For the operator to control the operation of the excavator either manually or through an automated control system, information regarding the location and orientation of the excavator must be determined. The location of the excavator may be determined in any one of a number of ways, including using a laser positioning system, using a GPS positioning system, or using a system that combines laser and GPS positioning. The relative positions of the boom 12, the dipper 16, and the bucket 20 may be determined by angle encoders, gravity based inclinometers, or similar sensors associated with pivot joints 14, 18, and 22, or by string encoders associated with cylinders 24, 26, and 28, or by some combination of such sensors. The orientation of the excavator 10 with respect to true vertical is determined by inclinometers 36 and 38, which are mounted on the chassis 11. The inclinometer 36 provides an indication of the angle of roll and the inclinometer 38 provides an indication of the angle of pitch of the chassis 11. Similarly, it will be appreciated by those skilled in the art that roll inclinometer 36 and pitch inclinometer 38 may be mounted in the same housing, or even be the same sensor if the inclinometer is capable of measuring two directions at once, without detracting from the present invention.
It is also necessary to determine the direction with which the longitudinal axis of the excavator chassis is aligned. While it is possible to use a magnetic compass or a gyroscopic system to make this determination, the present invention accomplishes this without the need for such additional sensors and additional equipment. The system includes a processor 50 which retrieves the anticipated slope of the job site at the excavator's location, and then from the outputs of the inclinometers 36 and 38 determines whether the chassis 11 of the excavator 10 is oriented across the slope (zero pitch and maximum roll), up or down the fall line (maximum pitch and zero roll), or in some orientation in between these extremes.
Reference is made to
As noted previously, the present invention includes two slope-sensing devices—inclinometers 36 and 38. These inclinometers change their orientation with respect to the surface of the job site as the chassis 11 rotates around axis 34, but they always remain perpendicular to each other. The values of the outputs from the inclinometers 36 and 38 may be designated “Roll” and “Pitch,” respectively. Note that when one of these inclinometers is aligned with the direction of maximum slope, it measures maximum slope, while the other inclinometer measures zero slope. When the alignment of one of the devices moves away from the orientation of maximum slope, the slope measured by the device decreases from the maximum value of the slope.
Referring to
Pitch=(maximum slope)*sin(r).
Note that the roll axis is always orthogonal to the pitch axis. Hence, the roll axis is:
Roll=(maximum slope)*sin(r±90°).
This is equivalent to:
Roll=(maximum slope)*cos(r).
These equations imply the following:
maximum slope=(Pitch2+Roll2)1/2.
Therefore, to determine the rotation of the machine axis relative to the zero axis of the plane, r, any of the following equations may be used:
r=sin−1 [Pitch/(Pitch2+Roll2)1/2], or
r=cos−1 [Roll/(Pitch2+Roll2)1/2], or
r=tan−1 [Pitch/Roll].
There may be benefits to using one equation over the other two, depending upon what quadrant the longitudinal axis of the excavator chassis is positioned in. The sine function is more sensitive than the cosine function for angles around 0° and 180°. Similarly, the cosine function is more sensitive than the sine function for angles around ±90°. By noting the sine and cosine functions, the quadrant in which the longitudinal axis is located may be determined.
It will be appreciated that the selection of the pitch axis of the machine as the reference is arbitrary. The roll axis of the machine may also be used as the reference axis, in which case the three prior equations become:
r=sin−1 [Roll/(Pitch2+Roll2)1/2],
r=cos−1 [Pitch/(Pitch2+Roll2)1/2], and
r=tan−1 [Roll/Pitch].
The direction of zero slope is, in a sense, arbitrary to the work site. Even though the calculation determines the absolute angle of the machine axis from the zero slope direction, it can only be used for relative reference.
It will be appreciated that if the excavator is on a level plane, no directional information can be determined. It will also be appreciated that this relative position determination may be made even if the work site has not previously been surveyed to determine the orientation of the zero slope direction relative to absolute directions.
One method would be to bench the excavator in a desired orientation. The relative orientation of the desired location would then be committed to memory associated with and accessible with processor 50 and used by said processor as a reference for the work site. It will be appreciated by those skilled in the art that multiple orientations could be benched and committed to the same memory for different modes of operation.
Having thus described the apparatus and method of the present invention in detail and by reference to preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.