ESTABLISHING A DATA COMMUNICATIONS CONNECTION BETWEEN A LIGHTWEIGHT KERNEL IN A COMPUTE NODE OF A PARALLEL COMPUTER AND AN INPUT-OUTPUT ('I/O') NODE OF THE PARALLEL COMPUTER

Information

  • Patent Application
  • 20130103926
  • Publication Number
    20130103926
  • Date Filed
    December 11, 2012
    12 years ago
  • Date Published
    April 25, 2013
    11 years ago
Abstract
Establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an input-output (‘I/O’) node of the parallel computer, including: configuring the compute node with the network address and port value for data communications with the I/O node; establishing a queue pair on the compute node, the queue pair identified by a queue pair number (‘QPN’); receiving, in the I/O node on the parallel computer from the lightweight kernel, a connection request message; establishing by the I/O node on the I/O node a queue pair identified by a QPN for communications with the compute node; and establishing by the I/O node the requested connection by sending to the lightweight kernel a connection reply message.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The field of the invention is data processing, or, more specifically, methods, apparatus, and products for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer.


2. Description of Related Art


The development of the EDVAC computer system of 1948 is often cited as the beginning of the computer era. Since that time, computer systems have evolved into extremely complicated devices. Today's computers are much more sophisticated than early systems such as the EDVAC. Computer systems typically include a combination of hardware and software components, application programs, operating systems, processors, buses, memory, input/output devices, and so on. As advances in semiconductor processing and computer architecture push the performance of the computer higher and higher, more sophisticated computer software has evolved to take advantage of the higher performance of the hardware, resulting in computer systems today that are much more powerful than just a few years ago.


Modern computing systems may include many compute nodes that operate as processing units within a parallel computer. Establishing data communications connections between multiple compute nodes may prove to be challenging as different compute nodes are capable of data communications using different protocols and message structures.


SUMMARY OF THE INVENTION

Methods, apparatus, and products for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer, including: configuring the compute node with the network address and port value for data communications with the I/O node; establishing a queue pair on the compute node, the queue pair identified by a queue pair number (‘QPN’); receiving, in the I/O node on the parallel computer from the lightweight kernel, a connection request message, the connection request message including a type field identifying the message as a connection request message, a data communications network address for the compute node, a torus address for the compute node, a port value for the lightweight kernel, a port value for the I/O node, and a QPN for the compute node; establishing by the I/O node on the I/O node a queue pair identified by a QPN for communications with the compute node; and establishing by the I/O node the requested connection by sending to the lightweight kernel a connection reply message, the connection reply message including a type field identifying the message as a connection reply message, the data communications network address of the compute node, the torus address of the compute node, the port value for the lightweight kernel, the port value of the I/O node, and the QPN for the compute node, the QPN for the I/O node.


The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular descriptions of example embodiments of the invention as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of example embodiments of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 sets forth example apparatus for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention.



FIG. 2 sets forth a block diagram of an example compute node useful in a establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention.



FIG. 3A sets forth a block diagram of an example Point-To-Point Adapter useful in systems for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention.



FIG. 3B sets forth a block diagram of an example Global Combining Network Adapter useful in systems for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention.



FIG. 4 sets forth a line drawing illustrating an example data communications network optimized for point-to-point operations useful in systems capable of establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention.



FIG. 5 sets forth a line drawing illustrating an example global combining network useful in systems capable of establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention.



FIG. 6 sets forth a flow chart illustrating an example method for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention.



FIG. 7 sets forth a flow chart illustrating a further example method for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Example methods, apparatus, and products for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer in accordance with the present invention are described with reference to the accompanying drawings, beginning with FIG. 1. FIG. 1 sets forth example apparatus for establishing a data communications connection between a lightweight kernel (136) in a compute node (102a) of a parallel computer (100) and an I/O node (110, 114) of the parallel computer (100) according to embodiments of the present invention. The apparatus of FIG. 1 includes a parallel computer (100), non-volatile memory for the computer in the form of a data storage device (118), an output device for the computer in the form of a printer (120), and an input/output device for the computer in the form of a computer terminal (122). The parallel computer (100) in the example of FIG. 1 includes a plurality of compute nodes (102). The compute nodes (102) are coupled for data communications by several independent data communications networks including a high speed Ethernet network (174), a Joint Test Action Group (‘JTAG’) network (104), a global combining network (106) which is optimized for collective operations using a binary tree network topology, and a point-to-point network (108), which is optimized for point-to-point operations using a torus network topology. The global combining network (106) is a data communications network that includes data communications links connected to the compute nodes (102) so as to organize the compute nodes (102) as a binary tree. Each data communications network is implemented with data communications links among the compute nodes (102). The data communications links provide data communications for parallel operations among the compute nodes (102) of the parallel computer (100).


The compute nodes (102) of the parallel computer (100) are organized into at least one operational group (132) of compute nodes for collective parallel operations on the parallel computer (100). Each operational group (132) of compute nodes is the set of compute nodes upon which a collective parallel operation executes. Each compute node in the operational group (132) is assigned a unique rank that identifies the particular compute node in the operational group (132). Collective operations are implemented with data communications among the compute nodes of an operational group. Collective operations are those functions that involve all the compute nodes of an operational group (132). A collective operation is an operation, a message-passing computer program instruction that is executed simultaneously, that is, at approximately the same time, by all the compute nodes in an operational group (132) of compute nodes. Such an operational group (132) may include all the compute nodes (102) in a parallel computer (100) or a subset all the compute nodes (102). Collective operations are often built around point-to-point operations. A collective operation requires that all processes on all compute nodes within an operational group (132) call the same collective operation with matching arguments. A ‘broadcast’ is an example of a collective operation for moving data among compute nodes of a operational group. A ‘reduce’ operation is an example of a collective operation that executes arithmetic or logical functions on data distributed among the compute nodes of a operational group (132). An operational group (132) may be implemented as, for example, an MPI ‘communicator.’


‘MPI’ refers to ‘Message Passing Interface,’ a prior art parallel communications library, a module of computer program instructions for data communications on parallel computers. Examples of prior-art parallel communications libraries that may be improved for performing an allreduce operation using shared memory according to embodiments of the present invention include MPI and the ‘Parallel Virtual Machine’ (‘PVM’) library. PVM was developed by the University of Tennessee, The Oak Ridge National Laboratory and Emory University. MPI is promulgated by the MPI Forum, an open group with representatives from many organizations that define and maintain the MPI standard. MPI at the time of this writing is a de facto standard for communication among compute nodes running a parallel program on a distributed memory parallel computer. This specification sometimes uses MPI terminology for ease of explanation, although the use of MPI as such is not a requirement or limitation of the present invention.


Some collective operations have a single originating or receiving process running on a particular compute node in an operational group (132). For example, in a ‘broadcast’ collective operation, the process on the compute node that distributes the data to all the other compute nodes is an originating process. In a ‘gather’ operation, for example, the process on the compute node that received all the data from the other compute nodes is a receiving process. The compute node on which such an originating or receiving process runs is referred to as a logical root.


Most collective operations are variations or combinations of four basic operations: broadcast, gather, scatter, and reduce. The interfaces for these collective operations are defined in the MPI standards promulgated by the MPI Forum. Algorithms for executing collective operations, however, are not defined in the MPI standards. In a broadcast operation, all processes specify the same root process, whose buffer contents will be sent. Processes other than the root specify receive buffers. After the operation, all buffers contain the message from the root process.


A scatter operation, like the broadcast operation, is also a one-to-many collective operation. In a scatter operation, the logical root divides data on the root into segments and distributes a different segment to each compute node in the operational group (132). In scatter operation, all processes typically specify the same receive count. The send arguments are only significant to the root process, whose buffer actually contains sendcount*N elements of a given datatype, where N is the number of processes in the given group of compute nodes. The send buffer is divided and dispersed to all processes (including the process on the logical root). Each compute node is assigned a sequential identifier termed a ‘rank.’ After the operation, the root has sent sendcount data elements to each process in increasing rank order. Rank 0 receives the first sendcount data elements from the send buffer. Rank 1 receives the second sendcount data elements from the send buffer, and so on.


A gather operation is a many-to-one collective operation that is a complete reverse of the description of the scatter operation. That is, a gather is a many-to-one collective operation in which elements of a datatype are gathered from the ranked compute nodes into a receive buffer in a root node.


A reduction operation is also a many-to-one collective operation that includes an arithmetic or logical function performed on two data elements. All processes specify the same ‘count’ and the same arithmetic or logical function. After the reduction, all processes have sent count data elements from computer node send buffers to the root process. In a reduction operation, data elements from corresponding send buffer locations are combined pair-wise by arithmetic or logical operations to yield a single corresponding element in the root process' receive buffer. Application specific reduction operations can be defined at runtime. Parallel communications libraries may support predefined operations. MPI, for example, provides the following pre-defined reduction operations:


















MPI_MAX
maximum



MPI_MIN
minimum



MPI_SUM
sum



MPI_PROD
product



MPI_LAND
logical and



MPI_BAND
bitwise and



MPI_LOR
logical or



MPI_BOR
bitwise or



MPI_LXOR
logical exclusive or



MPI_BXOR
bitwise exclusive or










In addition to compute nodes, the parallel computer (100) includes input/output (‘I/O’) nodes (110, 114) coupled to compute nodes (102) through the global combining network (106). The compute nodes (102) in the parallel computer (100) may be partitioned into processing sets such that each compute node in a processing set is connected for data communications to the same I/O node. Each processing set, therefore, is composed of one I/O node and a subset of compute nodes (102). The ratio between the number of compute nodes to the number of I/O nodes in the entire system typically depends on the hardware configuration for the parallel computer (102). For example, in some configurations, each processing set may be composed of eight compute nodes and one I/O node. In some other configurations, each processing set may be composed of sixty-four compute nodes and one I/O node. Such example are for explanation only, however, and not for limitation. Each I/O node provides I/O services between compute nodes (102) of its processing set and a set of I/O devices.


In the example of FIG. 1, the I/O nodes (110, 114) are connected for data communications I/O devices (118, 120, 122) through local area network (‘LAN’) (130) implemented using high-speed Ethernet. Readers will understand, however, that each I/O node (110, 114) may be connected to the compute nodes (102) utilizing the same physical layer and protocol used in the compute-to-compute node interconnect. Each I/O node (110, 114) may be directly targeted in data communications operations, thereby avoiding the need for any software forwarding at the compute node (102) to I/O node (110, 114) boundary. Each I/O node (110, 114) may also include two inputs links that can be connected to two different compute nodes.


The parallel computer (100) of FIG. 1 also includes a service node (116) coupled to the compute nodes through one of the networks (104). Service node (116) provides services common to pluralities of compute nodes, administering the configuration of compute nodes, loading programs into the compute nodes, starting program execution on the compute nodes, retrieving results of program operations on the computer nodes, and so on. Service node (116) runs a service application (124) and communicates with users (128) through a service application interface (126) that runs on computer terminal (122).


The parallel computer (100) of FIG. 1 operates generally to establish a data communications connection between a lightweight kernel (136) in a compute node (102a) of a parallel computer (100) and an I/O node (110, 114) of the parallel computer (100). Such a parallel computer (100) is typically composed of many compute nodes, but for ease of explanation one of the compute nodes (102a) in this example is referenced in particular. The compute node (102a) includes random access memory (‘RAM’) (134) and a lightweight kernel (136). In the example of FIG. 1, the lightweight kernel (136) may be embodied, for example, as a subset of services that would typically be provided by a standard operating system. Because each compute node (102) may only provide a particular set of services or operations, each compute node (102) may not require a full-blown operating system but rather a scaled down lightweight kernel (136).


The parallel computer (100) of FIG. 1 further functions to establish a data communications connection between a lightweight kernel (136) in a compute node (102a) of the parallel computer (100) and an I/O node (110, 114) of the parallel computer (100) by configuring the compute node (102a) with the network address and port value for data communications with the I/O node (110, 114). In the example of FIG. 1, the compute node (102a) may be configured with a network address and a port value when the compute node (102a) is powered up, at predetermined intervals, upon request, and so on. In the example of FIG. 1, the network address may be embodied, for example, as an Internet Protocol (‘IP’) address or other address that serves as an identifier of the compute node (102a) to other nodes in a network. In the example of FIG. 1, the port value may be embodied as an application-specific or process-specific value that represents a communications endpoint.


The parallel computer (100) of FIG. 1 further functions to establish a data communications connection between a lightweight kernel (136) in a compute node (102a) of the parallel computer (100) and an I/O node (110, 114) of the parallel computer (100) by establishing a queue pair (not shown) on the compute node (102a), where the queue pair is identified by a queue pair number (‘QPN’). The queue pair may facilitate data communications as one queue can store outbound data communications messages that are to be transferred to from the compute node (102a) to nodes while the other queue can store inbound data communications messages that are received by the compute node (102a) from other nodes. Each queue in the queue pair may be serviced by a communications library such that outbound messages that are stored in one queue of the queue pair are transferred from the queue pair to a recipient and inbound messages that are stored in the other queue of the queue pair are processed as messages that are received from another compute node.


The parallel computer (100) of FIG. 1 further functions to establish a data communications connection between a lightweight kernel (136) in a compute node (102a) of the parallel computer (100) and an I/O node (110, 114) of the parallel computer (100) by receiving, in the I/O node (110, 114) from the lightweight kernel (136), a connection request message. In the example of FIG. 1, the connection request message includes a type field identifying the message as a connection request message, a data communications network address for the compute node (102a), a torus address for the compute node (102a), a port value for the lightweight kernel (136), a port value for the I/O node (110, 114), and a QPN for the compute node (102a).


The parallel computer (100) of FIG. 1 further functions to establish a data communications connection between a lightweight kernel (136) in a compute node (102a) of the parallel computer (100) and an I/O node (110, 114) of the parallel computer (100) by establishing by the I/O node (110, 114) on the I/O node (110, 114) a queue pair identified by a QPN for communications with the compute node (102a). The I/O node (110. 114) may establish a queue pair identified by a QPN, for example, by allocating a particular portion of computer memory (not shown) on the I/O node (110, 114) for use as a queue pair when the I/O node is booted up, upon request, and so on.


The parallel computer (100) of FIG. 1 further functions to establish a data communications connection between a lightweight kernel (136) in a compute node (102a) of the parallel computer (100) and an I/O node (110, 114) of the parallel computer (100) by establishing by the I/O node (110, 114) the requested connection by sending to the lightweight kernel (136) a connection reply message. In the example of FIG. 1, the connection reply message including a type field identifying the message as a connection reply message, the data communications network address of the compute node (102a), the torus address of the compute node (102a), the port value for the lightweight kernel (136), the port value of the I/O node (110, 114), the QPN for the compute node (102a), and the QPN for the I/O node (110, 114).


The arrangement of nodes, networks, and I/O devices making up the example apparatus illustrated in FIG. 1 are for explanation only, not for limitation of the present invention. Apparatus capable of establishing a data communications connection between a lightweight kernel (136) in a compute node (102a) of a parallel computer (100) and an I/O node (110, 114) of the parallel computer (100) according to embodiments of the present invention may include additional nodes, networks, devices, and architectures, not shown in FIG. 1, as will occur to those of skill in the art. The parallel computer (100) in the example of FIG. 1 includes fourteen compute nodes (102); parallel computers capable of establishing a data communications connection between a lightweight kernel (136) in a compute node (102a) of a parallel computer (100) and an I/O node (110, 114) of the parallel computer (100) according to embodiments of the present invention sometimes include thousands of compute nodes. In addition to Ethernet (174) and JTAG (104), networks in such data processing systems may support many data communications protocols including for example TCP (Transmission Control Protocol), IP (Internet Protocol), and others as will occur to those of skill in the art. Various embodiments of the present invention may be implemented on a variety of hardware platforms in addition to those illustrated in FIG. 1.


Establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention is generally implemented on a parallel computer that includes a plurality of compute nodes organized for collective operations through at least one data communications network. In fact, such computers may include thousands of such compute nodes. Each compute node is in turn itself a kind of computer composed of one or more computer processing cores, its own computer memory, and its own input/output adapters. For further explanation, therefore, FIG. 2 sets forth a block diagram of an example compute node (102) useful in a parallel computer capable of establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention. The compute node (102) of FIG. 2 includes a plurality of processing cores (165) as well as RAM (156). The processing cores (165) of FIG. 2 may be configured on one or more integrated circuit dies. Processing cores (165) are connected to RAM (156) through a high-speed memory bus (155) and through a bus adapter (194) and an extension bus (168) to other components of the compute node. Stored in RAM (156) is an application program (159), a module of computer program instructions that carries out parallel, user-level data processing using parallel algorithms.


Also stored RAM (156) is a parallel communications library (161), a library of computer program instructions that carry out parallel communications among compute nodes, including point-to-point operations as well as collective operations. Application program (159) executes collective operations by calling software routines in parallel communications library (161). A library of parallel communications routines may be developed from scratch for use in systems according to embodiments of the present invention, using a traditional programming language such as the C programming language, and using traditional programming methods to write parallel communications routines that send and receive data among nodes on two independent data communications networks. Alternatively, existing prior art libraries may be improved to operate according to embodiments of the present invention. Examples of prior-art parallel communications libraries include the ‘Message Passing Interface’ (‘MPI’) library and the ‘Parallel Virtual Machine’ (‘PVM’) library.


Also stored in RAM (156) is a lightweight kernel (136), a module of computer program instructions and routines for an application program's access to other resources of the compute node (102). It is typical for an application program and parallel communications library in a compute node of a parallel computer to run a single thread of execution with no user login and no security issues because the thread is entitled to complete access to all resources of the node. The quantity and complexity of tasks to be performed by a lightweight kernel (136) on a compute node in a parallel computer therefore are smaller and less complex than those of an operating system on a serial computer with many threads running simultaneously. In addition, there is no video I/O on the compute node (102) of FIG. 2, another factor that decreases the demands on the lightweight kernel (136). The lightweight kernel (136) may therefore be quite lightweight by comparison with operating systems of general purpose computers, a pared down version as it were, or an operating system developed specifically for operations on a particular parallel computer.


Also stored in RAM is queue pair (629) that is identified by a QPN (631). The queue pair (629) may be used to facilitate data communications between the compute node (102) and other nodes such as a service node. One queue in the queue pair (629) can store outbound data communications messages that are to be transferred from the compute node (102) to another node, while the other queue in the queue pair (629) can store inbound data communications messages that are received by the compute node (102) from other compute nodes. Each queue in the queue pair (629) may be serviced by a communications library such that outbound messages that are stored in one queue of the queue pair (629) are transferred from the queue pair (629) to a recipient and inbound messages that are stored in the other queue of the queue pair (629) are processed as messages that are received from another compute node.


The example compute node (102) of FIG. 2 includes several communications adapters (172, 176, 180, 188) for implementing data communications with other nodes of a parallel computer. Such data communications may be carried out serially through RS-232 connections, through external buses such as USB, through data communications networks such as IP networks, and in other ways as will occur to those of skill in the art. Communications adapters implement the hardware level of data communications through which one computer sends data communications to another computer, directly or through a network. Examples of communications adapters useful in apparatus that establish a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer include modems for wired communications, Ethernet (IEEE 802.3) adapters for wired network communications, and 802.11b adapters for wireless network communications.


The data communications adapters in the example of FIG. 2 include a Gigabit Ethernet adapter (172) that couples example compute node (102) for data communications to a Gigabit Ethernet (174). Gigabit Ethernet is a network transmission standard, defined in the IEEE 802.3 standard, that provides a data rate of 1 billion bits per second (one gigabit). Gigabit Ethernet is a variant of Ethernet that operates over multimode fiber optic cable, single mode fiber optic cable, or unshielded twisted pair.


The data communications adapters in the example of FIG. 2 include a JTAG Slave circuit (176) that couples example compute node (102) for data communications to a JTAG Master circuit (178). JTAG is the usual name used for the IEEE 1149.1 standard entitled Standard Test Access Port and Boundary-Scan Architecture for test access ports used for testing printed circuit boards using boundary scan. JTAG is so widely adapted that, at this time, boundary scan is more or less synonymous with JTAG. JTAG is used not only for printed circuit boards, but also for conducting boundary scans of integrated circuits, and is also useful as a mechanism for debugging embedded systems, providing a convenient “back door” into the system. The example compute node of FIG. 2 may be all three of these: It typically includes one or more integrated circuits installed on a printed circuit board and may be implemented as an embedded system having its own processing core, its own memory, and its own I/O capability. JTAG boundary scans through JTAG Slave (176) may efficiently configure processing core registers and memory in compute node (102) for use in dynamically reassigning a connected node to a block of compute nodes for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention.


The data communications adapters in the example of FIG. 2 include a Point-To-Point Network Adapter (180) that couples example compute node (102) for data communications to a network (108) that is optimal for point-to-point message passing operations such as, for example, a network configured as a three-dimensional torus or mesh. The Point-To-Point Adapter (180) provides data communications in six directions on three communications axes, x, y, and z, through six bidirectional links: +x (181), −x (182), +y (183), −y (184), +z (185), and −z (186).


The data communications adapters in the example of FIG. 2 include a Global Combining Network Adapter (188) that couples example compute node (102) for data communications to a global combining network (106) that is optimal for collective message passing operations such as, for example, a network configured as a binary tree. The Global Combining Network Adapter (188) provides data communications through three bidirectional links for each global combining network (106) that the Global Combining Network Adapter (188) supports. In the example of FIG. 2, the Global Combining Network Adapter (188) provides data communications through three bidirectional links for global combining network (106): two to children nodes (190) and one to a parent node (192).


The example compute node (102) includes multiple arithmetic logic units (‘ALUs’). Each processing core (165) includes an ALU (166), and a separate ALU (170) is dedicated to the exclusive use of the Global Combining Network Adapter (188) for use in performing the arithmetic and logical functions of reduction operations, including an allreduce operation. Computer program instructions of a reduction routine in a parallel communications library (161) may latch an instruction for an arithmetic or logical function into an instruction register (169). When the arithmetic or logical function of a reduction operation is a ‘sum’ or a ‘logical OR,’ for example, the collective operations adapter (188) may execute the arithmetic or logical operation by use of the ALU (166) in the processing core (165) or, typically much faster, by use of the dedicated ALU (170) using data provided by the nodes (190, 192) on the global combining network (106) and data provided by processing cores (165) on the compute node (102).


Often when performing arithmetic operations in the global combining network adapter (188), however, the global combining network adapter (188) only serves to combine data received from the children nodes (190) and pass the result up the network (106) to the parent node (192). Similarly, the global combining network adapter (188) may only serve to transmit data received from the parent node (192) and pass the data down the network (106) to the children nodes (190). That is, none of the processing cores (165) on the compute node (102) contribute data that alters the output of ALU (170), which is then passed up or down the global combining network (106). Because the ALU (170) typically does not output any data onto the network (106) until the ALU (170) receives input from one of the processing cores (165), a processing core (165) may inject the identity element into the dedicated ALU (170) for the particular arithmetic operation being perform in the ALU (170) in order to prevent alteration of the output of the ALU (170). Injecting the identity element into the ALU, however, often consumes numerous processing cycles. To further enhance performance in such cases, the example compute node (102) includes dedicated hardware (171) for injecting identity elements into the ALU (170) to reduce the amount of processing core resources required to prevent alteration of the ALU output. The dedicated hardware (171) injects an identity element that corresponds to the particular arithmetic operation performed by the ALU. For example, when the global combining network adapter (188) performs a bitwise OR on the data received from the children nodes (190), dedicated hardware (171) may inject zeros into the ALU (170) to improve performance throughout the global combining network (106).


In the example of FIG. 2, the compute node (102) may utilize message unit (‘MU’) hardware for I/O data transport across I/O links and, for flexible I/O configurations, across an I/O torus. A I/O software architecture may specify a network layer on which I/O services are built. The network layer components may be modeled after the Open Fabrics Remote Direct Memory Access (‘RDMA’) framework or OpenFabrics Enterprise Distribution (‘OFED’) framework, an organization of companies and individuals providing open source software in the high-performance-computing (‘HPC’) arena. As such, internal network interfaces may be modeled after the OFED interfaces and processes running in the I/O node environment may communicate over I/O links using standard OFED RDMA verbs.


In the example of FIG. 2, the lightweight kernel (136) may use a subset of the OFED verbs to communicate over I/O links and to connect to an I/O services daemon. Internal networks may also be accessed from Linux by using the standard OFED framework interfaces known as the OFED verbs that can be used to establish connections and transfer data via the RDMA communication model. In order to use standard interfaces in Linux, a device driver must be created that interfaces the OFED framework


For further explanation, FIG. 3A sets forth a block diagram of an example Point-To-Point Adapter (180) useful in systems for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention. The Point-To-Point Adapter (180) is designed for use in a data communications network optimized for point-to-point operations, a network that organizes compute nodes in a three-dimensional torus or mesh. The Point-To-Point Adapter (180) in the example of FIG. 3A provides data communication along an x-axis through four unidirectional data communications links, to and from the next node in the −x direction (182) and to and from the next node in the +x direction (181). The Point-To-Point Adapter (180) of FIG. 3A also provides data communication along a y-axis through four unidirectional data communications links, to and from the next node in the −y direction (184) and to and from the next node in the +y direction (183). The Point-To-Point Adapter (180) of FIG. 3A also provides data communication along a z-axis through four unidirectional data communications links, to and from the next node in the −z direction (186) and to and from the next node in the +z direction (185).


For further explanation, FIG. 3B sets forth a block diagram of an example Global Combining Network Adapter (188) useful in systems for establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention. The Global Combining Network Adapter (188) is designed for use in a network optimized for collective operations, a network that organizes compute nodes of a parallel computer in a binary tree. The Global Combining Network Adapter (188) in the example of FIG. 3B provides data communication to and from children nodes of a global combining network through four unidirectional data communications links (190), and also provides data communication to and from a parent node of the global combining network through two unidirectional data communications links (192).


For further explanation, FIG. 4 sets forth a line drawing illustrating an example data communications network (108) optimized for point-to-point operations useful in systems capable of establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention. In the example of FIG. 4, dots represent compute nodes (102) of a parallel computer, and the dotted lines between the dots represent data communications links (103) between compute nodes. The data communications links are implemented with point-to-point data communications adapters similar to the one illustrated for example in FIG. 3A, with data communications links on three axis, x, y, and z, and to and fro in six directions +x (181), −x (182), +y (183), −y (184), +z (185), and −z (186). The links and compute nodes are organized by this data communications network optimized for point-to-point operations into a three dimensional mesh (105). The mesh (105) has wrap-around links on each axis that connect the outermost compute nodes in the mesh (105) on opposite sides of the mesh (105). These wrap-around links form a torus (107). Each compute node in the torus has a location in the torus that is uniquely specified by a set of x, y, z coordinates. Readers will note that the wrap-around links in the y and z directions have been omitted for clarity, but are configured in a similar manner to the wrap-around link illustrated in the x direction. For clarity of explanation, the data communications network of FIG. 4 is illustrated with only 27 compute nodes, but readers will recognize that a data communications network optimized for point-to-point operations for use in establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer in accordance with embodiments of the present invention may contain only a few compute nodes or may contain thousands of compute nodes. For ease of explanation, the data communications network of FIG. 4 is illustrated with only three dimensions, but readers will recognize that a data communications network optimized for point-to-point operations for use in establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer in accordance with embodiments of the present invention may in facet be implemented in two dimensions, four dimensions, five dimensions, and so on. Several supercomputers now use five dimensional mesh or torus networks, including, for example, IBM's Blue Gene Q™.


For further explanation, FIG. 5 sets forth a line drawing illustrating an example global combining network (106) useful in systems capable of establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer according to embodiments of the present invention. The example data communications network of FIG. 5 includes data communications links (103) connected to the compute nodes so as to organize the compute nodes as a tree. In the example of FIG. 5, dots represent compute nodes (102) of a parallel computer, and the dotted lines (103) between the dots represent data communications links between compute nodes. The data communications links are implemented with global combining network adapters similar to the one illustrated for example in FIG. 3B, with each node typically providing data communications to and from two children nodes and data communications to and from a parent node, with some exceptions. Nodes in the global combining network (106) may be characterized as a physical root node (202), branch nodes (204), and leaf nodes (206). The physical root (202) has two children but no parent and is so called because the physical root node (202) is the node physically configured at the top of the binary tree. The leaf nodes (206) each has a parent, but leaf nodes have no children. The branch nodes (204) each has both a parent and two children. The links and compute nodes are thereby organized by this data communications network optimized for collective operations into a binary tree (106). For clarity of explanation, the data communications network of FIG. 5 is illustrated with only 31 compute nodes, but readers will recognize that a global combining network (106) optimized for collective operations for use in establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an I/O node of the parallel computer in accordance with embodiments of the present invention may contain only a few compute nodes or may contain thousands of compute nodes.


In the example of FIG. 5, each node in the tree is assigned a unit identifier referred to as a ‘rank’ (250). The rank actually identifies a task or process that is executing a parallel operation according to embodiments of the present invention. Using the rank to identify a node assumes that only one such task is executing on each node. To the extent that more than one participating task executes on a single node, the rank identifies the task as such rather than the node. A rank uniquely identifies a task's location in the tree network for use in both point-to-point and collective operations in the tree network. The ranks in this example are assigned as integers beginning with 0 assigned to the root tasks or root node (202), 1 assigned to the first node in the second layer of the tree, 2 assigned to the second node in the second layer of the tree, 3 assigned to the first node in the third layer of the tree, 4 assigned to the second node in the third layer of the tree, and so on. For ease of illustration, only the ranks of the first three layers of the tree are shown here, but all compute nodes in the tree network are assigned a unique rank.


For further explanation, FIG. 6 sets forth a flow chart illustrating an example method for establishing a data communications connection between a lightweight kernel (136) in a compute node (102a) of a parallel computer (100) and an I/O node (110) of the parallel computer (100) according to embodiments of the present invention that includes configuring (602) the compute node (102a) with a network address and port value for data communications with the I/O node (110). In the example method of FIG. 6, the compute node (102a) may be configured (602) with a network address and a port value when the compute node (102a) is powered up, upon request, and so on. In the example method of FIG. 6, the network address may be embodied, for example, as an Internet Protocol (‘IP’) address or other address that serves as an identifier of the compute node (102a) to other nodes in a network. In the example method of FIG. 6, the port value may be embodied as an application-specific or process-specific value that represents a communications endpoint.


The example method of FIG. 6 also includes establishing a queue pair (629) on the compute node. In the example method of FIG. 6, the queue pair (629) is identified by a QPN (631) that serves as an identifier for the queue pair (629). The queue pair (629) may facilitate data communications as one queue can store outbound data communications messages that are to be transferred to other compute nodes while the other queue can store inbound data communications messages that are received from other compute nodes. Each queue in the queue pair (629) may be serviced by a communications library such that outbound messages that are stored in one queue of the queue pair (629) are transferred from the queue pair (629) to a recipient and inbound messages that are stored in the other queue of the queue pair (629) are processed as messages that are received from another compute node.


The example method of FIG. 6 also includes receiving (606), in the I/O node (110) on the parallel computer (100) from the lightweight kernel (136), a connection request message (612). In the example method of FIG. 6, the connection request message (612) includes a type field (614) identifying the message as a connection request message (612). In the example method of FIG. 6, the type field (614) may be embodied, for example, as an integer whose value identifies the nature of the message. For example, a value of ‘0’ in the type field (614) can indicate that the message is a connection request message (612), while a value of ‘1’ in the type field (614) can indicate that the message is a connection reply message (628).


In the example method of FIG. 6, the connection request message (612) also includes a data communications network address (616) for the compute node (102a). The data communications network address (616) of FIG. 6 may be embodied, for example, as an IP address. In the example method of FIG. 6, the connection request message (612) also includes a torus address (618) for the compute node (102a). The torus address (618) of FIG. 6 may be embodied, for example, as coordinates that identify the location of the compute node (102a) with a torus network as described above.


In the example method of FIG. 6, the connection request message (612) also includes a port value (620) for the lightweight kernel (136). The port value (620) may be embodied as an application-specific or process-specific value that represents a communications endpoint. In the example method of FIG. 6, the process-specific value identifies the lightweight kernel (136) as the process that serves as the communications endpoint.


In the example method of FIG. 6, the connection request message (612) includes a port value (624) for the I/O node (110). The port value (624) may be embodied as an application-specific or process-specific value that represents a communications endpoint. In the example method of FIG. 6, the process-specific value identifies some process executing on the I/O node (110) as the process that serves as the communications endpoint.


In the example method of FIG. 6, the connection request message (612) also includes a QPN (626) for the compute node (102a). The QPN (626) of FIG. 6 identifies a pair of queues that will be used by the compute node (102a) for data communications with the I/O node (110). The queue pair (629) identified by the QPN (626) may facilitate data communications as one queue can store outbound data communications messages that are to be transferred to the I/O node (110) while the other queue can store inbound data communications messages that are received from the I/O node (110). Each queue may be serviced by a communications library such that outbound messages that are stored in one queue of the queue pair (629) are transferred from the queue pair (629) to a recipient and inbound messages that are stored in the other queue of the queue pair (629) are processed as messages that are received from another compute node.


The example method of FIG. 6 also includes establishing (608) on the I/O node (110) a queue pair (630) identified by a QPN (632) for communications with the compute node (102a). The I/O node (110) may establish (608) a queue pair (630) identified by a QPN (632), for example, by allocating a particular portion of computer memory (not shown) on the I/O node (110) for use as a queue pair (630) when the I/O node (110) is booted up, upon request, and so on.


The example method of FIG. 6 also includes establishing (610) by the I/O node (110) the requested connection by sending to the lightweight kernel (136) a connection reply message (628). In the example method of FIG. 6, the connection reply message (628) includes a type field (632) identifying the message as a connection reply message (628). In the example method of FIG. 6, the type field (632) may be embodied, for example, as an integer whose value identifies the nature of the message. For example, a value of ‘0’ in the type field (632) can indicate that the message is a connection request message while a value of ‘1’ in the type field (632) can indicate that the message is a connection reply message (628).


In the example method of FIG. 6, the connection reply message (628) also includes the data communications network address (634) of the compute node (102a). The data communications network address (634) of FIG. 6 may be embodied, for example, as an IP address. In the example method of FIG. 6, the connection reply message (628) also includes the torus address (636) of the compute node (102a). The torus address (636) of FIG. 6 may be embodied, for example, as coordinates that identify the location of the compute node (102a) with a torus network as described above.


In the example method of FIG. 6, the connection reply message (628) also includes the port value (638) for the lightweight kernel (136). The port value (638) may be embodied as an application-specific or process-specific value that represents a communications endpoint. In the example method of FIG. 6, the process-specific value identifies the lightweight kernel (136) as the process that serves as the communications endpoint.


In the example method of FIG. 6, the connection reply message (628) also includes the port value (642) of the I/O node (110). The port value (642) may be embodied as an application-specific or process-specific value that represents a communications endpoint. In the example method of FIG. 6, the process-specific value identifies the some process executing on the I/O node (110) as the process that serves as the communications endpoint.


In the example method of FIG. 6, the connection reply message (628) also includes the QPN (644) for the compute node (102a). The QPN (644) of FIG. 6 identifies queue pair (629) that will be used by the compute node (102a) for data communications with the I/O node (110). The queue pair (629) identified by the QPN (644) may facilitate data communications as one queue can store outbound data communications messages that are to be transferred to the I/O node (110) while the other queue can store inbound data communications messages that are received from the I/O node (110).


In the example method of FIG. 6, the connection reply message (628) also includes the QPN (646) for the I/O node (110). The QPN (646) of FIG. 6 identifies a pair of queues that will be used by the I/O node (110) for data communications with the compute node (102a). The queue pair (630) identified by the QPN (646) may facilitate data communications as one queue can store outbound data communications messages that are to be transferred to the compute node (102a) while the other queue can store inbound data communications messages that are received from the compute node (102a). Each queue may be serviced by a data communications application such that outbound messages are transferred from the queue pair (630) identified by the QPN (646) and inbound messages are processed from the queue pair (630) identified by the QPN (646).


For further explanation, FIG. 7 sets forth a flow chart illustrating a further example method for establishing a data communications connection between a lightweight kernel (136) in a compute node (102a) of a parallel computer (100) and an I/O node (110) of the parallel computer (100) according to embodiments of the present invention. The example method of FIG. 7 is similar to the example method of FIG. 6 as it also includes configuring (602) the compute node (102a) with a network address and port value for data communications with the I/O node (110); establishing (604) a queue pair (629) on the compute node (102a), the queue pair identified by a QPN; receiving (606), in the I/O node (110) from the lightweight kernel (136), a connection request message (612) that includes a type field identifying the message as a connection request message (612), a data communications network address for the compute node (102a), a torus address for the compute node (102a), a port value for the lightweight kernel (136), a port value for the I/O node (110), and a QPN for the compute node (102a); establishing by the I/O node on the I/O node a queue pair identified by a QPN for communications with the compute node; and establishing (610) by the I/O node (110) the requested connection by sending to the lightweight kernel (136) a connection reply message (628) that includes a type field identifying the message as a connection reply message (628), the data communications network address of the compute node (102a), the torus address of the compute node (102a), the port value for the lightweight kernel (136), the port value of the I/O node (110), the QPN for the compute node (102a), and the QPN for the I/O node (110).


The example method of FIG. 7 also includes creating (702), by the lightweight kernel (136), a connection request message (612). In the example method of FIG. 7, the lightweight kernel (136) may create a connection request message (612) by creating a data structure that includes fields for a type value, a data communications network address for the compute node (102a), a torus address for the compute node (102a), a port value for the lightweight kernel (136), a port value for the I/O node (110), and a QPN for the compute node (102a). The lightweight kernel (136) may subsequently populate each field in such a data structure thereby creating (702) a connection request message (612).


The example method of FIG. 7 also includes sending (704), from the lightweight kernel (136) to the I/O node (110), the connection request message (612). In the example method of FIG. 7, the connection request message (612) may be sent from the lightweight kernel (136) to the I/O node (110) over a data communications network such as, for example, by transmitting the connection request message (612) over a point-to-point connection in a torus network (706), which is described above with reference to FIG. 4.


The example method of FIG. 7 also includes configuring (708) a device driver for a messaging unit of the I/O node (110) to receive the connection request message (612) from the lightweight kernel (136) in the compute node (102a). In the example method of FIG. 7, the messaging unit may be embodied as a network adapter that connects the I/O node (110) to a data communications network. Examples of such a network adapter include a point-to-point adapter as described above with reference to FIG. 3A, a global combining network adapter as described above with reference to FIG. 3B, Fibre Channel adapters, Ethernet adapters, Gigabit Ethernet adapters, and so on. A device driver for such a messaging unit may be configured to receive the connection request message (612) from the lightweight kernel (136) in the compute node (102a), for example, by configuring the device driver to accept messages that are in the message format of the connection request message (612) and by configuring the device driver to examine the type field of each message received at the messaging unit so that the device driver may identify a connection request message (612) when such a message is received.


The example method of FIG. 7 also includes initiating (710) listening operations on the I/O node (110). In the example method of FIG. 7, listening operations are operations that detect the receipt of a request for a data communications connection such as, for example, the Linux™ rdma_listen command. By initiating listening operations, the I/O node (110) is prepared and waiting for the connection request message (612).


As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.


Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.


A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.


Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.


Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).


Aspects of the present invention are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.


The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.


It will be understood from the foregoing description that modifications and changes may be made in various embodiments of the present invention without departing from its true spirit. The descriptions in this specification are for purposes of illustration only and are not to be construed in a limiting sense. The scope of the present invention is limited only by the language of the following claims.

Claims
  • 1. A method of establishing a data communications connection between a lightweight kernel in a compute node of a parallel computer and an input-output (‘I/O’) node of the parallel computer, the method comprising: configuring the compute node with the network address and port value for data communications with the I/O node;establishing a queue pair on the compute node, the queue pair identified by a queue pair number (‘QPN’);receiving, in the I/O node on the parallel computer from the lightweight kernel, a connection request message, the connection request message including a type field identifying the message as a connection request message, a data communications network address for the compute node, a torus address for the compute node, a port value for the lightweight kernel, a port value for the I/O node, and a QPN for the compute node;establishing by the I/O node on the I/O node a queue pair identified by a QPN for communications with the compute node; andestablishing by the I/O node the requested connection by sending to the lightweight kernel a connection reply message, the connection reply message including a type field identifying the message as a connection reply message, the data communications network address of the compute node, the torus address of the compute node, the port value for the lightweight kernel, the port value of the I/O node, the QPN for the compute node, and the QPN for the I/O node.
  • 2. The method of claim 1 further comprising configuring a device driver in a messaging unit of the I/O node that receives the connection request message from the lightweight kernel in the compute node.
  • 3. The method of claim 1 further comprising initiating listening operations on the I/O node.
  • 4. The method of claim 1 further comprising: creating, by the lightweight kernel, a connection request message; andsending, from the lightweight kernel to the I/O node, the connection request message.
  • 5. The method of claim 1 further comprising receiving by the lightweight kernel the connection reply message.
  • 6. The method of claim 1 wherein the connection request message and the connection reply message are transmitted over a point-to-point connection in a torus network.
  • 7-18. (canceled)
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation application of and claims priority from U.S. patent application Ser. No. 13/166,536, filed on Jun. 22, 2011.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under Contract No. B554331 awarded by the Department of Energy. The Government has certain rights in this invention.

Continuations (1)
Number Date Country
Parent 13166536 Jun 2011 US
Child 13710532 US