Equine arteritis virus peptides; antibodies and their use in a diagnostic test

Information

  • Patent Grant
  • 5773235
  • Patent Number
    5,773,235
  • Date Filed
    Wednesday, July 31, 1996
    28 years ago
  • Date Issued
    Tuesday, June 30, 1998
    26 years ago
Abstract
This invention provides a peptide or peptide conjugate of the equine arteis virus G.sub.L protein which elicits an immune response in animals to whom the peptide or peptide conjugate is administered and results in the production of neutralizing antibodies against equine arteritis virus, the peptide or peptide conjugate corresponds to amino acid sequences of SEQ ID NOs:3, 4, 5, 6 and 7.
Description

The present invention relates to recombinant DNA and proteins encoded thereby having use in provision of vaccines, diagnostics test kits and methods of diagnosis for equine arteritis virus (EAV) and equine arteritis virus mediated disease.
Equine viral arteritis, a disease for which horses and donkeys are the only reported hosts, has been known for some 40 years and manifests itself with widely varying clinical signs. In its most severe form EAV infection causes abortion which makes it a potentially significant commercial threat to, inter alia, the race horse breeding industry. Early veterinary articles refer to it as epizootic cellulitus pinkeye or equine influenza. Disease outbreaks are identified infrequently and field isolates of the single stranded RNA virus itself are rare.
The virus is transmitted by the respiratory and venereal routes, with a 30% carrier state existing in seropositive stallions making the latter route a particular cause for concern as these shedding stallions may consequently infect brood-mares. In the light of the potential economic importance of the virus and its stud carrier mediated infection capability there exist a requirement for both prophylactic treatment and reliable diagnosis of EAV.
Laboratory tests based upon ELISA, virus neutralisation (VN) and complement fixation (CF) formats have been developed (see Chirnside (1992) Br. vet. J. 148 ppl18). The known ELISA is relatively insensitive when applied to tissues, eg. sera, from horses previously vaccinated for other diseases such as influenza and herpesvirus, while the VN and CF formats have limited temporal sensitivity; the VN test is unable to distinguish between vaccination and natural infection.
Vaccination procedures have concentrated on safety and efficacy of whole inactivated virus and attenuated live virus vaccine. The live vaccine can induce shedding of virus from the nasopharynx and does not prevent this causing infection of commonly housed animals that have not been so treated. The known formalinised vaccine does not provide reliable protection.
Attempts to provide improvements to both diagnostic tests and vaccines have included studies into panels of antibodies raised against various EAV proteins. A 29K envelope protein in particular has been identified as antigenic and capable of causing production of neutralising antibodies in mouse (Balasuriya et al (1993) Journal of General Virology, 74, p2525-2529). The identity of this protein is unknown but work reported since the priority date of the present application by Deregt et al (J. General Virology 75, pp2439-2444) has shown that some monoclonal antibodies raised to G.sub.L protein are EAV neutralising, as are those to the nucleocapsid N protein. Results of tests in horse have yet to be reported.
The present inventor now provides isolated peptides that produce a potent neutralising immune response against EAV when administered to animals, particularly horses, and these peptides provide sensitive detection of EAV antibodies when used as binding agent in binding assay format. Further provided is DNA encoding for these peptides.
In a first aspect of the present invention there is provided a peptide or peptide conjugate comprising one or more epitopes capable of evoking an immune response in animals producing antibodies which are neutralising to equine arteritis virus, characterised in that the epitopes are selected from those present in the amino acid sequence corresponding to amino acid 19 to 137 (SEQ ID No 3) of equine arteritis virus (EAV) G.sub.L protein; the peptide not being the G.sub.L protein.
Preferred peptides or peptide conjugates of the invention comprise the epitopes present in the amino acid sequence corresponding to amino acid 28 to 137 (SEQ ID No 4), more preferably 75 to 97 (SEQ ID No 5) and most preferably 85 to 97 (SEQ ID No 7) of EAV G.sub.L. Preferred peptides or peptide conjugates comprise the amino acid sequence corresponding to amino acid 75 to 97 or a sequence having at least 90% homology thereto; preferably comprising an amino acid sequence corresponding to a sequence at least 90% homologous to the sequence of amino acids 28 to 137 of equine arteritis virus G.sub.L protein (SEQ ID No 4), but including said 85 to 97, or more preferably the 75 to 97 sequence, or a sequence that has at least 90% homology thereto. Other desirable optional epitopes identified are at 33 to 44 and 53 to 64.
A second aspect of the present invention provides a peptide or peptide conjugate comprising one or more epitopes capable of evoking an immune response in animals that produces antibodies which are neutralising to equine arteritis virus, characterised in that the epitopes are sele cted from those present in the amino acid sequence corresponding to amino acid 19 to 137 of equine arteritis virus G.sub.L protein (SEQ ID No 3), for use as a diagnostic agent; such peptide or conjugate is particularly provided for use as a diagnostic agent for the detection of EAV. Such aspect of course includes equine arteritis virus G.sub.L protein as such for these uses. Peptides or conjugates comprising SEQ ID No 2 are preferred; G.sub.L protein being included for such use; but peptides or conjugates comprising an amino acid sequence corresponding to a sequence at least 90% homologous to the sequence of amino acids 19 to 137 of equine arteritis G.sub.L protein (SEQ ID No 3) or to SEQ ID No 4, while retaining the amino acids 75 to 97 (SEQ ID No 5 and most preferably retaining the amino acids 85 to 97 (SEQ ID No 7) of, or having at least 90% homology to, SEQ ID No 2 may be used.
In a third aspect of the present invention are provided compositions comprising isolated peptides or peptide conjugates as described above per se, including G.sub.L, particularly for use in evoking neutralising antibody responses, eg. for the purpose of prophylaxis or diagnosis. Typically such compositions will comprise a peptide or conjugate of the present invention together with a pharmaceutically acceptable carrier or a carrier suitable for use in binding studies respectively.
In a fourth aspect of the present invention there is provided recombinant DNA, or RNA derived therefrom, encoding for peptides or conjugates of the invention, and plasmids and cells transformed thereby comprising this DNA such that they are capable of expressing the peptides or conjugates. This DNA has sequences of SEQ ID Nos 3 to 7 and those indicated in Table 1 below, and may be incorporated into cells in the form of vectors such as plasmids or may be used as a `naked vaccine` by way of chromosomal integration; both techniques being well understood by those skilled in the art.
In a fifth aspect of the present invention there is provided a method for testing for the presence of antibodies to equine arteritis virus comprising use of a peptide or peptide conjugate of the present invention, or G.sub.L protein, as a specific binding agent. Such test is preferably of ELISA format but may use the peptide or conjugate as immobilised binding agent or labelled secondary binding agent in a so called sandwich assay.
In binding assay where the peptide or peptide conjugate is immobilised this method may conveniently be carried out by use of commercially available assay plates onto which the peptide or conjugate is coated by suitable incubation in the known manner. For the purpose of assay a sample to be screened for EAV antibodies, eg. a serum sample, is typically incubated in contact with the plate, eg. in the wells, whereafter any EAV antibody present therein is identified by exposure to eg. an anti-horse IgA, IgG or IgM conjugated to a reporter group. Such reporter group may be in the form of a radiolabel, chemical label or a biological label. A typical biological label is an enzyme or cofactor, eg. biotin, and is detected by exposure to all the reactants necessary for a reporter reaction to occur dependent upon the presence of the reporter group. In the case of biotin the well may be exposed to streptavidin-peroxidase and then o-phenylenediamine dihydrochloride and the absorbance of the plate determined at 490 nm.
In a further example an immobilised anti-hors e IgA, IgM or IgG antibody raised in another animal may be used to bind a specific class of horse antibody and then the immobilised horse antibody provided may be exposed to a solution containing labelled peptide or conjugate of the invention whereby presence of anti-EAV antibody is indicated by assay of the amount of label present. Other assay formats such as competitive assays using either bound and unbound peptide or conjugate will occur to those skilled in the art; these will include simple observation of agglutination between peptide or conjugate and the antibody in a simple dilution test.
In a further aspect of the present invention there are provided test kits for use in carrying out the assay of the invention characterised in that they comprise a peptide, peptide-conjugate or antibodies of the invention, together with optional agents and items necessary for performing such assays. Such agents and items may include other binding agents or colour forming agents such as labelled antibodies, eg. biotinylated anti-horse IgG, horseradish peroxidase, streptavidin-peroxidase conjugate and o-phenylenediamine dihydrochloride. It will be realised that the term peptide and peptide conjugate as used herein will encompass oligopeptides, polypeptides and proteins as long as they fulfil the criteria of the invention with regard to immunological activity and content of epitopic sequences. The term `conjugate` designates conjugation to any physiologically acceptable entity.
The peptides, peptide conjugates and binding assays of the present invention will now be described by way of example only by reference to the following sequence listing, figures and examples.
SEQUENCE LISTING:
SEQ ID No 1: is the DNA sequence equivalent to the entire EAV genome minus the first 18 bases and the polyA tail.
SEQ ID No 2: is the amino acid sequence corresponding to amino acids 1 to 137 of the EAV G.sub.L protein (including any signal sequence).
SEQ ID No 3: is the amino acid sequence corresponding to amino acids 19 to 137 of the EAV G.sub.L protein.
SEQ ID No 4: is the amino acid sequence corresponding to amino acids 28 to 137 of the EAV G.sub.L protein.
SEQ ID No 5: is the amino acid sequence corresponding to amino acids 75 to 97 of the EAV G.sub.L protein.
SEQ ID No 6: is the amino acid sequence that is fused with GST in Fp5.RsaI and used in the ELISA of Example 3.
SEQ ID No 7: is the amino acid sequence corresponding to the epitope at G.sub.L 85 to 97.





BRIEF DESCRIPTION OF DRAWINGS
FIG. 1: shows a graph relating A.sub.490 values obtained using an Fp5.RsaI fusion protein ELISA carried out as described in Example 3 with VN derived results on the samples from the same horses.
FIG. 2: shows a graph relating A4.sub.90 values obtained using an Sp25 ELISA carried out as described in Example 3 with VN derived results on samples from the same horses.





EXAMPLE 1: Production of peptides and conjugates of the invention and DNA and vectors encoding therefor.
cDNA encompassing EAV open reading frames (ORFs) 2 to 7 (as referred to by De Vries et al, 1992) corresponding to EAV proteins G.sub.s, 3, 4, G.sub.L, M and N were cloned into the bacterial expression vectors pGEX-3X and pGEX-2T (Table 1) and constructs screened for fusion protein expression using PAGE with cloning confirmed by RE digestion analysis and sequencing over the plasmid/insert junctions. Affinity purified glutathione-S-transferase (GST) fusion proteins were screened for reactivity by indirect ELISA with a panel of virus neutralising equine sera. Of the six fusion proteins (Fp2.0-Fp7.0) screened by this ELISA only Fp5. (see SEQ ID No 2 for EAV peptide content), corresponding to amino acids 28-137 of EAV G.sub.L plus GST reacted strongly with the neutralising sera. A panel of 96 neutralising and 96 non-neutralising sera were then tested by indirect ELISA against Fp5.0Amongst the virus neutralising sera tested 96/96 produced an A.sub.490 greater than 0.4 aginst Fp5.0 in the ELISA with absorbance readings exhibiting a linear correlation to virus neutralising antibody titres (FIG. 1). 12/96 of the the neutralising equine sera tested positive to Fp5.0 in this ELISA.
Additional cloning experiments were performed with ORF 5 to produce fusion products 5.1, 5.2 and 5.4 which were affinity purified prior to testing with ELISA. Although Fp5.2 from this series of constructs was overexpressed during culture it proved difficult to affinity purify so a further round of cloning was performed to produce FP5.Rsal.
TABLE 1______________________________________EAV expression clone data: VectorORF Fp pGEX Digest SEQ ID No 1 EAV Digest______________________________________2 2.0 2T xSmaI*EcoRI 10007-11476 BalI-EcoRI3 3.0 3X xSmaI 10310-10708 HaeIII4 4.0 3X xBamHI*EcoRI 10688-11205 Bg1II-EcoRI.sup.v5 5.0 3X xSmaI 11210-11538 HaeII.sup.B -ScaI6 6.0 3X xEcoRI.sup.B 11897-12380 HinfI.sup.B -FspI7 7.0 3X xSmaI 12287-12687 HindIII.sup.V5 5.1 3X xSmaI 11114-11291 RsaI5 5.2 3X xSmaI 11240-11475 Sau3AI.sup.B -EcoRI5 5.4 3X xEcoRI.sup.B 11739-11876 PvuII5 5.RsaI 3X xEcoRI.sup.B 11292-11423 RsaI______________________________________
V=vector derived RE digestion site B=fragment/vector made blunt with Klenow DNA polymerase and T4 polymerase.
Peptide Sp25 (SEQ ID No 5) was also directly synthesised corresponding to the amino acid sequence of equine arteritis virus G.sub.L protein amino acid 75 to 97 and this and the product of Fp5.RSaI were tested with the ELISA as described in Example 3 (see FIG. 1 and 2). Fp5.RsaI was subsequently used in ELISA tests during the UK EAV outbreak in June 1993 to rapidly screen sera (Table 2) and used to test 1264 equine sera from a serosurvey carried out on Italian stallions (Table 3).
EXAMPLE 2: Immunisation studies.
Fp5.0, Fp5.RsaI and Sp25 were used to immunise rabbits and proved capable of inducing neutralising antibody response. Subsequent immunisation conducted on three groups of three horses confirmed Sp25 and Fp5.RsaI induce neutralising antibodies at a dose of 6 .mu.g of EAV-specific peptide/conjugate agent for both groups. The peptide was delivered as an agent consisting of Sp25 coupled to keyhole limpet haemocyanin (KLH) and all vaccine doses were adjuvanted with Duphar polymer adjuvant at 0.5%. Doses were given at 0, 51 and 114 days; Sp25 and RsaI giving strong antibody production after each dose.
EXAMPLE 3: ELISA using Fp5.RsaI or Sp25 as binding agent.
Dynatech Immulon 3 microtitre plate wells were coated with Fp5.RsaI or Sp25 antigen by exposure to 100 .mu.l of 5 .mu.g/ml antigen in 0.05M carbonate buffer at pH9.6 (Sigma cat No C3041) at 4.degree. C. overnight.
Plates were washed three times with Phosphate Buffered Saline (PBS) containing 0.05% Tween 20 (thereafter PBST) and then blocked with 100 .mu.l PSBT containing 5% normal goat serum (Seralab) (thereafter PBSTG) for 1 hour at 37.degree. C. Plates were washed again three times with PBST to render them ready for use.
Test sera were diluted 1:100 in PBSTG and 100 .mu.l of this solution added to wells prepared as above and incubated for 90 minutes at 37.degree. C. Plates were washed again three times with PBST and solution prepared by diluting 100 .mu.l goat anti-horse IgG biotin conjugate (KPL catalog No 162102) 1:1000 in PBSTG and adding to each well before being incubated for 90 minutes at 37.degree. C. Plates were washed three times with PSBT and a solution prepared by diluting 100 .mu.l streptavidin-peroxidase conjugate (KPL catalog No 14-30-00) 1:1000 in PBSTG and adding to each well before incubating at room temperature for 30 minutes. Plates were washed three times with PBST and 100 .mu.l o-phenylenediamine dihydro-chloride (Sigma cat No. P8287) (0.5 mg/ml in 0.05 phosphate citrate buffer, pH5.0-Sigma cat No. P4922) added to each well and incubated for 10 minutes at room temperature. 50 .mu.l 4M H.sub.2 SO.sub.4 was added to stop the reaction and absorbance was read at 490 nm. Since horse sera at a 1:100 dilution can bind native GST it is necessary to subtract absorbance readings obtained for sera against GST from GST-fusion protein absorbance. Each serum sample is tested in duplicate wells against each antigen. In each ELISA test 8 EAV VN positive sera and 8 EAV VN negative sera were run as internal controls.
TABLE 2______________________________________EAV outbreak 1993-Fp5.RsaI ELISA vs VN results.______________________________________ELISA positive VN negative 46 (on 32 animals)ELISA negative VN positive 1ELISA positive VN positive 148ELISA negative VN negative 374ELISA and VN detected 17 animals that wereseroconverters______________________________________
TABLE 3______________________________________Italian stallions 1993-Fp5.RsaI vs VN results______________________________________ELISA positive VN negative 369ELISA negative VN positive 21ELISA positive VN positive 441ELISA negative VN negative 433______________________________________
Samples assigned as ELISA positive if A.sub.490 is over 0.15 16/21 of the ELISA negative VN positives had VN titres below 1/16.
__________________________________________________________________________SEQUENCE LISTING(1) GENERAL INFORMATION:(iii) NUMBER OF SEQUENCES: 7(2) INFORMATION FOR SEQ ID NO: 1:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 12687 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: cDNA(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:TGCCATATACGGCTCACCACCATATACACTGCAAGAATTACTATTCTTGTGGGCCCCTCT60CGGTAAATCCTAGAGGGCTTTCCTCTCGTTATTGCGAGATTCGTCGTTAGATAACGGCAA120GTTCCCTTTCTTACTATCCTATTTTCATCTTGTGGCTTGACGGGTCACTGCCATCGTCGT180CGATCTCTATCAACTACCCTTGCGACTATGGCAACCTTCTCCGCTACTGGATTTGGAGGG240AGTTTTGTTAGGGACTGGTCCCTGGACTTACCCGACGCTTGTGAGCATGGCGCGGGATTG300TGCTGCGAAGTGGACGGCTCCACCTTATGCGCCGAGTGTTTTCGCGGTTGCGAAGGAATG360GAGCAATGTCCTGGCTTGTTCATGGGACTGTTAAAACTGGCTTCGCCAGTTCCAGTGGGA420CATAAGTTCCTGATTGGTTGGTATCGAGCTGCCAAAGTCACCGGGCGTTACAATTTCCTT480GAGCTGTTGCAACACCCTGCTTTCGCCCAGCTGCGTGTGGTTGATGCTAGGTTAGCCATT540GAAGAGGCAAGTGTGTTTATTTCCACTGACCACGCGTCTGCTAAGCGTTTCCCTGGCGCT600AGATTTGCGCTGACACCGGTGTATGCTAACGCTTGGGTTGTGAGCCCGGCTGCTAACAGT660TTGATAGTGACCACTGACCAGGAACAAGATGGGTTCTGCTGGTTAAAACTTTTGCCACCT720GACCGCCGTGAGGCTGGTTTGCGGTTGTATTACAACCATTACCGCGAACAAAGGACCGGG780TGGCTGTCTAAAACAGGACTTCGCTTATGGCTTGGAGACCTGGGTTTGGGCATCAATGCG840AGCTCTGGAGGGCTGAAATTCCACATTATGAGGGGTTCGCCTCAGCGAGCTTGGCATATC900ACAACACGCAGCTGCAAGCTGAAGAGCTACTACGTTTGTGACATCTCTGAAGCAGACTGG960TCCTGTTTGCCTGCTGGCAACTACGGCGGCTACAATCCACCAGGGGACGGAGCTTGCGGT1020TACAGGTGCTTGGCCTTCATGAATGGCGCCACTGTTGTGTCGGCTGGTTGCAGTTCTGAC1080TTGTGGTGTGATGATGAGTTGGCTTATCGAGTCTTTCAATTGTCACCCACGTTCACGGTT1140ACCATCCCAGGTGGGCGAGTTTGTCCGAATGCCAAGTACGCAATGATTTGTGACAAGCAG1200CACTGGCGCGTCAAACGTGCAAAGGGCGTCGGCCTGTGTCTCGATGAAAGCTGTTTCAGG1260GGCATCTGCAATTGCCAACGCATGAGTGGACCACCACCTGCACCCGTGTCAGCCGCCGTG1320TTAGATCACATACTGGAGGCGGCGACGTTTGGCAACGTTCGCGTGGTTACACCTGAAGGG1380CAGCCACGCCCCGTACCAGCGCCGCGAGTTCGTCCCAGCGCCAACTCTTCTGGAGATGTC1440AAAGATCCGGCGCCCGTTCCGCCAGTACCAAAACCAAGGACCAAGCTTGCCACACCGAAC1500CCAACTCAGGCGCCCATCCCAGCACCGCGCACGCGACTTCAAGGGGCCTCAACACAGGAG1560CCACTGGCGAGTGCAGGAGTTGCTTCTGACTCGGCACCTAAATGGCGTGTGGCCAAAACT1620GTGTACAGCTCCGCGGAGCGCTTTCGGACCGAACTGGTACAACGTGCTCGGTCCGTTGGG1680GACGTTCTTGTTCAAGCGCTACCGCTCAAAACCCCAGCAGTGCAGCGGTATACCATGACT1740CTGAAGATGATGCGTTCACGCTTCAGTTGGCACTGCGACGTGTGGTACCCTTTGGCTGTA1800ATCGCTTGTTTGCTCCCTATATGGCCATCTCTTGCTTTGCTCCTTAGCTTTGCCATTGGG1860TTGATACCCAGTGTGGGCAATAATGTTGTTCTGACAGCGCTTCTGGTTTCATCAGCTAAT1920TATGTTGCGTCAATGGACCATCAATGTGAAGGTGCGGCTTGCTTAGCCTTGCTGGAAGAA1980GAACACTATTATAGAGCGGTCCGTTGGCGCCCGATTACAGGCGCGCTGTCGCTTGTGCTC2040AATTTACTGGGGCAGGTAGGCTATGTAGCTCGTTCCACCTTTGATGCAGCTTATGTTCCT2100TGCACTGTGTTCGATCTTTGCAGCTTTGCTATTCTGTACCTCTGCCGCAATCGTTGCTGG2160AGATGCTTCGGACGCTGTGTGCGAGTTGGGCCTGCCACGCATGTTTTGGGCTCCACCGGG2220CAACGAGTTTCCAAACTGGCGCTCATTGATTTGTGTGACCACTTTTCAAAGCCCACCATC2280GATGTTGTGGGCATGGCAACTGGTTGGAGCGGATGTTACACAGGAACCGCCGCAATGGAG2340CGTCAGTGTGCCTCTACGGTGGACCCTCACTCGTTCGACCAGAAGAAGGCAGGAGCGACT2400GTTTACCTCACCCCCCCTGTCAACAGCGGGTCAGCGCTGCAGTGCCTCAATGTCATGTGG2460AAGCGACCAATTGGGTCCACTGTCCTTGGGGAACAAACAGGAGCTGTTGTGACGGCGGTC2520AAGAGTATCTCTTTCTCACCTCCCTGCTGCGTCTCTACCACTTTGCCCACCCGACCCGGT2580GTGACCGTTGTCGACCATGCTCTTTACAACCGGTTGACTGCTTCAGGGGTCGATCCCGCT2640TTATTGCGTGTTGGGCAAGGTGATTTTCTAAAACTTAATCCGGGGTTCCGGCTGATAGGT2700GGATGGATTTATGGGATATGCTATTTTGTGTTGGTGGTTGTGTCAACTTTTACCTGCTTA2760CCTATCAAATGTGGCATTGGCACCCGCGACCCTTTCTGCCGCAGAGTGTTTTCTGTACCC2820GTCACCAAGACCCAAGAGCACTGCCATGCTGGAATGTGTGCTAGCGCTGAAGGCATCTCT2880CTGGACTCTCTGGGGTTAACTCAGTTACAAAGTTACTGGATCGCAGCCGTCACTAGCGGA2940TTAGTGATCTTGTTGGTCTGCCACCGCCTGGCCATCAGCGCCTTGGACTTGTTGACTCTA3000GCTTCCCCTTTAGTGTTGCTTGTGTTCCCTTGGGCATCTGTGGGGCTTTTACTTGCTTGC3060AGTCTCGCTGGTGCTGCTGTGAAAATACAGTTGTTGGCGACGCTTTTTGTGAATCTGTTC3120TTTCCCCAAGCTACCCTTGTCACTATGGGATACTGGGCGTGCGTGGCGGCTTTGGCCGTT3180TACAGTTTGATGGGCTTGCGAGTGAAAGTGAATGTGCCCATGTGTGTGACACCTGCCCAT3240TTTCTGCTGCTGGCGAGGTCAGCTGGACAGTCAAGAGAGCAGATGCTCCGGGTCAGCGCT3300GCTGCCCCCACCAATTCACTGCTTGGAGTGGCTCGTGATTGTTATGTCACAGGCACAACT3360CGGCTGTACATACCCAAGGAAGGCGGGATGGTGTTTGAAGGGCTATTCAGGTCACCGAAG3420GCGCGCGGCAACGTCGGCTTCGTGGCTGGTAGCAGCTACGGCACAGGGTCAGTGTGGACC3480AGGAACAACGAGGTCGTCGTACTGACAGCGTCACACGTGGTTGGCCGCGCTAACATGGCC3540ACTCTGAAGATCGGTGACGCAATGCTGACTCTGACTTTCAAAAAGAATGGCGACTTCGCC3600GAGGCAGTGACGACACAGTCCGAGCTCCCAGGCAATTGGCCACAGTTGCATTTCGCCCAA3660CCAACAACCGGGCCCGCTTCATGGTGCACTGCCACAGGAGATGAAGAAGGCTTGCTCAGT3720GGCGAGGTTTGTCTGGCGTGGACTACTAGTGGCGACTCTGGATCTGCAGTGGTTCAGGGT3780GACGCTGTGGTAGGGGTCCACACCGGTTCGAACACAAGTGGTGTTGCCTACGTGACCACC3840CCAAGCGGAAAACTCCTTGGCGCCGACACCGTGACTTTGTCATCACTGTCAAAGCATTTC3900ACAGGCCCTTTGACATCAATCCCGAAGGACATCCCTGACAACATTATTGCCGATGTTGAT3960GCTGTTCCTCGTTCTCTGGCCATGCTGATTGATGGCTTATCCAATAGAGAGAGCAGCCTT4020TCTGGACCTCAGTTGTTGTTAATTGCTTGTTTTATGTGGTCTTATCTTAACCAACCTGCT4080TACTTGCCTTATGTGCTGGGCTTCTTTGCCGCTAACTTCTTCCTGCCAAAAAGTGTTGGC4140CGCCCTGTGGTCACTGGGCTTCTATGGTTGTGCTGCCTCTTCACACCGCTTTCCATGCGC4200TTGTGCTTGTTCCATCTGGTCTGTGCTACCGTCACGGGAAACGTGATATCTTTGTGGTTC4260TACATCACTGCCGCTGGCACGTCTTACCTTTCTGAGATGTGGTTCGGAGGCTATCCCACC4320ATGTTGTTTGTGCCACGGTTCCTAGTGTACCAGTTCCCCGGCTGGGCTATTGGCACAGTA4380CTAGCGGTATGCAGCATCACCATGCTGGCTGCTGCCCTCGGTCACACCCTGTTACTGGAT4440GTGTTCTCCGCCTCAGGTCGCTTTGACAGGACTTTCATGATGAAATACTTCCTGGAGGGA4500GGAGTGAAAGAGAGTGTCACCGCCTCAGTCACCCGCGCTTATGGCAAACCAATTACCCAG4560GAGAGTCTCACTGCAACATTAGCTGCCCTCACTGATGATGACTTCCAATTCCTCTCTGAT4620GTGCTTGACTGTCGGGCCGTCCGATCGGCAATGAATCTCGGTGCCGCTCTCACAAGTTTT4680CAAGTGGCGCAGTATCGTAACATCCTTAATGCATCCTTGCAAGTCGATCGTGACGCTGCT4740CGTAGTCGCAGACTAATGGCAAAACTGGCTGATTTTGCGGTTGAACAAGAAGTAACAGCT4800GGAGACCGTGTTGTGGTTATCGACGGTCTGGACCGCATGGCTCACTTCAAAGACGATTTG4860GTGCTGGTTCCTTTGACCACCAAAGTAGTAGGCGGTTCTAGGTGCACCATTTGTGACGTC4920GTTAAGGAAGAAGCCAATGACACCCCAGTTAAGCCAATGCCCAGCAGGAGACGCCGCAAG4980GGCCTGCCTAAAGGTGCTCAGTTGGAGTGGGACCGTCACCAGGAAGAGAAGAGGAACGCC5040GGTGATGATGATTTTGCGGTCTCGAATGATTATGTCAAGAGAGTGCCAAAGTACTGGGAT5100CCCAGCGACACCCGAGGCACGACAGTGAAAATCGCCGGCACTACCTATCAGAAAGTGGTT5160GACTATTCAGGCAATGTGCATTACGTGGAGCATCAGGAAGATCTGCTAGACTACGTGCTG5220GGCAAGGGGAGCTATGAAGGCCTAGATCAGGACAAAGTGTTGGACCTCACAAACATGCTT5280AAAGTGGACCCCACGGAGCTCTCCTCCAAAGACAAAGCCAAGGCGCGTCACGTTGCTCAT5340CTGCTGTTGGATCTGGCTAACCCAGTTGAGGCAGTGAATCAGTTAAACTGAGAGCGCCCC5400ACATCTTTCCCGGCGATGTGGGGCGTCGGACCTTTGCTGACTCTAAAGACAAGGGTTTCG5460TGGCTCTACACAGTCGCACAATGTTTTTAGCTGCCCGGGACTTTTTATTTAACATCAAAT5520TTGTGTGCGACGAAGAGTTCACAAAGACCCCAAAAGACACACTGCTTGGGTACGTACGCG5580CCTGCCCTGGTTACTGGTTTATTTTCCGTCGTACGCACCGGTCGCTGATTGATGCATACT5640GGGACAGTATGGAGTGCGTTTACGCGCTTCCCACCATATCTGATTTTGATGTGAGCCCAG5700GTGACGTCGCAGTGACGGGCGAGCGATGGGATTTTGAATCTCCCGGAGGAGGCCGTGCAA5760AACGTCTCACAGCTGATCTGGTGCACGCTTTTCAAGGGTTCCACGGAGCCTCTTATTCCT5820ATGATGACAAGGTGGCAGCTGCTGTCAGTGGTGACCCGTATCGGTCGGACGGCGTCTTGT5880ATAACACCCGTTGGGGCAACATTCCATATTCTGTCCCAACCAATGCTTTGGAAGCCACAG5940CTTGCTACCGTGCTGGATGTGAGGCCGTTACCGACGGGACCAACGTCATCGCAACAATTG6000GGCCCTTCCCGGAGCAACAACCCATACCGGACATCCCAAAGAGCGTGCTTGACAACTGCG6060CTGACATCAGCTGTGACGCTTTCATAGCGCCCGCTGCAGAGACAGCCCTGTGTGGAGATT6120TAGAGAAATACAACCTATCCACGCAGGGTTTTGTGTTGCCTAGTGTTTTCTCCATGGTGC6180GGGCGTACTTAAAAGAGGAGATTGGAGACGCTCCACCACTCTACTTGCCATCTACTGTAC6240CATCTAAAAATTCACAAGCCGGAATTAACGGCGCTGAGTTTCCTACAAAGTCTTTACAGA6300GCTACTGTTTGATTGATGACATGGTGTCACAGTCCATGAAAAGCAATCTACAAACCGCCA6360CCATGGCGACTTGTAAACGGCAATACTGTTCCAAATACAAGATTAGGAGCATTCTGGGCA6420CCAACAATTACATTGGCCTAGGTTTGCGTGCCTGCCTTTCGGGGGTTACGGCCGCATTCC6480AAAAAGCTGGAAAGGATGGGTCACCGATTTATTTGGGCAAGTCAAAATTCGACCCGATAC6540CAGCTCCTGACAAGTACTGCCTTGAAACAGACCTGGAGAGTTGTGATCGCTCCACCCCGG6600CTTTGGTGCGTTGGTTCGCTACTAATCTTATTTTTGAGCTAGCTGGCCAGCCCGAGTTGG6660TGCACAGCTACGTGTTGAATTGCTGTCACGATCTAGTTGTGGCGGGTAGTGTAGCATTCA6720CCAAACGCGGGGGTTTGTCATCTGGAGACCCTATCACTTCCATTTCCAATACCATCTATT6780CATTGGTGCTGTACACCCAGCACATGTTGCTATGTGGACTTGAAGGCTATTTCCCAGAGA6840TTGCAGAAAAATATCTTGATGGCAGCCTGGAGCTGCGGGACATGTTCAAGTACGTTCGAG6900TGTACATCTACTCGGACGATGTGGTTCTAACCACACCCAACCAGCATTACGCGGCCAGCT6960TTGACCGCTGGGTCCCCCACCTGCAGGCGCTGCTAGGTTTCAAGGTTGACCCAAAGAAAA7020CTGTGAACACCAGCTCCCCTTCCTTTTTGGGCTGCCGGTTCAAGCAAGTGGACGGCAAGT7080GTTATCTAGCCAGTCTTCAGGACCGCGTTACACGCTCTCTGTTATACCACATTGGTGCAA7140AGAATCCCTCAGAGTACTATGAAGCTGCTGTTTCCATCTTTAAGGACTCCATTATCTGCT7200GTGATGAAGACTGGTGGACGGACCTCCATCGACGTATCAGTGGCGCTGCGCGTACCGACG7260GAGTTGAGTTCCCCACCATTGAAATGTTAACATCCTTCCGCACCAAGCAGTATGAGAGTG7320CCGTGTGCACAGTTTGTGGGGCCGCCCCCGTGGCCAAGTCTGCTTGTGGAGGGTGGTTCT7380GTGGCAATTGTGTCCCGTACCACGCGGGTCATTGTCACACAACCTCGCTCTTCGCCAACT7440GCGGGCACGACATCATGTACCGCTCCACTTACTGCACAATGTGTGAGGGTTCCCCAAAAC7500AGATGGTACCAAAAGTGCCTCACCCGATCCTGGATCATTTGCTGTGCCACATTGATTACG7560GCAGTAAAGAGGAACTAACTCTGGTAGTGGCGGATGGTCGAACAACATCACCGCCCGGGC7620GCTACAAAGTGGGTCACAAGGTAGTCGCCGTGGTTGCAGATGTGGGAGGCAACATTGTGT7680TTGGGTGCGGTCCTGGATCACACATCGCAGTACCACTTCAGGATACGCTCAAGGGCGTGG7740TGGTGAATAAAGCTCTGAAGAACGCCGCCGCCTCTGAGTACGTGGAAGGACCCCCTGGGA7800GTGGGAAGACTTTTCACCTGGTCAAAGATGTGCTAGCCGTGGTCGGTAGCGCGACCTTGG7860TTGTGCCCACCCACGCGTCCATGCTGGACTGCATCAACAAGCTCAAACAAGCGGGCGCCG7920ATCCATACTTTGTGGTGCCCAAGTATACAGTTCTTGACTTTCCCCGGCCTGGCAGTGGAA7980ACATCACAGTGCGACTGCCACAGGTCGGAACCAGTGAGGGAGAAACCTTTGTGGATGAGG8040TGGCCTACTTCTCACCAGTGGATCTGGCGCGCATTTTAACCCAGGGTCGAGTCAAGGGTT8100ACGGTGATTTAAATCAGCTCGGGTGCGTCGGACCCGCGAGCGTGCCACGTAACCTTTGGC8160TCCGACATTTTGTCAGCCTGGAGCCCTTGCGAGTGTGCCATCGATTCGGCGCTGCTGTGT8220GTGATTTGATCAAGGGCATTTATCCTTATTATGAGCCAGCTCCACATACCACTAAAGTGG8280TGTTTGTGCCAAATCCAGACTTTGAGAAAGGTGTAGTCATCACCGCCTACCACAAAGATC8340GCGGTCTTGGTCACCGCACAATTGATTCAATTCAAGGCTGTACATTCCCTGTTGTGACTC8400TTCGACTGCCCACACCCCAATCACTGACGCGCCCGCGCGCAGTTGTGGCGGTTACTAGGG8460CGTCTCAGGAATTATACATCTACGACCCCTTTGATCAGCTTAGCGGGTTGTTGAAGTTCA8520CCAAGGAAGCAGAGGCGCAGGACTTGATCCATGGCCCACCTACAGCATGCCACCTGGGCC8580AAGAAATTGACCTTTGGTCCAATGAGGGCCTCGAATATTACAAGGAAGTCAACCTGCTGT8640ACACACACGTCCCCATCAAGGATGGTGTAATACACAGTTACCCTAATTGTGGCCCTGCCT8700GTGGCTGGGAAAAGCAATCCAACAAAATTTCGTGCCTCCCGAGAGTGGCACAAAATTTGG8760GCTACCACTATTCCCCAGACTTACCAGGATTTTGCCCCATACCAAAAGAACTCGCTGAGC8820ATTGGCCCGTAGTGTCCAATGATAGATACCCGAATTGCTTGCAAATTACCTTACAGCAAG8880TATGTGAACTCAGTAAACCGTGCTCAGCGGGCTATATGGTTGGACAATCTGTTTTCGTGC8940AGACGCCTGGTGTGACATCTTACTGGCTTACTGAATGGGTCGACGGCAAAGCGCGTGCTC9000TACCAGATTCCTTATTCTCGTCCGGTAGGTTCGAGACTAACAGCCGCGCTTTCCTCGATG9060AAGCCGAGGAAAAGTTTGCCGCCGCTCACCCTCATGCCTGTTTGGGAGAAATTAATAAGT9120CCACCGTGGGAGGATCCCACTTCATCTTTTCCCAATATTTACCACCATTGCTACCCGCAG9180ACGCTGTTGCCCTGGTAGGTGCTTCATTGGCTGGGAAAGCTGCTAAAGCTGCTTGCAGCG9240TTGTTGATGTCTATGCTCCATCATTTGAACCTTATCTACACCCTGAGACACTGAGTCGCG9300TGTACAAGATTATGATCGATTTCAAGCCGTGTAGGCTTATGGTGTGGAGAAACGCGACCT9360TTTATGTCCAAGAGGGTGTTGATGCAGTTACATCAGCACTAGCAGCTGTGTCCAAACTCA9420TCAAAGTGCCGGCCAATGAGCCTGTTTCATTCCATGTGGCATCAGGGTACAGAACCAACG9480CGCTGGTAGCGCCCCAGGCTAAAATTTCAATTGGAGCCTACGCCGCCGAGTGGGCACTGT9540CAACTGAACCGCCACCTGCTGGTTATGCGATCGTGCGGCGATATATTGTAAAGAGGCTCC9600TCAGCTCAACAGAAGTGTTCTTGTGCCGCAGGGGTGTTGTGTCTTCCACCTCAGTGCAGA9660CCATTTGTGCACTAGAGGGATGTAAACCTCTGTTCAACTTCTTACAAATTGGTTCAGTCA9720TTGGGCCCGTGTGATGGGCTTAGTGTGGTCACTGATTTCAAATTCTATTCAGACTATTAT9780TGCTGATTTTGCTATTTCTGTGATTGATGCAGCGCTTTTCTTTCTCATGCTACTTGCATT9840GGCTGTTGTTACTGTGTTTCTTTTCTGGCTCATTGTTGCCATCGGCCGCAGCTTGGTGGC9900GCGGTGTTCACGAGGTGCGCGTTACAGACCTGTTTAAGGATTTGCAGTGCGACAACCTGC9960GCGCGAAAGATGCCTTCCCGAGTCTGGGATATGCTCTGTCGATTGGCCAGTCGAGGCTAT10020CGTATATGCTGCAGGATTGGTTGCTTGCTGCGCACCGCAAGGAAGTTATGCCTTCCAATA10080TCATGCCTATGCCCGGTCTTACTCCTGATTGCTTTGACCATCTGGAGTCTTCTAGCTATG10140CTCCATTTATCAATGCCTATCGGCAGGCAATTTTGAGTCAATACCCACAAGAGCTCCAGC10200TCGAAGCCATCAACTGTAAATTGCTTGCTGTGGTTGCACCGGCATTGTATCATAATTACC10260ATCTAGCCAATTTGACCGGACCGGCCACATGGGTCGTGCCTACAGTGGGCCAGTTGCACT10320ATTATGCTTCTTCCTCTATTTTTGCTTCATCTGTGGAAGTGTTGGCAGCAATAATACTAC10380TATTTGCATGCATACCACTAGTGACACGAGTGTACATCTCTTTTACGCGGCTAATGTCAC10440CTTCCCGTCGCACTTCCAGCGGCACTTTGCCGCGGCGCAAGATTTTGTAGTGCACACGGG10500TTATGAATATGCCGGGGTCACTATGTTAGTGCACTTGTTTGCCAACTTGGTTCTGACATT10560TCCGAGCTTAGTTAATTGTTCCCGCCCTGTGAATGTCTTTGCTAATGCTTCTTGCGTGCA10620AGTGGTTTGTAGTCATACCAACTCAACTACTGGCTTGGGTCAACTTTCTTTTTCCTTTGT10680AGATGAAGATCTACGGCTGCATATCAGGCCTACTCTTATTTGTTGGTTTGCCTTGTTGTT10740GGTGCACTTTCTACCCATGCCACGCTGCAGAGGCTCGTAATTTTACTTACATTAGTCATG10800GATTGGGCCACGTGCACGGTCATGAGGGGTGTAGGAATTTTATTAATGTCACTCATTCTG10860CATTTCTTTATCTTAATCCCACCACTCCCACTGCGCCGGCTATAACTCATTGTTTACTTC10920TGGTTCTGGCAGCCAAAATGGAACACCCAAACGCTACTATCTGGCTGCAGCTGCAGCCGT10980TTGGGTATCATGTGGCTGGCGATGTCATTGTCAACTTGGAAGAGGACAAGAGGCATCCTT11040ACTTTAAACTTTTGAGAGCGCCGGCTTTACCGCTTGGTTTTGTGGCTATAGTTTATGTTC11100TTTTACGACTGGTACGTTGGGCTCAACGATGTTATCTATGATTGTATTGCTA11152MetLeuSerMetIleValLeuLeu15TTCTTGCTTTGGGGTGCGCCATCACATGCTTACTTCTCATACTACACC11200PheLeuLeuTrpGlyAlaProSerHisAlaTyrPheSerTyrTyrThr101520GCTCAGCGCTTCACAGACTTCACCTTGTGTATGCTGACGGATCGCGGC11248AlaGlnArgPheThrAspPheThrLeuCysMetLeuThrAspArgGly25303540GTTATTGCCAATTTGCTGCGATATGATGAGCACACTGCTTTGTACAAT11296ValIleAlaAsnLeuLeuArgTyrAspGluHisThrAlaLeuTyrAsn455055TGTTCCGCCAGTAAAACCTGTTGGTATTGCACATTCCTGGACGAACAG11344CysSerAlaSerLysThrCysTrpTyrCysThrPheLeuAspGluGln606570ATTATCACGTTTGGAACCGATTGTGATGACACCTACGCGGTCCCAGTT11392IleIleThrPheGlyThrAspCysAspAspThrTyrAlaValProVal758085GCTGAGGTCCTGGAACAGGCGCATGGACCGTACAGTGCGCTGTTTGAT11440AlaGluValLeuGluGlnAlaHisGlyProTyrSerAlaLeuPheAsp9095100GACATGCCCCCTTTTATTTACTATGGCCGTGAATTCGGCATAGTTGTG11488AspMetProProPheIleTyrTyrGlyArgGluPheGlyIleValVal105110115120TTGGATGTGTTTATGTTCTATCCCGTTTTAGTTCTGTTTTTCTTATCA11536LeuAspValPheMetPheTyrProValLeuValLeuPhePheLeuSer125130135GTACTACCCTATGCTACGCTTATTCTTGAAATGTGTGTATCTATTCTGTTTAT11589ValAATCTATGGCATTTACAGCGGGGCCTACTTGGCCATGGGCATATTTGCGGCCACGCTTGC11649TATACATTCAATTGTGGTCCTCCGCCAATTACTGTGGTTATGCCTGGCTTGGCGATACCG11709CTGTACGCTTCACGCGTCCTTTATATCAGCTGAGGGGAAAGTGTACCCCGTAGACCCCGG11769ACTCCCGGTTGCCGCCGTGGGCAATCGGTTGTTAGTCCCAGGTAGGCCCACTATCGATTA11829TGCAGTGGCCTACGGCAGCAAAGTCAACCTTGTGAGGTTGGGGGCAGCTGAGGTATGGGA11889GCCATAGATTCATTTTGTGGTGACGGGATTTTAGGTGAGTATCTAGATTACTTTATTCTG11949TCCGTCCCACTCTTGCTGTTGCTTACTAGGTATGTAGCATCTGGGTTAGTGTATGTTTTG12009ACTGCCTTGTTCTATTCCTTTGTATTAGCAGCTTATATTTGGTTTGTTATAGTTGGAAGA12069GCCTTTTCTACTGCTTATGCTTTTGTGCTTTTGGCTGCTTTTCTGTTATTAGTAATGAGG12129ATGATTGTGGGTATGATGCCTCGTCTTCGGTCCATTTTCAACCATCGCCAACTGGTGGTA12189GCTGATTTTGTGGACACACCTAGTGGACCTGTTCCCATCCCCCGCTCAACTACTCAGGTA12249GTGGTTCGCGGCAACGGGTACACCGCAGTTGGTAACAAGCTTGTCGATGGCGTCAAGACG12309ATCACGTCCGCAGGCCGCCTCTTTTCGAAACGGACGGCGGCGACAGCCTACAAGCTACAA12369TGACCTACTGCGCATGTTTGGTCAGATGCGGGTCCGCAAACCGCCCGCGCAACCCACTCA12429GGCTATTATTGCAGAGCCTGGAGACCTTAGGCATGATTTAAATCAACAGGAGCGCGCCAC12489CCTTTCGTCGAACGTACAACGGTTCTTCATGATTGGGCATGGTTCACTCACTGCAGATGC12549CGGAGGACTCACGTACACCGTCAGTTGGGTTCCTACCAAACAAATCCAGCGCAAAGTTGC12609GCCTCCAGCAGGGCCGTAAGACGTGGATATTCTCCTGTGTGGCGTCATGTTGAAGTAGTT12669ATTAGCCACCCAGGAACC12687(2) INFORMATION FOR SEQ ID NO: 2:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 137 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear(ii) MOLECULE TYPE: protein(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:MetLeuSerMetIleValLeuLeuPheLeuLeuTrpGlyAlaProSer151015HisAlaTyrPheSerTyrTyrThrAlaGlnArgPheThrAspPheThr202530LeuCysMetLeuThrAspArgGlyValIleAlaAsnLeuLeuArgTyr354045AspGluHisThrAlaLeuTyrAsnCysSerAlaSerLysThrCysTrp505560TyrCysThrPheLeuAspGluGlnIleIleThrPheGlyThrAspCys65707580AspAspThrTyrAlaValProValAlaGluValLeuGluGlnAlaHis859095GlyProTyrSerAlaLeuPheAspAspMetProProPheIleTyrTyr100105110GlyArgGluPheGlyIleValValLeuAspValPheMetPheTyrPro115120125ValLeuValLeuPhePheLeuSerVal130135(2) INFORMATION FOR SEQ ID NO: 3:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 119 amino acids(B) TYPE: amino acid(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: peptide(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:TyrPheSerTyrTyrThrAlaGlnArgPheThrAspPheThrLeuCys151015MetLeuThrAspArgGlyValIleAlaAsnLeuLeuArgTyrAspGlu202530HisThrAlaLeuTyrAsnCysSerAlaSerLysThrCysTrpTyrCys354045ThrPheLeuAspGluGlnIleIleThrPheGlyThrAspCysAspAsp505560ThrTyrAlaValProValAlaGluValLeuGluGlnAlaHisGlyPro65707580TyrSerAlaLeuPheAspAspMetProProPheIleTyrTyrGlyArg859095GluPheGlyIleValValLeuAspValPheMetPheTyrProValLeu100105110ValLeuPhePheLeuSerVal115(2) INFORMATION FOR SEQ ID NO: 4:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 110 amino acids(B) TYPE: amino acid(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: peptide(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:PheThrAspPheThrLeuCysMetLeuThrAspArgGlyValIleAla151015AsnLeuLeuArgTyrAspGluHisThrAlaLeuTyrAsnCysSerAla202530SerLysThrCysTrpTyrCysThrPheLeuAspGluGlnIleIleThr354045PheGlyThrAspCysAspAspThrTyrAlaValProValAlaGluVal505560LeuGluGlnAlaHisGlyProTyrSerAlaLeuPheAspAspMetPro65707580ProPheIleTyrTyrGlyArgGluPheGlyIleValValLeuAspVal859095PheMetPheTyrProValLeuValLeuPhePheLeuSerVal100105110(2) INFORMATION FOR SEQ ID NO: 5:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 amino acids(B) TYPE: amino acid(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: peptide(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:ThrPheGlyThrAspCysAspAspThrTyrAlaValProValAlaGlu151015ValLeuGluGlnAlaHisGly20(2) INFORMATION FOR SEQ ID NO: 6:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 44 amino acids(B) TYPE: amino acid(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: peptide(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:TyrAsnCysSerAlaSerLysThrCysTrpTyrCysThrPheLeuAsp151015GluGlnIleIleThrPheGlyThrAspCysAspAspThrTyrAlaVal202530ProValAlaGluValLeuGluGlnAlaHisGlyPro3540(2) INFORMATION FOR SEQ ID NO: 7:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 13 amino acids(B) TYPE: amino acid(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: peptide(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:AlaValProValAlaGluValLeuGluGlnAlaHisGly1510__________________________________________________________________________
Claims
  • 1. A peptide or peptide conjugate of the equine arteritis virus G.sub.L protein which elicits an immune response in animals to whom the peptide or peptide conjugate is administered and results in the production of neutralizing antibodies against equine arteritis virus, wherein said peptide or peptide conjugate is selected from the group consisting of SEQ ID NOs:3, 4, 5, 6 and 7.
  • 2. A peptide of claim 1 wherein the peptide is SEQ ID NO:3 of the G.sub.L protein.
  • 3. A peptide of claim 1 wherein the peptide is SEQ ID NO:4 of the G.sub.L protein.
  • 4. A peptide of claim 1 wherein the peptide is SEQ ID NO:5 of the G.sub.L protein.
  • 5. A peptide of claim 1 wherein the peptide is SEQ ID NO:6 of the G.sub.L protein.
  • 6. A peptide of claim 1 wherein the peptide is SEQ ID NO:7 of the G.sub.L protein.
  • 7. A diagnostic agent for the detection of equine arteritis virus, said agent comprising a peptide or peptide conjugate which elicits an immune response in animals to whom the peptide or peptide conjugate is administered, and results in the production of neutralizing antibodies against equine arteritis virus, said peptide or peptide conjugate is selected from the group consisting of SEQ ID NOs:3, 4, 5, 6 and 7.
  • 8. A method for testing for the presence or amount of antibodies to equine arteritis virus present in the sample comprising binding a peptide or peptide conjugate of claim 1 to the antibodies in said sample and detecting binding of said antibodies to said peptide or peptide conjugate, wherein said binding indicates the presence or amount of antibodies to equine arteritis virus.
  • 9. A method of claim 8 wherein the binding occurs in an ELISA or radioimmunoassay (RIA) assay.
  • 10. A method of claim 8 or 9 wherein the peptide or peptide conjugate is immobilized upon an assay plate and is used to bind equine arteritis virus specific antibodies present in the sample.
  • 11. A method of claim 8 or 9 wherein the peptide or peptide conjugate is detectably labeled and is used to identify equine arteritis virus specific antibodies that have been immobilized onto an assay plate, said method comprising exposing the plate immobilized antibodies to the labeled peptide or peptide conjugate, measuring the amount of label bound to the plate thereafter, and relating the amount of label to the presence or amount of antibodies in the sample.
Priority Claims (1)
Number Date Country Kind
9400656 Jan 1994 GBX
PCT Information
Filing Document Filing Date Country Kind 102e Date 371c Date
PCT/GB95/00066 1/13/1995 7/31/1996 7/31/1996
Publishing Document Publishing Date Country Kind
WO95/19438 7/20/1995
Non-Patent Literature Citations (2)
Entry
Balasuriya et al. J Gen Virol vol. 74, 1993, pp. 2525-2529.
Boon et al. J Virol, vol. 65, No. 6, Jun. 1991, pp. 2910-2920.