This patent application claims priority from German patent application 10 2008 025 974.8 filed May 30, 2008, which is hereby incorporated by reference in its entirety.
The present invention relates to the evaluation of mass spectra from mass spectrometers in which ions are excited to mass-specific oscillating or orbiting motions, and the ion motion is detected as a time signal.
In general, it is understood that a Fourier transform mass spectrometer (“FT-MS”) is an ion cyclotron resonance mass spectrometer (“ICR-MS”) where ion packets are excited to mass-specific cyclotron motions in a strong magnetic field, and the excited ions generate image currents in detection electrodes. The image currents are recorded as time signals (“transients”) and converted into a frequency spectrum by a Fourier transformation. The frequency spectrum may be converted into a mass spectrum since the cyclotron frequency is inversely proportional to the mass of an ion. The ions are trapped, radially by a magnetic field and axially by electric potentials, in an ion cyclotron resonance (“ICR”) measuring cell.
The magnetic field of an ICR mass spectrometer is typically generated by superconducting solenoids at liquid helium temperatures, and reaches field strengths of up to 15 tesla. As a result, ICR mass spectrometers have the best mass resolution and mass accuracy of all mass spectrometers since the magnetic field of a superconducting solenoid is stable, and frequency measurement is one of the most accurate prior art measurement methods. The cyclotron frequency may be shifted by space charge in the ICR measuring cell, which is generated by the ions. Simulations show that ion packets orbiting on cyclotron trajectories influence one another and, therefore, change shape in the course of the measurement as a result of interactions within individual ion packets and between different ion packets. The space charge, and thus the cyclotron frequencies of the ion packets, may be subject to a temporal drift during the measuring time. The electric potentials for axial trapping of the ions in the measuring cell also influence the cyclotron frequency and must be constant, at least during the measuring time. All types of parameter drifts during the measuring time lead to temporal frequency modulations in the ion current signal. This temporal frequency modulation causes the line widths in the frequency spectrum to increase (i.e., “smearing” the line), reducing the mass resolution. As a result, the smeared line may cause inaccurate mass determinations.
There are other classes of mass spectrometers where ion packets are stored in one spatial direction in a harmonic parabolic potential, and in the direction perpendicular to the harmonic parabolic potential by radial forces. The radial forces may be, for example, magnetic fields, pseudopotentials generated by RF fields, or electrostatic fields between central electrodes and outer shell electrodes. These types of mass spectrometers detect an oscillatory motion in the harmonic potential, in contrast to ICR mass spectrometers which detect the cyclotron motion. If the harmonic potential is spatially homogenous at right angles to the oscillatory motion, an ion packet containing ions of the same mass will keep its shape. Ions of different masses oscillate as coherent ion packets at different frequencies and induce image currents in detection electrodes. The image currents are detected with high time resolution. In ICR mass spectrometers, the recorded time signal is converted into a frequency spectrum using a Fourier transformation and changed into a frequency mass spectrum by a corresponding conversion of the frequency axis.
These classes of “oscillation mass spectrometers” includes the following embodiments:
The ICR mass spectrometers and the oscillation mass spectrometers hereinafter will be referred to jointly as “frequency mass spectrometers” since, in both types, the motion of ion packets detected is temporally resolved (e.g., by image currents) and the recorded time signal is transformed into a frequency spectrum. The time signal is a superposition of different frequency components (i.e., time signals with different frequencies which are separated in the frequency spectrum) when ions of different masses are present.
The mass resolution of a frequency mass spectrometer increases—at least in theory—in proportion to the measuring time. In the Orbitrap® spectrometers and other commercially available ICR mass spectrometers, the measuring time for a time signal is typically between one tenth ( 1/10) of a second and a few seconds. These measuring times produce a high mass resolution in the order of R=m/Δm=100,000 for a given mass m=200 Dalton, where “m” is the mass and “Δm” is the full width at half-maximum (“FWHM”) of a mass signal. Typically, the mass resolution decreases with increasing ion mass for all frequency mass spectrometers, although in different proportions.
Frequency mass spectrometers generally require a strong enough vacuum such that the ion packets do not spread out by diffusion during the measuring time as a result of undergoing a large number of collisions. Furthermore, the instrument parameters of frequency mass spectrometers, such as the electric potentials at the electrodes or currents generating magnetic fields, and also internal parameters, such as the space charge or electrostatic charges on electrodes, must be as constant as possible during the measuring time to avoid frequency shifts. Any temporal parameter drift may cause broadening and shifting of the peaks in the frequency spectrum, which limits the mass resolution or the mass accuracy of the mass spectrum. One consequence of the relatively long measuring times is that it is difficult to keep all instrument parameters sufficiently constant. Furthermore, it may only be possible to influence internal parameters to a limited extent, if at all (e.g., for a space charge which changes over time as a result of interactions within ion packets or between ion packets).
According to one aspect of the invention, a method for detecting a parameter drift within a time signal of a frequency mass spectrometer includes determining an instantaneous frequency as a function of time of at least one frequency component of the time signal, and analyzing the drift of the instantaneous frequency by time.
According to another aspect of the invention, a method for detecting a parameter drift within a time signal of a frequency mass spectrometer includes transforming the time signal into a frequency spectrum, and analyzing the phase spectrum of at least one frequency component to determine whether the phase spectrum of the frequency component differs from the phase spectrum of a harmonic time signal.
According to yet another aspect of the invention, a method for determining and correcting a frequency mass spectrum includes recording a time signal with a frequency mass spectrometer, determining the instantaneous frequency of a frequency component as a function of time, transforming the time axis of the time signal such that the frequency component of the transformed time signal has an instantaneous frequency with a relatively constant profile in time, and converting the transformed time signal into a frequency mass spectrum.
In general, detecting a temporal parameter drift includes an analysis of a frequency component of the time signal in the time domain, or of the phase of a frequency component in the frequency domain, to determine whether the instantaneous frequency is constant during the recording of the time signal, or whether the phase spectrum of the frequency component deviates from the phase spectrum of a harmonic time signal.
When ions of different mass are investigated in a frequency mass spectrometer, the detected time signal is a superposition of different frequency components. The time signal (i.e., the time domain), is transitioned to a frequency spectrum (i.e., the frequency domain), where the different frequency components are spectrally separated. The frequency spectrum is usually described by an amplitude spectrum and a phase spectrum. The instantaneous frequency of a frequency component as a function of time is a temporal derivative of the phase profile of the frequency component in the time domain, i.e., a function of time which shows how the carrier frequency of the frequency component changes with respect to time. In addition to the equivalent representations in the time and frequency domains, a time domain signal may also be described by time-frequency distributions, which have both a time axis and a frequency axis and are a two-dimensional representation of the time signal. Some known examples of time-frequency distributions include the Short Time Fourier Transform distributions (STFT) and the time-frequency distributions of Cohen's class, which may, for example, include the Page Distribution.
The detection of a temporal parameter drift is important for initial startup and the operation of a frequency mass spectrometer since it provides controlled variables which may be used to optimize parameters of the instrument. The instantaneous frequency as a function of time may be particularly suitable here because it describes the temporal profile of the parameter drift, whereby parameters may be identified which are relevant for optimization.
The mathematical correction of a detected parameter drift may include: in a first step, the instantaneous frequency of a frequency component is determined and, in a second step, the time axis of the time signal is transformed such that the frequency component of the transformed time signal has an instantaneous frequency constant over time. The instantaneous frequency may be used to derive a transformation function with which the time axis is locally expanded or compressed as required. The transformed time signal is converted into a frequency spectrum by a frequency analysis (e.g., by a Fourier transformation). The frequency spectrum is transformed into a corrected frequency mass spectrum by converting the frequency axis into a mass axis. A mathematical correction may be limited to sections of the frequency mass spectrum where the parameter drift has differing effects on the frequency components present in the time signal. In this case, the correction procedure may be applied to different frequency components. In each case, the section of a frequency component in the frequency mass spectrum is corrected.
The transformation of the time axis may be achieved such that the constant instantaneous frequency after correction corresponds to the uncorrected instantaneous frequency at the start of the measuring time. This compensates for the effect of a space charge that changes over time, and achieves better reproducibility of the mass determination for a sequence of measurements, especially where successive measurements involve different numbers of ions.
These and other objects, features and advantages of the present invention will become more apparent in light of the following detailed description of preferred embodiments thereof, as illustrated in the accompanying drawings.
In the drawings that follow, unless stated to the contrary, identical reference characters identify similar steps or elements with similar meaning.
Referring to
Substantially every frequency component included in the time domain signal 10 has a constant instantaneous frequency and the phase spectrum 21b is represented by a linear function, at least when a Gaussian window function is used. From the familiar tables and calculation rules of the Fourier transformation, it may be inferred that a quadratic profile of the phase spectrum 21b is caused by a linear frequency modulation.
Referring again to
An alternate method for determining the instantaneous frequency of a frequency component may be used where the phase spectrum has higher terms, where the phase spectrum cannot be approximated by a polynomial, or where a different window function is used. Referring now to
In step 302, a time signal 30 is detected and/or recorded using a frequency mass spectrometer.
In step 310, from the instantaneous frequency 50, a transformation function is derived which transforms the time axis t of the time signal 30 in such a way that the instantaneous frequency of the frequency component in the transformed time signal 31 has a constant profile. The transformed time signal 31 with the new time axis t* is illustrated in
Although the present invention has been illustrated and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 025 974 | May 2008 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4959543 | McIver et al. | Sep 1990 | A |
5264697 | Nakagawa et al. | Nov 1993 | A |
5283436 | Wang | Feb 1994 | A |
5436447 | Shew | Jul 1995 | A |
5572125 | Dunkel | Nov 1996 | A |
5625186 | Frankevich et al. | Apr 1997 | A |
5696376 | Doroshenko et al. | Dec 1997 | A |
6403955 | Senko | Jun 2002 | B1 |
20020130259 | Anderson et al. | Sep 2002 | A1 |
20070084995 | Newton et al. | Apr 2007 | A1 |
20070203652 | Horning et al. | Aug 2007 | A1 |
20080149821 | Senko | Jun 2008 | A1 |
20090084949 | Franzen et al. | Apr 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090294651 A1 | Dec 2009 | US |