The invention pertains to equipment and a method for deposition of material via physical vapor deposition (PVD) techniques. More particularly, the invention pertains to equipment and a method for the deposition via PVD of one or more coating layers on a substrate, and especially nanolayer coatings, wherein the coatings exhibit improved periodicity of the coatings and/or sharp distinct boundaries between the coating layers.
Heretofore, PVD techniques have been useful for the deposition of one or more coating layers on a substrate. One exemplary kind of substrate is a substrate that, when coated with an appropriate coating material, is useful as a cutting tool in metalcutting (or other material removal) applications including (without limitation) chipforming material removal applications. The following documents disclose the use of PVD techniques to produce coated cutting tools: U.S. Pat. No. 5,879,823 to Prizzi et al. for a Coated Cutting Tool. The identification of this patent is not intended to limit the scope of the invention, but merely shows representative articles that are suitable for coating via PVD. This patent is hereby incorporated by reference herein.
PVD techniques are useful for the deposition of nanolayers of coating material. Typically, a single nanolayer has a thickness equal to or less than about 100 nanometers. Documents exemplary of the PVD deposition of coating nanolayers are U.S. Pat. No. 6,660,133 to Penich et al. for Nanolayered Coated Cutting Tool and Method for Making the Same and U.S. Pat. No. 6,884,499 to Penich et al. for Nanolayered Coated Cutting Tool and Method for Making the Same. The identification of these documents is not intended to limit the scope of the invention, but merely show representative examples of coating nanolayers applied by PVD. These patents are hereby incorporated by reference herein.
In reference to descriptions of PVD processes, the publication Handbook of Physical Vapor Deposition (PVD) Processing by Donald Mattox (1998) (published by Noyes Publications, Westwood, N.J. USA) generally describes the PVD process. In general, the PVD processes are atomistic deposition processes in which material is sputtered or vaporized from a solid or liquid source in the form of ions, atoms or molecules, transported through and often reacts with a low pressure plasma environment to the substrate where it condenses and forms a film. PVD processes can be used to deposit films that have a thickness from a few nanometers to thousands of nanometers. PVD processes can also be used to deposit multi-layer films, graded composition deposits, very thick deposits and freestanding structures. PVD processes can be used to deposit a film that comprises the reaction product of the vaporized material and an ambient gas environment like for example, nitrogen that can react with vaporized titanium to deposit titanium nitride on the substrate.
The Noyes publication also describes a number of physical vapor deposition processes. These PVD processes include vacuum deposition or vacuum evaporation; sputter deposition, arc vapor deposition, and ion plating. In the sputter deposition process, there is the deposition of particles removed from a surface (“target”), by the physical sputtering process. Arc vapor deposition uses a high current, low-voltage arc to vaporize a cathodic electrode (cathodic arc) or anodic electrode (anodic arc) and deposit the vaporized material on a substrate. In ion plating, which is sometimes called Ion Assisted Deposition (IAD) or Ion Vapor Deposition (IVD), the depositing material may be vaporized either by evaporation, sputtering arc erosion or by decomposition of a chemical vapor precursor. All methods utilize concurrent or periodic bombardment of the depositing film to modify and control the properties of the depositing film.
In a vacuum deposition or vacuum evaporation process, the ions, atoms or molecules from a thermal vaporization source reach the substrate with minimal collisions with residual gas molecules in the deposition chamber. Vacuum deposition normally requires a vacuum of better than 10−4 torr.
While all the PVD coating techniques have been successful in coating a substrate, and even in coating a substrate with a coating scheme comprising multiple layers of different compositions, there remains a need to improve such a process. This is especially true with respect to overlap of coating materials that occurs at the boundary between adjacent coating layers.
More specifically, the coating material that dislodges from the target can travel in a somewhat spread out fashion, e.g., the coating material takes the form of a plume, sometimes described by cosinus law distribution. As a result, it is common that some portion of the coating material that is emitted from one target deviate from normal-to-target direction and may overlap the area of deposition of the coating material from another target. When all the targets (or cathodes) are of the same material, the overlap of coating material from each target helps homogenize the coating all over the load and thus it is desirable. However, in the case of targets that are of different materials, overlap of coating materials may produce adverse mixtures of coating materials and is undesirable because the actual nanolayer coating scheme deposited on the substrate would not correspond to the intended coating scheme.
We have found that the occurrence of overlap of different coating materials can result in less than optimum properties of the coating and impact the performance of the coating and coated article. This can be especially true for coated cutting tools wherein the coating functions in a key role relative to the performance (including useful life) of the cutting tool. As can be appreciated, different coating compositions can yield different performance results.
Moreover, sharp or distinct boundaries between layers can impact the properties of the coated cutting tool. A sharp or distinct boundary between layers can form a coating scheme with strong well-defined boundaries between the coating layers. These strong boundaries limit migration of defects between the layers to improve properties such as, for example, the hardness of the film, the resistance to microcracking and/or resistance to crack propagation in the film. Similarly, it is advantageous to have a distinct boundary between alternating coating layers to help maintain uniform periodicity and consistency between each period of the coating scheme. Coating schemes that contain nanolayer films, especially with strong well-defined boundaries between nanolayers, provide the opportunity to deign a wide range of coating schemes that exhibit different properties well-suited for different material removal applications.
As power/current settings of the PVD targets increase, deposition rates increase. However, as the power/current setting is increased, the overlap in the plumes from different composition targets (i.e., targets that have a composition different from one another) increases, resulting in an intermixing of the layers. This intermixing leads to a less distinct (or strong) boundary structure and therefore, less distinction in properties between the layers, especially where nanolayers are desired. This intermixing thus limits the advantages from nanolayer coating structures. This invention addresses this issue by allowing high power/current settings of the PVD targets (coating material sources) while maintaining the distinctiveness of adjacent layers particularly in a nanolayer structured coating.
It can thus be appreciated that it would be desirable to provide improved equipment, as well as an improved method, for the deposition of coating material, and especially coating materials of different compositions, via PVD techniques.
It would also be desirable to provide improved equipment, as well as an improved method, for the deposition of nanolayers of material via PVD techniques, especially with regard to a coating scheme that comprises alternating nanolayers or sequential nanolayers or even random organization of the nanolayers of different compositions. In this regard, it would be beneficial if such equipment and techniques reduced overlap between coating materials plumes from adjacent cathode sources whereby the nanolayers presented strong well-defined boundaries therebetween. It would also be advantageous if such equipment and techniques would allow for the control of the thickness of the nanolayers independent of other operating parameters of the coating reactor (e.g., the level of power to the cathodes, rotational speed of the turntables, the pressure and/or temperature in the chamber, and other like parameters).
In a PVD coating process, it is common for the coating material plume from each cathode to spread out through the reactor chamber to overlap (or interfere) with one another in the area of coating deposition (i.e., the region in which the coating material impinges upon the substrate(s)). The extent of such overlap is dependent upon a number of factors such as, for example, the packing density of the substrates (e.g., cutting tool blanks) to be coated, as well as operating parameters like the power/current level to the targets. Such overlap is undesirable, and is especially undesirable when the cathodes (or targets) are of different material compositions because the nanolayer coating scheme does not correspond to the intended coating scheme. More specifically, coating material plume overlap leads to a lack of strong well-defined boundaries between separate nanolayers. Nanolayers that do not have strong well-defined boundaries between nanolayers allows for the migration of defects between the nanolayers. Nanolayers that do not have strong well-defined boundaries between nanolayers also result in nanolayers with inconsistent thickness, as well as an inconsistency in the periodicity of a nanolayer coating scheme.
In view of the above, one fundamental aspect of the invention is to provide PVD equipment, as well as a PVD method, that reduces the extent of coating material plume overlap in the region in which the coating material impinges upon the substrate(s) independent of the operating parameters of the coating apparatus (reactor). By achieving such reduction, the nanolayers will exhibit strong well-defined boundaries therebetween to help prevent the migration of defects between nanolayers. Further, the nanolayers will exhibit consistent controlled thickness and a consistent periodicity in the nanolayer coating scheme.
In one form thereof, the invention is a physical vapor deposition apparatus for coating a substrate. The apparatus comprises a substrate holder adapted to receive the substrate. The apparatus further includes a coating material source that emits a divergent stream of coating material comprising a diverse portion of coating material and a directed portion of coating material. The apparatus also includes a blinder means, positioned to be in operative engagement with the coating material source, for receiving and impacting the divergent stream of coating material so that the directed portion of coating material continually exits the blinder means traveling generally toward the substrate holder. The directed portion of coating material exhibits less divergence than the divergent stream of coating material.
In yet another form thereof, the invention is a physical vapor deposition apparatus for applying a coating scheme to a substrate. The apparatus comprises a substrate holder adapted to receive the substrate. The apparatus also includes a first coating material source that emits a first divergent stream of first coating material comprising a first diverse portion of first coating material and a first directed portion of first coating material. The apparatus further includes a first blinder means, positioned to be in operative engagement with the first coating material source, for receiving and impacting the first divergent stream of first coating material so that the first directed portion of first coating material exits the first blinder means traveling generally toward the substrate holder. The first directed portion of first coating material exhibits less divergence than the first divergent stream of first coating material. The apparatus further comprises a second coating material source that emits a second divergent stream of second coating material comprising a second diverse portion of second coating material and a second directed portion of second coating material.
In still another form thereof, the invention is a blinder for use in conjunction with a physical vapor deposition apparatus having a coating material source that emits a divergent stream of coating material having a diverse portion of coating material and a directed portion of coating material. The blinder comprises a blinder body that has a proximate end that receives the divergent stream of coating material. The blinder body further defines a window through which the directed portion of coating material continually passes. The blinder body has a distal end through which the directed portion of coating material exits the blinder body exhibiting less divergence than the divergent stream of coating material.
One aspect of the invention with reference to the blinder/blinder means, is that the blinders/blinder means cover approximately at least about fifty percent (50%) of the distance between the target and the substrate (e.g., cutting insert) at its closest approach to the target. More preferably, it is desirable that the blinders/blinder means cover approximately at least about seventy-five percent (75%) of the distance between the target and the substrate (e.g., cutting insert) at its closest approach to the target.
In yet another form thereof, the invention is a method of coating the surface of a substrate by physical vapor deposition comprising the steps of: providing a substrate holder adapted to receive the substrate; emitting a divergent stream of coating material from a coating material source wherein the divergent stream of coating material comprising a diverse portion of coating material and a directed portion of coating material; and providing a blinder that receives the divergent stream of coating material whereby the blinder blocks the diverse portion of coating material from exiting the blinder and allows the directed portion of coating material to exit the blinder traveling generally toward the substrate holder whereby the directed portion of coating material exhibits less divergence than the divergent stream of coating material so that a substantial part of the directed portion of coating material impinges the substrate.
In yet another form thereof, the invention is a method of coating the surface of a substrate by physical vapor deposition comprising the steps of: providing a substrate holder adapted to receive the substrate; emitting a first divergent stream of coating material from a first coating material source wherein the first divergent stream of coating material comprising a first diverse portion of coating material and a first directed portion of coating material; providing a first blinder that receives the first divergent stream of coating material whereby the first blinder blocks the first diverse portion of coating material from exiting the first blinder and allows the first directed portion of coating material to exit the first blinder traveling generally toward the substrate holder whereby the first directed portion of coating material exhibits less divergence than the first divergent stream of coating material so that a substantial part of the first directed portion of coating material impinges the substrate; emitting a second divergent stream of coating material from a second coating material source wherein the second divergent stream of coating material comprising a second diverse portion of coating material and a second directed portion of coating material; and providing a second blinder that receives the second divergent stream of coating material whereby the second blinder blocks the second diverse portion of coating material from exiting the second blinder and allows the second directed portion of coating material to exit the second blinder traveling generally toward the substrate holder whereby the second directed portion of coating material exhibits less divergence than the second divergent stream of coating material so that a substantial part of the second directed portion of coating material impinges the substrate.
In still another form thereof, the invention is a physical vapor deposition coated article. The article comprises a substrate that presents a surface wherein a coating is on at least a portion of the surface of the substrate. The coating comprises a plurality of elements wherein each one of the elements is continuously emitted via physical vapor deposition from its separate source. The coating comprises a coating set of alternating nanolayers wherein one of the alternating nanolayers has a complete absence of one of the continuously emitted elements and another of the alternating nanolayers contains the element absent from the one alternating nanolayers.
The following is a brief description of the drawings that form a part of this patent application:
Referring to the drawings,
Prior art coating arrangement 50 includes a carousel arrangement that includes a primary turntable 52 (or like structure) that supports, as well as rotates, a plurality of rotatable secondary turntables (54, 56, 58) that carry one or more substrates (e.g., cutting tool blanks). In this arrangement, primary turntable 52 is rotatable about axis 60 in the direction (clockwise as viewed in
In the operation of the prior art coating arrangement 50, the cathodes (70, 72, 74) are subjected to an electrical bias. Plasma develops that impinges each cathode to cause the emission of a coating material plume directed toward (or in the general direction of) the area of the primary turntable. Each coating material plume has a central portion and a peripheral portion. Typically, the central portion has a higher concentration of coating material than does the peripheral portion of the coating material plume. Further, as described hereinafter, the central portion of the coating material plume is directed toward a primary coating region relative to the specific cathode. The peripheral portion of the coating material plume is directed to pass wide of the primary coating region and toward adjacent intermediate coating regions relative to the cathode, as well as toward opposite areas of the coating reactor.
Cathode 70 emits a coating material plume generally designated as 78 (represented by arrows 80, 82, 84, 86, 88, 90, 92) in the general direction of the carousel arrangement. The central portion (represented by arrows 84, 86, 88) of the coating material plume 78 is emitted toward the primary coating region (see arrow 94) relative to the cathode 70. The primary coating region 94 is the region in the coating reactor that directly receives the central portion of the coating material plume 78 emitted by its corresponding cathode 70. When the secondary turntable 54 is in the primary coating region, i.e., the position shown by
The coating material plume 78 also has a peripheral portion (represented by arrows 80, 82, 90, 92). The peripheral portion passes wide of the primary coating region 94 and then into other areas of the coating chamber including into the intermediate coating regions 98 and 100 located on either side of the primary coating region 94 relative to cathode 70. When the secondary turntable 54 is in the primary coating region, the peripheral portion of the coating material plume 78 typically does not directly participate in coating the substrates carried by the secondary turntable 54.
The operation of each one of cathodes 72 and 74 is the same as the operation of cathode 70. The following brief discussion will suffice for the description of cathodes 72 and 74.
Cathode 72 emits a coating material plume generally designated as 104 (represented by arrows 106, 108, 110, 12, 114, 116, 118). The central portion (represented by arrows 110, 112, 114) of the coating material plume 104 is emitted toward the primary coating region (se arrow 120) relative to the cathode 72. The coating material plume 104 also has a peripheral portion (represented by arrows 106, 108, 116, 118) that passes wide of the primary coating region 120 and then into other areas of the coating chamber including into the intermediate coating regions 100 and 122 located on either side of the primary coating region 120 relative to cathode 72. As shown by the dashed sections of the arrows 110, 112, 114, a part of the central portion of the coating material plume 104 passes through the substrates and toward the opposite area of the coating chamber.
Cathode 74 emits a coating material plume generally designated as 126 (represented by arrows 128, 130, 132, 134, 136, 138140). The central portion (represented by arrows 132, 134, 136) of the coating material plume 126 is emitted toward the primary coating region (see arrow 144) relative to the cathode 74. The coating material plume 126 also has a peripheral portion (represented by arrows 128, 130, 138, 140) that passes wide of the primary coating region 144 and then into other areas of the coating chamber including into the intermediate coating regions 98 and 122 located on either side of the primary coating region 144 relative to cathode 74. As shown by the dashed sections of the arrows 132, 134, 136 a part of the central portion of the coating material plume 126 passes through the substrates and toward the opposite area of the coating chamber.
The primary turntable 52 rotates the substrates (as carried by the secondary turntables) to travel into and out of the primary and intermediate coating regions. When the substrates are in a primary coating region, they are primarily coated by the central portion of the coating material plume emitted by the cathode corresponding that that primary coating region. However, in the prior art coating apparatus 50, substrates in each primary coating region are also coated by peripheral portions of coating material plumes emitted by other cathodes. For example, the substrates carried by secondary turntable 56 are directly coated by the central portion (110, 112, 114) of the coating material plume 104 from cathode 72. These substrates are also coated (indirectly) by the peripheral portion (see arrow 128) of coating material plume 126 and the peripheral portion (see arrow 92) of coating material plume 78. Thus, it can be appreciated that even when the substrates are in the primary coating region, there can be overlap by the coating material plumes emitted from other cathodes.
When the substrates are located in an intermediate coating region, the substrates are not directly coated by any of the central portions of the coating material plumes, but are subject to being indirectly coated by extended sections of the primary portions, as well as by the peripheral portions, of the coating material plumes. For example, when a substrate is in intermediate region 122, it can be coated by the peripheral portion (see arrows 116, 118) of coating material plume 104, the peripheral portion (see arrows 128, 130) of coating material plume 126 and the extended section of coating material plume 78. The coating layers deposited on the substrates when they in the intermediate coating regions can exhibit differing compositions due to the intermixing of coating material plumes that occurs in the intermediate coating regions.
As can be appreciated by the PRIOR ART apparatus of
However, in the case of targets that are of different materials, the occurrence of overlap of coating materials may produce adverse mixtures of coating materials. Such adverse mixtures of coating materials are undesirable because the actual nanolayer coating scheme deposited on the substrate would not correspond to the intended coating scheme. Overlap in the coating material plumes leads to a lack of strong well-defined boundaries between nanolayers. Nanolayers that do not have strong well-defined boundaries therebetween allow for the migration of defects between nanolayers. Nanolayers that do not have strong well-defined boundaries therebetween also result in nanolayers with inconsistent thickness, as well as an inconsistency in the periodicity of a nanolayer coating scheme.
The inventors have found that the occurrence of overlap of different coating materials can result in less than optimum properties of the coating and negatively impact the performance of the coating and coated article. This occurrence can be especially true for coated cutting tools wherein the coating functions in a key role relative to the performance (including useful life) of the cutting tool. As can be appreciated, different coating compositions can yield different performance results.
As will become apparent from the discussion below, the present invention provides PVD equipment, as well as a PVD method, that reduces the extent of coating material plume overlap in the primary coating region, as well as in the intermediate coating region, independent of the operating parameters of the coating apparatus (reactor). By achieving such reduction, the nanolayers exhibit strong well-defined boundaries therebetween to help prevent the migration of defects between nanolayers. Further, the nanolayers exhibit consistent controlled thickness and a consistent periodicity in the nanolayer coating scheme.
Referring to
Coating apparatus 150 further includes a trio of stationary cathodes or targets (i.e., coating materials sources) 160, 162, 164 wherein cathode 164 has a blinder assembly associated therewith. It is typical for a coating material source to present a circular surface area from which the source emits a coating material plume (or divergent stream of coating material). Thus, the description of the width of the coating material source in reference to
Applicant contemplates that more than one cathode can have a blinder assembly associated therewith. Applicant also contemplates that the coating apparatus may not use secondary turntables, but instead, the primary turntable may directly carry the substrate(s) to be coated. It should be appreciated that the structure that carries the substrate(s) (e.g., the primary turntable or the secondary turntable) may be considered to be a substrate holder adapted to receive the substrate(s).
Still referring to
The coating material plume 166 also has a peripheral portion (represented by arrows 168, 170, 178, 180). The peripheral portion passes wide of the primary coating region 184 and then into other areas of the coating chamber including into the intermediate coating regions 186 and 188 located on either side of the primary coating region 184 relative to cathode 160. When the secondary turntable 154 is in the primary coating region, the peripheral portion of the coating material plume typically does not directly participate in coating the substrates carried by the secondary turntable 154.
Cathode 162, which has a peripheral lip 163, emits a coating material plume generally designated as 190 (represented by arrows 192, 194, 196, 198, 200, 202, 204) in the general direction of the carousel arrangement. The central portion (represented by arrows 196, 198, 200) of the coating material plume 190 is emitted toward the primary coating region (see arrow 210) relative to the cathode 162. The primary coating region is the region in the coating reactor that directly receives the central portion of the coating material plume emitted by its corresponding cathode. When the secondary turntable 158 is in the primary coating region, i.e., the position shown by
The coating material plume 190 also has a peripheral portion (represented by arrows 192, 194, 202, 204). The peripheral portion passes wide of the primary coating region 210 and then into other areas of the coating chamber including into the intermediate coating regions 188 and 212 located on either side of the primary coating region 210 relative to cathode 162. When the secondary turntable 158 is in the primary coating region, the peripheral portion of the coating material plume typically does not directly participate in coating the substrates carried by the secondary turntable 158.
Still referring to
One can consider the divergent coating material stream to have two basic portions; namely, a diverse portion of coating material and a directed portion of coating material. The diverse portion of coating material is that portion of the coating material emitted from the coating material source (e.g., cathode 164) that impinges or impacts the blinders, which are described hereinafter. In
The primary coating region is the region in the coating reactor that directly receives the central portion of the coating material plume (or the directed portion of coating material of the divergent stream of coating material) emitted by its corresponding cathode. When the secondary turntable 156 is in the primary coating region, i.e., the position shown by
Cathode 164 has a blinder means positioned to be in operative engagement therewith. The blinder means functions to continuously receive and impact the divergent stream of coating material so that the directed portion of coating material continuously exists the blinder means traveling generally toward the substrate holder. The blinder means comprises a blinder arrangement generally designated as 240 is comprised of adjacent blinders 242, 244 positioned near or about cathode 164. The preferred materials for use as blinders are stainless steels and other high temperature alloys. In a coating scheme in which coating layers have different compositions, it is preferred that the blinder arrangement is around (or in operative engagement with) the target (i.e., coating material source) that produces a coating layer in the coating scheme that is the softest coating layer. In this regard, the softest coating layer is typically the narrowest (or thinnest) coating layer in the coating scheme. However, there should be an appreciation that a blinder assembly may be in operative engagement with any one or more of the targets.
The blinders 242, 244 define a continuous window 246 (i.e., a window or opening that is continuously open or passable) between themselves. In this embodiment, the window is located at the distal end or termination of the blinders 242, 244. The central portion of the coating material plume 220 (or directed portion of coating material of the divergent stream of coating material) as represented by arrows 226, 228, 230 continually passes through the window 246 (or continually exits through the blinder assembly) toward the primary coating region 238 to impinge upon the substrates (i.e., directly coat) carried by the secondary turntable 156 when the coating apparatus is in the condition of
The blinders 242, 244 limit the spread of the coating material plume 220 by functioning as a barrier that continuously impedes or blocks the travel of the peripheral portion of the coating material plume 220. In this regard, blinder 242 continuously impedes the travel that part of the peripheral portion of the coating material plume 220 (or diverse portion of coating material of the divergent stream of coating material) as generally represented by arrows 222, 224, 232 and 234. In this embodiment, the divergent stream of coating material has a central longitudinal axis that is generally parallel to the flat surfaces of the blinders 242, 244. It is typical for the blinders to be the same geometry and dimension. Thus, the description of the width of the blinders in reference to
One should appreciate that the blinders (242, 244) can be oriented so that the flat surfaces are not parallel to the central longitudinal axis of the divergent stream of coating material.
By continuously impeding or blocking the travel of the peripheral portion of the coating material plume (or diverse portion of coating material), the blinders function to help prevent or reduce interfering or overlapping between the coating materials plumes emitted by the cathodes (i.e., coating material sources). For example, a part of peripheral portion of plume 220 (represented by arrows 232 and 234) is blocked by blinder 244 from traveling to overlap or interfere with coating material plume 190 from cathode 162. A part of peripheral portion of plume 220 (represented by arrows 222 and 224) is blocked by blinder 242 from traveling to overlap or interfere with coating material plume 166 from cathode 160. A reduction in the interference or overlap of the coating material plumes provides for the advantages and benefits described herein.
There should be an appreciation that the peripheral lip 165 of cathode 164, which is of a generally circular geometry, does not function to limit the spread of the coating material plume. The coating material plume 230 has significant divergence as shown by arrows 222, 224, 232 and 234 in
Referring to
Referring to
Coating arrangement 260 includes a primary turntable 262 that rotates about a central axis in the direction of the arrow (clockwise as shown in
Cathode 270 emits a coating material plume generally designated as 272 (represented by arrows 274, 276, 278, 280, 282, 284, 286) in the general direction of the carousel arrangement. Along the general lines of the description in conjunction with the embodiment of
The coating material plume 272 also has a peripheral portion (represented by arrows 274, 276, 284, 286) or a diverse portion of coating material. Unless blocked by the blinders, the peripheral portion would pass wide of the primary coating region and then into other areas of the coating chamber including into the intermediate coating regions and located on either side of the primary coating region relative to cathode. However, the blinder arrangement 294, which is a blinder means, functions to continuously receive and impact the divergent stream of coating material so that the directed portion of coating material continuously exits the blinder arrangement.
A blinder arrangement generally designated as 294 is comprised of adjacent arcuate blinders 296, 298 positioned near or about the primary coating region 290. The preferred materials for use as blinders are stainless steels and other high temperature alloys. The blinders 296, 298 define a continuous window 300 (i.e., a window or opening that is continuously open or passable) between themselves. Window 300 is at the distal end or termination of the blinders 296, 298. The central portion of the coating material plume 272 as represented by arrows 278, 280, 282 passes through the window 300 toward the primary coating region 290 to impinge upon the substrates carried by the secondary turntable 264 when the coating apparatus is in the condition of
The blinders limit the spread of the coating material plume by functioning as a barrier that continuously impedes the travel of the peripheral portion of the coating material plume (or the diverse portion of coating material). In this regard, arcuate blinder 296 continuously impedes the travel that part of the peripheral portion of the coating material plume represented by arrows 274 and 276. Arcuate blinder 298 continuously impedes the travel of that part of the peripheral portion of the coating material plume represented by arrows 284 and 286. As described above in conjunction with the coating apparatus of
To reduce the overlap, it is beneficial to be able to control the width (or magnitude) of the directed portion of coating material in the region where the coating material impinges the substrate(s). The overall geometry including without limitation the size and positioning of the components of the coating apparatus influence the magnitude of the directed portion of coating material in the region where the coating material impinges the substrate(s). The magnitude of the directed portion of coating material that impinges upon the substrate(s) is of interest since a narrower or more focused directed portion of coating material results in a reduction in the overlap between coating material from adjacent coating material sources. In order to better explain and describe this influence,
The apparatus 400 further includes a first blinder 406 that has a proximate end 408 that is proximate to the coating material source and a distal end 410 that is distal from the coating material source. Blinder 406 has an interior surface 412. The apparatus further includes a second blinder 414 that has a proximate end 416 that is proximate to the coating material source and a distal end 418 that is distal from the coating material source. Blinder 414 has an interior surface 420. The blinders 406 and 414 are of an equal axial length LB1. In view of the peripheral lip 403, the blinders 406, 414 extend a distance LB1+HPL from the surface 404 of the coating material source 402.
The pair of blinders 406, 414 defines between them a window 422 that is at their distal ends. Region 424 is the region in the coating chamber in which the coating material impinges upon the substrate(s). The distance between the surface of the coating material source and the region in which the coating material impinges upon the substrate(s) is equal to D1.
When the coating material source 402 is operational, a divergent stream of coating material continually emits from the coating material source. Arrows 430, 432, 434 and 436 schematically represent the divergent stream of coating material. The divergent stream of coating material has a directed portion of coating material, which comprises the coating material that is within the boundary or periphery as represented by the arrows 434 and 436. These arrows 434 and 436 extend from the corners of the coating material source to the distal ends of the opposite blinders, and thus, represent the periphery of the directed portion of the coating material that exits the blinder assembly. The periphery is oriented at an angle of divergence β1 relative to the interior surfaces of the blinders. As one can appreciate, β1 is less than the angle of divergence of the entire divergent stream of coating material. The divergent coating material stream also includes a diverse portion of the coating material. The diverse portion of the coating material comprises the coating material emitted from the coating material source that impinges upon the blinders. The coating material as represented by arrows 430 and 432 is within the diverse portion of coating material.
As stated above, the magnitude of the directed portion of coating material that impinges upon the substrate(s) is of interest. In an arrangement like that shown by
The above relationship shows that the magnitude of the directed portion of the divergent stream of coating material is a function of one or more parameters. These parameters are the width of the coating material source, the distance between the surface of the coating material source and the region where the coating material impinges the substrate and the axial length of the blinders. The magnitude of the directed portion of coating material decreases or narrows in response to one or more of the following: (1) a decrease in the width of the coating material source, (2) a decrease in the distance between the surface of the coating material source and the region where the coating material impinges the substrate, and/or (3) an increase in the axial length of the blinders. As is expected, the magnitude of the directed portion of coating material increases or widens in response to the opposite of any one or more of the above parameters. Thus, one can vary these parameters, as well as other geometric parameters, to achieve a directed portion of coating material of a desired magnitude to accommodate a specific coating application. Typically, one would expect and try to achieve the condition that the exit angle of divergence of the directed portion of coating material is such so that a substantial part of the periphery thereof impinges the surface of the substrate(s) received by the substrate holder.
The other coating apparatus shown in
Coating apparatus 500 includes a coating material source (e.g., cathode) 502 that has a surface 504. Coating material source 502 has a peripheral lip 503. The height of peripheral lip 503 is equal to HPL. The width of the surface of the coating material source is WT1, which is the same as the width of the coating material source 402 in the embodiment of
The apparatus 500 further includes a first blinder 506 that has a proximate end 508 that is proximate to the coating material source and a distal end 510 that is distal from the coating material source. Blinder 506 has an interior surface 512. The apparatus further includes a second blinder 514 that has a proximate end 516 that is proximate to the coating material source and a distal end 518 that is distal from the coating material source. Blinder 514 has an interior surface 520. The blinders 506 and 514 are of an equal axial length LB2. In view of the peripheral lip 503, the blinders 506, 514 extend to a distance LB2+HPL from the surface 504 of the coating material source 502.
In this respect, one should appreciate that the axial length (LB2) of the blinders 506, 514 is less than the axial length (LB1) of the blinders 406, 414 in the embodiment of
When the coating material source 502 is operational, a divergent stream of coating material continually emits from the coating material source. Arrows 530, 532, 534 and 536 schematically represent the divergent stream of coating material. The divergent stream of coating material has a directed portion of coating material, which comprises the coating material that is within the boundary or periphery of the coating material stream as represented by the arrows 534 and 536. These arrows 534 and 536 extend from the corners of the coating material source to the distal ends of the opposite blinders, and thus, represent the periphery of the directed portion of the coating material that exits the blinder assembly. The periphery is oriented at an angle of divergence β2 relative to the interior surfaces of the blinders. The divergent coating material stream also includes a diverse portion of the coating material. The diverse portion of the coating material comprises the coating material emitted from the coating material source that impinges upon the blinders. The coating material as represented by arrows 530 and 532 is within the diverse portion of coating material.
Consistent with the above-stated formula for the embodiment of
Coating apparatus 600 includes a coating material source (e.g., cathode) 602 that has a surface 604. Coating material source 602 has a peripheral lip 603. The height of the peripheral lip 603 is equal to HPL. The width of the surface of the coating material source is WT2, which is less than the width (WT1) of the coating material source 402 in the embodiment of
The apparatus 600 further includes a first blinder 606 that has a proximate end 608 that is proximate to the coating material source and a distal end 610 that is distal from the coating material source. Blinder 606 has an interior surface 612. The apparatus further includes a second blinder 614 that has a proximate end 616 that is proximate to the coating material source and a distal end 618 that is distal from the coating material source. Blinder 614 has an interior surface 620. The blinders 606 and 614 are of an equal axial length LB1. In this respect, one should appreciate that the axial length of the blinders 606, 614 is equal to the axial length of the blinders 406, 414 in the embodiment of
The pair of blinders 606, 614 defines between them a window 622 that is at their distal ends. Region 624 is the region in the coating chamber in which the coating material impinges upon the substrate(s). The distance between the surface of the coating material source and the region in which the coating material impinges upon the substrate(s) is equal to D1, which is equal to the distance between the surface of the coating material source and the region in which the coating material impinges upon the substrate(s) in the embodiment of
When the coating material source 602 is operational, a divergent stream of coating material continually emits from the coating material source. Arrows 630, 632, 634 and 636 schematically represent the divergent stream of coating material. The divergent stream of coating material has a directed portion of coating material, which comprises the coating material that is within the boundary or periphery as represented by the arrows 634 and 636. These arrows 634 and 636 extend from the corners of the coating material source to the distal ends of the opposite blinders, and thus, represent the periphery of the directed portion of the coating material that exits the blinder assembly. The periphery is oriented at an angle of divergence β3 relative to the interior surfaces of the blinders. The divergent coating material stream also includes a diverse portion of the coating material. The diverse portion of the coating material comprises the coating material emitted from the coating material source that impinges upon the blinders. The coating material as represented by arrows 630 and 632 is within the diverse portion of coating material.
Consistent with the above-stated formula for the embodiment of
Coating apparatus 700 includes a coating material source (e.g., cathode) 702 that has a surface 704. Coating material source 702 has a peripheral lip 703. The height of peripheral lip 703 is equal to HPL as shown in
The apparatus 700 further includes a first blinder 706 that has a proximate end 708 that is proximate to the coating material source and a distal end 710 that is distal from the coating material source. Blinder 706 has an interior surface 712. Blinder 706 also contains an interior barrier 714 that projects inward from the interior surface 712. Interior barrier 714 also includes a surface 716.
The apparatus further includes a second blinder 718 that has a proximate end 720 that is proximate to the coating material source and a distal end 722 that is distal from the coating material source. Blinder 718 has an interior surface 724. The blinders 706 and 718 are of an equal axial length LB2. In this respect, one should appreciate that the axial length of the blinders 706, 718 is equal to the axial length of the blinders 506, 514 in the embodiment of
The pair of blinders 706, 718 defines between them a pair of windows. One of these windows is a proximate window 730. The proximate window 730 is closer to the coating material source than is the distal window 732. The interior barriers 714 and 726 define therebetween the proximate window 730. The other of these windows is a distal window 732. The blinders 706 and 718 define therebetween at their distal ends the distal window 732. Region 734 is the region in which the coating material impinges upon the substrate(s). The distance between the surface of the coating material source and the region in which the coating material impinges upon the substrate(s) is equal to D1, which is equal to the distance between the surface of the coating material source and the region in which the coating material impinges upon the substrate(s) in the embodiment of
When the coating material source 702 is operational, a divergent stream of coating material continually emits from the coating material source. Arrows 740 through 750 represent the divergent stream of coating material. The divergent stream of coating material has a directed portion of coating material, which comprises the coating material that is within the boundary or periphery as represented by the arrows 748 and 750. These arrows (748, 750) extend from the corners of the coating material source to the distal ends of the opposite blinders while also passing through the proximate window 730. These arrows 748, 750 thus define the periphery of the directed portion of the coating material that exits the blinder assembly. The directed portion of coating material has an angle of divergence β4 relative to the interior walls of the blinders.
The divergent coating material stream also includes a diverse portion of the coating material. The diverse portion of the coating material comprises the coating material emitted from the coating material source that impinges upon the blinders including the interior barriers. The coating material as represented by arrows 740, 742, 744 and 746 is within the diverse portion of coating material. In view of the position of the internal barriers (714, 716) relative to the coating material source and along the axial length of the blinders, a part of the diverse portion of coating material passes through the proximate window 730. Arrows 744 and 746 represents this part of the diverse portion of coating material. The blinders extend past the interior barriers (and proximate window) a sufficient distance so that the coating material as represented by arrows 744 and 746 still impinges upon the blinders and does not pass through the distal window 732.
The inclusion in the blinder assembly of a set of interior barriers results in a reduction in the magnitude of the directed portion of coating material in the region where the coating material impinges the substrate(s). For example, in comparing the magnitudes (WMAX4 vs. WMAX2) of the directed portions of coating material of the embodiments of
In each of the embodiments shown in
As mentioned hereinabove, one aspect of the invention is that the blinders cover approximately at least about fifty percent (50%), and more preferably at least about seventy-five percent (75%), of the distance between the target (i.e., coating material source) and the substrate (e.g., cutting insert) at the substrate's closet approach to the target. Referring to
Referring to
As used herein, the term “cover”, as well as any grammatical variations thereof, used in connection with the blinders means that the blinders function to impede travel of at least some of the coating stream wherein at least some of the coating stream impinges on the blinders. As an example, in the embodiment of
Applicant presents a number of specific examples that demonstrate the advantages and properties of the resultant cutting inserts. These examples are described hereinafter.
Examples 1A, 1B and 1C comprised a coated cutting insert style CNMG432MP. The substrate was a Kennametal Inc. K313 Grade of cobalt-cemented tungsten carbide comprising 6 weight percent cobalt, a small amount of chromium (added as chromium carbide) and the balance tungsten carbide and impurities. The coating scheme comprises alternating nanolayers wherein one nanolayer comprised aluminum titanium nitride and the other nanolayer comprised aluminum titanium chromium nitride.
In regard to the application of the coating scheme, each one of these Examples 1A through 1C was coated via an arc evaporation process using a Metaplas unit MZR 323 made by Metaplas.
In the Examples 1A, 1B and 1C, the distance from the target to an insert at its closest approach to the target was about 15 centimeters (cm). The height of the blinders was about 11.4 cm. Therefore, the blinders covered about seventy-six percent (76%) of the distance between the target and the insert at its closest approach to the target. As mentioned hereinabove, the peripheral lip of the target has essentially no impact on the coating material plume. In these examples 1A, 1B and 1C, the peripheral lip has a height equal to 0.5 cm, and thus, is too small to have an impact on the coating material plume.
As can be seen from
Examples 2A, 2B and 2C comprised a coated cutting insert style OFKT07L6AFENGB. The substrate was a Kennametal Inc. K322 Grade of cobalt-cemented tungsten carbide having a nominal composition comprising about 9.75 weight percent cobalt and the balance tungsten carbide and impurities. The coating scheme comprises alternating nanolayers wherein one nanolayer comprised aluminum titanium nitride with the formula AlxTiyN and the other nanolayer comprised aluminum titanium nitride with the formula AlxTiyN. The ratio of x:y varied between the alternating nanolayers.
In regard to the application of the coating scheme, each one of these Examples 2A through 2C was coated via an arc evaporation process using the Metaplas unit made by Metaplas.
For these tests, it appears that the appropriate blinder spacing for a given blinder length to achieve the best metalcutting performance is dependent upon the metalcutting application. For example, in a milling application the wider blinder spacing seems best while in a turning application the narrower blinder spacing appears to be best.
Examples 3A, 3B, 3C and 3D each comprised a coated cutting insert style CNMG432MP. The substrate was a Kennametal Inc. K313 Grade. The coating scheme comprises alternating nanolayers wherein one nanolayer comprised aluminum titanium silicon nitride and the other nanolayer comprised aluminum titanium silicon chromium nitride.
In regard to the application of the coating scheme, each one of these Examples 3A through 3D was coated via an arc evaporation process using the Metaplas unit.
In reference to the test results presented by
The tool life as measured in minutes was the greatest when the electrical current applied to the chromium targets was the greatest. More specifically, the tool life was the greater for the cutting inserts that were coated using the higher power/current level (i.e., 60 amps) to the chromium targets as compared to using the lower power/current level (i.e., 40 amps) to the chromium targets.
The results presented in
Tests were conducted on Examples 4-8 to ascertain the maximum microhardness and adhesion of the nanolayer coating scheme produced by the targets shown in Table 3 using the Metaplas Unit having a nitrogen/nitriding atmosphere to form a nitride nanolayer. The adherence of the coatings to the substrate of the above examples was tested for coating adherence using an indentation adhesion load test. In this regard, adhesion between the coating and the substrate was determined by an indentation adhesion test using a Rockwell hardness tester with a Rockwell A scale Brale cone shaped diamond indenter at a selected load range of 15 kg, 30 kg, 45 kg, 60 kg, 100 kg and 150 kg. The adhesive strength was defined as the minimum load at which the coating debonded and/or flaked. Examples 4-8 comprised the coating schemes as set forth in Table 3 below.
Table 3 below presents these results for the maximum microhardness (kg/mm2) and the adhesion (kg).
Table 3 also presents the target compositions for each example under the column heading “Targets”. In this regard, the coating of each example comprised a plurality of nanolayer coating sets wherein each nanolayer coating set comprised a pair of different coating compositions produced by the targets set forth in Table 3. Table 3 further presents the overall total thickness in micrometers (μm) of the coating for each example.
The present invention is suitable for use in any coating system that has cathodes mounted on the wall such as, for example, a cathodic arc system, as well as sputtering systems. A wide variety of different coating compositions can be used in conjunction with the present invention.
All of the examples set forth herein used the Metaplas unit. In the Metaplas unit, a cathode is mounted on each wall wherein the walls are orthogonal to one another. There should be an understanding that the present invention is useful in a system that has one wall in which all of the cathodes are mounted on the one wall such as, for example, where all of the cathodes are parallel to each other mounted on one wall. Further, there should be an understanding that the present invention is useful in a system that has one wall in which cathodes of different compositions are mounted on a single wall.
It is apparent that there has been invented an improved coating arrangement (i.e., equipment), as well as an improved method, for the deposition of material via PVD techniques It is also apparent that applicant has invented improved equipment, as well as an improved method, for the deposition using multiple targets (cathodes) of different kinds of material compositions wherein such equipment and method has application to the deposition of nanolayers of material. It is also apparent that applicant's equipment and method are suitable for use in a reactive environment.
It is further apparent that applicant has invented improved equipment, as well as an improved method, for the deposition of material (and especially different material compositions in alternating or sequential or random layers including nanolayers) via PVD techniques wherein the extent of the coating material overlap from coating material plumes is minimized, especially in comparison to earlier techniques, whereby the nanolayers have strong well-defined boundaries therebetween.
It is also apparent that the present invention provides improved equipment, as well as an improved method, for the deposition of nanolayers via PVD techniques wherein such equipment and techniques would allow for the control of the thickness of the nanolayers independent of other operating parameters of the coating reactor (e.g., the level of power to the cathodes, rotational speed of the turntables, the pressure and/or temperature in the chamber, and other like parameters).
The patents and other documents identified herein are hereby incorporated by reference herein.
Other embodiments of the invention will be apparent to those skilled in the art from a consideration of the specification or a practice of the invention disclosed herein. It is intended that the specification and examples are illustrative only and are not intended to be limiting on the scope of the invention. The true scope and spirit of the invention is indicated by the following claims.