1. Field of Invention
The present disclosure generally concerns traffic management. More specifically, the present disclosure concerns estimating time travel distributions on signalized arterials and thoroughfares.
2. Description of Related Art
Systems for estimating traffic conditions have historically focused on highways. Highways carry a majority of all vehicle-miles traveled on roads and are instrumented with traffic detectors. Notably, highways lack traffic signals (i.e., they are not “signalized”). Estimating traffic conditions on signalized streets represents a far greater challenge for two main reasons. First, traffic flows are interrupted because vehicles must stop at signalized intersections. These interruptions generate complex traffic patterns. Second, instrumentation amongst signalized arterials is sparse because the low traffic volumes make such instrumentation difficult to justify economically.
In recent years, however, global positioning system (GPS) connected devices have become a viable alternative to traditional traffic detectors for collecting data. As a result of the permeation of GPS connected devices, travel information services now commonly offer information related to arterial conditions. For example, travel information services provided by Google Inc. of Mountain View, Calif. and Inrix, Inc. of Kirkland, Wash., are known at this time. Although such information is frequently available, the actual quality of the traffic estimations provided remains dubious.
Even the most cursory of comparisons between information from multiple service providers reveals glaring differences in approximated signalized arterial traffic conditions. The low quality of such estimations is usually a result of having been produced from a limited set of observations. Recent efforts, however, have sought to increase data collection by using re-identification technologies.
Such techniques have been based on be based on magnetic signatures, toll tags, license plates, or embedded devices. The sampling sizes obtained from such technologies are orders of magnitude greater than those obtained from mobile GPS units. Sensys Networks, Inc. of Berkeley, Calif., for example, collects arterial travel time data using magnetic re-identification and yields sampling rates of up to 50%. Notwithstanding these recently improved observation techniques, there remains a need to provide more accurate estimates of traffic conditions on signalized arterials.
A system for estimating time travel distributions on signalized arterials may include a processor, memory, and an application stored in memory. The application may be executable by the processor to receive data regarding travel times on a signalized arterial, estimate a present distribution of the travel times, estimate a prior distribution based on one or more travel time observations, and calibrate the present distribution based on the prior distribution. In some embodiments, the system may further include estimating traffic conditions for a particular signalized arterial segment and displaying the estimates to a user through a graphical interface of a mobile device.
A method for estimating time travel distributions on signalized arterials may include receiving travel data and executing instructions stored in memory. Execution of the instructions by a computer processor may estimate a distribution based on the travel data and calibrate the distribution. In some embodiments, the method may further include estimating traffic conditions for a particular signalized arterial segment and displaying the estimates to a user through a graphical interface of a mobile device.
Client computer 110 may implement all or a portion of the functionality described herein, including receive traffic data and other data or and information from devices using re-identification technologies. Such technologies may be based on magnetic signatures, toll tags, license plates, or embedded devices, such as Bluetooth receivers. Notably, sampling sizes obtained from such technologies can be orders of magnitude greater than those obtained from mobile GPS units. Notwithstanding that fact, server 130 may also receive probe data from GPS-connected mobile devices. Server 130 may communicate data directly with such data collection devices. Server 130 may also communicate, such as by sending and receiving data, with a third-party server, such as the one maintained by Sensys Networks, Inc. of Berkeley, Calif. and accessible through the Internet at www.sensysresearch.com.
Server computer 130 may communicate with client computer 110 over network 120. Server computer may perform all or a portion of the functionality discussed herein, which may alternatively be distributed between client computer 110 and server 130, or may be provided by server 130 as a network service for client 110. Each of client 110 and server computer 130 are listed as a single block, but it is envisioned that either be implemented using one or more actual or logical machines.
In one embodiment, the system may utilize Bayesian Inference principles to update a prior belief based on new data. In such an embodiment, the system may determine the distribution of travel times y on a given signalized arterial at the present time T. The prior beliefs may include the shape of the travel time distribution and the range of its possible parameters θT (e.g., mean and standard deviation) that are typical of a given time of day, such that y follows a probability function p(y|θT). These parameters themselves may follow a probability distribution p(θT|αT) called the prior distribution. The prior distribution may comprise its own set of parameters αT, which are referred to as hyper-parameters.
The system may estimate the current parameters using a recent (e.g., 20 minutes ago or less in some embodiments) travel time observation of the arterial of interest. The system may also account for observations on neighboring streets. In still further embodiments, the system may consider contextual evidence such as local weather, incidents, and special events such as sporting events, one off road closures, or other intermittent traffic diversions. In one embodiment, yi* may designate the current travel time observations. The system may determine the likeliest θT using a known yi* and αT.
The system 100 may account for one or more travel time variability components. First, there may be individual variations between vehicles traveling at the same time of day. These variations stem from diverse driving profiles among drivers and their varying luck with traffic signals. Second, there may be recurring time-of-day variations that stem from fluctuating traffic demand patterns and signal timing. Third, there may be daily variations in the distributions of travel times over a given time slot. System 100 may account for other time travel variability components.
In one exemplary embodiment, the system 100 may employ standard Traffic Message Channel (TMC) location codes as base units of space, and fifteen-minute periods as base units of time. In such an embodiment, the system 100 approximates that traffic conditions remain homogeneous across a given TMC location code over each fifteen-minute period. The system 100 may also use other spatial or temporal time units depending on the degree of precision desired. For example, the system 100 may use a slightly coarser scale for the base units of space (e.g., segments a few miles or kilometers long) to mitigate noise in the travel time data. Alternatively, the system 100 may use reidentification segments as the base units in the space domain. In such embodiments, the system 100 approximates that traffic conditions remain homogenous across a given reidentification segment over each fifteen-minute period. System 100 may also normalize travel time data into a unit of pace that is expressed in seconds per mile or seconds per kilometer. The system 100 may also calculate the average pace as a linear combination of individual paces weighted by distance traveled. Such calculations may be more convenient than using speed values.
System 100 may generate thousands of data plots of various types. For example, system 100 may generate boxed plots that represent the dispersion of travel times along a segment at various times of day. Those plots can be built either for a single day or by aggregating multiple days. System 100 may also generate travel time histograms that represent the distribution of travel times for a given slice of the data—typically a particular segment and time slot, either for a single day or multiple days taken in aggregate. The travel time histograms may be produced in at least series of three types: time-of-day singles, which show a single day's sequence in fifteen minute increments; time-of-day aggregates, which show time-of-day variations using an aggregate of multiple days; and daily time slot plots, which show the same time slot over multiple days. In various embodiments, other series types may likewise be generated and analyzed in accordance with the system and methods disclosed herein.
System 100 may also generate parameter plots, which represent the variations of key distribution parameters such as the min, max, 25th 50th, or 75th percentile or given interpercentiles as histograms. Parameter plots may be generated in at least three different ways: time-of-day parameter plots, which represent percentile variations during the day for each individual date; daily time slot parameter plots, which represent percentile variations across different days for every time slot; and density maps, which are two-dimensional plots of one percentile versus another for a given set of time slots and dates.
The system and methods disclosed herein reveal that some segments exhibit relatively little dispersion and only minor fluctuations throughout the day, while other segments seem to constantly induce delays. In some cases, travel times appear neatly distributed around a single mode. In other instances, the shape of the distribution may suggest more of a continuum. The system and methods described herein fulfill the need for a flexible model that allows different distribution shapes and can therefore provide a good to the data. To avoid being constrained by limited number of observations and low sample sizes (and posing a serious risk of over-fitting by allowing multiple dimensions for the parameter θT), system 100 may analyze data by focusing on key percentile values as proxy descriptors for the travel time distributions. System 100 may calibrate prior distributions by analyzing density plots such as those described above over substantial periods of time. In doing so, system 100 may use universal pace distributions such that system 100 may perform Bayesian calibrations and estimations.
The components shown in
The storage device may include mass storage 1430implemented with a magnetic disk drive or an optical disk drive, may be a non-volatile storage device for storing data and instructions for use by processor unit 1410. The storage device may store the system software for implementing embodiments of the system and methods disclosed herein for purposes of loading that software into main memory 1420.
Portable storage device 1440 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk or digital video disc, to input and output data and code to and from the computer system 1400 of
Antenna 440 may include one or more antennas for communicating wirelessly with another device. Antenna 440 may be used, for example, to communicate wirelessly via Wi-Fi, Bluetooth, with a cellular network, or with other wireless protocols and systems including but not limited to GPS, A-GPS, or other location based service technologies. The one or more antennas may be controlled by a processor 1410, which may include a controller, to transmit and receive wireless signals. For example, processor 1410 execute programs stored in memory 412 to control antenna 440 transmit a wireless signal to a cellular network and receive a wireless signal from a cellular network.
The system 1400 as shown in
Display system 1470 may include a liquid crystal display (LCD), LED display, or other suitable display device. Display system 1470 receives textual and graphical information, and processes the information for output to the display device.
Peripherals 1480 may include any type of computer support device to add additional functionality to the computer system. For example, peripheral device(s) 1480 may include a modem or a router.
The components contained in the computer system 1400 of
As discussed above, the system disclosed herein builds historical knowledge about traffic conditions by accumulating measurements over time. The system then calibrates model for different times of the day and updates those models with current available data. In some embodiments, system 100 may utilize several thousands of data plots. Moreover, as discussed above, system 100 may utilize three different sources of variability: individual, daily, and day-to-day. In situations where no current data is available, the historical data alone may be used. In situations in which current data is available, such as data received by system 100 from reidentification devices, system 100 may update the historical knowledge accordingly using the Bayesian interface discussed above. In some embodiments, quantile maps like those discussed above may be utilized to accomplish such estimations.
The foregoing detailed description of the technology herein has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the technology to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described embodiments were chosen in order to best explain the principles of the technology and its practical application to thereby enable others skilled in the art to best utilize the technology in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the technology be defined by the claims appended hereto.
This application is a continuation-in-part of U.S. application Ser. No. 13/752,351, filed on Jan. 28, 2013 and title “Estimating Time Travel Distributions on Signalized Arterials,” the disclosure of which is incorporated herein by reference. This application also claims the priority benefit of U.S. provisional application No. 61/715,713, filed on Oct. 18, 2012 and titled “Estimation of Time Travel Distributions on Signalized Arterials,” the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61715713 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13752351 | Jan 2013 | US |
Child | 14058195 | US |