucleic acid sequence comprises a sequence having at least 80% sequence identity to non-degenerate nucleotides of SEQ ID NO: 11145.
  • 2. The engineered nuclease system of claim 1, wherein said guide ribonucleic acid sequence comprises a sequence having at least 90% sequence identity to non-degenerate nucleotides of SEQ ID NO: 11145.
  • 3. The engineered nuclease system of claim 2, wherein said guide ribonucleic acid sequence comprises non-degenerate nucleotides of SEQ ID NO: 11145.
  • 4. The engineered nuclease system of claim 3, wherein said tracr ribonucleic acid sequence comprises a sequence having at least 80% sequence identity to SEQ ID NO: 11201.
  • 5. The engineered nuclease system of claim 4, wherein said tracr ribonucleic acid sequence comprises a sequence having at least 90% sequence identity to SEQ ID NO: 11201.
  • 6. The engineered nuclease system of claim 5, wherein said tracr ribonucleic acid sequence comprises a sequence of SEQ ID NO: 11201.
  • 7. The engineered nuclease system of claim 6, wherein said engineered guide ribonucleic acid structure comprises: a. at least two ribonucleic acid polynucleotides; orb. one ribonucleic acid polynucleotide comprising said guide ribonucleic acid sequence and said tracr ribonucleic acid sequence.
  • 8. The engineered nuclease system of claim 2, wherein said tracr ribonucleic acid sequence comprises a sequence of SEQ ID NO: 11201.
  • 9. The engineered nuclease system of claim 6, wherein said endonuclease comprises a sequence having at least 90% sequence identity to SEQ ID NO: 1433.
  • 10. The engineered nuclease system of claim 9, wherein said endonuclease comprises a sequence of SEQ ID NO: 1433.
  • 11. The engineered nuclease system of claim 6, wherein said endonuclease comprises a RuvC_III domain, said RuvC_III domain comprising a sequence having at least 80% sequence identity to SEQ ID NO: 3253.
  • 12. The engineered nuclease system of claim 11, wherein said RuvC_III domain comprises a sequence of SEQ ID NO: 3253.
  • 13. The engineered nuclease system of claim 12, wherein said endonuclease comprises an HNH domain, wherein said HNH domain comprising a sequence having at least 80% sequence identity to SEQ ID NO: 5068.
  • 14. The engineered nuclease system of claim 13, said HNH domain comprises a sequence of SEQ ID NO: 5068.
  • 15. The engineered nuclease system of claim 6, wherein said endonuclease is a class 2, type II Cas endonuclease.
  • 16. A method of editing a locus in a cell, said method comprising contacting to said cell: a. an endonuclease or a ribonucleic acid encoding said endonuclease, wherein said endonuclease comprises a sequence having at least 80% sequence identity to SEQ ID NO: 1433; andb. an engineered guide ribonucleic acid structure configured to form a complex with said endonuclease, said engineered guide ribonucleic acid structure comprising: i. a guide ribonucleic acid sequence configured to hybridize to a target deoxyribonucleic acid sequence; andii. a tracr ribonucleic acid sequence configured to bind to said endonuclease;wherein said guide ribonucleic acid sequence comprises a sequence having at least 80% sequence identity to non-degenerate nucleotides of SEQ ID NO: 11145.
  • 17. The method of claim 16, wherein said guide ribonucleic acid sequence comprises a sequence having at least 90% sequence identity to non-degenerate nucleotides of SEQ ID NO: 11145.
  • 18. The method of claim 17, wherein said guide ribonucleic acid sequence comprises non-degenerate nucleotides of SEQ ID NO: 11145.
  • 19. The method of claim 18, wherein said tracr ribonucleic acid sequence comprises a sequence having at least 80% sequence identity to SEQ ID NO: 11201.
  • 20. The method of claim 19, wherein said tracr ribonucleic acid sequence comprises a sequence having at least 90% sequence identity to SEQ ID NO: 11201.
  • 21. The method of claim 20, wherein said tracr ribonucleic acid sequence comprises a sequence of SEQ ID NO: 11201.
  • 22. The method of claim 17, wherein said tracr ribonucleic acid sequence comprises a sequence of SEQ ID NO: 11201.
  • 23. The method of claim 21, wherein said endonuclease comprises a sequence having at least 90% sequence identity to SEQ ID NO: 1433.
  • 24. The method of claim 23, wherein said endonuclease comprises a sequence of SEQ ID NO: 1433.
  • 25. The method of claim 21, wherein said endonuclease comprises a RuvC_III domain, said RuvC_III domain comprising a sequence having at least 80% sequence identity to SEQ ID NO: 3253.
  • 26. The method of claim 25, wherein said RuvC_III domain comprises a sequence of SEQ ID NO: 3253.
  • 27. The method of claim 26, wherein said endonuclease comprises an HNH domain, said HNH domain comprising a sequence having at least 80% sequence identity to SEQ ID NO: 5068.
  • 28. The method of claim 27, wherein said HNH domain comprises a sequence of SEQ ID NO: 5068.
  • 29. The method of claim 21, wherein said endonuclease is a class 2, type II Cas endonuclease.
  • 30. The method of claim 24, further comprising contacting said cell with a deoxyribonucleic acid repair template.
RELATED APPLICATIONS

This application is related to PCT application no. PCT/US2021/031136, which is incorporated by reference in its entirety herein. This application is a continuation of International Application No. PCT/US2022/041755, filed on Aug. 26, 2022, which claims the benefit of U.S. Provisional Application Nos: 63/237,791, filed on Aug. 27, 2021; 63/245,629 filed on Sep. 17, 2021; 63/252,956, filed on Oct. 6, 2021; 63/282,909, filed on Nov. 24, 2021; 63/316,895, filed on Mar. 4, 2022; 63/319,681, filed on Mar. 14, 2022; 63/322,944, filed on Mar. 23, 2022; and 63/369,858, filed on Jul. 29, 2022; each of which is incorporated by reference herein in its entirety.

Provisional Applications (8)
Number Date Country
63237791 Aug 2021 US
63245629 Sep 2021 US
63252956 Oct 2021 US
63282909 Nov 2021 US
63316895 Mar 2022 US
63319681 Mar 2022 US
63322944 Mar 2022 US
63369858 Jul 2022 US
Continuations (1)
Number Date Country
Parent PCT/US2022/041755 Aug 2022 WO
Child 18586929 US