The present application claims priority from Japanese Patent Application No. 2013-057149 filed on Mar. 19, 2013, the contents of which are hereby incorporated by reference into this application.
1. Field of the Invention
The present invention relates to an ethylene-propylene-diene rubber foamed material and a sealing material, to be specific, to an ethylene-propylene-diene rubber foamed material preferably used as a sealing material for various industrial products and a sealing material including the ethylene-propylene-diene rubber foamed material.
2. Description of Related Art
As a sealing material for various industrial products, an EPDM foamed material obtained by foaming an ethylene-propylene-diene rubber (hereinafter, may be abbreviated as an EPDM) has been conventionally known.
For example, an EPDM foamed material obtained by foaming an EPDM with a foaming agent and cross-linking the EPDM with a cross-linking agent (a vulcanizing agent) such as sulfur S8 has been proposed (ref: for example, Japanese Unexamined Patent Publication No. 2006-182796). The EPDM foamed material in Japanese Unexamined Patent Publication No. 2006-182796 has a low resilience and excellent sealing properties.
The EPDM in Japanese Unexamined Patent Publication No. 2006-182796, however, is cross-linked with the sulfur S8, so that there is a disadvantage that when a sealing material is exposed to a high temperature atmosphere, the sulfur S8 in the form of a straight chain contained in the EPDM foamed material as a cross-linked part is cleaved (cut) and thus, various properties such as flexibility are easily reduced.
The EPDM foamed material is obtained by foaming an EPDM with a foaming agent and cross-linking the EPDM with sulfur. Thus, there may be a case where depending on an object to be sealed, the object to be sealed is corroded by the sulfur that remains in the EPDM foamed material.
It is an object of the present invention to provide an ethylene-propylene-diene rubber foamed material that has excellent flexibility and excellent heat resistance and is capable of suppressing corrosion and a sealing material.
An ethylene-propylene-diene rubber foamed material of the present invention is obtained by foaming a rubber composition containing an ethylene-propylene-diene rubber, wherein the content ratio of a sulfur atom calculated based on the measurement result of a fluorescent X-ray measurement, based on mass, is 1000 ppm or less, a rate of change of a 50% compressive load value after being heated at 140° C. for 7 days to a 50% compressive load value before being heated is 50% or more and 150% or less, and the 50% compressive load value before being heated is 0.1 N/cm2 or more and 2.0 N/cm2 or less.
In the ethylene-propylene-diene rubber foamed material of the present invention, it is preferable that the content ratio of sulfur S8 calculated based on the measurement result of a gel permeation chromatography, based on mass, is 100 ppm or less.
In the ethylene-propylene-diene rubber foamed material of the present invention, it is preferable that the ethylene-propylene-diene rubber foamed material has an apparent density of 0.20 g/cm3 or less.
In the ethylene-propylene-diene rubber foamed material of the present invention, it is preferable that the ethylene-propylene-diene rubber foamed material has an average cell size of 400 nm or more.
In the ethylene-propylene-diene rubber foamed material of the present invention, it is preferable that the rubber composition further contains a quinoid compound and the quinoid compound is a derivative of p-quinonedioxime.
In the ethylene-propylene-diene rubber foamed material of the present invention, it is preferable that the rubber composition further contains a cross-linking auxiliary and the cross-linking auxiliary contains a polyol.
In the ethylene-propylene-diene rubber foamed material of the present invention, it is preferable that the polyol is a polyethylene glycol.
In the ethylene-propylene-diene rubber foamed material of the present invention, it is preferable that the rubber composition further contains an organic peroxide.
In the ethylene-propylene-diene rubber foamed material of the present invention, it is preferable that the ethylene-propylene-diene rubber has long chain branching.
A sealing material of the present invention includes the above-described ethylene-propylene-diene rubber foamed material and a pressure-sensitive adhesive layer provided on a surface of the ethylene-propylene-diene rubber foamed material.
In the ethylene-propylene-diene rubber foamed material of the present invention, the content ratio of a sulfur atom calculated based on the measurement result of a fluorescent X-ray measurement, based on mass, is 1000 ppm or less, so that the corrosive properties are capable of being reduced.
The rate of change of the 50% compressive load value after being heated at 140° C. for 7 days to the 50% compressive load value before being heated is within a specific range, so that the EPDM foamed material has excellent heat resistance.
Additionally, the 50% compressive load value before being heated is within a specific range, so that the EPDM foamed material has excellent flexibility and excellent sealing properties.
As a result, the EPDM foamed material has excellent flexibility and is capable of surely sealing a member, when exposed to a high temperature atmosphere.
The sealing material of the present invention includes the above-described ethylene-propylene-diene rubber foamed material, so that a gap between members is capable of being surely filled with the ethylene-propylene-diene rubber foamed material.
An ethylene-propylene-diene rubber (hereinafter, may be referred to as an EPDM) foamed material of the present invention is obtained by foaming a rubber composition containing the EPDM.
The EPDM is a rubber obtained by copolymerization of ethylene, propylene, and dienes. The further copolymerization of the dienes, in addition to the ethylene and the propylene, allows introduction of an unsaturated bond and enables cross-linking with a cross-linking agent.
Examples of the dienes include 5-ethylidene-2-norbornene, 1,4-hexadiene, and dicyclopentadiene. These dienes can be used alone or in combination of two or more.
In the present invention, a content of the dienes (a diene content) in the EPDM is, for example, 1 mass % or more, preferably 2 mass % or more, or more preferably 3 mass % or more, and is, for example, 20 mass % or less, or preferably 15 mass % or less. When the content of the dienes is less than the above-described lower limit value, surface shrinkage may occur in the EPDM foamed material to be obtained. When the content of the dienes is above the above-described upper limit value, a crack may occur in the EPDM foamed material.
A preferable example of the EPDM includes an EPDM having long chain branching.
A method for introducing a long branched chain into the EPDM is not particularly limited and a known method is used.
The EPDM is produced with a catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Preferably, in view of obtaining a long branched chain, a metallocene catalyst is used.
When the EPDM has long chain branching, the elongational viscosity is increased due to the entanglement of the side chain, so that the rubber composition is capable of being excellently foamed and having flexibility.
The rubber composition contains a cross-linking agent and a foaming agent.
Examples of the cross-linking agent fail to include sulfur and include a quinoid compound and an organic peroxide.
The quinoid compound is an organic compound (a quinoid-based cross-linking agent) having a quinoid structure. Examples thereof include p-quinonedioxime, poly-p-dinitrosobenzene, and a derivative thereof. To be specific, an example of the derivative of the p-quinonedioxime includes p,p′-dibenzoylquinonedioxime.
These quinoid compounds can be used alone or in combination of two or more.
As the quinoid compound, preferably, a derivative of p-quinonedioxime is used, or more preferably, p,p′-dibenzoylquinonedioxime is used.
When the derivative of the p-quinonedioxime is used as the quinoid compound, the rubber composition is cross-linked with the derivative of the p-quinonedioxime, so that the sulfur atom content is capable of being reduced and in this way, a reduction in the corrosive properties is achieved and excellent foaming properties are capable of being ensured.
The mixing ratio of the quinoid compound with respect to 100 parts by mass of the EPDM is, for example, 0.05 parts by mass or more, or preferably 0.5 parts by mass or more, and is, for example, 30 parts by mass or less, or preferably 20 parts by mass or less. Among all, when the derivative of the p-quinonedioxime is used, the mixing ratio thereof with respect to 100 parts by mass of the EPDM is, for example, 0.05 parts by mass or more, or preferably 0.5 parts by mass or more, and is, for example, 20 parts by mass or less, preferably 10 parts by mass or less, or more preferably 5 parts by mass or less.
The organic peroxide is an organic compound (an organic peroxide-based cross-linking agent) having a peroxide structure. A preferable example thereof includes an organic peroxide having a one-minute half-life temperature of 150° C. or more.
To be specific, examples thereof include dicumyl peroxide (a one-minute half-life temperature: 175° C.), dimethyl di(t-butylperoxy)hexane (a one-minute half-life temperature: 180° C.), 1,1-di(t-butylperoxy)cyclohexane (a one-minute half-life temperature: 154° C.), and α,α′-di(t-butylperoxy)diisopropyl benzene (a one-minute half-life temperature: 175° C.).
These organic peroxides can be used alone or in combination of two or more.
Preferably, the organic peroxide is used alone.
The mixing ratio of the organic peroxide (in the case of being used in combination, the total amount thereof) with respect to 100 parts by mass of the EPDM is, for example, 0.05 parts by mass or more, or preferably 0.5 parts by mass or more, and is, for example, 20 parts by mass or less, preferably 15 parts by mass or less, or more preferably 10 parts by mass or less.
As the cross-linking agent, preferably, a quinoid compound and an organic peroxide are used in combination.
When the quinoid compound and the organic peroxide are used in combination, the cross-linking on the surface of the EPDM foamed material is capable of being sufficiently ensured, so that the occurrence of tackiness on the surface is capable of being reduced.
When the quinoid compound and the organic peroxide are used in combination, in the mixing ratio thereof, the ratio of the organic peroxide with respect to 100 parts by mass of the quinoid compound is, for example, 1 part by mass or more, or preferably 10 parts by mass or more, and is, for example, 200 parts by mass or less, or preferably 100 parts by mass or less.
Examples of the foaming agent include an organic foaming agent and an inorganic foaming agent.
Examples of the organic foaming agent include an azo foaming agent such as azodicarbonamide (ADCA), barium azodicarboxylate, azobisisobutylonitrile (AIBN), azocyclohexylnitrile, and azodiaminobenzene; an N-Nitroso foaming agent such as N,N′-dinitrosopentamethylenetetramine (DTP), N,N′-dimethyl-N,N′-dinitrosoterephthalamide, and trinitrosotrimethyltriamine; a hydrazide foaming agent such as 4,4′-oxybis(benzenesulfonylhydrazide) (OBSH), paratoluenesulfonylhydrazide, diphenylsulfone-3,3′-disulfonylhydrazide, 2,4-toluenedisulfonylhydrazide, p,p-bis(benzenesulfonylhydrazide)ether, benzene-1,3-disulfonylhydrazide, and allylbis(sulfonylhydrazide); a semicarbazide foaming agent such as p-toluoylenesulfonylsemicarbazide and 4,4′-oxybis(benzenesulfonylsemicarbazide); a fluorinated alkane foaming agent such as trichloromonofluoromethane and dichloromonofluoromethane; a triazole-based foaming agent such as 5-morpholyl-1,2,3,4-thiatriazole; and other known organic foaming agents. Also, an example of the organic foaming agent includes thermally expansive microparticles in which a heat-expandable substance is encapsulated in a microcapsule. An example of the thermally expansive microparticles can include a commercially available product such as Microsphere (trade name, manufactured by Matsumoto Yushi-Seiyaku Co., Ltd.).
Examples of the inorganic foaming agent include hydrogencarbonate such as sodium hydrogen carbonate and ammonium hydrogen carbonate; carbonate such as sodium carbonate and ammonium carbonate; nitrite such as sodium nitrite and ammonium nitrite; borohydride salt such as sodium borohydride; azides; and other known inorganic foaming agents.
As the foaming agent, preferably, an organic foaming agent is used, or more preferably, an azo foaming agent is used. These foaming agents can be used alone or in combination of two or more.
The mixing ratio of the foaming agent with respect to 100 parts by mass of the EPDM is, for example, 0.1 parts by mass or more, or preferably 1 part by mass or more, and is, for example, 50 parts by mass or less, or preferably 30 parts by mass or less.
Preferably, the rubber composition contains a cross-linking auxiliary and a foaming auxiliary.
A preferable example of the cross-linking auxiliary includes a cross-linking auxiliary that fails to contain a sulfur atom in a molecule. To be specific, examples thereof include a monohydric alcohol such as ethanol, a dihydric alcohol such as ethylene glycol, a trihydric alcohol such as glycerine, and a polyol (polyoxyalkylene glycol) such as polyethylene glycol and polypropylene glycol. The polyol has a number average molecular weight of, for example, 200 or more, or preferably 300 or more.
These cross-linking auxiliaries can be used alone or in combination of two or more.
As the cross-linking auxiliary, preferably, a polyol is used.
Among all, when the derivative of the p-quinonedioxime is used as the quinoid compound, preferably, a polyethylene glycol is used.
When the polyethylene glycol is used as the polyol, the rubber composition is capable of being excellently cross-linked, so that excellent foaming properties are capable of being ensured.
The mixing ratio of the cross-linking auxiliary with respect to 100 parts by mass of the EPDM is, for example, 0.01 parts by mass or more, preferably 0.02 parts by mass or more, or more preferably 0.06 parts by mass or more, and is, for example, 10 parts by mass or less, preferably 5 parts by mass or less, or more preferably 2 parts by mass or less.
Examples of the foaming auxiliary include a urea foaming auxiliary, a salicylic acid foaming auxiliary, a benzoic acid foaming auxiliary, and a metal oxide (for example, a zinc oxide and the like). Preferably, a urea foaming auxiliary and a metal oxide are used. These foaming auxiliaries can be used alone or in combination of two or more.
The mixing ratio of the foaming auxiliary with respect to 100 parts by mass of the EPDM is, for example, 0.5 parts by mass or more, or preferably 1 part by mass or more, and is, for example, 20 parts by mass or less, or preferably 10 parts by mass or less.
The rubber composition can appropriately contain a polymer other than the EPDM, a processing auxiliary, a pigment, a flame retardant, a filler, a softener, an oxidation inhibitor, or the like as required.
Examples of the polymer other than the EPDM include a rubber-based polymer and a non-rubber-based polymer. Examples of the rubber-based polymer include a rubber-based copolymer (for example, α-olefin (such as butene-1)-dicyclopentadiene, ethylidene norbornene, and the like) having a cyclic or acyclic polyene having non-conjugated double bonds as a component, an ethylene-propylene rubber, a silicone rubber, a fluororubber, an acrylic rubber, a polyurethane rubber, a polyamide rubber, a natural rubber, a polyisobutylene rubber, a polyisoprene rubber, a chloroprene rubber, a butyl rubber, a nitrile butyl rubber, a styrene-butadiene rubber, a styrene-butadiene-styrene rubber, a styrene-isoprene-styrene rubber, a styrene-ethylene-butadiene rubber, a styrene-ethylene-butylene-styrene rubber, a styrene-isoprene-propylene-styrene rubber, and a chlorosulfonated polyethylene rubber.
Examples of the non-rubber-based polymer include polyethylene, polypropylene, an acrylic polymer (for example, alkyl poly(meth)acrylate and the like), polyvinyl chloride, an ethylene-vinyl acetate copolymer, polyvinyl acetate, polyamide, polyester, chlorinated polyethylene, a urethane polymer, a styrene polymer, a silicone polymer, and an epoxy resin. Preferably, a non-rubber-based polymer is used, or more preferably, polyethylene is used. These polymers other than the EPDM can be used alone or in combination of two or more.
The mixing ratio of the polymer other than the EPDM with respect to 100 parts by mass of the EPDM is, for example, 100 parts by mass or less, or preferably 50 parts by mass or less, and is usually 1 part by mass or more.
Examples of the processing auxiliary include a stearic acid and esters thereof and a zinc stearate. These processing auxiliaries can be used alone or in combination of two or more. The mixing ratio of the processing auxiliary with respect to 100 parts by mass of the EPDM is, for example, 0.1 parts by mass or more, or preferably 1 part by mass or more, and is, for example, 20 parts by mass or less, or preferably 10 parts by mass or less.
An example of the pigment includes carbon black. These pigments can be used alone or in combination of two or more. The mixing ratio of the pigment with respect to 100 parts by mass of the EPDM is, for example, 1 part by mass or more, or preferably 2 parts by mass or more, and is, for example, 50 parts by mass or less, or preferably 30 parts by mass or less.
Examples of the flame retardant include calcium hydroxide, magnesium hydroxide, and aluminum hydroxide. These flame retardants can be used alone or in combination of two or more. The mixing ratio of the flame retardant with respect to 100 parts by mass of the EPDM is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, or more preferably 15 parts by mass or more, and is, for example, 200 parts by mass or less, preferably 150 parts by mass or less, or more preferably 100 parts by mass or less.
Examples of the filler include an inorganic filler such as calcium carbonate, magnesium carbonate, silicic acid and salts thereof, clay, talc, mica powders, bentonite, silica, alumina, aluminum silicate, acetylene black, and aluminum powders; an organic filler such as cork; and other known fillers. These fillers can be used alone or in combination of two or more. The mixing ratio of the filler with respect to 100 parts by mass of the EPDM is, for example, 10 parts by mass or more, preferably 30 parts by mass or more, or more preferably 50 parts by mass or more, and is, for example, 300 parts by mass or less, or preferably 200 parts by mass or less.
Examples of the softener include petroleum oils (for example, paraffinic process oil (paraffinic oil and the like), naphthenic process oil, drying oils, animal and vegetable oils (for example, linseed oil and the like), aromatic process oil, and the like); asphalts; low molecular weight polymers; organic acid esters (for example, phthalic ester (for example, di-2-ethylhexyl phthalate (DOP) and dibutyl phthalate (DBP)), phosphate ester, higher fatty acid ester, alkyl sulfonate ester, and the like); and a thickener. Preferably, petroleum oils are used, or more preferably, paraffinic process oil is used. These softeners can be used alone or in combination of two or more. The mixing ratio of the softener with respect to 100 parts by mass of the EPDM is, for example, 5 parts by mass or more, or preferably 10 parts by mass or more, and is, for example, 100 parts by mass or less, or preferably 70 parts by mass or less.
Examples of the oxidation inhibitor include 2-mercaptobenzimidazole, 2,2,4-trimethyl-1,2-dihydroquinoline, and 4,4′-bis(α,α′-dimethylbenzyl)diphenylamine. Preferably, 2-mercaptobenzimidazole is used. These oxidation inhibitors can be used alone or in combination of two or more. The mixing ratio of the softener with respect to 100 parts by mass of the EPDM is, for example, 0.05 parts by mass or more, or preferably 0.5 parts by mass or more, and is, for example, 20 parts by mass or less, or preferably 15 parts by mass or less.
Furthermore, the rubber composition can appropriately contain a known additive as long as it does not damage the excellent effect of the EPDM foamed material to be obtained in accordance with its purpose and use. Examples of the known additive include a plasticizer, an antioxidant, a colorant, and a fungicide.
On the other hand, preferably, the rubber composition fails to contain a component containing a sulfur atom, to be specific, a vulcanizing retardant containing a sulfur atom (for example, thiazoles, thioureas, and the like).
When the rubber composition fails to contain a vulcanizing retardant such as thiazoles and thioureas, the sulfur atom content in the EPDM foamed material is capable of being reduced and a reduction in the corrosive properties is capable of being achieved.
Next, a method for producing the EPDM foamed material is described.
In order to produce the EPDM foamed material, first, the above-described components are blended to be kneaded using a kneader, a mixer, a mixing roller, or the like, so that the rubber composition is prepared as a kneaded material (a kneading step).
In the kneading step, the components can be also kneaded, while being appropriately heated. Also, in the kneading step, for example, components other than a cross-linking agent, a cross-linking auxiliary, a foaming agent, and a foaming auxiliary are first kneaded to prepare a first kneaded material. Thereafter, a cross-linking agent, a cross-linking auxiliary, a foaming agent, and a foaming auxiliary are added to the first kneaded material to be kneaded, so that the rubber composition (a second kneaded material) can be obtained. When the first kneaded material is kneaded, a part of the cross-linking auxiliary can be blended therein.
The kneaded rubber composition (the kneaded material) is extruded into a sheet shape or the like using an extruder (a molding step) and the extruded rubber composition is heated to be foamed (a foaming step).
A heat condition is appropriately selected in accordance with a cross-linking starting temperature of the cross-linking agent to be blended, a foaming temperature of the foaming agent to be blended, or the like. The rubber composition is preheated using, for example, an oven with internal air circulation at, for example, 40° C. or more, or preferably 60° C. or more, and at, for example, 200° C. or less, or preferably 160° C. or less for, for example, 1 minute or more, or preferably 5 minutes or more, and for, for example, 60 minutes or less, or preferably 40 minutes or less. After the preheating, the rubber composition is heated at, for example, 450° C. or less, preferably 350° C. or less, or more preferably 250° C. or less, and at, for example, 100° C. or more, or preferably 120° C. or more for, for example, 5 minutes or more, or preferably 15 minutes or more, and for, for example, 80 minutes or less, or preferably 50 minutes or less.
According to the method for producing the EPDM foamed material, corrosion of a member is suppressed and the ethylene-propylene-diene rubber foamed material capable of sealing the member with excellent fittability and excellent followability to irregularities is capable of being easily produced with excellent production efficiency.
The prepared rubber composition is extruded into a sheet shape using an extruder, while being heated (a molding step) and the rubber composition is capable of being continuously cross-linked and foamed (a foaming step).
In this way, the rubber composition is foamed and cross-linked, so that the EPDM foamed material is capable of being obtained.
According to the method for producing the EPDM foamed material, the ethylene-propylene-diene rubber foamed material in a desired shape is capable of being easily and surely produced.
The obtained EPDM foamed material has a thickness of, for example, 0.1 mm or more, or preferably 1 mm or more, and of, for example, 50 mm or less, or preferably 45 mm or less.
The obtained EPDM foamed material has an open cell structure (an open cell ratio of 100%) or a semi-open/semi-closed cell structure (an open cell ratio of, for example, above 0%, or preferably 10% or more, and of, for example, less than 100%, or preferably 90% or less).
When the EPDM foamed material has an open cell structure or a semi-open/semi-closed cell structure, the improvement of the flexibility is capable of being achieved and furthermore, the improvement of the filling properties of the EPDM foamed material between the members is capable of being achieved.
The EPDM foamed material has a cell size of, for example, 400 μm or more, or preferably 500 μm or more, and of, for example, 1200 μm or less, preferably 1000 μm or less, or more preferably 800 μm or less.
By setting the upper limit of the cell size of the EPDM foamed material to not more than the above-described upper limit value, the sealing properties are capable of being excellent. By setting the lower limit of the cell size of the EPDM foamed material to not less than the above-described lower limit value, the flexibility is capable of being excellent.
The EPDM foamed material obtained in this way has a volume expansion ratio (a density ratio before and after foaming) of, for example, two times or more, or preferably five times or more, and of usually 30 times or less.
By setting the volume expansion ratio (the density ratio before and after foaming) of the EPDM foamed material to not less than the above-described lower limit value, excellent foaming properties are capable of being ensured and the flexibility is capable of being excellent and furthermore, the EPDM foamed material is allowed to follow the unevenness on the surface to be sealed, so that the sealing properties are capable of being excellent. Also, by setting the volume expansion ratio to not more than the above-described upper limit value, the strength of the foamed material is capable of being excellent.
The EPDM foamed material has an apparent density (in conformity with JIS K 6767 (1999)) of, for example, 0.2 g/cm3 or less, or preferably 0.17 g/cm3 or less, and of usually 0.01 g/cm3 or more.
By setting the apparent density of the EPDM foamed material to not more than the above-described upper limit value, the flexibility is capable of being excellent and furthermore, the EPDM foamed material is allowed to follow the unevenness on the surface to be sealed, so that the sealing properties are capable of being excellent. Also, by setting the apparent density to not less than the above-described lower limit value, the strength of the foamed material is capable of being excellent.
The EPDM foamed material has a 50% compressive load value CL1 of, for example, 0.1 N/cm2 or more, or preferably 0.15 N/cm2 or more, and of, for example, 2.0 N/cm2 or less, or preferably 1.5 N/cm2 or less.
The 50% compressive load value CL1 of the EPDM foamed material refers to a 50% compressive load value “before” a test of “heating at 140° C. for 7 days” to be described next.
When the 50% compressive load value CL1 of the EPDM foamed material is not less than the above-described lower limit, the flexibility of the EPDM foamed material is capable of being improved and thus, the fittability to a member and the followability to irregularities are capable of being improved. On the other hand, when the 50% compressive load value CL1 of the EPDM foamed material is not more than the above-described upper limit, the improvement of the flexibility is possible and a deformation of a casing (a member) is capable of being prevented.
In the EPDM foamed material, a rate of change RCL (=CL2/CL1×100) of a 50% compressive load value CL2 after being heated at 140° C. for 7 days to the above-described 50% compressive load value CL1 before being heated is 50% or more, preferably 75% or more, more preferably 90% or more, or further more preferably 95% or more, and is 150% or less, or preferably 140% or less.
When the rate of change RCL before and after the heating of the 50% compressive load value of the EPDM foamed material is below the above-described lower limit or is above the above-described upper limit, the heat resistance may be reduced.
The 50% compressive load value CL (including CL1 and CL2) of the EPDM foamed material is measured in conformity with JIS K 6767 (1999).
The content ratio of a sulfur atom (the sulfur atom content) in the EPDM foamed material, based on mass, is 1000 ppm or less, preferably 800 ppm or less, or more preferably 500 ppm or less.
When the content ratio of the sulfur atom in the EPDM foamed material is within the above-described range, a reduction in the corrosive properties is capable of being achieved.
The content ratio of the sulfur atom in the EPDM foamed material is calculated based on the measurement result of a fluorescent X-ray measurement. The detailed conditions in the fluorescent X-ray measurement are described in detail in Examples later.
The sulfur atom content in the EPDM foamed material is capable of being calculated from, for example, the content of the sulfur atom in the material component and is also capable of being obtained by, for example, elemental analysis of the EPDM foamed material.
In the EPDM foamed material, the content ratio of sulfur S8 calculated based on the measurement result of a gel permeation chromatography, based on mass, is, for example, 100 ppm or less, preferably 10 ppm or less, or more preferably 0 ppm.
When the content ratio of the sulfur S8 in the EPDM foamed material is not more than the above-described upper limit value and not less than the above-described lower limit value, a reduction in the corrosive properties is capable of being achieved.
A calculation method of the sulfur S8 is described in detail in Examples later.
The EPDM foamed material has a tensile strength (the maximum load in a tensile test in conformity with JIS K 6767 (1999)) of, for example, 1.0 N/cm2 or more, or preferably 2.0 N/cm2 or more, and of, for example, 50.0 N/cm2 or less, or preferably 30.0 N/cm2 or less.
When the tensile strength of the EPDM foamed material is set not more than the above-described upper limit value and not less than the above-described lower limit value, an excellent strength is capable of being obtained, while the flexibility is retained.
The EPDM foamed material has an elongation E1 of, for example, 10% or more, or preferably 150% or more, and of, for example, 1500% or less, or preferably 1000% or less. The elongation E1 of the EPDM foamed material refers to an elongation “before” a test of “heating at 140° C. for 7 days” to be described next.
When the elongation E1 of the EPDM foamed material is within the range of not less than the above-described lower limit value and not more than the above-described upper limit value, the strength of the foamed material is capable of being excellent.
In the EPDM foamed material, a rate of change RE (=E2/E1×100) of an elongation E2 after being heated at 140° C. for 7 days to the above-described elongation E1 before being heated is, for example, 60% or more, or preferably 70% or more, and is, for example, 100% or less.
When the rate of change RE before and after the heating of the elongation of the EPDM foamed material is not less than the above-described lower limit value and not more than the above-described upper limit value, the EPDM foamed material has excellent heat resistance and under a high temperature use, the sealing properties with respect to a member and the strength of the EPDM foamed material itself are capable of being retained.
The elongation RE (including E1 and E2) of the EPDM foamed material is measured as a breaking elongation in conformity with JIS K 6767 (1999).
In the EPDM foamed material, a sound absorption coefficient AC1 at normal incidence measured at a wavelength of 1500 Hz in conformity with “Acoustics-Determination of sound absorption coefficient-Part 1: Method using standing wave ratio (JIS A 1405-1: 1996)” that is evaluated in Examples to be described later is, for example, 25% or more, preferably 50% or more, or more preferably 60% or more, and is, for example, 100% or less. The measurement method of a peak value of the sound absorption coefficient AC1 at normal incidence is described in detail in Examples to be described later.
On the other hand, in the EPDM foamed material, a rate of change RAC (=AC2/AC 1×100) of a sound absorption coefficient AC2 at normal incidence after being heated at 140° C. for 7 days to the above-described sound absorption coefficient AC1 at normal incidence before being heated is, for example, 50% or more, preferably 75% or more, or more preferably 90% or more, and is, for example, 150% or less, preferably 125% or less, or more preferably 110% or less.
When the rate of change RAC before and after the heating of the sound absorption coefficient at normal incidence of the EPDM foamed material is not less than the above-described lower limit value and not more than the above-described upper limit value, the EPDM foamed material has excellent heat resistance and the sealing properties with respect to a member and the sound absorbency are capable of being improved.
On the other hand, in the EPDM foamed material, a rate of change (a rate of shrinkage) RD (=(D2−D1)/D1×100) of a size D1 after being heated at 140° C. for 7 days to a size D2 before being heated is, for example, −5% or more, preferably −3% or more, or more preferably −1% or more, and is, for example, 5% or less, preferably 3% or less, or more preferably 2% or less.
The use of the EPDM foamed material is not particularly limited and the EPDM foamed material is capable of being used as, for example, a vibration-proof material, a sound absorbing material, a sound insulation material, a dust-proof material, a heat insulating material, a buffer material, or a water-stop material, which fills a gap between various members for the purpose of, for example, damping, sound absorption, sound insulation, dust-proof, heat insulation, buffering, or water tight.
To be more specific, in the case of the EPDM foamed material having the above-described properties, the content ratio of a sulfur atom (the sulfur atom content) calculated based on the measurement result of a fluorescent X-ray measurement, based on mass, is 1000 ppm or less, so that the corrosive properties are reduced and the EPDM foamed material has a 50% compressive load value of 0.1 N/cm2 or more and 2.0 N/cm2 or less, so that the flexibility is excellent. Thus, when the EPDM foamed material is used, corrosion of a member is suppressed and the member is capable of being sealed with excellent fittability and excellent followability to irregularities, so that the EPDM foamed material is capable of being preferably used as a sealing material.
Additionally, the rate of change RCL of the 50% compressive load value CL2 after being heated at 140° C. for 7 days to the 50% compressive load value CL1 before being heated is 50% or more and 150% or less, so that a member is capable of being surely sealed, even when the EPDM foamed material is exposed to a high temperature atmosphere.
The present invention includes a pressure-sensitive adhesive sealing material (a sealing material) including the above-described EPDM foamed material.
In
The foamed material layer 2 is prepared from the above-described EPDM foamed material and has a thickness of, for example, 0.1 to 50 mm, or preferably 1 to 45 mm.
The pressure-sensitive adhesive layer 3 is formed of, for example, a known pressure-sensitive adhesive.
Examples of the pressure-sensitive adhesive include an acrylic pressure-sensitive adhesive, a rubber pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, a polyester pressure-sensitive adhesive, a urethane pressure-sensitive adhesive, a polyamide pressure-sensitive adhesive, an epoxy pressure-sensitive adhesive, a vinyl alkyl ether pressure-sensitive adhesive, and a fluorine pressure-sensitive adhesive. In addition to these, an example of the pressure-sensitive adhesive also includes a hot melt pressure-sensitive adhesive.
These pressure-sensitive adhesives can be used alone or in combination of two or more.
As the pressure-sensitive adhesive, preferably, an acrylic pressure-sensitive adhesive and a rubber pressure-sensitive adhesive are used.
An example of the acrylic pressure-sensitive adhesive includes a pressure-sensitive adhesive mainly composed of an alkyl(meth)acrylate. The acrylic pressure-sensitive adhesive can be obtained by a known method.
The rubber pressure-sensitive adhesive can be obtained from, for example, a natural rubber and/or a synthetic rubber by a known method. To be specific, examples of a rubber include a polyisobutylene rubber, a polyisoprene rubber, a chloroprene rubber, a butyl rubber, and a nitrile butyl rubber.
A form of the pressure-sensitive adhesive is not particularly limited and various forms such as an emulsion-based pressure-sensitive adhesive, a solvent-based pressure-sensitive adhesive, an oligomer-based pressure-sensitive adhesive, or a solid pressure-sensitive adhesive can be used.
The pressure-sensitive adhesive layer 3 has a thickness of, for example, 10 to 10000 μm, or preferably 50 to 5000 μm.
A method for forming the pressure-sensitive adhesive sealing material 1 is not particularly limited and a known method can be used. To be specific, for example, first, the EPDM foamed material is produced by the above-described method to obtain the foamed material layer 2. Next, the pressure-sensitive adhesive layer 3 is laminated on the top surface of the foamed material layer 2 by a known method. In this way, the pressure-sensitive adhesive sealing material 1 is capable of being formed.
The foamed material layer 2 is prepared from the above-described EPDM foamed material, so that the pressure-sensitive adhesive sealing material 1 has excellent sealing properties and excellent corrosion resistance to metal, and the pressure-sensitive adhesive sealing material 1 also includes the pressure-sensitive adhesive layer 3, so that the foamed material layer 2 is capable of being attached to an arbitrary place. As a result, according to the pressure-sensitive adhesive sealing material 1, a gap between arbitrary members is capable of being excellently sealed by the foamed material layer 2 prepared from the above-described EPDM foamed material without corroding a metal.
In the above-described description, the pressure-sensitive adhesive layer 3 is formed as a substrateless-type pressure-sensitive adhesive tape or sheet that is formed from the pressure-sensitive adhesive only. Alternatively, for example, though not shown, the pressure-sensitive adhesive layer 3 can be also formed as a substrate-including pressure-sensitive adhesive tape or sheet.
In such a case, the pressure-sensitive adhesive layer 3 is, for example, formed as a laminated pressure-sensitive adhesive tape or sheet in which the pressure-sensitive adhesive is provided on at least one surface of the substrate, which is not shown, or preferably is provided on both surfaces of the substrate (the pressure-sensitive adhesive/the substrate/the pressure-sensitive adhesive).
The substrate (not shown) is not particularly limited and examples thereof include a plastic substrate such as a plastic film or sheet; a paper-based substrate such as paper; a fiber-based substrate such as a fabric, a non-woven fabric, and a net; a metal substrate such as a metal foil and a metal plate; a rubber substrate such as a rubber sheet; a foamed substrate such as a foamed sheet; and furthermore, a laminate thereof.
A method for forming the pressure-sensitive adhesive layer 3 as a substrate-including pressure-sensitive adhesive tape or sheet is not particularly limited and a known method can be used.
In the above-described description, the pressure-sensitive adhesive layer 3 is provided on the top surface only of the foamed material layer 2. Alternatively, for example, though not shown, the pressure-sensitive adhesive layer 3 can be also provided on both surfaces (the top surface and the back surface) of the foamed material layer 2.
According to the pressure-sensitive adhesive sealing material 1, the pressure-sensitive adhesive layer 3 is provided on both surfaces of the foamed material layer 2, so that the pressure-sensitive adhesive sealing material 1 (the foamed material layer 2) is capable of being further surely fixed to a gap between the members by the two pressure-sensitive adhesive layers 3 and in this way, the gap is capable of being further surely sealed.
The pressure-sensitive adhesive sealing material 1 includes the above-descried EPDM foamed material, to be specific, the EPDM foamed material that is capable of suppressing corrosion of the member and sealing the member with excellent fittability and excellent followability to irregularities, so that the corrosion of the member is suppressed and the EPDM foamed material is capable of being surely brought into tight contact with the member and in this way, a gap between the members is capable of being surely sealed.
While the present invention will be described hereinafter in further detail with reference to Examples and Comparative Examples, the present invention is not limited to these Examples and Comparative Examples. In Examples, parts and % showing a mixing ratio are based on mass. Values such as a mixing ratio in Examples can be replaced with the upper limit value or the lower limit value corresponding to those described in the above-described embodiment.
1. Description of Materials
Materials shown in the following Table 1 are described.
(1) Resin
EPDM (A): EPT 8030M (manufactured by Mitsui Chemicals, Inc., containing long chain branching, a diene (5-ethylidene-2-norbornene) content of 9.5 mass %), using a metallocene catalyst
EPDM (B): EPT 1045 (manufactured by Mitsui Chemicals, Inc. a diene (dicyclopentadiene) content of 5.0 mass %), using a Ziegler-Natta catalyst
EPDM (C): Eptalloy PX-047 (manufactured by Mitsui Chemicals, Inc., a diene (5-ethylidene-2-norbornene) content of 4.5 mass %, polyethylene blend type, a polyethylene content of 20 PHR)
(2) Processing Auxiliary
Stearic Acid: stearic acid powder “Sakura”, manufactured by NOF CORPORATION
(3) Pigment
Carbon Black Asahi #50, manufactured by ASAHI CARBON CO., LTD.
(4) Flame Retardant
Aluminum Hydroxide (H-32): HIGILITE H-32, manufactured by SHOWA DENKO K.K.
Aluminum Hydroxide (H-42): HIGILITE H-42, manufactured by SHOWA DENKO K.K.
Magnesium Hydroxide: KISUMA 5A, manufactured by Kyowa Chemical Industry Co., Ltd.
(5) Filler
Calcium Carbonate: N heavy calcium carbonate, manufactured by MARUO CALCIUM CO., LTD.
(6) Softener
Paraffinic Oil: Diana Process Oil PW-380, manufactured by Idemitsu Kosan Co., Ltd.
(7) Cross-Linking Agent
p-quinonedioxime: VULNOC GM, manufactured by OUCHI SHINKO CHEMICAL INDUSTRIAL CO., LTD.
p,p′-dibenzoylquinonedioxime: VULNOC DGM, manufactured by OUCHI SHINKO CHEMICAL INDUSTRIAL CO., LTD.
α,α′-di(t-butylperoxy)diisopropyl benzene: PERBUTYL P-40MB, a one-minute half-life temperature: 175° C., manufactured by NOF CORPORATION
Sulfur: ALPHAGRAN S-50EN, manufactured by Touchi Co., Ltd.
(8) Cross-Linking Auxiliary
Polyethylene Glycol: PEG 4000S (a number average molecular weight of 3400)
(9) Vulcanizing Accelerator
2-Mercaptobenzothiazole: NOCCELER M, manufactured by OUCHI SHINKO CHEMICAL INDUSTRIAL CO., LTD.
N,N′-dibutylthiourea: NOCCELER BUR, manufactured by OUCHI SHINKO CHEMICAL INDUSTRIAL CO., LTD.
Zinc Dimethyldithiocarbamate: NOCCELER PZ, manufactured by OUCHI SHINKO CHEMICAL INDUSTRIAL CO., LTD.
Zinc Diethyldithiocarbamate: NOCCELER EZ, manufactured by OUCHI SHINKO CHEMICAL INDUSTRIAL CO., LTD.
(10) Foaming Agent
ADCA (Azodicarbonamide): VINYFOR AC#LQ K2, manufactured by EIWA CHEMICAL IND. CO., LTD.
(11) Foaming Auxiliary
Urea Foaming Auxiliary: CELLPASTE K5, manufactured by EIWA CHEMICAL IND. CO., LTD.
Zinc Oxide: second-class zinc oxide, manufactured by MITSUI MINING & SMELTING CO., LTD.
2. Production of EPDM Foamed Material
A resin, a processing auxiliary, a pigment, a flame retardant, a filler, a softener, and a cross-linking auxiliary were blended at a mixing amount shown in Table 1 to be kneaded with a 3 L pressurizing kneader, so that a first kneaded material was prepared.
Separately, a cross-linking agent, a vulcanizing accelerator, a foaming agent, and a foaming auxiliary were blended. Thereafter, the obtained mixture was blended into the first kneaded material to be kneaded with a 10-inch mixing roll to obtain a rubber composition (a second kneaded material) (a kneading step).
Next, the rubber composition was extruded into a sheet shape having a thickness of about 8 mm using a single screw extruder (45 mmφ), so that a rubber composition sheet was fabricated (a molding step).
Subsequently, the rubber composition sheet was preheated at 140° C. for 20 minutes with an oven with internal air circulation. Thereafter, the temperature of the oven with internal air circulation was increased to 170° C. over 10 minutes, so that the rubber composition sheet was heated at 170° C. for 10 minutes to be foamed (a foaming step) and in this way, an EPDM foamed material was obtained.
3. Measurement of Properties
The properties of each of the EPDM foamed materials to be obtained were measured by a method shown in the following. The results are shown in Table 1.
(1) Apparent Density
The apparent density of each of the EPDM foamed materials was measured in conformity with JIS K 6767 (1999). To be specific, a skin layer of each of the EPDM foamed materials in Examples and Comparative Examples was removed and a test piece having a thickness of about 10 mm was prepared. Thereafter, the weight was measured to calculate the weight per unit volume (the apparent density).
(2) 50% Compressive Load Value
The 50% compressive load value of each of the EPDM foamed materials was measured in conformity with JIS K 6767 (1999). To be specific, a skin layer of each of the EPDM foamed materials in Examples and Comparative Examples was removed and a test piece having a thickness of about 10 mm was prepared. Thereafter, the test piece was compressed by 50% at a compression rate of 10 mm/min using a compression testing machine to measure a 50% compressive load value after 10 seconds of compression.
(3) Tensile Strength and Elongation
The tensile strength and the elongation of each of the EPDM foamed materials were measured in conformity with JIS K 6767 (1999). To be specific, a skin layer of each of the EPDM foamed materials in Examples and Comparative Examples was removed and a test piece having a thickness of about 10 mm was prepared. Thereafter, the test piece was stamped out using a dumbbell No. 1 to obtain a sample for measurement. The sample for measurement was pulled with a tensile testing machine at a tension rate of 500 mm/min to measure the load (the tensile strength) and the elongation of the sample for measurement at the time of being cut in a dumbbell shaped parallel portion.
(4) Sulfur Atom Content (Theoretical Value)
The content of a sulfur atom in the EPDM foamed material was calculated from the content of the sulfur atom in each of material components used in Examples and Comparative Examples.
(5) Sulfur Atom Content (Fluorescent X-Ray Measurement)
Each of the EPDM foamed materials in Examples and Comparative Examples was cut into pieces each having an appropriate size. Four pieces thereof were stacked and were subjected to a fluorescent X-ray measurement (XRF) (measurement size: 30 mmφ). A device and conditions for the XRF are shown in the following.
XRF device: manufactured by Rigaku Corporation, ZXS100e
X-ray source: vertical Rh tube
Analysis area: 30 mmφ
Analysis range of elements: B to U
In addition, the quantification was calculated from the proportion of elemental sulfur in the total atoms that were detected.
(6) Sulfur S8 Content (GPC Measurement)
In each of the EPDM foamed materials in Examples and Comparative Examples, the content proportion of Sulfur S8 was calculated based on the measurement result of a gel permeation chromatography (GPC). A process, conditions, a device, and the like are shown in the following.
(Process 1)
Each of the EPDM foamed materials was finely cut to fabricate test pieces each having an average value of the maximum length of 5 mm. Next, 300 mg of the EPDM foamed material was weighed and then, 10 ml of THF (tetrahydrofuran) was added thereto using a whole pipette to be allowed to stand overnight.
A THF solution was filtrated with a 0.45 μm membrane filter and the filtrate was subjected to a gel permeation chromatography measurement.
(Process 2)
Separately, the sulfur S8 was dissolved into the THF to adjust the concentration to 1000 μg/ml and the THF solution was allowed to stand overnight. Thereafter, the THF solution was filtrated with the 0.45 μm membrane filter.
The filtrate was diluted at predetermined concentrations to fabricate reference solutions. The reference solutions were subjected to the gel permeation chromatography measurement and the calibration curve was drawn from each of the peak area values to be obtained.
(Process 3)
The mass of the sulfur S8 in the test piece in the Process 1 was obtained by a calibration curve method based on the calibration curve drawn in the Process 2. The obtained value was divided by the mass (300 mg) of the test piece, so that the content proportion of the sulfur S8 in the test piece was calculated.
<Measurement Device and Measurement Conditions>
GPC device: TOSOH HLC-8120 GPC
Column: TSKgel Super HZ2000/HZ2000/HZ1000/HZ1000
Column size: 6.0 mmI.D.×150 mm
Elute: THF
Flow rate: 0.6 ml/min
Detector: UV (280 nm)
Column temperature: 40° C.
Injection amount: 20 μl
Detection limit: 10 ppm
(7) Average Cell Size
In each of the EPDM foamed materials in Examples and Comparative Examples, an enlarged image of a bubble portion of the foamed material was taken in with a digital microscope (VH-8000, manufactured by KEYENCE CORPORATION) and the image was analyzed using an image analysis software (Win ROOF, manufactured by MITANI CORPORATION), so that an average cell size (nm) was obtained.
(8) Sound Absorbency (Peak Value of Sound Absorption Coefficient at Normal Incidence)
A peak value (%) of the sound absorption coefficient at normal incidence of each of the EPDM foamed materials was measured in conformity with “Acoustics-Determination of sound absorption coefficient-Part 1: Method using standing wave ratio (JIS A 1405-1: 1996)” using a 4206-T-type acoustic tube (manufactured by Bruel & Kjaer Sound & Vibration Measurement A/S.) 10 shown in
That is, the T-type acoustic tube 10 is provided with an acoustic tube 11, a sound source portion (speaker) 12 provided at one (left) end portion of the acoustic tube 11, and a microphone 13 provided at the other (right) side of the acoustic tube 11.
The acoustic tube 11 is made of a straight tube extending in the right-left direction and integrally includes a large-diameter tube 15 that is disposed at the left side and a small-diameter tube 16 that is connected to the right side of the large-diameter tube 15. The small-diameter tube 16 is formed into a straight tube shape, has an axis line that is common to the axis line of the large-diameter tube 15, and has an inner diameter that is smaller than that of the large-diameter tube 15. The right end portion of the small-diameter tube 16 is occluded.
The microphone 13 is disposed at the center in the right-left direction of the small-diameter tube 16 and is connected to a measurement software, which is not shown.
And, in each of the EPDM foamed materials in Examples and Comparative Examples, an EPDM foamed material 2 that was cut into a piece having a diameter of 29 mm and a thickness of 10 mm was disposed near the right side of the microphone 13 so as to occlude the inside of the small-diameter tube 16 and so that the thickness direction of the EPDM foamed material 2 was along the right-left direction.
Then, a sound wave having a frequency of 1500 Hz was emitted from the sound source portion 12 and the sound absorption coefficient at normal incidence (%) was measured with the microphone 13 and the measurement software.
(9) Heat Resistance (Rate of Change R)
Each of the EPDM foamed materials in Examples and Comparative Examples was heated at 140° C. for 7 days. Each rate of change R thereof before and after the heating, that is, the rate of change RCL of the 50% compressive load value, the rate of change RAC of the sound absorption coefficient at normal incidence, and the rate of change RE of the elongation were obtained, respectively, so that the heat resistance of the EPDM foamed material was evaluated.
(10) Rate of Shrinkage
Each of the EPDM foamed materials in Examples and Comparative Examples was processed into a cubic shape having a side of 5 cm to be heated at 140° C. for seven days. The change of the size thereof before and after the heating, that is, an arbitrary side (defined as a longitudinal side) and an arbitrary side that was continuous to the longitudinal side (defined as a lateral side) were selected and the rate of shrinkage was calculated from the following formula.
Formula: rate of shrinkage=(25 cm2−size of longitudinal side after heating×size of lateral side after heating)/25 cm2×100
While the illustrative embodiments of the present invention are provided in the above description, such is for illustrative purpose only and it is not to be construed as limiting the scope of the present invention. Modification and variation of the present invention that will be obvious to those skilled in the art is to be covered by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2013-057149 | Mar 2013 | JP | national |