Evaluating image values

Information

  • Patent Grant
  • 9741181
  • Patent Number
    9,741,181
  • Date Filed
    Tuesday, May 19, 2015
    9 years ago
  • Date Issued
    Tuesday, August 22, 2017
    6 years ago
Abstract
Images of items are evaluated. A first image of the item, having a view of two or more of its surfaces, is captured at a first time. A measurement of at least one dimension of one or more of the surfaces is computed and stored. A second image of the item, having a view of at least one of the two or more surfaces, is captured at a second time, subsequent to the first time. A measurement of the dimension is then computed and compared to the stored first measurement. The computed measurement is evaluated based on the comparison.
Description
TECHNOLOGY FIELD

The present invention relates generally to imaging. More particularly, example embodiments of the present invention relate to evaluating image data.


BACKGROUND

Generally speaking, logistical processes increase efficiency and reduce cost of commerce in relation to storing inventory and transporting cargo. For example, storage space is finite and transport media, such as trailers, have specified capacities. Logistic processing apportions cargoes and inventories efficiently over the available spaces, which can facilitate storage and expedite transport.


To apportion a cargo or inventory, dimensions of each of the constituent packages, boxes, crates and other items (“items”) are measured. The measured dimensions are processed in relation to the available storage or transport space. Based on the processing, a position within the storage/transport space is computed that optimizes placement of each inventory/cargo item relative to each of the other items.


The measuring of the dimensions of the cargo/inventory items may be automated by a dimensioning apparatus (“dimensioner”), which may be operable optically. Optically based dimensioners are typically operable for capturing image data using photographic and/or videographic techniques. Image data captured in relation to surfaces of the cargo/inventory items are used for computing the measurements.


Dimensioners capture the image data over two or more measurably sufficient (“good”) surfaces of the cargo/inventory items to produce measurements with levels of accuracy sufficient for commercial application. Use of three good surfaces may improve measurement accuracy for commerce. In some situations however, dimensioners may sometimes capture substantially inaccurate (“false”) image data.


Computations based on the false captured image data produce inaccurate measurements of the dimensions of the items, which can cause faulty cargo/inventory apportioning. Excessive false image value production levels are thus unacceptable with dimensioners certified for commercial use, e.g., under the National Type Evaluation Program (NTEP) of the (U.S.) National Council on Weights and Measures.


On the contrary, NTEP certified dimensioners rely on consistently reliable measurement accuracy and thus, in the image values on which the measurements are based. Dimensioners may be deployed in industrial settings, e.g., in which they capture the image data from cargo/inventory items as the items are moved on high speed conveyors. Such usage however may sometimes degrade the accuracy of image based measurements.


For example, images captured by the dimensioner from an item that is beyond an optical range limit may lack sufficient structured light information for accurate measurement. Even with sufficient structured light information, accuracy may be affected by an orientation of an item relative to the dimensioner. For example, a dimensioner oriented straight-on to one face of an item may measure its depth inaccurately.


Therefore, a need exists for evaluating image data, captured from items examined by dimensioners, in relation to suitability of the data for computing accurate dimension measurements therewith. A need also exists for recognizing false values in the image data captured by the dimensioners and rejecting use of the false values in computing dimension measurements. Further, a need exists for recommending and/or implementing corrections in relation to the false image data, in order to produce accurate dimension measurements.


SUMMARY

Accordingly, in one aspect, the present invention embraces evaluating image data, captured from items examined by dimensioners, in relation to suitability of the data for computing accurate dimension measurements therewith. In an example embodiment, dimensioners are thus operable for recognizing false values in the image data captured therewith dimensioners and rejecting the false values for dimension measurement computations. Further, the dimensioners are operable for correcting the captured image data and computing accurate dimension measurements based on the corrected values.


Images of items are evaluated. A first image of the item, having a view of two or more (e.g., three) of its surfaces, is captured at a first time. A measurement of at least one dimension of one or more of the surfaces is computed and stored. A second image of the item, having a view of at least one of the two or more surfaces, is captured at a second time, subsequent to the first time. A measurement of the dimension is then computed and compared to the stored first measurement and evaluated based on the comparison.


An example embodiment of the present invention relates to a method for evaluating images of items. A first image of the item, having a view of two or more of its surfaces, is captured at a first time. A measurement of at least one dimension of one or more of the two or more surfaces is computed based on the first captured image and stored. A second image of the item, having a view of at least one of the two or more surfaces, is captured at a second time, which is subsequent to the first time. A measurement of the at least one dimension of the at least one of the two or more surfaces is computed. The computed measurement of the at least one dimension of the at least one of the two or more surfaces is compared to the stored first measurement. The computed measurement of the at least one dimension of the at least one of the two or more surfaces is evaluated based on the comparison.


The evaluating step comprises, selectively, accepting or rejecting the computed measurement of the at least one dimension of the at least one of the two or more surfaces. The captured first image and/or the captured second image each comprise information based on data relating to a characteristic of the item, and/or data relating to a wireframe model constructed of the imaged item. The information relates to one or more features of one or more surfaces of the item. The one or more surface features relate to a corresponding color or other chromatic or similar characteristic. Alternatively or additionally, the one or more surface features comprise a logo, a bar code pattern (“barcode”), or a text based, alphanumeric, ideographic, or pictographic symbol. The symbol may comprise handwritten or preprinted writing.


In an example embodiment, the comparing step comprises computing a duration of an interval between the second time and the first time. The evaluating step may comprise establishing an identity between a representation of the item in the second image with a representation of the item in the first image.


The evaluation of the image may also comprise delineating a boundary about a periphery of the one or more surface features in the first captured image. The delineated boundary is mapped to corresponding locations in a coordinate system. Data corresponding to the mapped boundary is stored.


The surface feature is then recognized in the captured second image. Data corresponding to the boundary is surveyed in relation to the recognized surface feature. The surveyed boundary data is compared to the stored boundary data. The evaluating step is then based, at least partially, on the comparison of the surveyed boundary data to the stored boundary data.


The evaluation of the images may also comprise capturing at least a third image of the item at a corresponding (e.g., third) time, which occurs between the first time and the second time. The at least third image comprises a view of the at least one of the two or more surfaces. A measurement of the at least one dimension of the at least one of the two or more surfaces is computed based on the captured at least third image. The measurement computed based on the captured at least third image is compared to the stored first measurement. The measurement computed based on the captured at least third image may be approved based on the comparison to the stored first measurement and stored.


A mean value is computed based on the stored first measurement and the stored approved measurement (from the captured at least third image). In an example embodiment, the evaluated measurement (from the second captured image) may be corrected based on the computed mean value.


An example embodiment may be implemented in which the capturing of the first image step comprises recording the view of the two or more surfaces of the item from a perspective associated with a first position of the item. The capturing of the second image step comprises recording the view of the at least one of the two or more surfaces from a perspective associated with a second position of the item. The second position is displaced (e.g., laterally, longitudinally, axially, etc.) relative to the first position.


The evaluation of the image may comprise certifying, based on the evaluating step, a charge for a commercial transaction relating to one or more of storing or transporting the item. Alternatively or additionally, the evaluation of the image may comprise certifying, based on the evaluating step, a dimensioner for a commercial use.


In another aspect, the present invention embraces a non-transitory computer readable storage medium comprising instructions, which are operable when executing on a computer processor for causing and/or controlling a process for evaluating images (e.g., as summarized above).


In yet another aspect, the present invention embraces a computer system comprising a bus component and a processor component coupled to the bus. The computer system also comprises a non-transitory storage medium component coupled to the bus component. The storage component comprises instructions, which are operable when executing on the processor component for causing and/or controlling a process for evaluating images (e.g., as summarized above).


The foregoing illustrative summary, as well as other example features, functions and/or aspects of embodiments of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description of example embodiments and each figure (FIG.) of the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an example first view, according to an embodiment of the present invention;



FIG. 2 depicts an example second view, according to an embodiment of the present invention;



FIG. 3 depicts an example item view, according to an embodiment of the present invention;



FIG. 4 depicts an example dimensioner view, according to an embodiment of the present invention;



FIG. 5 depicts a flowchart for an example process for evaluating an image, according to an embodiment of the present invention;



FIG. 6 depicts a flowchart for an example process for capturing data relating to a surface feature of an item, according to an embodiment of the present invention; and



FIG. 7 depicts an example computer system, which is operable as a dimensioner according to an embodiment of the present invention.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Example embodiments of the present invention are described in relation to evaluating image data, captured from items examined by dimensioners. Suitability of the data is thus evaluated for computing accurate dimension measurements therewith. In an example embodiment, dimensioners are thus operable for recognizing false values in the image data captured therewith dimensioners and rejecting the false values for dimension measurement computations. Further, the dimensioners are operable for correcting the captured image data and computing accurate dimension measurements based on the corrected values.


Overview.


Example embodiments are described in relation to evaluating images of items. A first image of the item, having a view of two or more of its surfaces, is captured at a first time. A measurement of at least one dimension of one or more of the surfaces is computed and stored. A second image of the item, having a view of at least one of the two or more surfaces, is captured at a second time, subsequent to the first time. A measurement of the dimension is then computed and compared to the stored first measurement and evaluated based on the comparison.


An example embodiment of the present invention uses information accessed by a dimensioner from previous images to evaluate a present image. The present image is evaluated whether a user of the dimensioner is triggering the dimensioner to make a measurement related to an item in the present image, or not. The information accessed by the dimensioner can be wireframe-based and/or image based. The wireframe based information may be economical in relation to computational resources. The image based information may give a higher confidence in decisions relating to rejecting an image or a measurement made therewith.


Example Dimensioner and Image Views.


An item with which an example embodiment may be operable may comprise a box, a crate, or another a package associated with an inventory to be stored or a cargo to be shipped or transported. FIG. 1 depicts an example first view 10, according to an embodiment of the present invention. A typical item may comprise a box, a crate, or another a package associated with an inventory to be stored or a cargo to be shipped or transported.


The first view 10 shows an image 15 of an item 12, which comprises a box, rendered on a display screen of an example dimensioner 11. While depicted herein as a tablet computer, the dimensioner 11 may comprise another mobile device or a computer apparatus (or component thereof) disposed or deployed in a fixed location. Three (3) sides of the item 12 are visible as well as a “floor” 13, which is representative of any surface or structure supporting the weight of the item 12. The dimensioner 11 is shown in the foreground of the image 15, which shows the box item 12 on the floor 13, which in the view 10 comprises a table surface. The image 15 shows a good wireframe 16, which is delineated about a periphery of the item 12 conforming to its three visible sides. The dimensions of the box item 12, as shown in the image 15, are accurate and thus suitable for commercial use.



FIG. 2 depicts an example second view 20, according to an embodiment of the present invention. In the second view 20, the box item 12 is rendered from a perspective associated with a movement of a user of the dimensioner to their own right, relative to the first view 10 (FIG. 1). The dimensions shown in the second view 20 are identical to those shown in the first view 10 (FIG. 1), in which the item 12 occupies a first position.


The position of the item 12 shown in the second view 20 is displaced axially, relative to its position as shown in the first view 10. Wireframe dimensions may be compared from images of the item 12 taken (“captured”) over each of multiple positions, which helps confirm that the dimensioner 11 is, in fact, imaging the same box in each of the views. Thus, an example embodiment may be implemented in which an identity is established between an item 12 shown in a present image and the item, as shown in previous images.


Thus, while the view 20 shows the same box item 12 from a perspective that offers a slightly less optimal angle than the perspective shown in the view 10, the dimensions of the item 12 may be computed to be the same as the dimensions computed from the view 10 (FIG. 1). The use of the wireframe information, and a computation of the time interval between the capture of the image 25 and the capture of the image 15 (FIG. 1), build a confidence that the box item 12 in the image 25 share an identity, e.g., that the item 12 has not changed from one image to the next.


In an example embodiment, stronger confirmation as to the identity of the item 12 over multiple images captured at different corresponding times is implemented by comparing features of the surface of the item 12 over each of the images. A boundary may thus be delineated around the surface features. For example, bounding lines may be created around surface features based on a color or another chromatic (or other) characteristic associated with each feature. Thus, the boundaries are delineated about each feature distinguished by, e.g., the different colors. The boundaries of the surface features are then mapped to a coordinate system based on the wireframe and stored.



FIG. 3 depicts an example view 30 of an item 12, according to an embodiment of the present invention. The view depicts bounding boxes 31, delineating each of multiple surface features of the item 12. The features can be hand-written or preprinted text, logos, and/or barcodes. The text and logos may comprise alphanumeric, ideographic, and/or pictographic symbols, icons, emblems or the like.


Bounding boxes delineated around printed text or other surface features are used for comparing sequential images to build confidence that in the identity of the box item 12 is the same, whether or not a user of the dimensioner 11 executes a “make measurement” command therewith.


Images captured from some perspectives may lack sufficient information for computing accurate measurements of a dimension of the item 12. For example, a user may continue around the item to a point at which the dimensioner 11 faces only a single end of a box item. A measurement of a depth dimension made from such a perspective may comprise erroneous information.


Erroneous measurements computed during a certification process of the dimensioner typically cause its failure. Erroneous measurements computed during commercial transactions, e.g., in relation to assessing charges for storage and/or transport of the item, cause inaccuracies such as insufficient revenue capture or overcharging.



FIG. 4 depicts an example view 40 on the dimensioner 11, according to an embodiment of the present invention. The view 40 shows a perspective of the item 12 in which the user has moved the dimensioner 11 to face a side of the box item straight-on. While the item 12 has not changed and thus, shares an identity with the boxes shown in the other views 10, 20 and 30 (FIGS. 1, 2 and 3, respectively) the depth displayed among the dimensions 44 is incorrect and is reported as having insufficient size (“too small”).


In example embodiments, this incorrect depth measurement is rejected and deleted from display. Sequential wireframes computed from images captured at various corresponding times, and/or comparing markings on the box or other surface features of the item 12, are used to reject the depth measurement.


An example embodiment of the present invention relates to a method for evaluating the image data for accepting or rejecting dimension measurements therewith. The example process, and non-transitory computer readable storage media comprising instructions, e.g., software associated with the dimensioner 11, are operable for making related judgments appropriately. Moreover, an example embodiment is implemented in which the instructions are configured to correct the depth measurement. For example, an average of related depth measurements computed from preceding images may be used to provide the correct measurement of the depth dimension.


Example Processes.


An example embodiment of the present invention relates to a computer implemented method for evaluating image data, captured from items examined by dimensioners, in relation to suitability of the data for computing accurate dimension measurements therewith. The method may relate to a process executing on a computer system, which is configured operably as a dimensioner.


An example embodiment is implemented, in which a dimensioner is thus operable for recognizing false values in the image data captured therewith dimensioners and rejecting the false values for dimension measurement computations. Further, the dimensioners are operable for correcting the captured image data and computing accurate dimension measurements based on the corrected values.



FIG. 5 depicts a flowchart for an example process 500 for evaluating an image, according to an embodiment of the present invention.


In step 501, a first image of the item, having a view of two or more (e.g., three) of its surfaces, is captured at a first point in time.


In step 502, a measurement of at least one dimension of one or more of the surfaces is computed and stored.


In step 503, a second image of the item, which has a view of at least one of the two or more surfaces, is captured at a second point in time. The second point in time is subsequent to the first point in time.


In step 504, a measurement of the at least one dimension of the at least one of the two or more surfaces is computed from the captured second image.


In step 505, the computed measurement of the at least one dimension of the at least one of the two or more surfaces is compared to the stored first measurement.


In step 506, the computed measurement of the at least one dimension of the at least one of the two or more surfaces is evaluated based on the comparison.


In step 507, the evaluating step 506 relates to a selective acceptance or rejection of the computed measurement of the at least one dimension of the at least one of the two or more surfaces. If the computed measurement is accepted, then the process 500 may be complete.


Example embodiments may be implemented in which the captured first image and/or the captured second image each comprise information based on data relating to a characteristic of the item. Alternatively of additionally, the captured first image and/or the captured second image each comprise information based on data relating to a wireframe model of the item constructed in relation to the captured images.


The information may relate to one or more features of one or more surfaces of the item. The one or more surface features may relate to a corresponding chromatic (color related) characteristic visible on the surface. Alternatively or additionally, the one or more surface features comprise a logo, a barcode pattern, or a text based, alphanumeric, ideographic, or pictographic symbol. The symbol may comprise handwritten or preprinted writing, an emblem, icon, or the like.


In an example embodiment, the comparing step comprises computing a duration of an interval between the second time and the first time. The evaluating step may comprise establishing an identity between a representation of the item in the second image with a representation of the item in the first image using the computed interval duration. For example, the identity of the item may thus be confirmed as not having changed from the first image, captured at the first time, to the second image, captured at the subsequent second time.


The evaluation of the image at step 501 may be based, at least in part, on analysis related to one or more visible features that appear on the surface of the item. The analysis of the surface features may be implemented as described, for example below, in relation to a process 60 (FIG. 6).



FIG. 6 depicts a flowchart for an example process 60 for capturing data relating to a surface feature of an item, according to an embodiment of the present invention.


In step 61, a boundary about a periphery of the one or more surface features of the item is delineated in the first captured image. For example, boundary lines may be created about (e.g., around, surrounding, proximate to a periphery of, etc.) the surface feature(s).


In step 62, the delineated boundary is mapped to corresponding locations in a coordinate system.


In step 63, data corresponding to the mapped boundary is stored. For example, the mapped boundary data may be stored in a non-transitory computer readable storage medium such as a memory and/or a drive or flash related storage unit or the like.


In step 64, the surface feature is recognized in the captured second image.


In step 65, data corresponding to the boundary is surveyed in relation to the recognized surface feature. Upon the recognition of the surface feature in the captured second image for example, a survey feature of dimensioner software may be operable for scanning the recognized surface feature in relation to the boundary about its periphery, as it may appear in a perspective shown in a view corresponding to the captured second image.


In step 66, the surveyed boundary data is compared to the stored boundary data.


In step 67, the evaluating step is based, at least in part, on the comparison of the surveyed boundary data to the stored boundary data.


Referring again to FIG. 5, the evaluation of the computed measurement of the at least one dimension of the at least one of the two or more surfaces shown in the captured second image may also comprise a rejection thereof in the decision step 507. An example embodiment may be implemented in which the process 500 is operable for correcting the rejected dimension.


In step 511 for example, at least a third image of the item is captured at a corresponding (e.g., third) point in time. The third (or other corresponding) point in time is subsequent to the first point in time, but occurs prior to the second point in time. Thus, the third (or other corresponding) point in time occurs between the first point in time and the second point in time. The captured at least third image comprises a view of the at least one of the two or more surfaces.


In step 512, a measurement of the at least one dimension of the at least one of the two or more surfaces is computed based on the captured at least third image.


In step 513, the measurement computed based on the captured at least third image is compared to the stored first measurement.


In step 514, the measurement computed based on the captured at least third image is approved based on the comparison to the stored first measurement and stored (e.g., based on an independent evaluation thereof, which occurs prior to the evaluation step 506).


In step 515, a mean value is computed based on an average of the stored first measurement and the stored approved measurement from the captured at least third image.


In step 521, the evaluated measurement (which was rejected in step 507) is corrected based on the computed mean value. Upon the correction of the measurement, the process 500 may then be complete.


An example embodiment may be implemented in which the capturing of the first image step comprises recording the view of the two or more surfaces of the item from a perspective associated with a first position of the item.


The capturing of the second image step comprises recording the view of the at least one of the two or more surfaces from a perspective associated with a second position of the item. The second position is displaced (e.g., laterally, longitudinally, axially, etc.) relative to the first position.


The evaluation of the image may comprise certifying, based on the evaluating step, a charge for a commercial transaction relating to one or more of storing or transporting the item. Alternatively or additionally, the evaluation of the image may comprise certifying, based on the evaluating step, a dimensioner for a commercial use.


An example embodiment may be implemented in which the process 500 and the process 60 (FIG. 6) are performed, executed, controlled, caused, and/or triggered by a processor component of a computer system. The processor component is operable for executing or performing the process 500 and the process 60 based on instructions stored tangibly (electronically, electrically, magnetically, optically, physically, etc.) as features of a non-transitory computer readable storage medium component.


Example Computer System and Network.



FIG. 7 depicts an example computer network 700, according to an embodiment of the present invention. The computer network comprises a data network 728, and a first computer system 705, which is coupled communicatively thereto. At least a second computer 798 may also be coupled communicatively to the data network 728.


The first computer system 705 is configured operably (e.g., by software code with which it is programmed) as a dimensioner. The first computer system (“dimensioner”) 705 may comprise a mobile device such as a tablet computer, portable data terminal (PDT), smartphone, portable (or personal) digital assistant (PDA) and/or another mobile or portable computing apparatus. The dimensioner 705 may also comprise a fixed or substantially stationary computer system or component thereof. The dimensioner 705 may thus be deployed, disposed, and operated in a fixed location. The fixed location may be disposed in proximity to a site associated with a storage or transport related portal. The storage or transport portal may be associated with a logistic, commercial, industrial, agricultural, military, laboratory (e.g., certification) setting or another facility.


The dimensioner 705 is operable for communicating with other devices, such as the at least one computer 798. The dimensioner 705 is coupled communicatively via the network 728 with the computer 798. The network 728 may comprise a packet-switched data network operable based on transfer control and internetworking protocols (e.g., TCP/IP).


The data network 728 may comprise a portion of one or more other networks and/or two or more sub-network (“subnet”) components. For example, the data network 728 may comprise a portion of the internet and/or a particular wide area network (WAN). The network 728 may also comprise one or more WAN and/or local area network (LAN) subnet components. Portions of the data network 728 may be operable wirelessly and/or with wireline related means. The data network 728 may also comprise, at least in part, a digital telephone network.


The at least second computer (“computer”) 798 may comprise a mobile device. The computer 798 may also be located at a particular location, where it may be disposed in a more or less fixed, or at least stationary position or configuration. In relation to the dimensioner 705, the computer 798 may also be operable as a server and/or for performing one or more functions relating to control or centralized pooling, processing or storage of information gathered or accessed therewith, e.g., with a database 777.


For example, embodiments of the present invention may be implemented in which the dimensioner 705 is operable for sending reports 745 relating to data corresponding to the evaluation of the captured images to the computer 798 over the network 728. The computer 798 may then store the image evaluation related data in the database 777, from which it may be retrieved at a later time. The data retrieved from the database 777 may be used in evaluating other (e.g., subsequent) images.


The dimensioner 705 may also be operable for capturing images photographically (including recording video) and/or scanning and reading barcode patterns and other data presented by graphic media. The dimensioner 705 may also comprise a component 746, which is operable for scanning radio frequency identification (RFID) tags and processing data associated therewith.


The images and data associated with the barcode and/or RFID tags may be sent to the computer 798. In addition to capturing and evaluating images, the dimensioner 705 may also use scanned barcodes (and RFIDs) for reading data (e.g., inventory information, price, etc.) therefrom in relation to associated items (e.g., packages, stock, products, commodities, parts, components, etc.).


The dimensioner 705 may then send the image evaluation report 745, data relating thereto, and/or the scan related data to the computer 798 over the network 728 wirelessly, via the network 728, to the computer 798.


Upon receipt thereof, the computer 798 may be operable for processing the data related to the image evaluations and the scan related data. The scan data may relate to the image evaluation. For example, the scan data may relate to the captured images, measurements associated therewith, and/or surveys of boundaries or other information related to surface features of an item.


The scan data may relate to commercial transactions relating to the transport and/or storage of an item. The scan data may also relate to a sale, transfer or other disposition of the item and associated with the barcode or RFID tag. The processing of the data may thus allow, for example, updating the database 777 in relation to inventory, tracking shipments, etc.) based on the image evaluation and other aspects of the item associated with the scanned surface features and the barcodes (or RFID tags).


The dimensioner 705 comprises a plurality of electronic components, each of which is coupled to a data bus 702. The data bus 702 is operable for allowing each of the multiple, various electronic components of the dimensioner 705 to exchange data signals conductively with each of the other electronic components thereof.


The electronic components of the dimensioner 705 may comprise integrated circuit (IC) devices, including one or more microprocessors. The electronic components of the dimensioner 705 may also comprise other IC devices, such as a microcontroller, field-programmable gate array (FPGA) or other programmable logic device (PLD) or application-specific IC (ASIC).


The microprocessors include a central processing unit (CPU) 704. The CPU 704 is operable for performing general data processing functions related to operations of the dimensioner 705. The electronic components of the dimensioner 705 may also comprise one or more other processors 744. The other microprocessors may also include a graphic processing unit (GPU) and/or digital signal processor (DSP) 704, which are each operable for performing data processing functions that may be somewhat more specialized than the general processing functions, as well as sometimes sharing some of the general processing functions with the CPU 704.


One of the processors 744 may also be operable as a “math” (mathematics) coprocessor. The math co-processor, DSP and/or GPU (“DSP/GPU”) 744 are operable for performing computationally intense data processing. The computationally intense processing relates to imaging, image evaluation, graphics, dimension measurements, wireframe manipulations, coordinate system management, logistics, and other (e.g., mathematical, financial) information.


The data processing operations comprise computations performed electronically by the CPU 704 and the DSP/GPU 744. For example, the microprocessors may comprise components operable as an arithmetic logic unit (ALU), a floating point logic unit (FPU), and associated memory cells. The memory cells comprise non-transitory data storage media, which may be configured as caches (e.g., “L1,” “L2”), registers, latches and/or buffers. The memory cells are operable for storing data electronically in relation to various functions of the processor. For example, a translational look-aside buffer (TLB) may be operable for optimizing efficiency of use of content-addressable memory (CAM) by the CPU 704 and/or the DSP/GPU 744.


The dimensioner 705 also comprises non-transitory computer readable storage media operable for storing data, e.g., electronically. For example, the dimensioner 705 comprises a main memory 706, such as a random access memory (RAM) or other dynamic storage device 706. The main memory 706 is coupled to data bus 702 for storing information and instructions, which are to be executed by the CPU 704. The main memory 706 also may be used for storing temporary variables or other intermediate information during execution of instructions by the CPU 704. Other memories (represented in the present description with reference to the RAM 706) may be installed for similar uses by the DSP/GPU 744.


The dimensioner 705 further comprises a read-only memory (ROM) 708 or other static storage device coupled to the data bus 702. The ROM 708 is operable for storing static information and instructions for use by the CPU 704. In addition to the RAM 706 and the ROM 708, the non-transitory storage media of the dimensioner 705 may comprise at least one data storage device 710. The data storage device 710 is operable for storing information and instructions and allowing access thereto.


The data storage device 710 may comprise a magnetic disk drive, flash drive, or optical disk drive. The data storage device 710 comprises non-transitory media coupled to data bus 702, and may be operable for providing a “virtual memory” function. The virtual memory operations of the storage device 710 may supplement, at least temporarily, storage capacity of other non-transitory media, such as the RAM 706.


The non-transitory storage media of the dimensioner 705 also comprises instructions (“dimensioner instructions”) 755, which is stored (e.g., electronically, magnetically, optically, physically, etc.) in relation to software for programming, controlling, and/or configuring its operations relating to evaluating images and computing measurements of items featured therein. The non-transitory dimensioner instructions 755 may also (or alternatively) be stored in association with the storage 710 and other storage components of the dimensioner 705.


Non-transitory programming instructions, software, settings and configurations related to the evaluation of images are stored (e.g., magnetically, electronically, optically, physically, etc.) by a memory, flash, or drive related non-transitory storage medium 755 and/or with the non-transitory storage medium 710. The non-transitory storage medium 710 may also store a suite 788 of instructions, which relate to a suite of other functional features with which the dimensioner 705 may also be also operable, e.g., for performing other functional features.


An example embodiment may be implemented in which the suite 788 of features relates to applications, tools and tool sets, menus (and sub-menus) and macros associated with functions of dimensioner 705 related to capturing and evaluating images. The suite 788 may also relate to scanning and reading barcode patterns and RFID tags, taking photographs, recording video and/or audio information, telephonic operations, and capturing other data related to images and presentations of graphic media and other information sources.


The dimensioner 705 comprises a user-interactive touchscreen 725, which is operable as a combined graphical user interface (GUI) and display component 725. The touchscreen 725 may comprise a liquid crystal display (LCD), which is operable for rendering images by modulating variable polarization states of an array of liquid crystal transistor components. The touchscreen 725 also comprises an interface operable for receiving haptic inputs from a user.


The haptic interface of the GUI touchscreen 725 may comprise, e.g., at least two arrays of microscopic (or transparent) conductors, each of which is insulated electrically from the other and disposed beneath a surface of the display 725 in a perpendicular orientation relative to the other. The haptic inputs comprise pressure applied to the surface of the touchscreen GUI 725, which cause corresponding local changes in electrical capacitance values proximate to the pressure application that are sensed by the conductor grids to effectuate a signal corresponding to the input.


In an example embodiment, the touchscreen GUI and display component 725 is operable for rendering graphical reports 745 in relation to dimension related image evaluations. The image evaluation reports 745 are rendered by the display 725 upon receipt of data related to the dimensioning and image evaluations from the CPU 704 and/or the GPU/DSP 744.


The touchscreen GUI component 725 may be implemented operably for rendering images over a heightened (e.g., high) dynamic range (HDR), the rendering of the images may also be based on modulating a back-light unit (BLU). For example, the BLU may comprise an array of light emitting diodes (LEDs). The LCDs may be modulated according to a first signal and the LEDs of the BLU may be modulated according to a second signal. The touchscreen 725 may render an HDR image by coordinating the second modulation signal in real time, relative to the first modulation signal.


A plurality of inputs 714 may comprise one or more electromechanical switches, which may be implemented as buttons, escutcheons, or cursor controls. The inputs 714 may also comprise a keyboard. The keyboard may comprise an array of alphanumeric (and/or ideographic, syllabary based) keys operable for typing letters, number, and other symbols. The keyboard may also comprise an array of directional (e.g., “up/down,” “left/right”) keys, operable for communicating commands and data selections to the CPU 704 and for controlling movement of a cursor rendering over the touchscreen GUI display 725.


The directional keys may be operable for presenting two (2) degrees of freedom of a cursor, over at least two (2) perpendicularly disposed axes presented on the display component of the touchscreen GUI 725. A first ‘x’ axis is disposed horizontally. A second ‘y’ axis, complimentary to the first axis, is disposed vertically. Thus, the dimensioner 705 is thus operable for specifying positions over a representation of a geometric plane and/or other coordinate systems.


Audio transducers (“Xducers”) 727 have a microphone function and a speaker function. The microphone function is operable for transducing speech and other sound into corresponding electrical signals, which may be accessed via an interface 718 and processed by one or more of the electronic components of the dimensioner 705. The speaker function is operable for transducing audibly signals accessed via the interface 718, which were generated by the electronic components. The audio transducers and associated interface 714 thus allow the dimensioner 705 to function telephonically and in response to audio user commands.


The dimensioner 705 may be operable for scanning visual data such as barcode patterns and/or other images presented on printed graphic media and/or self-lit electronic displays. Example embodiments of the present invention also relate to the use of the dimensioner 705 for taking photographs and recording video. A camera component 748 is coupled to the data bus 702. The camera component 748 is operable for receiving data related to the scanned barcode patterns.


The camera component 748 is also operable for receiving static and dynamic image data related, respectively, to the photographs and the video. The camera component 748 may receive the data captured from an image sensor 749. The image sensor 749 may comprise an array of charge-coupled devices (CCDs), photodiodes (PDs), or active complementary metal oxide semiconductor (CMOS) based imaging devices. The image sensor 749 may be operable with a system of optical components (“optics”) 747. The dimensioner and image evaluation instructions 755 and the barcode scanning (and other) feature(s) of the mobile device 700 are operable with one or more of the camera component 748, the image sensor component 749, and/or the optics 747.


The electronic components of the dimensioner 705 may also comprise an RFID scanner 746 coupled to the data bus 702. The RFID scanner 746 is operable for scanning RFID tags.


Execution of instruction sequences contained in the main memory 706 causes the CPU 704 to perform process steps associated with operations of the dimensioner 705. One or more microprocessors are operable for executing instructions contained in main memory 706. Additionally and/or alternatively, hard-wired circuitry may be used in place of, or in combination with the software instructions. Thus, the dimensioner 705 is not limited to any specific combination of circuitry, hardware, firmware, and/or software.


The term “computer readable storage medium,” as used herein, may refer to any non-transitory storage medium that participates in providing instructions to the CPU 704 (and the DSP/GPU 744) for execution. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media comprises, for example, configured/programmed active elements of the CPU 704, the DSP/GPU 744, the non-transitory stored dimensioner instructions 755 and other optical, electronic, or magnetic disks, such as storage device 710. Volatile media comprises dynamic memory associated, e.g., with the RAM 706.


Transmission media comprises coaxial cables, copper wire and other electrical conductors and fiber optics, including the wires (and/or other conductors or optics) that comprise the data bus 702.


Transmission media can also take the form of electromagnetic radiation (e.g., light waves), such as may be generated at radio frequencies (RF), and infrared (IR) and other optical frequencies. Data communications may also be effectuated using other means, including acoustic (e.g., sound related) or other mechanical, vibrational, or phonon related media.


Non-transitory computer-readable storage media may comprise, for example, flash drives such as may be accessible via universal serial bus (USB) or any medium from which a computer can read data.


Various forms of non-transitory computer readable storage media may be involved in carrying one or more sequences of one or more instructions to CPU 704 for execution. For example, the instructions may initially be carried on a magnetic or other disk of a remote computer (e.g., computer 798). The remote computer can load the instructions into its dynamic memory and send the instructions over networks 728.


The dimensioner 705 can receive the data over the network 728 and use an IR, RF or other transmitter means to convert the data to corresponding signals. An IR, RF or other signal detector or receiver (“receiver”) coupled to the data bus 702 can receive the data carried in the corresponding signals and place the data on data bus 702. The operations associated with the transmitter and the receiver may be combined in a transmitter/receiver (transceiver) means. The transmitter, receiver, and/or transceiver means may be associated with the interfaces 718.


The data bus 702 carries the data to main memory 706, from which CPU 704 and the DSP/GPU 744 retrieve and execute the instructions. The instructions received by main memory 706 may optionally be stored on storage device 710 either before or after execution by CPU 704.


The interfaces 718 may comprise a communication interface coupled to the data bus 702. In addition to interfacing audio signals between the data bus 702 and the audio transducers 727, the communication interface is also operable for providing a two-way (or more) data communication coupling to a network link 720, which may connect wirelessly at radio frequencies (RF) to the network 728. Wireless communication may also be implemented optically, e.g., at IR frequencies.


In any implementation, the communication interface 718 sends and receives electrical, electromagnetic, or optical signals that carry digital data streams representing various types of information. The network link 720 provides data communication through the network 728 to other data devices. The communication interfaces 718 may also provide audio signals to the speaker 727.


The network 728 may use one or more of electrical, electromagnetic, and/or optical signals carrying digital data streams. The signals sent over the network 728 and through the network link 720 and communication interface 718 carry the digital data to and from the dimensioner 705. The dimensioner 705 can send messages and receive data, including program code, through the network 728, network link 720, and communication interface 718.


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:

  • U.S. Pat. No. 6,832,725; U.S. Pat. No. 7,128,266;
  • U.S. Pat. No. 7,159,783; U.S. Pat. No. 7,413,127;
  • U.S. Pat. No. 7,726,575; U.S. Pat. No. 8,294,969;
  • U.S. Pat. No. 8,317,105; U.S. Pat. No. 8,322,622;
  • U.S. Pat. No. 8,366,005; U.S. Pat. No. 8,371,507;
  • U.S. Pat. No. 8,376,233; U.S. Pat. No. 8,381,979;
  • U.S. Pat. No. 8,390,909; U.S. Pat. No. 8,408,464;
  • U.S. Pat. No. 8,408,468; U.S. Pat. No. 8,408,469;
  • U.S. Pat. No. 8,424,768; U.S. Pat. No. 8,448,863;
  • U.S. Pat. No. 8,457,013; U.S. Pat. No. 8,459,557;
  • U.S. Pat. No. 8,469,272; U.S. Pat. No. 8,474,712;
  • U.S. Pat. No. 8,479,992; U.S. Pat. No. 8,490,877;
  • U.S. Pat. No. 8,517,271; U.S. Pat. No. 8,523,076;
  • U.S. Pat. No. 8,528,818; U.S. Pat. No. 8,544,737;
  • U.S. Pat. No. 8,548,242; U.S. Pat. No. 8,548,420;
  • U.S. Pat. No. 8,550,335; U.S. Pat. No. 8,550,354;
  • U.S. Pat. No. 8,550,357; U.S. Pat. No. 8,556,174;
  • U.S. Pat. No. 8,556,176; U.S. Pat. No. 8,556,177;
  • U.S. Pat. No. 8,559,767; U.S. Pat. No. 8,599,957;
  • U.S. Pat. No. 8,561,895; U.S. Pat. No. 8,561,903;
  • U.S. Pat. No. 8,561,905; U.S. Pat. No. 8,565,107;
  • U.S. Pat. No. 8,571,307; U.S. Pat. No. 8,579,200;
  • U.S. Pat. No. 8,583,924; U.S. Pat. No. 8,584,945;
  • U.S. Pat. No. 8,587,595; U.S. Pat. No. 8,587,697;
  • U.S. Pat. No. 8,588,869; U.S. Pat. No. 8,590,789;
  • U.S. Pat. No. 8,596,539; U.S. Pat. No. 8,596,542;
  • U.S. Pat. No. 8,596,543; U.S. Pat. No. 8,599,271;
  • U.S. Pat. No. 8,599,957; U.S. Pat. No. 8,600,158;
  • U.S. Pat. No. 8,600,167; U.S. Pat. No. 8,602,309;
  • U.S. Pat. No. 8,608,053; U.S. Pat. No. 8,608,071;
  • U.S. Pat. No. 8,611,309; U.S. Pat. No. 8,615,487;
  • U.S. Pat. No. 8,616,454; U.S. Pat. No. 8,621,123;
  • U.S. Pat. No. 8,622,303; U.S. Pat. No. 8,628,013;
  • U.S. Pat. No. 8,628,015; U.S. Pat. No. 8,628,016;
  • U.S. Pat. No. 8,629,926; U.S. Pat. No. 8,630,491;
  • U.S. Pat. No. 8,635,309; U.S. Pat. No. 8,636,200;
  • U.S. Pat. No. 8,636,212; U.S. Pat. No. 8,636,215;
  • U.S. Pat. No. 8,636,224; U.S. Pat. No. 8,638,806;
  • U.S. Pat. No. 8,640,958; U.S. Pat. No. 8,640,960;
  • U.S. Pat. No. 8,643,717; U.S. Pat. No. 8,646,692;
  • U.S. Pat. No. 8,646,694; U.S. Pat. No. 8,657,200;
  • U.S. Pat. No. 8,659,397; U.S. Pat. No. 8,668,149;
  • U.S. Pat. No. 8,678,285; U.S. Pat. No. 8,678,286;
  • U.S. Pat. No. 8,682,077; U.S. Pat. No. 8,687,282;
  • U.S. Pat. No. 8,692,927; U.S. Pat. No. 8,695,880;
  • U.S. Pat. No. 8,698,949; U.S. Pat. No. 8,717,494;
  • U.S. Pat. No. 8,717,494; U.S. Pat. No. 8,720,783;
  • U.S. Pat. No. 8,723,804; U.S. Pat. No. 8,723,904;
  • U.S. Pat. No. 8,727,223; U.S. Pat. No. D702,237;
  • U.S. Pat. No. 8,740,082; U.S. Pat. No. 8,740,085;
  • U.S. Pat. No. 8,746,563; U.S. Pat. No. 8,750,445;
  • U.S. Pat. No. 8,752,766; U.S. Pat. No. 8,756,059;
  • U.S. Pat. No. 8,757,495; U.S. Pat. No. 8,760,563;
  • U.S. Pat. No. 8,763,909; U.S. Pat. No. 8,777,108;
  • U.S. Pat. No. 8,777,109; U.S. Pat. No. 8,779,898;
  • U.S. Pat. No. 8,781,520; U.S. Pat. No. 8,783,573;
  • U.S. Pat. No. 8,789,757; U.S. Pat. No. 8,789,758;
  • U.S. Pat. No. 8,789,759; U.S. Pat. No. 8,794,520;
  • U.S. Pat. No. 8,794,522; U.S. Pat. No. 8,794,526;
  • U.S. Pat. No. 8,798,367; U.S. Pat. No. 8,807,431;
  • U.S. Pat. No. 8,807,432; U.S. Pat. No. 8,820,630;
  • International Publication No. 2013/163789;
  • International Publication No. 2013/173985;
  • International Publication No. 2014/019130;
  • International Publication No. 2014/110495;
  • U.S. Patent Application Publication No. 2008/0185432;
  • U.S. Patent Application Publication No. 2009/0134221;
  • U.S. Patent Application Publication No. 2010/0177080;
  • U.S. Patent Application Publication No. 2010/0177076;
  • U.S. Patent Application Publication No. 2010/0177707;
  • U.S. Patent Application Publication No. 2010/0177749;
  • U.S. Patent Application Publication No. 2011/0202554;
  • U.S. Patent Application Publication No. 2012/0111946;
  • U.S. Patent Application Publication No. 2012/0138685;
  • U.S. Patent Application Publication No. 2012/0168511;
  • U.S. Patent Application Publication No. 2012/0168512;
  • U.S. Patent Application Publication No. 2012/0193423;
  • U.S. Patent Application Publication No. 2012/0203647;
  • U.S. Patent Application Publication No. 2012/0223141;
  • U.S. Patent Application Publication No. 2012/0228382;
  • U.S. Patent Application Publication No. 2012/0248188;
  • U.S. Patent Application Publication No. 2013/0043312;
  • U.S. Patent Application Publication No. 2013/0056285;
  • U.S. Patent Application Publication No. 2013/0070322;
  • U.S. Patent Application Publication No. 2013/0075168;
  • U.S. Patent Application Publication No. 2013/0082104;
  • U.S. Patent Application Publication No. 2013/0175341;
  • U.S. Patent Application Publication No. 2013/0175343;
  • U.S. Patent Application Publication No. 2013/0200158;
  • U.S. Patent Application Publication No. 2013/0256418;
  • U.S. Patent Application Publication No. 2013/0257744;
  • U.S. Patent Application Publication No. 2013/0257759;
  • U.S. Patent Application Publication No. 2013/0270346;
  • U.S. Patent Application Publication No. 2013/0278425;
  • U.S. Patent Application Publication No. 2013/0287258;
  • U.S. Patent Application Publication No. 2013/0292475;
  • U.S. Patent Application Publication No. 2013/0292477;
  • U.S. Patent Application Publication No. 2013/0293539;
  • U.S. Patent Application Publication No. 2013/0293540;
  • U.S. Patent Application Publication No. 2013/0306728;
  • U.S. Patent Application Publication No. 2013/0306730;
  • U.S. Patent Application Publication No. 2013/0306731;
  • U.S. Patent Application Publication No. 2013/0307964;
  • U.S. Patent Application Publication No. 2013/0308625;
  • U.S. Patent Application Publication No. 2013/0313324;
  • U.S. Patent Application Publication No. 2013/0313325;
  • U.S. Patent Application Publication No. 2013/0341399;
  • U.S. Patent Application Publication No. 2013/0342717;
  • U.S. Patent Application Publication No. 2014/0001267;
  • U.S. Patent Application Publication No. 2014/0002828;
  • U.S. Patent Application Publication No. 2014/0008430;
  • U.S. Patent Application Publication No. 2014/0008439;
  • U.S. Patent Application Publication No. 2014/0025584;
  • U.S. Patent Application Publication No. 2014/0027518;
  • U.S. Patent Application Publication No. 2014/0034734;
  • U.S. Patent Application Publication No. 2014/0036848;
  • U.S. Patent Application Publication No. 2014/0039693;
  • U.S. Patent Application Publication No. 2014/0042814;
  • U.S. Patent Application Publication No. 2014/0049120;
  • U.S. Patent Application Publication No. 2014/0049635;
  • U.S. Patent Application Publication No. 2014/0061305;
  • U.S. Patent Application Publication No. 2014/0061306;
  • U.S. Patent Application Publication No. 2014/0063289;
  • U.S. Patent Application Publication No. 2014/0066136;
  • U.S. Patent Application Publication No. 2014/0067692;
  • U.S. Patent Application Publication No. 2014/0070005;
  • U.S. Patent Application Publication No. 2014/0071840;
  • U.S. Patent Application Publication No. 2014/0074746;
  • U.S. Patent Application Publication No. 2014/0075846;
  • U.S. Patent Application Publication No. 2014/0076974;
  • U.S. Patent Application Publication No. 2014/0078341;
  • U.S. Patent Application Publication No. 2014/0078342;
  • U.S. Patent Application Publication No. 2014/0078345;
  • U.S. Patent Application Publication No. 2014/0084068;
  • U.S. Patent Application Publication No. 2014/0097249;
  • U.S. Patent Application Publication No. 2014/0098792;
  • U.S. Patent Application Publication No. 2014/0100774;
  • U.S. Patent Application Publication No. 2014/0100813;
  • U.S. Patent Application Publication No. 2014/0103115;
  • U.S. Patent Application Publication No. 2014/0104413;
  • U.S. Patent Application Publication No. 2014/0104414;
  • U.S. Patent Application Publication No. 2014/0104416;
  • U.S. Patent Application Publication No. 2014/0104451;
  • U.S. Patent Application Publication No. 2014/0106594;
  • U.S. Patent Application Publication No. 2014/0106725;
  • U.S. Patent Application Publication No. 2014/0108010;
  • U.S. Patent Application Publication No. 2014/0108402;
  • U.S. Patent Application Publication No. 2014/0108682;
  • U.S. Patent Application Publication No. 2014/0110485;
  • U.S. Patent Application Publication No. 2014/0114530;
  • U.S. Patent Application Publication No. 2014/0124577;
  • U.S. Patent Application Publication No. 2014/0124579;
  • U.S. Patent Application Publication No. 2014/0125842;
  • U.S. Patent Application Publication No. 2014/0125853;
  • U.S. Patent Application Publication No. 2014/0125999;
  • U.S. Patent Application Publication No. 2014/0129378;
  • U.S. Patent Application Publication No. 2014/0131438;
  • U.S. Patent Application Publication No. 2014/0131441;
  • U.S. Patent Application Publication No. 2014/0131443;
  • U.S. Patent Application Publication No. 2014/0131444;
  • U.S. Patent Application Publication No. 2014/0131445;
  • U.S. Patent Application Publication No. 2014/0131448;
  • U.S. Patent Application Publication No. 2014/0133379;
  • U.S. Patent Application Publication No. 2014/0136208;
  • U.S. Patent Application Publication No. 2014/0140585;
  • U.S. Patent Application Publication No. 2014/0151453;
  • U.S. Patent Application Publication No. 2014/0152882;
  • U.S. Patent Application Publication No. 2014/0158770;
  • U.S. Patent Application Publication No. 2014/0159869;
  • U.S. Patent Application Publication No. 2014/0160329;
  • U.S. Patent Application Publication No. 2014/0166755;
  • U.S. Patent Application Publication No. 2014/0166757;
  • U.S. Patent Application Publication No. 2014/0166759;
  • U.S. Patent Application Publication No. 2014/0166760;
  • U.S. Patent Application Publication No. 2014/0166761;
  • U.S. Patent Application Publication No. 2014/0168787;
  • U.S. Patent Application Publication No. 2014/0175165;
  • U.S. Patent Application Publication No. 2014/0175169;
  • U.S. Patent Application Publication No. 2014/0175172;
  • U.S. Patent Application Publication No. 2014/0175174;
  • U.S. Patent Application Publication No. 2014/0191644;
  • U.S. Patent Application Publication No. 2014/0191913;
  • U.S. Patent Application Publication No. 2014/0197238;
  • U.S. Patent Application Publication No. 2014/0197239;
  • U.S. Patent Application Publication No. 2014/0197304;
  • U.S. Patent Application Publication No. 2014/0203087;
  • U.S. Patent Application Publication No. 2014/0204268;
  • U.S. Patent Application Publication No. 2014/0214631;
  • U.S. Patent Application Publication No. 2014/0217166;
  • U.S. Patent Application Publication No. 2014/0217180;
  • U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);
  • U.S. patent application Ser. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.);
  • U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson);
  • U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.);
  • U.S. patent application Ser. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield);
  • U.S. patent application Ser. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin);
  • U.S. patent application Ser. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.);
  • U.S. patent application Ser. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.);
  • U.S. patent application Ser. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.);
  • U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.);
  • U.S. patent application Ser. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini);
  • U.S. patent application Ser. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.);
  • U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.);
  • U.S. patent application Ser. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.);
  • U.S. patent application Ser. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.);
  • U.S. patent application Ser. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang);
  • U.S. patent application Ser. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.);
  • U.S. patent application Ser. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.);
  • U.S. patent application Ser. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini);
  • U.S. patent application Ser. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon);
  • U.S. patent application Ser. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini);
  • U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher);
  • U.S. patent application Ser. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck);
  • U.S. patent application Ser. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.);
  • U.S. patent application Ser. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.);
  • U.S. patent application Ser. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.);
  • U.S. patent application Ser. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl);
  • U.S. patent application Ser. No. 14/094,087 for Method and System for Communicating Information in an Digital Signal, filed Dec. 2, 2013 (Peake et al.);
  • U.S. patent application Ser. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian);
  • U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);
  • U.S. patent application Ser. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.);
  • U.S. patent application Ser. No. 14/165,980 for System and Method for Measuring Irregular Objects with a Single Camera filed Jan. 28, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter filed Jan. 28, 2014 (Lu et al.);
  • U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);
  • U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/250,923 for Reading Apparatus Having Partial Frame Operating Mode filed Apr. 11, 2014, (Deng et al.);
  • U.S. patent application Ser. No. 14/257,174 for Imaging Terminal Having Data Compression filed Apr. 21, 2014, (Barber et al.);
  • U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);
  • U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/274,858 for Mobile Printer with Optional Battery Accessory filed May 12, 2014 (Marty et al.);
  • U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);
  • U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/300,276 for METHOD AND SYSTEM FOR CONSIDERING INFORMATION ABOUT AN EXPECTED RESPONSE WHEN PERFORMING SPEECH RECOGNITION, filed Jun. 10, 2014 (Braho et al.);
  • U.S. patent application Ser. No. 14/305,153 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 16, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/310,226 for AUTOFOCUSING OPTICAL IMAGING DEVICE filed Jun. 20, 2014 (Koziol et al.);
  • U.S. patent application Ser. No. 14/327,722 for CUSTOMER FACING IMAGING SYSTEMS AND METHODS FOR OBTAINING IMAGES filed Jul. 10, 2014 (Oberpriller et al,);
  • U.S. patent application Ser. No. 14/327,827 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/329,303 for CELL PHONE READING MODE USING IMAGE TIMER filed Jul. 11, 2014 (Coyle);
  • U.S. patent application Ser. No. 14/333,588 for SYMBOL READING SYSTEM WITH INTEGRATED SCALE BASE filed Jul. 17, 2014 (Barten);
  • U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/336,188 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES, Filed Jul. 21, 2014 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Rueblinger et al.);
  • U.S. patent application Ser. No. 14/340,716 for an OPTICAL IMAGER AND METHOD FOR CORRELATING A MEDICATION PACKAGE WITH A PATIENT, filed Jul. 25, 2014 (Ellis);
  • U.S. patent application Ser. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board filed Mar. 4, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination filed Mar. 19, 2014 (Ouyang);
  • U.S. patent application Ser. No. 14/336,188 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES, Filed Jul. 21, 2014 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/355,613 for Optical Indicia Reading Terminal with Color Image Sensor filed May 1, 2014 (Lu et al.);
  • U.S. patent application Ser. No. 14/370,237 for WEB-BASED SCAN-TASK ENABLED SYSTEM AND METHOD OF AND APPARATUS FOR DEVELOPING AND DEPLOYING THE SAME ON A CLIENT-SERVER NETWORK filed Jul. 2, 2014 (Chen et al.);
  • U.S. patent application Ser. No. 14/370,267 for INDUSTRIAL DESIGN FOR CONSUMER DEVICE BASED SCANNING AND MOBILITY, filed Jul. 2, 2014 (Ma et al.);
  • U.S. patent application Ser. No. 14/376,472, for an ENCODED INFORMATION READING TERMINAL INCLUDING HTTP SERVER, filed Aug. 4, 2014 (Lu);
  • U.S. patent application Ser. No. 14/379,057 for METHOD OF USING CAMERA SENSOR INTERFACE TO TRANSFER MULTIPLE CHANNELS OF SCAN DATA USING AN IMAGE FORMAT filed Aug. 15, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/460,387 for APPARATUS FOR DISPLAYING BAR CODES FROM LIGHT EMITTING DISPLAY SURFACES filed Aug. 15, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/460,829 for ENCODED INFORMATION READING TERMINAL WITH WIRELESS PATH SELECTION CAPABILITY, filed Aug. 15, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/462,801 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/446,387 for INDICIA READING TERMINAL PROCESSING PLURALITY OF FRAMES OF IMAGE DATA RESPONSIVELY TO TRIGGER SIGNAL ACTIVATION filed Jul. 30, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);
  • U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);
  • U.S. patent application Ser. No. 29/492,903 for an INDICIA SCANNER, filed Jun. 4, 2014 (Zhou et al.); and
  • U.S. patent application Ser. No. 29/494,725 for an IN-COUNTER BARCODE SCANNER, filed Jun. 24, 2014 (Oberpriller et al.).


Example embodiments of the present invention have thus been described. An example embodiment of the present invention relates to a computer implemented method for evaluating images of items. A first image of the item, having a view of two or more of its surfaces, is captured at a first time. A measurement of at least one dimension of one or more of the two or more surfaces is computed based on the first captured image and stored. A second image of the item, having a view of at least one of the two or more surfaces, is captured at a second time, which is subsequent to the first time. A measurement of the at least one dimension of the at least one of the two or more surfaces is computed. The computed measurement of the at least one dimension of the at least one of the two or more surfaces is compared to the stored first measurement. The computed measurement of the at least one dimension of the at least one of the two or more surfaces is evaluated based on the comparison. The example method may be implemented by a processor component of a computer system, based on instructions stored physically in a non-transitory computer readable storage medium component.


For clarity and brevity, as well as to avoid unnecessary or unhelpful obfuscating, obscuring, obstructing, or occluding features of an example embodiment, certain intricacies and details, which are known generally to artisans of ordinary skill in related technologies, may have been omitted or discussed in less than exhaustive detail. Any such omissions or discussions are unnecessary for describing example embodiments of the invention, and not particularly relevant to understanding of significant features, functions and aspects of the example embodiments described herein.


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such example embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A method for evaluating whether an image of an item may be suitable for computing accurate dimension measurements, the method comprising the steps of: capturing a first image of the item at a first time, the first image comprising a view of two or more surfaces of the item and of one or more surface feature;computing a first measurement of at least one dimension of at least one of the surface features based on the first captured image;capturing a second image of the item at a second time, which is subsequent to the first time, the second image comprising a view of at least one of the two or more surfaces and of at least one of the one or more surface features;computing a second measurement of the at least one dimension of the at least one of the surface features based on the second captured image;comparing the computed second measurement to the computed first measurement;evaluating whether the computed first measurement and/or the computed second measurement may be suitable for computing accurate dimension measurements;capturing at least a third image of the item at a corresponding time, which occurs between the first time and the second time, the at least a third image comprising a view of the at least one of the two or more surfaces;computing at least a third measurement of at least one dimension of at least one of the two or more surfaces based on the captured at least a third image;comparing the at least a third measurement computed in relation to the captured at least a third image to the computed first measurement and/or to the computed second measurement;approving the at least a third measurement, computed in relation to the captured at least a third image, based on the comparison to the computed first measurement and/or the computed second measurement; andcomputing a mean value based on the computed first measurement, and/or the computed second measurement, and the approved at least a third measurement.
  • 2. The method as described in claim 1, wherein the evaluating step comprises, selectively, accepting or rejecting the computed first measurement and/or the computed second measurement.
  • 3. The method as described in claim 1, wherein the evaluating step comprises, selectively, accepting or rejecting the computed first measurement and/or the computed second measurement.
  • 4. The method as described in claim 1, wherein the at least one dimension corresponds to at least one boundary about a periphery of at least one of the surface features item.
  • 5. The method as described in claim 1, wherein the one or more surface features relate to a corresponding chromatic characteristic.
  • 6. The method as described in claim 1, wherein the one or more surface features comprise at least one of a logo or a bar code pattern.
  • 7. The method as described in claim 1, wherein the one or more surface features relate to at least one of a text based, alphanumeric, ideographic, or pictographic symbol.
  • 8. The method as described in claim 7, wherein the symbol comprises at least one of handwritten or preprinted writing.
  • 9. The method as described in claim 1, wherein the comparing step comprises computing a duration of an interval between the second time and the first time.
  • 10. The method as described in claim 9, wherein the evaluating step comprises establishing an identity between a representation of the item in the second image with a representation of the item in the first image.
  • 11. The method as described in claim 1, further comprising the steps of: delineating a boundary about a periphery of the one or more surface features in the first captured image;mapping the delineated boundary to corresponding locations in a coordinate system;storing data corresponding to the mapped boundary;recognizing the surface feature in the captured second image;surveying data corresponding to the boundary in relation to the recognized surface feature;comparing the surveyed boundary data to the stored boundary data; andbasing the evaluating step, at least in part, on the step of comparing the surveyed boundary data to the stored boundary data.
  • 12. The method as described in claim 1, further comprising the step of: correcting the computed first measurement and/or the computed second measurement based on the computed mean value.
  • 13. The method as described in claim 1, wherein the two or more surfaces of the item comprise at least three surfaces.
  • 14. The method as described in claim 1, wherein the capturing the first image step comprises recording the view of the two or more surfaces of the item from a perspective associated with a first position of the item.
  • 15. The method as described in claim 14, wherein the capturing the second image step comprises recording the view of the at least one of the two or more surfaces from a perspective associated with a second position of the item, which is displaced relative to the first position.
  • 16. The method as described in claim 1, further comprising certifying, based on the evaluating step, a charge for a commercial transaction relating to one or more of storing or transporting the item.
  • 17. The method as described in claim 1, further comprising certifying, based on the evaluating step, a dimensioner for a commercial use.
  • 18. A non-transitory computer readable storage medium comprising instructions, which when read and executed by a computer processor are operable for performing, controlling, or causing a process for evaluating whether an image of an item may be suitable for computing accurate dimension measurements, the process comprising: capturing a first image of the item at a first time, the first image comprising a view of two or more surfaces of the item and of one or more surface feature;computing a first measurement of at least one dimension of at least one of the surface features based on the first captured image;capturing a second image of the item at a second time, which is subsequent to the first time, the second image comprising a view of at least one of the two or more surfaces and of at least one of the one or more surface features;computing a second measurement of the at least one dimension of the at least one of the surface features based on the second captured image;comparing the computed second measurement to the computed first measurement; evaluating whether the computed first measurement and/or the computed second measurement may be suitable for computing accurate dimension measurements;capturing at least a third image of the item at a corresponding time, which occurs between the first time and the second time, the at least a third image comprising a view of the at least one of the two or more surfaces;computing at least a third measurement of at least one dimension of at least one of the two or more surfaces based on the captured at least a third image;comparing the at least a third measurement computed in relation to the captured at least a third image to the computed first measurement and/or to the computed second measurement;approving the at least a third measurement, computed in relation to the captured at least a third image, based on the comparison to the computed first measurement and/or the computed second measurement; andcomputing a mean value based on the computed first measurement, and/or the computed second measurement, and the approved at least a third measurement.
  • 19. A computer system, comprising: a bus component; a processor component coupled to the bus component and operable for processing data; a non-transitory storage component coupled to the bus component and comprising instructions, which when read and executed by the processor component are operable for performing, controlling or causing a process for evaluating whether an image of an item may be suitable for computing accurate dimension measurements, the process comprising:capturing a first image of the item at a first time, the first image comprising a view of two or more surfaces of the item and of one or more surface features;computing a first measurement of at least one dimension of at least one of the surface features based on the first captured image;capturing a second image of the item at a second time, which is subsequent to the first time, the second image comprising a view of at least one of the two or more surfaces and of at least one of the one or more surface features;computing a second measurement of the at least one dimension of the at least one of the surface features based on the second captured image;comparing the computed second measurement to the computed first measurement;evaluating whether the computed first measurement and/or the computed second measurement may be suitable for computing accurate dimension measurements;capturing at least a third image of the item at a corresponding time, which occurs between the first time and the second time, the at least a third image comprising a view of the at least one of the two or more surfaces;computing at least a third measurement of at least one dimension of at least one of the two or more surfaces based on the captured at least a third image;comparing the at least a third measurement computed in relation to the captured at least a third image to the computed first measurement and/or to the computed second measurement;approving the at least a third measurement, computed in relation to the captured at least a third image, based on the comparison to the computed first measurement and/or the computed second measurement; andcomputing a mean value based on the computed first measurement, and/or the computed second measurement, and the approved at least a third measurement.
US Referenced Citations (752)
Number Name Date Kind
3971065 Bayer Jul 1976 A
4279328 Ahlbom Jul 1981 A
4398811 Nishioka et al. Aug 1983 A
4495559 Gelatt, Jr. Jan 1985 A
4730190 Win et al. Mar 1988 A
4803639 Steele Feb 1989 A
5220536 Stringer et al. Jun 1993 A
5331118 Jensen Jul 1994 A
5359185 Hanson Oct 1994 A
5384901 Glassner Jan 1995 A
5548707 LoNegro et al. Aug 1996 A
5555090 Schmutz Sep 1996 A
5590060 Granville et al. Dec 1996 A
5606534 Stringer et al. Feb 1997 A
5619245 Kessler et al. Apr 1997 A
5655095 LoNegro et al. Aug 1997 A
5661561 Wurz et al. Aug 1997 A
5699161 Woodworth Dec 1997 A
5729750 Ishida Mar 1998 A
5730252 Herbinet Mar 1998 A
5732147 Tao Mar 1998 A
5734476 Dlugos Mar 1998 A
5737074 Haga et al. Apr 1998 A
5767962 Suzuki et al. Jun 1998 A
5831737 Stringer et al. Nov 1998 A
5850370 Stringer et al. Dec 1998 A
5850490 Johnson Dec 1998 A
5869827 Rando Feb 1999 A
5870220 Migdal et al. Feb 1999 A
5900611 Hecht May 1999 A
5923428 Woodworth Jul 1999 A
5929856 LoNegro et al. Jul 1999 A
5938710 Lanza et al. Aug 1999 A
5959568 Woolley Sep 1999 A
5960098 Tao Sep 1999 A
5969823 Wurz et al. Oct 1999 A
5978512 Kim et al. Nov 1999 A
5979760 Freyman et al. Nov 1999 A
5988862 Kacyra Nov 1999 A
5991041 Woodworth Nov 1999 A
6009189 Schaack Dec 1999 A
6025847 Marks Feb 2000 A
6049386 Stringer et al. Apr 2000 A
6053409 Brobst et al. Apr 2000 A
6064759 Buckley et al. May 2000 A
6067110 Nonaka et al. May 2000 A
6069696 McQueen et al. May 2000 A
6137577 Woodworth Oct 2000 A
6177999 Wurz et al. Jan 2001 B1
6232597 Kley May 2001 B1
6236403 Chaki May 2001 B1
6246468 Dimsdale Jun 2001 B1
6333749 Reinhardt et al. Dec 2001 B1
6336587 He et al. Jan 2002 B1
6369401 Lee Apr 2002 B1
6373579 Ober et al. Apr 2002 B1
6429803 Kumar Aug 2002 B1
6457642 Good et al. Oct 2002 B1
6507406 Yagi et al. Jan 2003 B1
6517004 Good et al. Feb 2003 B2
6519550 D'Hooge et al. Feb 2003 B1
6674904 McQueen Jan 2004 B1
6705526 Zhu et al. Mar 2004 B1
6781621 Gobush et al. Aug 2004 B1
6824058 Patel et al. Nov 2004 B2
6832725 Gardiner et al. Dec 2004 B2
6858857 Pease et al. Feb 2005 B2
6971580 Zhu et al. Dec 2005 B2
6995762 Pavlidis et al. Feb 2006 B1
7057632 Yamawaki et al. Jun 2006 B2
7085409 Sawhney et al. Aug 2006 B2
7086162 Tyroler Aug 2006 B2
7104453 Zhu et al. Sep 2006 B1
7128266 Zhu et al. Oct 2006 B2
7137556 Bonner et al. Nov 2006 B1
7159783 Walczyk et al. Jan 2007 B2
7161688 Bonner et al. Jan 2007 B1
7214954 Schopp May 2007 B2
7277187 Smith et al. Oct 2007 B2
7307653 Dutta Dec 2007 B2
7310431 Gokturk et al. Dec 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7527205 Zhu May 2009 B2
7586049 Wurz Sep 2009 B2
7602404 Reinhardt et al. Oct 2009 B1
7639722 Paxton et al. Dec 2009 B1
7726575 Wang et al. Jun 2010 B2
7780084 Zhang et al. Aug 2010 B2
7788883 Buckley et al. Sep 2010 B2
7974025 Topliss Jul 2011 B2
8027096 Feng et al. Sep 2011 B2
8028501 Buckley et al. Oct 2011 B2
8050461 Shpunt et al. Nov 2011 B2
8055061 Katano Nov 2011 B2
8102395 Kondo et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8149224 Kuo et al. Apr 2012 B1
8194097 Xiao et al. Jun 2012 B2
8212889 Chanas et al. Jul 2012 B2
8228510 Pangrazio et al. Jul 2012 B2
8230367 Bell et al. Jul 2012 B2
8294969 Plesko Oct 2012 B2
8305458 Hara Nov 2012 B2
8310656 Zalewski Nov 2012 B2
8313380 Zalewski et al. Nov 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8339462 Stec et al. Dec 2012 B2
8350959 Topliss et al. Jan 2013 B2
8351670 Ijiri et al. Jan 2013 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381976 Mohideen et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8437539 Komatsu et al. May 2013 B2
8441749 Brown et al. May 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8463079 Ackley et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8570343 Halstead Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8576390 Nunnink Nov 2013 B1
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8792688 Unsworth Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8810779 Hilde Aug 2014 B1
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8897596 Passmore Nov 2014 B1
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9014441 Truyen et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9082023 Feng et al. Jul 2015 B2
9082195 Holeva et al. Jul 2015 B2
9142035 Rotman Sep 2015 B1
9233470 Bradski Jan 2016 B1
9299013 Curlander Mar 2016 B1
9424749 Reed et al. Aug 2016 B1
9486921 Straszheim et al. Nov 2016 B1
20010027995 Patel et al. Oct 2001 A1
20010032879 He et al. Oct 2001 A1
20020054289 Thibault et al. May 2002 A1
20020067855 Chiu et al. Jun 2002 A1
20020109835 Goetz Aug 2002 A1
20020118874 Chung et al. Aug 2002 A1
20020158873 Williamson Oct 2002 A1
20020167677 Okada et al. Nov 2002 A1
20020179708 Zhu et al. Dec 2002 A1
20020196534 Lizotte et al. Dec 2002 A1
20030038179 Tsikos et al. Feb 2003 A1
20030053513 Vatan et al. Mar 2003 A1
20030063086 Baumberg Apr 2003 A1
20030091227 Chang et al. May 2003 A1
20030156756 Gokturk et al. Aug 2003 A1
20030197138 Pease et al. Oct 2003 A1
20030225712 Cooper et al. Dec 2003 A1
20030235331 Kawaike et al. Dec 2003 A1
20040008259 Gokturk et al. Jan 2004 A1
20040019274 Galloway et al. Jan 2004 A1
20040024754 Mane et al. Feb 2004 A1
20040066329 Zeitfuss et al. Apr 2004 A1
20040073359 Ichijo et al. Apr 2004 A1
20040083025 Yamanouchi et al. Apr 2004 A1
20040089482 Ramsden et al. May 2004 A1
20040098146 Katae et al. May 2004 A1
20040105580 Hager et al. Jun 2004 A1
20040118928 Patel et al. Jun 2004 A1
20040122779 Stickler et al. Jun 2004 A1
20040155975 Hart et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040184041 Schopp Sep 2004 A1
20040211836 Patel et al. Oct 2004 A1
20040214623 Takahashi et al. Oct 2004 A1
20040233461 Armstrong et al. Nov 2004 A1
20040258353 Gluckstad et al. Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050117215 Lange Jun 2005 A1
20050128196 Popescu et al. Jun 2005 A1
20050168488 Montague Aug 2005 A1
20050211782 Martin Sep 2005 A1
20050264867 Cho et al. Dec 2005 A1
20060047704 Gopalakrishnan Mar 2006 A1
20060078226 Zhou Apr 2006 A1
20060108266 Bowers et al. May 2006 A1
20060112023 Horhann May 2006 A1
20060151604 Zhu et al. Jul 2006 A1
20060159307 Anderson et al. Jul 2006 A1
20060159344 Shao et al. Jul 2006 A1
20060232681 Okada Oct 2006 A1
20060255150 Longacre Nov 2006 A1
20060269165 Viswanathan Nov 2006 A1
20060291719 Ikeda Dec 2006 A1
20070003154 Sun Jan 2007 A1
20070025612 Iwasaki et al. Feb 2007 A1
20070031064 Zhao et al. Feb 2007 A1
20070063048 Havens et al. Mar 2007 A1
20070116357 Dewaele May 2007 A1
20070127022 Cohen et al. Jun 2007 A1
20070143082 Degnan Jun 2007 A1
20070153293 Gruhlke et al. Jul 2007 A1
20070171220 Kriveshko Jul 2007 A1
20070177011 Lewin et al. Aug 2007 A1
20070181685 Zhu et al. Aug 2007 A1
20070237356 Dwinell et al. Oct 2007 A1
20070291031 Konev et al. Dec 2007 A1
20070299338 Stevick et al. Dec 2007 A1
20080013793 Hillis et al. Jan 2008 A1
20080035390 Wurz Feb 2008 A1
20080056536 Hildreth et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080077265 Boyden Mar 2008 A1
20080164074 Wurz Jul 2008 A1
20080204476 Montague Aug 2008 A1
20080212168 Olmstead et al. Sep 2008 A1
20080247635 Davis et al. Oct 2008 A1
20080273191 Kim et al. Nov 2008 A1
20080278790 Boesser et al. Nov 2008 A1
20090059004 Bochicchio Mar 2009 A1
20090095047 Patel Apr 2009 A1
20090134221 Zhu et al. May 2009 A1
20090195790 Zhu et al. Aug 2009 A1
20090225333 Bendall et al. Sep 2009 A1
20090237411 Gossweiler et al. Sep 2009 A1
20090268023 Hsieh Oct 2009 A1
20090272724 Gubler Nov 2009 A1
20090273770 Bauhahn et al. Nov 2009 A1
20090313948 Buckley et al. Dec 2009 A1
20090323084 Dunn et al. Dec 2009 A1
20090323121 Valkenburg Dec 2009 A1
20100035637 Varanasi et al. Feb 2010 A1
20100060604 Zwart Mar 2010 A1
20100091104 Sprigle Apr 2010 A1
20100118200 Gelman May 2010 A1
20100128109 Banks May 2010 A1
20100161170 Siris Jun 2010 A1
20100171740 Andersen Jul 2010 A1
20100172567 Prokoski Jul 2010 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100202702 Benos et al. Aug 2010 A1
20100208039 Stettner Aug 2010 A1
20100211355 Horst et al. Aug 2010 A1
20100217678 Goncalves Aug 2010 A1
20100220849 Colbert et al. Sep 2010 A1
20100220894 Ackley et al. Sep 2010 A1
20100223276 Al-Shameri Sep 2010 A1
20100245850 Lee et al. Sep 2010 A1
20100254611 Arnz Oct 2010 A1
20100303336 Abraham Dec 2010 A1
20100315413 Izadi et al. Dec 2010 A1
20110019155 Daniel et al. Jan 2011 A1
20110040192 Brenner et al. Feb 2011 A1
20110043609 Choi et al. Feb 2011 A1
20110099474 Grossman et al. Apr 2011 A1
20110169999 Grunow et al. Jul 2011 A1
20110188054 Petronius et al. Aug 2011 A1
20110188741 Sones et al. Aug 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20110234389 Mellin Sep 2011 A1
20110235854 Berger Sep 2011 A1
20110249864 Venkatesan et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110279916 Brown et al. Nov 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110286628 Goncalves et al. Nov 2011 A1
20110288818 Thierman Nov 2011 A1
20110301994 Tieman Dec 2011 A1
20110303748 Lemma et al. Dec 2011 A1
20110310227 Konertz Dec 2011 A1
20120024952 Chen Feb 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057345 Kuchibhotla Mar 2012 A1
20120067955 Rowe Mar 2012 A1
20120074227 Ferren et al. Mar 2012 A1
20120081714 Pangrazio et al. Apr 2012 A1
20120111946 Golant May 2012 A1
20120113223 Hilliges et al. May 2012 A1
20120113250 Farlotti et al. May 2012 A1
20120126000 Kunzig et al. May 2012 A1
20120140300 Freeman Jun 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120179665 Baarman et al. Jul 2012 A1
20120185094 Rosenstein et al. Jul 2012 A1
20120190386 Anderson Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120218436 Rodriguez et al. Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20120224026 Bayer et al. Sep 2012 A1
20120236288 Stanley Sep 2012 A1
20120242852 Hayward et al. Sep 2012 A1
20120256901 Bendall Oct 2012 A1
20120262558 Boger et al. Oct 2012 A1
20120280908 Rhoads et al. Nov 2012 A1
20120282905 Owen Nov 2012 A1
20120282911 Davis et al. Nov 2012 A1
20120284012 Rodriguez et al. Nov 2012 A1
20120284122 Brandis Nov 2012 A1
20120284339 Rodriguez Nov 2012 A1
20120284593 Rodriguez Nov 2012 A1
20120293610 Doepke et al. Nov 2012 A1
20120294549 Doepke Nov 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120300991 Free Nov 2012 A1
20120313848 Galor et al. Dec 2012 A1
20120314030 Datta Dec 2012 A1
20120314058 Bendall et al. Dec 2012 A1
20120316820 Nakazato et al. Dec 2012 A1
20130038881 Pesach et al. Feb 2013 A1
20130038941 Pesach et al. Feb 2013 A1
20130043312 Van Horn Feb 2013 A1
20130050426 Sarmast et al. Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130094069 Lee et al. Apr 2013 A1
20130101158 Lloyd et al. Apr 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130200150 Reynolds et al. Aug 2013 A1
20130201288 Billerbeck et al. Aug 2013 A1
20130208164 Cazier et al. Aug 2013 A1
20130211790 Loveland et al. Aug 2013 A1
20130223673 Davis et al. Aug 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130291998 Konnerth Nov 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedrao Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308013 Li et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130329012 Bartos Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130342343 Harring et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140021259 Moed et al. Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140031665 Pinto et al. Jan 2014 A1
20140034731 Gao et al. Feb 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140058612 Wong et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067104 Osterhout Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140091147 Evans et al. Apr 2014 A1
20140097238 Ghazizadeh Apr 2014 A1
20140098091 Hori Apr 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140104664 Lee Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140135984 Hirata May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140139654 Takahashi May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140152975 Ko Jun 2014 A1
20140158468 Adami Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168380 Heidemann et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140192187 Atwell et al. Jul 2014 A1
20140192551 Masaki Jul 2014 A1
20140197238 Liu et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140203087 Smith et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140205150 Ogawa Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140225918 Mittal et al. Aug 2014 A1
20140225985 Klusza et al. Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140240464 Lee Aug 2014 A1
20140247279 Nicholas et al. Sep 2014 A1
20140247280 Nicholas et al. Sep 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140267609 Laffargue Sep 2014 A1
20140268093 Tohme et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140270361 Amma et al. Sep 2014 A1
20140278387 DiGregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140306833 Ricci Oct 2014 A1
20140307855 Withagen et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140313527 Askan Oct 2014 A1
20140319219 Liu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140320408 Zagorsek et al. Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140347553 Ovsiannikov et al. Nov 2014 A1
20140350710 Gopalakrishnan et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van Horn et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20140379613 Nishitani et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009301 Ribnick et al. Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150036876 Marrion et al. Feb 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150062369 Gehring et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150071819 Todeschini Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150116498 Vartiainen et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150163474 You Jun 2015 A1
20150169925 Chen et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150193645 Colavito et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150204662 Kobayashi et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150213647 Laffargue et al. Jul 2015 A1
20150229838 Hakim et al. Aug 2015 A1
20150269403 Lei et al. Sep 2015 A1
20150276379 Ni et al. Oct 2015 A1
20150301181 Herschbach Oct 2015 A1
20150308816 Laffargue et al. Oct 2015 A1
20150325036 Lee Nov 2015 A1
20150355470 Herschbach Dec 2015 A1
20160048725 Holz et al. Feb 2016 A1
20160063429 Varley et al. Mar 2016 A1
20160090283 Svensson et al. Mar 2016 A1
20160090284 Svensson et al. Mar 2016 A1
20160138247 Conway et al. May 2016 A1
20160138248 Conway et al. May 2016 A1
20160138249 Conway et al. May 2016 A1
20160169665 Deschenes et al. Jun 2016 A1
20160187186 Coleman et al. Jun 2016 A1
20160187210 Coleman et al. Jun 2016 A1
20160191801 Sivan Jun 2016 A1
20160202478 Masson et al. Jul 2016 A1
20170115490 Hsieh et al. Apr 2017 A1
Foreign Referenced Citations (47)
Number Date Country
2004212587 Apr 2005 AU
3335760 Apr 1985 DE
10210813 Oct 2003 DE
102007037282 Mar 2008 DE
1111435 Jun 2001 EP
1443312 Aug 2004 EP
2286932 Feb 2011 EP
2381421 Oct 2011 EP
2533009 Dec 2012 EP
2722656 Apr 2014 EP
2779027 Sep 2014 EP
2833323 Feb 2015 EP
2843590 Mar 2015 EP
2845170 Mar 2015 EP
2966595 Jan 2016 EP
3006893 Mar 2016 EP
3012601 Mar 2016 EP
3007096 Apr 2016 EP
2503978 Jan 2014 GB
2531928 May 2016 GB
H04129902 Apr 1992 JP
2008210276 Sep 2008 JP
2014210646 Nov 2014 JP
20110013200 Feb 2011 KR
20110117020 Oct 2011 KR
20120028109 Mar 2012 KR
9640452 Dec 1996 WO
0077726 Dec 2000 WO
0114836 Mar 2001 WO
2006095110 Sep 2006 WO
2007015059 Feb 2007 WO
2011017241 Feb 2011 WO
2012175731 Dec 2012 WO
2013021157 Feb 2013 WO
2013033442 Mar 2013 WO
2013163789 Nov 2013 WO
2013166368 Nov 2013 WO
2013173985 Nov 2013 WO
2013184340 Dec 2013 WO
2014019130 Feb 2014 WO
2014102341 Jul 2014 WO
2014110495 Jul 2014 WO
2014149702 Sep 2014 WO
2014151746 Sep 2014 WO
2015006865 Jan 2015 WO
2016020038 Feb 2016 WO
2016061699 Apr 2016 WO
Non-Patent Literature Citations (173)
Entry
U.S. Appl. No. 14/519,179 for Dimensioning System With Multipath Interference Mitigation, filed Oct. 21, 2014 (Thuries et al.); 30 pages.
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers, filed Apr. 29, 2014, (Ackley et al.); 39 pages.
U.S. Appl. No. 14/453,019 for Dimensioning System With Guided Alignment, filed Aug. 6, 2014 (Li et al.); 31 pages.
U.S. Appl. No. 14/452,697 for Interactive Indicia Reader , filed Aug. 6, 2014, (Todeschini); 32 pages.
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering, filed Apr. 1, 2014 (Van Horn et al.); 36 pages.
U.S. Appl. No. 14/715,916 for Evaluating Image Values, filed May 19, 2015 (Ackley); 60 pages.
U.S. Appl. No. 14/513,808 for Identifying Inventory Items in a Storage Facility, filed Oct. 14, 2014 (Singel et al.); 51 pages.
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages.
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages.
U.S. Appl. No. 14/483,056 for Variable Depth of Field Barcode Scanner, filed Sep. 10, 2014 (McCloskey et al.); 29 pages.
U.S. Appl. No. 14/531,154 for Directing an Inspector Through an Inspection, filed Nov. 3, 2014 (Miller et al.); 53 pages.
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device, filed Apr. 27, 2015 (Schulte et al.); 19 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages.
U.S. Appl. No. 14/340,627 for an Axially Reinforced Flexible Scan Element, filed Jul. 25, 2014 (Reublinger et al.); 41 pages.
U.S. Appl. No. 14/676,327 for Device Management Proxy for Secure Devices, filed Apr. 1, 2015 (Yeakley et al.); 50 pages.
U.S. Appl. No. 14/257,364 for Docking System and Method Using Near Field Communication, filed Apr. 21, 2014 (Showering); 31 pages.
U.S. Appl. No. 14/327,827 for a Mobile-Phone Adapter for Electronic Transactions, filed Jul. 10, 2014 (Hejl); 25 pages.
U.S. Appl. No. 14/334,934 for a System and Method for Indicia Verification, filed Jul. 18, 2014 (Hejl); 38 pages.
U.S. Appl. No. 29/530,600 for Cyclone, filed Jun. 18, 2015 (Vargo et al); 16 pages.
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface, filed May 8, 2015 (Pape); 47 pages.
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control, filed May 21, 2014 (Liu et al.); 31 pages.
U.S. Appl. No. 14/619,093 for Methods for Training a Speech Recognition System, filed Feb. 11, 2015 (Pecorari); 35 pages.
U.S. Appl. No. 29/524,186 for Scanner, filed Apr. 17, 2015 (Zhou et al.); 17 pages.
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat, filed May 6, 2015 (Hussey et al.); 42 pages.
U.S. Appl. No. 14/614,706 for Device for Supporting an Electronic Tool on a User's Hand, filed Feb. 5, 2015 (Oberpriller et al.); 33 pages.
U.S. Appl. No. 14/628,708 for Device, System, and Method for Determining the Status of Checkout Lanes, filed Feb. 23, 2015 (Todeschini); 37 pages.
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning, filed May 5, 2015 (Charpentier et al.); 60 pages.
U.S. Appl. No. 14/529,563 for Adaptable Interface for a Mobile Computing Device, filed Oct. 31, 2014 (Schoon et al.); 36 pages.
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle, filed May 6, 2015 (Fitch et al.); 44 pages.
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display, filed May 19, 2015 (Venkatesha et al.); 35 pages.
U.S. Appl. No. 14/695,364 for Medication Management System, filed Apr. 24, 2015 (Sewell et al.); 44 pages.
U.S. Appl. No. 14/664,063 for Method and Application for Scanning a Barcode With a Smart Device While Continuously Running and Displaying an Application on the Smart Device Display, filed Mar. 20, 2015 (Todeschini); 37 pages.
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System, filed Jun. 10, 2015 (Todeschini); 39 pages.
U.S. Appl. No. 14/527,191 for Method and System for Recognizing Speech Using Wildcards in an Expected Response, filed Oct. 29, 2014 (Braho et al.); 45 pages.
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device, filed May 1, 2015 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/535,764 for Concatenated Expected Responses for Speech Recognition, filed Nov. 7, 2014 (Braho et al.); 51 pages.
U.S. Appl. No. 14/687,289 for System for Communication Via a Peripheral Hub, filed Apr. 15, 2015 (Kohtz et al.); 37 pages.
U.S. Appl. No. 14/747,197 for Optical Pattern Projector, filed Jun. 23, 2015 (Thuries et al.); 33 pages.
U.S. Appl. No. 14/674,329 for Aimer for Barcode Scanning, filed Mar. 31, 2015 (Bidwell); 36 pages.
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions, filed May 4, 2015 (Young et al.); 70 pages.
U.S. Appl. No. 29/529,441 for Indicia Reading Device, filed Jun. 8, 2015 (Zhou et al.); 14 pages.
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner, filed Jun. 23, 2015 (Jovanovski et al.); 40 pages.
U.S. Appl. No. 14/740,320 for Tactile Switch for a Mobile Electronic Device, filed Jun. 16, 2015 (Barndringa); 38 pages.
U.S. Appl. No. 14/695,923 for Secure Unattended Network Authentication, filed Apr. 24, 2015 (Kubler et al.); 52 pages.
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner, filed Jun. 16, 2015 (Ackley et al.); 63 pages.
Lloyd, Ryan and Scott McCloskey, “Recognition of 3D Package Shapes for Singe Camera Metrology” IEEE Winter Conference on Applications of computer Visiona, IEEE, Mar. 24, 2014, pp. 99-106, {retrieved on Jun. 16, 2014}, Authors are employees of common Applicant.
Search Report and Opinion in related GB Application No. 1517112.7, Dated Feb. 19, 2016, 6 Pages.
European Search Report for Related EP Application No. 15189214.8, dated Mar. 3, 2016, 9 pages.
“A one-step intrinsic and extrinsic calibration method for laster line scanner operation in coordinate measuring machines”, dated Apr. 1, 2009, Measurement Science and Technology, IOP, Bristol, GB, vol. 20, No. 4; 12 pages.
Search Report and Opinion in Related EP Application 15176943.7, Dated Jan. 8, 2016, 8 pages.
European Search Report for related EP Application No. 15188440.0, Dated Mar. 8, 2016, 8 pages.
United Kingdom Search Report in related application GB1517842.9, dated Apr. 8, 2016, 8 pages.
Great Britain Search Report for related Application On. GB1517843.7, Dated Feb. 23, 2016; 8 pages.
European Extended search report in related EP Application No. 15190306.9, Dated Sep. 9, 2016, 15 pages.
Collings et al., “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices”, Journal of Display Technology, IEEE Service Center, New, York, NY, US, vol. 7, No. 3, Mar. 1, 2011 (Mar. 1, 2011), pp. 112-119.
Second Chinese Office Action in related CN Application No. 201520810685.6, Dated Mar. 22, 2016, 5 pages, no references.
European Search Report in related EP Application No. 15190315.0, Dated Apr. 1, 2016, 7 pages.
Second Chinese Office Action in related CN Application No. 2015220810562.2, Dated Mar. 22, 2016, 5 pages. English Translation provided [No references].
European Search Report for related Application EP 15190249.1, Dated Mar. 22, 2016, 7 pages.
Second Chinese Office Action in related CN Application No. 201520810313.3, Dated Mar. 22, 2016, 5 pages. English Translation provided [No references].
European Search Report for related EP Application No. 16152477.2, dated May 24, 2016, 8 pages.
European Partial Search Report for related EP Application No. 15190306.9, dated May 6, 2016, 8 pages.
Mike Stensvold, “Get the Most Out of Variable Aperture Lenses”, published on www.OutdoorPhotogrpaher.com; dated Dec. 7, 2010; 4 pages, [As noted on search report retrieved from URL: http;//www.outdoorphotographer.com/gear/lenses/get-the-most-out-ofvariable-aperture-lenses.html on Feb. 9, 2016].
M.Zahid Gurbuz, Selim Akyokus, Ibrahim Emiroglu, Aysun Guran, An Efficient Algorithm for 3D Rectangular Box Packing, 2009, Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, pp. 131-134.
Office Action in counterpart European Application No. 13186043.9 dated Sep. 30, 2015, pp. 1-7.
Lloyd et al., “System for Monitoring the Condition of Packages Throughout Transit”, U.S. Appl. No. 14/865,575, filed Sep. 25, 2015, 59 pages, not yet published.
James Chamberlin, “System and Method for Picking Validation”, U.S. Appl. No. 14/865,797, filed Sep. 25, 2015, 44 pages, not yet published.
Jovanovski et al., “Image-Stitching for Dimensioning”, U.S. Appl. No. 14/870,488, filed Sep. 30, 2015, 45 pages, not yet published.
Todeschini et al.; “Depth Sensor Based Auto-Focus System for an Indicia Scanner,” U.S. Appl. No. 14/872,176, filed Oct. 1, 2015, 44 pages, not yet published.
Wikipedia, “3D projection” Downloaded on Nov. 25, 2015 from www.wikipedia.com, 4 pages.
McCloskey et al., “Methods for Improving the Accuracy of Dimensioning-System Measurements,” U.S. Appl. No. 14/873,613, filed Sep. 2, 2015, 47 pages, not yet published.
Search Report in counterpart European Application No. 15182675.7, Dated Dec. 4, 2015, 10 pages.
McCloskey et al., “Image Transformation for Indicia Reading,” U.S. Appl. No. 14/982,032, filed Oct. 30, 2015, 48 pages, not yet published.
Great Britain Combined Search and Examination Report in related Application GB1517842.9, Dated Apr. 8, 2016, 8 pages.
Peter Clarke, Actuator Developer Claims Anti-Shake Breakthrough for Smartphone Cams, Electronic Engineering Times, p. 24, May 16, 2011.
Spiller, Jonathan; Object Localization Using Deformable Templates, Master's Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2007; 74 pages.
Leotta, Matthew J.; Joseph L. Mundy; Predicting High Resolution Image Edges with a Generic, Adaptive, 3-D Vehicle Model; IEEE Conference on Computer Vision and Pattern Recognition, 2009; 8 pages.
European Search Report for application No. EP13186043 dated Feb. 26, 2014 (now EP2722656 (Apr. 23, 2014)); Total pp. 7.
International Search Report for PCT/US2013/039438 (WO2013166368), Oct. 1, 2013, 7 pages.
U.S. Appl. No. 14/453,019, not yet published, filed Aug. 6, 2014, Hand Held Products Inc., Dimensioning System With Guided Alignment: 31 pages.
European Office Action for application EP 13186043, dated Jun. 12, 2014(now EP2722656 (Apr. 23, 2014)), Total of 6 pages.
Zhang, Zhaoxiang; Tieniu Tan, Kaiqi Huang, Yunhong Wang; Three-Dimensional Deformable-Model-based Localization and Recognition of Road Vehicles; IEEE Transactions on Image Processing, vol. 21, No. 1, Jan. 2012, 13 pages.
U.S. Appl. No. 14/801,023, Tyler Doomenbal et al., filed Jul. 16, 2015, not published yet, Adjusting Dimensioning Results Using Augmented Reality, 39 pages.
Wikipedia, YUV description and definition, downloaded from http://www.wikipeida.org/wiki/YUV on Jun. 29, 2012, 10 pages.
YUV Pixel Format, downloaded from http://www.fource.org/yuv.php on Jun. 29, 2012; 13 pages.
YUV to RGB Conversion, downloaded from http://www.fource.org/fccyvrgb.php on Jun. 29, 2012; 5 pages.
Benos et al., “Semi-Automatic Dimensioning with Imager of a Portable Device,” U.S. Appl. No. 61/149,912, filed Feb. 4, 2009 (now expired), 56 pages.
Dimensional Weight—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensional—weight, download date Aug. 1, 2008, 2 pages.
Dimensioning—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensioning, download date Aug. 1, 2008, 1 page.
European Patent Office Action for Application No. 14157971.4-1906, Dated Jul. 16, 2014, 5 pages.
European Patent Search Report for Application No. 14157971.4-1906, Dated Jun. 30, 2014, 6 pages.
Caulier, Yannick et al., “A New Type of Color-Coded Light Structures for an Adapted and Rapid Determination of Point Correspondences for 3D Reconstruction.” Proc. of SPIE, vol. 8082 808232-3; 2011; 8 pages.
Kazantsev, Aleksei et al. “Robust Pseudo-Random Coded Colored STructured Light Techniques for 3D Object Model Recovery”; ROSE 2008 IEEE International Workshop on Robotic and Sensors Environments (Oct. 17-18, 2008) , 6 pages.
Mouaddib E. et al. “Recent Progress in Structured Light in order to Solve the Correspondence Problem in Stereo Vision” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Apr. 1997; 7 pages.
Proesmans, Marc et al. “Active Acquisition of 3D Shape for Moving Objects” 0-7803-3258-X/96 1996 IEEE; 4 pages.
Salvi, Joaquim et al. “Pattern Codification Strategies in Structured Light Systems” published in Pattern Recognition; The Journal of the Pattern Recognition Society, Received Mar. 6, 2003; Accepted Oct. 2, 2003; 23 pages.
EP Search and Written Opinion Report in related matter EP Application No. 14181437.6, Dated Mar. 26, 2015, 7 pages.
Hetzel, Gunter et al.; “3D Object Recognition from Range Images using Local Feature Histograms,”, Proceedings 2001 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai, Hawaii, Dec. 8-14, 2001; pp. 394-399, XP010584149, ISBN: 978-0-7695-1272-3.
U.S. Appl. No. 14/519,179, Serge Thuries et al., filed Oct. 21, 2014, not published yet. Dimensioning System With Multipath Interference Mitigation; 40 pages.
U.S. Appl. No. 14/519,249, H. Sprague Ackley et al., filed Oct. 21, 2014, not published yet. Handheld Dimensioning System With Measurement-Conformance Feedback; 36 pages.
U.S. Appl. No. 14/519,233, Franck Laffargue et al., filed Oct. 21, 2014, not published yet. Handheld Dimensioner With Data-Quality Indication; 34 pages.
U.S. Appl. No. 14/519,211, H. Sprague Ackley et al., filed Oct. 21, 2014, System and Method for Dimensioning; not published yet. 33 pages.
U.S. Appl. No. 14/519,195, Franck Laffargue et al., filed Oct. 21, 2014, not published yet. Handheld Dimensioning System With Feedback; 35 pages.
U.S. Appl. No. 14/800,757 , Eric Todeschini, filed Jul. 16, 2015, not published yet, Dimensioning and Imaging Items, 80 pages.
U.S. Appl. No. 14/747,197, Serge Thuries et al., filed Jun. 23, 2015, not published yet, Optical Pattern Projector; 33 pages.
U.S. Appl. No. 14/747,490, Brian L. Jovanovski et al., filed Jun. 23, 2015, not published yet, Dual-Projector Three-Dimensional Scanner; 40 pages.
U.S. Appl. No. 14/715,916, H. Sprague Ackley, filed May 19, 2015, not published yet, Evaluating Image Values; 54 pages.
U.S. Appl. No. 14/793,149, H. Sprague Ackley, filed Jul. 7, 2015, not published yet, Mobile Dimensioner Apparatus for Use in Commerce; 57 pages.
U.S. Appl. No. 14/740,373, H. Sprague Ackley et al., filed Jun. 16, 2015, not published yet, Calibrating a Volume Dimensioner; 63 pages.
Intention to Grant in counterpart European Application No. 14157971.4 dated Apr. 14, 2015, pp. 1-8.
Decision to Grant in counterpart European Application No. 14157971.4 dated Aug. 6, 2015, pp. 1-2.
Leotta, Matthew, Generic, Deformable Models for 3-D Vehicle Surveillance, May 2010, Doctoral Dissertation, Brown University, Providence RI, 248 pages.
Ward, Benjamin, Interactive 3D Reconstruction from Video, Aug. 2012, Doctoral Thesis, Univesity of Adelaide, Adelaide, South Australia, 157 pages.
Hood, Frederick W.; William A. Hoff, Robert King, Evaluation of an Interactive Technique for Creating Site Models from Range Data, Apr. 27-May 1, 1997 Proceedings of the ANS 7th Topical Meeting on Robotics & Remote Systems, Augusta GA, 9 pages.
Gupta, Alok; Range Image Segmentation for 3-D Objects Recognition, May 1988, Technical Reports (CIS), Paper 736, University of Pennsylvania Department of Computer and Information Science, retrieved from Http://repository.upenn.edu/cis—reports/736, Accessed May 31, 2015, 157 pages.
Reisner-Kollmann,Irene; Anton L. Fuhrmann, Werner Purgathofer, Interactive Reconstruction of Industrial Sites Using Parametric Models, May 2010, Proceedings of the 26th Spring Conference of Computer Graphics SCCG ″10, 8 pages.
Drummond, Tom; Roberto Cipolla, Real-Time Visual Tracking of Complex Structures, Jul. 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 7; 15 pages.
European extended Search report in related EP Application 13785171.3, dated Sep. 19, 2016, 8 pages.
El-Hakim et al., “Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering”, published in Optical Engineering, Society of Photo-Optical Instrumentation Engineers, vol. 32, No. 9, Sep. 1, 1993, 15 pages.
El-Hakim et al., “A Knowledge-based Edge/Object Measurement Technique”, Retrieved from the Internet: URL: https://www.researchgate.net/profile/Sabry—E1 -Hakim/publication/44075058—A—Knowledge—Based—EdgeObject—Measurement—Technique/links/00b4953b5faa7d3304000000.pdf [retrieved on Jul. 15, 2016] dated Jan. 1, 1993, 9 pages.
European Search Report from related EP Application No. 16168216.6, Dated Oct. 20, 2016, 8 pages.
European Extended Search Report in Related EP Application No. 16172995.9, Dated Aug. 22, 2016, 11 pages.
United Kingdom combined Search and Examination Report in related GB Application No. 1607394.2, Dated Oct. 19, 2016, 7 pages.
European Extended Search Report in related EP Application No. 16173429.8, dated Dec. 1, 2016, 8 pages.
Extended European Search Report in related EP Application No. 16175410.0, dated Dec. 13, 2016, 5 pages.
Padzensky, Ron; “Augmera; Gesture Control”, Dated Apr. 18, 2015, 15 pages.
Grabowski, Ralph; “New Commands in AutoCADS 2010: Part 11 Smoothing 3D Mesh Objects” Dated 2011, 6 pages.
Theodoropoulos, Gabriel; “Using Gesture Recognizers to Handle Pinch, Rotate, Pan, Swipe, and Tap Gestures” dated Aug. 25, 2014, 34 pages.
European Extended Search Report in related EP Application No. 16190017.0, dated Jan. 4, 2017, 6 pages.
European Examination report in related EP Application No. 14181437.6, dated Feb. 8, 2017, 5 pages.
Wikipedia, “Microlens”, Downloaded from https://en.wikipedia.org/wiki/Microlens, pp. 3. {Feb. 9, 2017 Final Office Action in related matter}.
Fukaya et al., “Characteristics of Speckle Random Pattern and Its Applications”, pp. 317-327, Nouv. Rev. Optique, t.6, n.6. (1975) {Feb. 9, 2017 Final Office Action in related matter: downloaded Mar. 2, 2017 from http://iopscience.iop.org}.
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Appl. No. 14/462,801 for Mobile Computing Device With Data Cognition Software, filed Aug. 19, 2014 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/596,757 for System and Method for Detecting Barcode Printing Errors, filed Jan. 14, 2015 (Ackley); 41 pages.
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages.
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications, filed Mar. 7, 2014 (Feng et al.); 42 pages.
U.S. Appl. No. 14/662,922 for Multifunction Point of Sale System, filed Mar. 19, 2015 (Van Horn et al.); 41 pages.
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture, filed Jul. 30, 2014 (Good et al.); 37 pages.
U.S. Appl. No. 29/528,165 for In-Counter Barcode Scanner, filed May 27, 2015 (Oberpriller et al.); 13 pages.
U.S. Appl. No. 29/528,890 for Mobile Computer Housing, filed Jun. 2, 2015 (Fitch et al.); 61 pages.
U.S. Appl. No. 14/614,796 for Cargo Apportionment Techniques, filed Feb. 5, 2015 (Morton et al.); 56 pages.
U.S. Appl. No. 29/516,892 for Table Computer, filed Feb. 6, 2015 (Bidwell et al.); 13 pages.
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer, filed Apr. 7, 2015 (Bidwell et al.); 17 pages.
U.S. Appl. No. 14/578,627 for Safety System and Method, filed Dec. 22, 2014 (Ackley et al.); 32 pages.
U.S. Appl. No. 14/573,022 for Dynamic Diagnostic Indicator Generation, filed Dec. 17, 2014 (Goldsmith); 43 pages.
U.S. Appl. No. 14/529,857 for Barcode Reader With Security Features, filed Oct. 31, 2014 (Todeschini et al.); 32 pages.
U.S. Appl. No. 14/519,195 for Handheld Dimensioning System With Feedback, filed Oct. 21, 2014 (Laffargue et al.); 39 pages.
U.S. Appl. No. 14/519,211 for System and Method for Dimensioning, filed Oct. 21, 2014 (Ackley et al.); 33 pages.
U.S. Appl. No. 14/519,233 for Handheld Dimensioner With Data-Quality Indication, filed Oct. 21, 2014 (Laffargue et al.); 36 pages.
U.S. Appl. No. 14/533,319 for Barcode Scanning System Using Wearable Device With Embedded Camera, filed Nov. 5, 2014 (Todeschini); 29 pages.
U.S. Appl. No. 14/748,446 for Cordless Indicia Reader With a Multifunction Coil for Wireless Charging and EAS Deactivation, filed Jun. 24, 2015 (Xie et al.); 34 pages.
U.S. Appl. No. 29/528,590 for Electronic Device, filed May 29, 2015 (Fitch et al.); 9 pages.
U.S. Appl. No. 14/519,249 for Handheld Dimensioning System With Measurement-Conformance Feedback, filed Oct. 21, 2014 (Ackley et al.); 36 pages.
U.S. Appl. No. 29/519,017 for Scanner, filed Mar. 2, 2015 (Zhou et al.); 11 pages.
U.S. Appl. No. 14/398,542 for Portable Electronic Devices Having a Separate Location Trigger Unit for Use in Controlling an Application Unit, filed Nov. 3, 2014 (Bian et al.); 22 pages.
U.S. Appl. No. 14/405,278 for Design Pattern for Secure Store, filed Mar. 9, 2015 (Zhu et al.); 23 pages.
U.S. Appl. No. 14/590,024 for Shelving and Package Locating Systems for Delivery Vehicles, filed Jan. 6, 2015 (Payne); 31 pages.
U.S. Appl. No. 14/568,305 for Auto-Contrast Viewfinder for an Indicia Reader, filed Dec. 12, 2014 (Todeschini); 29 pages.
U.S. Appl. No. 29/526,918 for Charging Base, filed May 14, 2015 (Fitch et al.); 10 pages.
U.S. Appl. No. 14/580,262 for Media Gate for Thermal Transfer Printers, filed Dec. 23, 2014 (Bowles); 36 pages.
European extended search report in related EP Application 16190833.0, dated Mar. 9, 2017, 8 pages.
United Kingdom Combined Search and Examination Report in related Application No. GB1620676.5, dated Mar. 8, 2017, 6 pages.
European Exam Report in related, EP Application No. 16168216.6, dated Feb. 27, 2017, 5 pages.
Thorlabs, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from https://www.thorlabs.com/newgrouppage9.cfm?objectgroup—id=6430, 4 pages.
Eksma Optics, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from http://eksmaoptics.com/optical-systems/f-theta-lenses/f-theta-lens-for-1064-nm/, 2 pages.
Sill Optics, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, http://www.silloptics.de/1/products/sill-encyclopedia/laser-optics/f-theta-lenses/, 4 pages.
European Exam Report in related EP Application No. 15176943.7, dated Apr. 12, 2017, 6 pages.
European Exam Report in related EP Application No. 15188440.0, dated Apr. 21, 2017, 4 pages.
Ralph Grabowski, “Smothing 3D Mesh Objects,” New Commands in AutoCAD 2010: Part 11, Examiner Cited art in related matter Non Final Office Action dated May 19, 2017; 6 pages.
Chinese Notice of Reexamination in related Chinese Application 201520810313.3, dated Mar. 14, 2017, English Computer Translation provided, 7 pages.
Extended European search report in related EP Application 16199707.7, dated Apr. 10, 2017, 15 pages.
Ulusoy et al., One-Shot Scanning using De Bruijn Spaced Grids, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 7 pages.
Related Publications (1)
Number Date Country
20160343176 A1 Nov 2016 US