This description is related to U.S. patent application Ser. No. 10/602,022, filed Jun. 24, 2003, now U.S. Pat. No. 7,004,240, issued Feb. 28, 2006, which is a utility conversion of U.S. Provisional Patent Application Ser. No. 60/391,006, filed Jun. 24, 2002, each of which is hereby incorporated herein by reference in its entirety.
This description relates to an evaporator for use in a two-phase loop heat transfer system.
Heat transfer systems are used to transport heat from one location (the heat source) to another location (the heat sink). Heat transfer systems can be used in electronic equipment, which often requires cooling during operation.
Loop Heat Pipes (LHPs) and Capillary Pumped Loops (CPLs) are examples of two-phase loop heat transfer systems. Each of these systems includes an evaporator thermally coupled to the heat source, a condenser thermally coupled to the heat sink, fluid that flows between the evaporator and the condenser, and a fluid reservoir for expansion of the fluid. The fluid within the heat transfer system can be referred to as the working fluid. The evaporator includes a wick and a core that includes a fluid flow passage. Heat acquired by the evaporator is transported to and discharged by the condenser.
These systems utilize capillary pressure developed in a fine-pored wick within the evaporator to promote circulation of working fluid from the evaporator to the condenser and back to the evaporator. These systems may further include a mechanical pump that helps recirculate the fluid back to the evaporator from the condenser.
In one general aspect, an evaporator includes a cylindrical barrier wall and a cap that fits at an end of the cylindrical barrier wall. The cylindrical barrier wall defines a central axial opening and an outer cylindrical surface. The cap includes an outer surface that is external to the central axial opening and an inner surface that abuts the central axial opening. A portion of the outer cylindrical surface is configured to define a liquid port extending through the outer cylindrical surface of the cylindrical barrier wall.
Implementations may include one or more of the following aspects. For example, the evaporator may further include a cylindrical wick that fits within the central axial opening, wherein the liquid port extends into the cylindrical wick. The evaporator may also include a sleeve that is attached to the liquid port of the cylindrical barrier wall. The sleeve may be welded to the cylindrical barrier wall at the outer cylindrical surface.
The evaporator may include a cylindrical wick that fits within the central axial opening, wherein the liquid port extends into the cylindrical wick, an outer sleeve defining a sleeve axis, and a tube within the outer sleeve and extending along the sleeve axis. A first region of the tube may be attached to the outer sleeve and a second region of the tube may be attached to the cylindrical wick. The outer sleeve may be attached to a liquid port of the cylindrical barrier wall. The second region of the tube may be sealed to the cylindrical wick in such manner that a gap between the tube at the second region and the cylindrical wick is smaller than a radius of the pores within the cylindrical wick. The tube may be made of a first metal at the first region and the tube is made of a second metal at the second region; the first region of the tube is welded to the outer sleeve; and the second region of the tube is welded to the cylindrical wick.
The evaporator may include a heat-receiving saddle that covers at least part of the outer cylindrical surface of the cylindrical barrier wall. The heat-receiving saddle may be bonded to the cylindrical barrier wall.
The evaporator may include a cylindrical wick that fits within the central axial opening and that defines a central axial channel, wherein the liquid port extends into the cylindrical wick and into the central axial channel.
The combination of the wick and the cylindrical barrier wall may define circumferential vapor grooves. The vapor port may be in fluid communication with the circumferential vapor grooves. The circumferential vapor grooves may be formed into the wick, the cylindrical barrier wall, or both the wick and the cylindrical barrier wall. The wick and the cylindrical barrier wall may define at least one outer axial vapor channel that intersects and is in fluid communication with the circumferential vapor grooves. The vapor port may be in fluid communication with the at least one outer axial vapor channel. The outer axial vapor channel may be formed into the wick, the cylindrical barrier wall, or both the wick and the cylindrical barrier wall.
The evaporator may include a plug within the central axial channel. The plug may be attached to the cylindrical wick in such a manner that a gap between the plug and the cylindrical wick is smaller than a radius of the pores within the cylindrical wick.
The liquid port may extend into the central axial channel of the wick such that an open end of the liquid port is exposed to the central axial channel of the wick.
The evaporator may include a vapor port extending through the outer cylindrical surface of the cylindrical barrier wall.
The cylindrical barrier wall may be made of nickel; the cap may be made of stainless steel. The heat-receiving saddle may be made of a material having a coefficient of thermal expansion below about 9.0 ppm/K at 20° C. The heat-receiving saddle may be made of a material having a coefficient of thermal expansion of about 6.4 ppm/K at 20° C. The heat-receiving saddle may be made of a material having a coefficient of thermal expansion of about two times the magnitude of the coefficient of thermal expansion of the heat source applied to the evaporator. The heat-receiving saddle may be made of BeO or copper-tungsten.
In another general aspect, an evaporator includes a cylindrical barrier wall defining a central axial opening and an outer cylindrical surface; a cap that fits at an end of the cylindrical barrier wall, the cap including an outer surface that is external to the central axial opening and an inner conical surface that abuts the central axial opening; and a cylindrical wick that is sized to fit within the central axial opening and that includes a portion that extends axially to the end of the cylindrical barrier wall.
Implementations may include one or more of the following aspects. For example, the evaporator may include a heat-receiving saddle that covers at least part of the outer cylindrical surface of the cylindrical barrier wall.
The evaporator may include a liquid port extending through the outer cylindrical surface of the cylindrical barrier wall and into the cylindrical wick.
The cap may include an inner flat surface that contacts the end of the cylindrical barrier wall. The cap may be attached to the end of the cylindrical barrier wall by a weld. The weld may extend from the cylindrical barrier wall to the outer surface of the cap. The cap may be about 0.25 mm wide at the inner flat surface. The cap may be configured to hermetically seal working fluid within the cylindrical barrier wall.
The evaporator may include a plug within the central axial opening and may be attached to the cylindrical wick.
The cap may include a plug protrusion within the central axial opening and may be attached to the cylindrical wick.
In another general aspect, a method of transferring heat includes flowing liquid through a liquid flow channel that is defined within a wick, flowing the liquid from the liquid flow channel through the wick, evaporating at least some of the liquid at a vapor removal channel that is defined at an interface between the wick and a cylindrical barrier wall, and inputting heat energy onto an exterior heat-absorbing surface of a cylindrical barrier wall. The exterior heat-absorbing surface extends the full length of the cylindrical barrier wall.
In another general aspect, an evaporator includes a barrier wall defining a central axial opening and an outer cylindrical surface, wherein the barrier wall is made of nickel; a cylindrical wick that fits within the central axial opening; and a heat-receiving saddle that covers at least part of the outer cylindrical surface of the barrier wall. The cylindrical wick is made of titanium, nickel, stainless steel, porous TEFLON®, or porous polyethylene. The heat-receiving saddle is made of a material having a coefficient of thermal expansion below about 9.0 ppm/K at 20° C.
Implementations may include one or more of the following features. For example, the heat-receiving saddle may extend to the end of the outer cylindrical surface.
The barrier wall may include a cylindrical barrier wall that defines the outer cylindrical surface and caps that fit into the respective ends of the cylindrical barrier wall.
The evaporator may further include a plug within the central axial opening and attached to the wick, wherein the plug is made of titanium or an aluminum alloy.
The heat-receiving saddle may be made of BeO or copper-tungsten.
In another general aspect, a heat transfer system includes a condenser and an evaporator network that includes two or more evaporators fluidly connected to each other and that includes at least one evaporator that is coupled to a liquid line that is coupled to the condenser and at least one evaporator that is coupled to a vapor line that is fluidly coupled to the condenser. Each evaporator in the network includes a cylindrical barrier wall defining a central axial opening and an outer cylindrical surface, a cylindrical wick that fits within the central axial opening, a cap that fits at an end of the cylindrical bather wall, and a liquid port extending through the outer cylindrical surface of the cylindrical barrier wall and into the cylindrical wick. The cap includes an outer surface that is external to the central axial opening and an inner surface that abuts the central axial opening.
Implementations may include one or more of the following features. For example, the heat transfer system may include a pumping system coupled to the condenser and the evaporator. The pumping system may include a mechanical pump within the liquid line or a passive secondary heat transfer loop including a secondary evaporator.
The two or more evaporators may be connected in series such that the working fluid is able to flow into and out of each evaporator through its liquid port.
The evaporator's liquid may flow from one evaporator to the next evaporator.
The heat transfer system may include a reservoir. The liquid coming out of the last evaporator in the series flows through a separate line into either the condenser or the fluid reservoir.
Each evaporator in the network may include a vapor port, with each vapor port being joined together to form a single vapor line that couples to the condenser.
The liquid mass flow rate into each evaporator exceeds the vapor mass flow rate coming off each evaporator such that the liquid mass flow rate coming off each evaporator is greater than zero.
The heat transfer system may include a fluid reservoir that is hydraulically linked to the condenser.
In another general aspect, a heat transfer system includes a condenser and an evaporator network. The evaporator network includes two or more evaporators fluidly connected to each other and including at least one evaporator that is coupled to a liquid line that is coupled to the condenser and at least one evaporator that is coupled to a vapor line that is fluidly coupled to the condenser. Each evaporator in the network includes a cylindrical barrier wall defining a central axial opening and an outer cylindrical surface, a cap that fits at an end of the cylindrical barrier wall, the cap including an outer surface that is external to the central opening and an inner conical surface that abuts the central opening, and a cylindrical wick that is sized to fit within the central axial opening and that includes a portion that extends axially to the end of the cylindrical barrier wall.
In another general aspect, a heat transfer system includes a condenser and an evaporator network. The evaporator network includes two or more evaporators fluidly connected to each other and includes at least one evaporator that is coupled to a liquid line that is coupled to the condenser and at least one evaporator that is coupled to a vapor line that is fluidly coupled to the condenser. Each evaporator in the network includes a barrier wall defining a central axial opening and an outer cylindrical surface, a cylindrical wick that fits within the central axial opening, and a heat-receiving saddle that covers at least part of the outer cylindrical surface of the barrier wall. The barrier wall is made of nickel. The cylindrical wick is made of titanium, nickel, stainless steel, porous TEFLON®, or porous polyethylene. The heat-receiving saddle is made of a material having a coefficient of thermal expansion below about 9.0 ppm/K at 20° C.
In another general aspect, a method of making an evaporator includes inserting a cylindrical wick into a central axial opening of a cylindrical barrier wall such that an interference fit forms between the cylindrical wick and the cylindrical barrier wall, and metallurgically bonding the cylindrical barrier wall to a heat-receiving saddle that is made of a material having a coefficient of thermal expansion of about two times the magnitude of the coefficient of thermal expansion of the heat source to be applied to the evaporator.
A low-coefficient of thermal expansion (CTE) material such as BeO can be used for the heat-receiving saddle, at least in part because the heat-receiving saddle does not have to be compatible with ammonia (ammonia would be contained within the barrier wall) or weldable (since it can be soldered). Among other things, the selection of BeO as the material for use in the heat-receiving saddle may be useful in promoting uniformity for the surface temperature of the heat source to be cooled and the evaporator.
Using low-CTE materials for the evaporator has been challenging in the past, partly because most low-CTE materials have a low thermal conductivity. Traditional evaporator fabrication techniques, such as swaging of the evaporator heat-receiving casing onto the cylindrical wick or hot insertion of the cylindrical wick into the heat-receiving casing with an interference fit, are not as feasible if the evaporator casing is to be made with a relatively low-CTE material. With a relatively low-CTE material, the temperature for the hot insertion could be too high to provide suitable mechanical and thermal contact under the high internal pressure of ammonia. Compatibility between the material and ammonia is also a factor that can prevent some low-CTE materials from being used for the evaporator casing.
In one implementation of the evaporator described herein, the wick is hot inserted with an interference fit into a thin-walled cylindrical barrier wall, which is then soldered to a low-CTE saddle, thus facilitating fabrication.
The evaporator and the heat transfer system described herein can be used in high-energy laser systems with multiple laser diodes, where space for cooling is limited. The evaporator can fit between diode towers in the laser system, such that the heat transfer system can be designed to fit within a relatively small footprint, for example, 1 cm×1 cm×8 cm volume. Moreover, the evaporators can receive heat from at least two sides of the heat-receiving saddle to accommodate space requirements.
The entire length of the cylindrical barrier wall can be configured to receive heat, at least in part because the liquid ports of the evaporator are formed along the cylindrical barrier wall, and because the wick can be extended to substantially the edge of the cylindrical barrier wall.
Other features and advantages will be apparent from the description, the drawings, and the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
The liquid supplied to each evaporator (either from the condenser or from the previous evaporator in the network) can be assisted with a mechanical pump 135 to push liquid towards the evaporators 105, 107. The evaporators in the network can be connected in series with a tubing 145 that allows liquid from the second evaporator 107 to flow to the next evaporator 105 in the series. The liquid coming out of the last evaporator 105 in the series flows through a separate line 150 into either the condenser 110, the reservoir 130, or the subcooler 125. The vapor ports 220 of the evaporators 105, 107 can be joined together with a vapor line 155 to effectively form a single vapor line leading the vapor generated by both evaporators 105, 107 to the condenser 110.
In general, vapor flow is driven by capillary pressure developed within the evaporator 105, and heat from the heat source is rejected by vapor condensation in tubing distributed across the condenser 110 and the subcooler 125. Additionally, the mechanical pump 135 helps pump liquid back into the evaporator 105.
If two or more evaporators 105, 107 are used in the system 100, then a back pressure regulator 140 or a flow regulator (not shown) can be used in the system 100 to achieve uniform fluid flow to sustain more stable operation. As shown in
Referring to
Referring also to
Referring also to
Referring also to
Referring also to
The cylindrical wick 800 also includes an inner surface 815 that defines a central axial channel 820 that holds working fluid, and side surfaces 810 that connect the inner surface 815 to the outer surface 805. Because the inner surface 815 is shorter in the axial direction than the outer surface 805, the side surfaces 810 are angled to receive the end caps 405. Moreover, because the end caps 405 are conically shaped and have a width 620 that is thin relative to the overall side of the end caps 405, the outer surface 805 of the cylindrical wick 800 extends from or near one edge of the cylindrical barrier wall 400 to or near to another edge of the cylindrical barrier wall 400, such as, for example, to within 0.25 mm of the edge of the cylindrical barrier wall 400. Configured as such, the working liquid within the evaporator 105 can flow through the entire length of the cylindrical barrier wall 400, which receives the heat through the heat-receiving saddle 205.
The cylindrical wick 800 also includes circumferential vapor grooves 825 formed into and wrapping around the outer surface 805 and at least one outer axial vapor channel 830 formed into the outer surface 805. The circumferential vapor grooves 825 are fluidly connected to the outer axial vapor channel 830, which connects to a vapor port passage 835. Referring also to
The vapor port passage 835 is fluidly coupled to the vapor port 220. The vapor port 220 extends through the hole 425 of the cylindrical barrier wall 400 and ends adjacent to the vapor port passage 835 of the cylindrical wick 800. The vapor port 220 is hermetically sealed to the cylindrical barrier wall 400 by welding the vapor port 220 to the cylindrical barrier wall 400 at the hole 425. The vapor port 220 can be a single-walled tube made of a material that is suitable for hermetic sealing, such as stainless steel.
The cylindrical wick 800 also includes liquid port passages 840, 845 that are fluidly coupled, respectively, to the liquid ports 210, 215 such that the liquid ports 210, 215 extend through the passages 840, 845 and open into the central axial channel 820. Referring also to
The evaporator 105 also includes a set of plugs 850 that fit within the central axial channel 820. The plugs 850 are made of a solid material that is compatible for attachment to the cylindrical wick 800; for example, if the cylindrical wick 800 is made of titanium, the plugs 850 can be made of titanium or any material suitable for sealing to the cylindrical wick 800. The plugs 850 can be welded directly to the cylindrical wick 800, the plugs 850 can be mechanically compressed into the cylindrical wick 800, or the plugs 850 can be press fit into the cylindrical wick 800. The plugs 850 are attached to the inner surface 815 of the cylindrical wick 800 by welding or any other appropriate sealing mechanism that prevents any fluids from flowing between the plugs 850 and the cylindrical wick 800. Referring also to
In operation, the heat transfer system 100 transfers heat from a heat source adjacent the heat-receiving saddle 205 of the evaporator 105 to the condenser 110. Working fluid from the condenser 110 flows through the liquid inlet port 210, through the liquid port passage 840 of the cylindrical wick 800, and into the central axial channel 820, which acts as a liquid flow channel. The liquid flows through the cylindrical wick 800 as heat is applied or input to the heat-receiving saddle 205 and, therefore, to the outer cylindrical surface 505 of the cylindrical barrier wall 400. The liquid evaporates, forming vapor that is free to flow along the circumferential vapor grooves 825, along the outer axial vapor channel 830 (see
As mentioned above in
Other implementations are within the scope of the following claims.
The materials for the evaporator 105 may be chosen to improve operating performance of the evaporator 105 for a particular temperature operating range.
As mentioned, the cylindrical wick 800 can be made of any suitable porous material, such as, for example, nickel, stainless steel, porous Teflon, or porous polyethylene.
In another implementation, the pumping system for the heat transfer system 100 may include a secondary loop including a secondary evaporator. Additionally, the evaporator 105 may include a secondary wick to sweep vapor bubbles out of the wick and into the secondary loop. In this way, vapor bubbles that form within the central axial channel 820 can be swept out of the channel 820 through a vapor passage and into a fluid outlet. In such a design, the secondary wick acts to separate the vapor and liquid within the central axial channel 820 of the cylindrical wick 800. Such a design is shown, for example, in U.S. application Ser. No. 10/602,022, now U.S. Pat. No. 7,004,240, issued Feb. 28, 2006.
Referring to
The reservoir 130 can be cold biased to the condenser 110 or the radiator 125 and it can be controlled with additional heating.
Instead of making the cap 405 and the plug 850 as separate pieces, the cap and the plug can be made as an integral piece. For example, the cap may include a plug protrusion within the central axial opening and attached to the cylindrical wick.
The circumferential vapor grooves need not be formed solely into the outer surface of the wick. The circumferential vapor grooves may be defined along the interface between the wick and the cylindrical barrier wall. For example, the circumferential vapor grooves may be formed into the inner surface of the cylindrical barrier wall but not into the outer surface of the wick. As another example, the circumferential vapor grooves may be partially formed into the inner surface of the cylindrical barrier wall and partially formed into the outer surface of the wick.
The outer axial vapor channel need not be formed solely into the outer surface of the wick. The outer axial vapor channel may be defined along the interface between the wick and the cylindrical barrier wall. For example, the outer axial vapor channel may be formed into the inner surface of the cylindrical barrier wall but not into the outer surface of the wick. As another example, the outer axial vapor channel may be partially formed into the inner surface of the cylindrical barrier wall and partially formed into the outer surface of the wick.
Number | Name | Date | Kind |
---|---|---|---|
3490718 | Vary | Jan 1970 | A |
3613778 | Feldman, Jr. | Oct 1971 | A |
3677336 | Moore, Jr. | Jul 1972 | A |
3734173 | Moritz | May 1973 | A |
3741289 | Moore | Jun 1973 | A |
3756903 | Jones | Sep 1973 | A |
3792319 | Fries et al. | Feb 1974 | A |
3803688 | Peck | Apr 1974 | A |
3884293 | Pessalano et al. | May 1975 | A |
4005297 | Cleaveland | Jan 1977 | A |
4026348 | Roberts, Jr. | May 1977 | A |
4040478 | Pogson et al. | Aug 1977 | A |
4046190 | Marcus et al. | Sep 1977 | A |
4087893 | Sata et al. | May 1978 | A |
4116266 | Sawata et al. | Sep 1978 | A |
4170262 | Marcus et al. | Oct 1979 | A |
4467861 | Kiseev et al. | Aug 1984 | A |
4470450 | Bizzell et al. | Sep 1984 | A |
4503483 | Basiulis | Mar 1985 | A |
4627487 | Basiulis | Dec 1986 | A |
4685512 | Edelstein et al. | Aug 1987 | A |
4770238 | Owen | Sep 1988 | A |
4819719 | Grote et al. | Apr 1989 | A |
4830718 | Stauffer | May 1989 | A |
4862708 | Basiulis | Sep 1989 | A |
4869313 | Fredley | Sep 1989 | A |
4883116 | Seidenberg et al. | Nov 1989 | A |
4890668 | Cima | Jan 1990 | A |
4934160 | Mueller | Jun 1990 | A |
5002122 | Sarraf et al. | Mar 1991 | A |
5016705 | Bahrle | May 1991 | A |
5074957 | Horiuti et al. | Dec 1991 | A |
5103897 | Cullimore et al. | Apr 1992 | A |
5303768 | Alario et al. | Apr 1994 | A |
5335720 | Ogushi et al. | Aug 1994 | A |
5642776 | Meyer, IV et al. | Jul 1997 | A |
5725049 | Swanson et al. | Mar 1998 | A |
5761037 | Anderson et al. | Jun 1998 | A |
5771967 | Hyman | Jun 1998 | A |
5816313 | Baker | Oct 1998 | A |
5842513 | Maciaszek et al. | Dec 1998 | A |
5899265 | Schneider et al. | May 1999 | A |
5944092 | Van Oost | Aug 1999 | A |
5950710 | Liu | Sep 1999 | A |
5966957 | Malhammar et al. | Oct 1999 | A |
6058711 | Maciaszek et al. | May 2000 | A |
6227288 | Gluck et al. | May 2001 | B1 |
6330907 | Ogushi et al. | Dec 2001 | B1 |
6381135 | Prasher et al. | Apr 2002 | B1 |
6382309 | Kroliczek et al. | May 2002 | B1 |
6415627 | Pfister et al. | Jul 2002 | B1 |
6450132 | Yao et al. | Sep 2002 | B1 |
6533029 | Phillips | Mar 2003 | B1 |
6591902 | Trent | Jul 2003 | B1 |
6596035 | Gutkowski et al. | Jul 2003 | B2 |
6615912 | Garner | Sep 2003 | B2 |
6810946 | Hoang | Nov 2004 | B2 |
6840304 | Kobayashi et al. | Jan 2005 | B1 |
6889754 | Kroliczek et al. | May 2005 | B2 |
6907918 | Connors et al. | Jun 2005 | B2 |
7004240 | Kroliczek et al. | Feb 2006 | B1 |
7143511 | Connors et al. | Dec 2006 | B2 |
7251889 | Kroliczek et al. | Aug 2007 | B2 |
20030051857 | Cluzet et al. | Mar 2003 | A1 |
20030066638 | Qu et al. | Apr 2003 | A1 |
20040163799 | Connors et al. | Aug 2004 | A1 |
20040182550 | Kroliczek et al. | Sep 2004 | A1 |
20040206479 | Kroliczek et al. | Oct 2004 | A1 |
20050061487 | Kroliczek et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
19941398 | Aug 2000 | DE |
0210337 | Feb 1987 | EP |
0 363 721 | Apr 1990 | EP |
0987509 | Mar 2000 | EP |
2312734 | Nov 1997 | GB |
58-88594 | May 1983 | JP |
2000-055577 | Feb 2000 | JP |
2098733 | Mar 1995 | RU |
1467354 | Jan 1987 | SU |
WO 0202201 | Jan 2002 | WO |
WO 03006910 | Jan 2003 | WO |
0210661 | Feb 2003 | WO |
03054469 | Jul 2003 | WO |
2004031675 | Apr 2004 | WO |
WO 2004040218 | May 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070131388 A1 | Jun 2007 | US |