The present invention relates to exendin-4 peptide analogues which—in contrast to the pure GLP-1 agonist exendin-4—activate both the GLP1 and the Glucagon receptor and their medical use, for example in the treatment of disorders of the metabolic syndrome, including diabetes and obesity, as well as for reduction of excess food intake.
Exendin-4 is a 39 amino acid peptide which is produced by the salivary glands of the Gila monster (Heloderma suspectum) (Eng, J. et al., J. Biol. Chem., 267:7402-05, 1992). Exendin-4 is an activator of the glucagon-like peptide-1 (GLP-1) receptor, whereas it does not activate significantly the glucagon receptor.
Exendin-4 shares many of the glucoregulatory actions observed with GLP-1. Clinical and non-clinical studies have shown that exendin-4 has several beneficial antidiabetic properties including a glucose dependent enhancement in insulin synthesis and secretion, glucose dependent suppression of glucagon secretion, slowing down gastric emptying, reduction of food intake and body weight, and an increase in beta-cell mass and markers of beta cell function (Gentilella R et al., Diabetes Obes Metab., 11:544-56, 2009; Norris S L et al., Diabet Med., 26:837-46, 2009; Bunck M C et al., Diabetes Care., 34:2041-7, 2011).
These effects are beneficial not only for diabetics but also for patients suffering from obesity. Patients with obesity have a higher risk of getting diabetes, hypertension, hyperlipidemia, cardiovascular and musculoskeletal diseases.
Relative to GLP-1, exendin-4 is resistant to cleavage by dipeptidyl peptidase-4 (DPP4) resulting in a longer half-life and duration of action in vivo (Eng J., Diabetes, 45 (Suppl 2):152A (abstract 554), 1996).
Nevertheless, exendin-4 is chemically labile due to methionine oxidation in position 14 (Hargrove D M et al., Regul. Pept., 141: 113-9, 2007) as well as deamidation and isomerization of asparagine in position 28 (WO 2004/035623).
The amino acid sequence of exendin-4 is shown as SEQ ID NO: 1
The amino acid sequence of GLP-1(7-36)-amide is shown as SEQ ID NO: 2
Liraglutide is a marketed chemically modified GLP-1 analog in which, among other modifications, a fatty acid is linked to a lysine in position 20 leading to a prolonged duration of action (Drucker D J et al., Nature Drug Disc. Rev. 9, 267-268, 2010; Buse, J. B. et al., Lancet, 374:39-47, 2009).
The amino acid sequence of Liraglutide is shown as SEQ ID NO: 195.
Glucagon is a 29-amino acid peptide which is released into the bloodstream when circulating glucose is low. Glucagon's amino acid sequence is shown in SEQ ID NO: 3.
During hypoglycemia, when blood glucose levels drop below normal, glucagon signals the liver to break down glycogen and release glucose, causing an increase of blood glucose levels to reach a normal level. Hypoglycemia is a common side effect of insulin treated patients with hyperglycemia (elevated blood glucose levels) due to diabetes. Thus, glucagon's most predominant role in glucose regulation is to counteract insulin action and maintain blood glucose levels.
Holst (Holst, J. J. Physiol. Rev. 2007, 87, 1409) and Meier (Meier, J. J. Nat. Rev. Endocrinol. 2012, 8, 728) describe that GLP-1 receptor agonists, such as GLP-1, liraglutide and exendin-4, have 3 major pharmacological activities to improve glycemic control in patients with T2DM by reducing fasting and postprandial glucose (FPG and PPG): (i) increased glucose-dependent insulin secretion (improved first- and second-phase), (ii) glucagon suppressing activity under hyperglycemic conditions, (iii) delay of gastric emptying rate resulting in retarded absorption of meal-derived glucose.
Pocai et al. (Obesity 2012; 20: 1566-1571; Diabetes 2009, 58, 2258) and Day et al. (Nat Chem Biol 2009; 5: 749) describe that dual activation of the GLP-1 and glucagon receptors, e.g. by combining the actions of GLP-1 and glucagon in one molecule, leads to a therapeutic principle with anti-diabetic action and a pronounced weight lowering effect.
Peptides which bind and activate both the glucagon and the GLP-1 receptor (Hjort et al., Journal of Biological Chemistry, 269, 30121-30124, 1994; Day J W et al., Nature Chem Biol, 5: 749-757, 2009) and suppress body weight gain and reduce food intake are described in patent applications WO 2008/071972, WO 2008/101017, WO 2009/155258, WO 2010/096052, WO 2010/096142, WO 2011/075393, WO 2008/152403, WO 2010/070251, WO 2010/070252, WO 2010/070253, WO 2010/070255, WO 2011/160630, WO 2011/006497, WO 2011/152181, WO 2011/152182, WO 2011/117415, WO 2011/117416 and WO 2006/134340, the contents of which are herein incorporated by reference.
In addition, triple co-agonist peptides which not only activate the GLP-1 and the glucagon receptor but also the GIP receptor are described in WO 2012/088116 and by V A Gault et al. (Biochem Pharmacol, 85, 16655-16662, 2013; Diabetologia, 56, 1417-1424, 2013).
Bloom et al. (WO 2006/134340) disclose that peptides which bind and activate both the glucagon and the GLP-1 receptor can be constructed as hybrid molecules from glucagon and exendin-4, where the N-terminal part (e.g. residues 1-14 or 1-24) originates from glucagon and the C-terminal part (e.g. residues 15-39 or 25-39) originates from exendin-4.
D E Otzen et al. (Biochemistry, 45, 14503-14512, 2006) disclose that N- and C-terminal hydrophobic patches are involved in fibrillation of glucagon due to the hydrophobicity and/or high β-sheet propensity of the underlying residues.
Krstenansky et al. (Biochemistry, 25, 3833-3839, 1986) show the importance of the residues 10-13 of glucagon for its receptor interactions and activation of adenylate cyclase. In the exendin-4 derivatives described in this invention, several of the underlying residues are different from glucagon. In particular residues Tyr10 and Tyr13, which are known to contribute to the fibrillation of glucagon (D E Otzen, Biochemistry, 45, 14503-14512, 2006) are replaced by Leu in position 10 and Gln, a non-aromatic polar amino acid, in position 13, leading to exendin-4 derivatives with potentially improved biophysical properties.
Furthermore, compounds of this invention are exendin-4 derivatives with fatty acid acylated residues in position 14. This fatty acid functionalization in position 14 results in exendin-4 derivatives with high activity not only at the GLP-1 receptor but also at the glucagon receptor when compared to the corresponding non-acylated exendin-4 derivatives. In addition, this modification results in an improved pharmacokinetic profile.
Compounds of this invention are more resistant to cleavage by neutral endopeptidase (NEP) and dipeptidyl peptidase-4 (DPP4), resulting in a longer half-life and duration of action in vivo when compared with GLP-1 and glucagon. Furthermore, the compounds are stabilized versus other proteases, among those cathepsin D.
Compounds of this invention are preferably soluble not only at neutral pH, but also at pH 4.5. This property potentially allows co-formulation for a combination therapy with an insulin or insulin derivative and preferably with a basal insulin like insulin glargine/Lantus®.
Provided herein are exendin-4 derivatives which potently activate the GLP1 and the glucagon receptor. In these exendin-4 derivatives—among other substitutions—methionine at position 14 is replaced by an amino acid carrying an —NH2 group in the side chain, which is further substituted with an unpolar residue (e.g. a fatty acid optionally combined with a linker).
The invention provides a peptidic compound having the formula (I):
R1—Z—R2 (I)
wherein Z is a peptide moiety having the formula (II)
The compounds of the invention are GLP-1 and glucagon receptor agonists as determined by the observation that they are capable of stimulating intracellular cAMP formation.
According to another embodiment, the compounds of the invention, particularly with a lysine at position 14 which is further substituted with a lipophilic residue, exhibit at least a relative activity of 0.1%, more preferably of 0.2%, more preferably of 0.3% and even more preferably of 0.4% compared to that of GLP-1(7-36) at the GLP-1 receptor. Furthermore, the compounds exhibit at least a relative activity of 0.1%, more preferably of 0.2% or of 0.3% or of 0.4% and even more preferably of 0.5% compared to that of natural glucagon at the glucagon receptor.
The term “activity” as used herein preferably refers to the capability of a compound to activate the human GLP-1 receptor and the human glucagon receptor. More preferably the term “activity” as used herein refers to the capability of a compound to stimulate intracellular cAMP formation. The term “relative activity” as used herein is understood to refer to the capability of a compound to activate a receptor in a certain ratio as compared to another receptor agonist or as compared to another receptor. The activation of the receptors by the agonists (e.g. by measuring the cAMP level) is determined as described herein, e.g. as described in the examples.
According to one embodiment, the compounds of the invention have an EC50 for hGLP-1 receptor of 450 pmol or less, preferably of 200 pmol or less; more preferably of 150 pmol or less, more preferably of 100 pmol or less, more preferably of 90 pmol or less, more preferably of 80 pmol or less, more preferably of 70 pmol or less, more preferably of 60 pmol or less, more preferably of 50 pmol or less, more preferably of 40 pmol or less, more preferably of 30 pmol or less, more preferably of 25 pmol or less, more preferably of 20 pmol or less, more preferably of 15 pmol or less, more preferably of 10 pmol or less, more preferably of 9 pmol or less, more preferably of 8 pmol or less, more preferably of 7 pmol or less, more preferably of 6 pmol or less, and more preferably of 5 pmol or less.
According to another embodiment, the compounds of the invention have an EC50 for hGlucagon receptor of 500 pmol or less, preferably of 200 pmol or less; more preferably of 150 pmol or less, more preferably of 100 pmol or less, more preferably of 90 pmol or less, more preferably of 80 pmol or less, more preferably of 70 pmol or less, more preferably of 60 pmol or less, more preferably of 50 pmol or less, more preferably of 40 pmol or less, more preferably of 30 pmol or less, more preferably of 25 pmol or less, more preferably of 20 pmol or less, more preferably of 15 pmol or less, more preferably of 10 pmol or less.
According to another embodiment, the compounds of the invention have an EC50 for hGLP-1 receptor of 450 pmol or less, preferably of 200 pmol or less; more preferably of 150 pmol or less, more preferably of 100 pmol or less, more preferably of 90 pmol or less, more preferably of 80 pmol or less, more preferably of 70 pmol or less, more preferably of 60 pmol or less, more preferably of 50 pmol or less, more preferably of 40 pmol or less, more preferably of 30 pmol or less, more preferably of 25 pmol or less, more preferably of 20 pmol or less, more preferably of 15 pmol or less, more preferably of 10 pmol or less, more preferably of 9 pmol or less, more preferably of 8 pmol or less, more preferably of 7 pmol or less, more preferably of 6 pmol or less, and more preferably of 5 pmol or less, and/or an EC50 for hGlucagon receptor of 500 pmol or less, preferably of 200 pmol or less; more preferably of 150 pmol or less, more preferably of 100 pmol or less, more preferably of 90 pmol or less, more preferably of 80 pmol or less, more preferably of 70 pmol or less, more preferably of 60 pmol or less, more preferably of 50 pmol or less, more preferably of 40 pmol or less, more preferably of 30 pmol or less, more preferably of 25 pmol or less, more preferably of 20 pmol or less, more preferably of 15 pmol or less, more preferably of 10 pmol or less.
In still another embodiment, the EC50 for both receptors i.e. for the hGLP-1 receptor and the hGlucagon receptor, is 100 pmol or less, more preferably 90 pmol or less, more preferably 80 pmol or less, more preferably 70 pmol or less, more preferably 60 pmol or less, more preferably 50 pmol or less, more preferably 40 pmol or less, more preferably 30 pmol or less, more preferably 25 pmol or less, more preferably 20 pmol or less, more preferably 15 pmol or less, more preferably 10 pmol or less. The EC50 for hGLP-1 receptor and hGlucagon receptor may be determined as described in the Methods herein and as used to generate the results described in Example 9.
The compounds of the invention have the ability to reduce the intestinal passage, to increase the gastric content and/or to reduce the food intake of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods. The results of such experiments are described in Examples 11 and 12. Preferred compounds of the invention may increase the gastric content of mice, preferably of female NMRI-mice, if administered as a single dose, preferably subcutaneous dose, of 0.02 mg/kg body weight by at least 25%, more preferably by at least 30%, more preferably by at least 40%, more preferably by at least 50%, more preferably by at least 60%, more preferably by at least 70%, more preferably by at least 80%.
Preferably, this result is measured 1 h after administration of the respective compound and 30 mins after administration of a bolus, and/or reduces intestinal passage of mice, preferably of female NMRI-mice, if administered as a single dose, preferably subcutaneous dose, of 0.02 mg/kg body weight at least by 45%; more preferably by at least 50%, more preferably by at least 55%, more preferably by at least 60%, and more preferably at least 65%; and/or reduces food intake of mice, preferably of female NMRI-mice, over a period of 22 h, if administered as a single dose, preferably subcutaneous dose of 0.01 mg/kg body weight by at least 10%, more preferably 15%, and more preferably 20%.
The compounds of the invention have the ability to reduce blood glucose level, and/or to reduce HbA1c levels of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods. The results of such experiments are described in Examples 14 and 17.
Preferred compounds of the invention may reduce blood glucose level of mice, preferably in female leptin-receptor deficient diabetic db/db mice over a period of 24 h, if administered as a single dose, preferably subcutaneous dose, of 0.01 mg/kg body weight by at least 4 mmol/L; more preferably by at least 6 mmol/L, more preferably by at least 8 mmol/L. If the dose is increased to 0.1 mg/kg body weight a more pronounced reduction of blood glucose levels can be observed in mice over a period of 24 h, if administered as a single dose, preferably subcutaneous dose. Preferably the compounds of the invention lead to a reduction by at least 7 mmol/L; more preferably by at least 9 mmol/L, more preferably by at least 11 mmol/L. The compounds of the invention preferably reduce the increase of HbA1c levels of mice over a period of 4 weeks, if administered at a daily dose of 0.01 mg/kg to about the ignition value.
The compounds of the invention also have the ability to reduce body weight of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods and in Examples 13 and 16.
It was found that peptidic compounds of the formula (I), particularly those with a lysine at position 14 which is further substituted with a lipophilic residue, showed increased glucagon receptor activation compared to derivatives having the original methionine (from exendin-4) at position 14. Furthermore, oxidation (in vitro or in vivo) of methionine is not possible anymore.
In one embodiment the compounds of the invention have a high solubility at acidic and/or physiological pH values, e.g., at pH 4.5 and/or at pH 7.4 at 25° C., in another embodiment at least 0.5 mg/ml and in a particular embodiment at least 1.0 mg/ml.
Furthermore, according to one embodiment, the compounds of the invention preferably have a high stability when stored in solution. Preferred assay conditions for determining the stability is storage for 7 days at 25° C. in solution at pH 4.5 or pH 7. The remaining amount of peptide is determined by chromatographic analyses as described in the Examples. Preferably, after 7 days at 25° C. in solution at pH 4.5 or pH 7, the remaining peptide amount is at least 80%, more preferably at least 85%, even more preferably at least 90% and even more preferably at least 95%.
Preferably, the compounds of the present invention comprise a peptide moiety Z (II) which is a linear sequence of 39-40 amino carboxylic acids, particularly α-amino carboxylic acids linked by peptide, i.e. carboxamide bonds.
In an embodiment R1 is selected from —NH2, —NH[(C1-C5)alkyl], —N[(C1-C5)alkyl]2, —NH[(C0-C4)alkylene-(C3-C8)cycloalkyl], NH—C(O)—H, NH—C(O)—(C1-C5)-alkyl, NH—C(O)—(C0-C3)alkylene-(C3-C8)cycloalkyl, in which alkyl or cycloalkyl is unsubstituted or up to 5-fold substituted by —OH or halogen selected from F, Cl, Br and I, preferably F.
In an embodiment R2 is selected from —OH, —O—(C1-C20)alkyl, —O(C0-C8)alkylene-(C3-C8)cycloalkyl, —NH2, —NH[(C1-C30)alkyl], —N[(C1-C30)alkyl]2, —NH[(C0-C8)alkylene-(C3-C8)cycloalkyl], —N[(C0-C8)alkylene-(C3-C8)cycloalkyl]2, —NH[(CH2—CH2—O)1-40—(C1-C4)alkyl], —NH—(C3-C8)heterocyclyl or —NH—(C0-C8)alkylene-aryl, wherein aryl is selected from phenyl and naphthyl, preferably phenyl, or a (C3-C8)-heterocyclyl containing 1 N-atom and optionally two additional heteroatoms selected from O, N or S, particularly selected from azetidinyl, pyrrolidinyl, piperidinyl, morpholinyl und homopiperidinyl. Moreover alkyl or cycloalkyl as described above is unsubstituted or up to 5-fold substituted by —OH or halogen selected from F, Cl, Br and I, preferably F.
In one embodiment, the N-terminal group R1 is NH2. In a further embodiment, the C-terminal group R2 is NH2. In still a further embodiment the N-terminal group R1 and the C-terminal group R2 are NH2.
In one embodiment position X14 represents an amino acid residue with a functionalized —NH2 side chain group, such as functionalized Lys, Orn, Dab, or Dap, more preferably functionalized Lys, and X40 represents an amino acid residue with a functionalized —NH2 side chain group, such as functionalized Lys, Orn, Dab, or Dap, more preferably functionalized Lys.
An amino acid residue with an —NH2 side chain group, e.g. Lys, Orn, Dab or Dap, may be functionalized in that at least one H atom of the —NH2 side chain group is replaced by —C(O)—R5, —C(O)O—R5, —C(O)NH—R5, —S(O)2-R5 or R5, preferably by —C(O)—R5, wherein R5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P.
In certain embodiments, R5 may comprise a lipophilic moiety, e.g. an acyclic linear or branched saturated hydrocarbon group, wherein R5 particularly comprises an acyclic linear or branched (C4-C30) saturated or unsaturated hydrocarbon group, and/or a cyclic saturated, unsaturated or aromatic group, particularly a mono-, bi-, or tricyclic group comprising 4 to 14 carbon atoms and 0, 1, or 2 heteroatoms selected from N, O, and S, e.g. cyclohexyl, phenyl, biphenyl, chromanyl, phenanthrenyl or naphthyl, wherein the acyclic or cyclic group may be unsubstituted or substituted e.g. by halogen, —OH and/or CO2H.
More preferred groups R5 may comprise a lipophilic moiety, e.g. an acyclic linear or branched (C12-C22) saturated or unsaturated hydrocarbon group. The lipophilic moiety may be attached to the —NH2 side chain group by a linker in all stereoisomeric forms, e.g. a linker comprising one or more, e.g. 2, amino acid linker groups such as γ-aminobutyric acid (GABA), ε-aminohexanoic acid (ε-Ahx), γ-Glu and/or β-Ala. In one embodiment the lipophilic moiety is attached to the —NH2 side chain group by a linker. In another embodiment the lipophilic moiety directly attached to the —NH2 side chain group. Specific examples of amino acid linker groups are (β-Ala)1-4, (γ-Glu)1-4, (ε-Ahx)1-4, or (GABA)1-4. Preferred amino acid linker groups are ß-Ala, γ-Glu, ß-Ala-ß-Ala and γ-Glu-γ-Glu.
Specific preferred examples for —C(O)—R5 groups are listed in the following Table 1, which are selected from the group consisting of (S)-4-Carboxy-4-hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino-butyryl-, 4-Hexadecanoylamino-butyryl-, 4-{3-[(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino}-butyryl-, 4-octadecanoylamino-butyryl-, 4-((Z)-octadec-9-enoylamino)-butyryl-, 6-[(4,4-Diphenyl-cyclohexyloxy)-hydroxy-phosphoryloxy]-hexanoyl-, Hexadecanoyl-, (S)-4-Carboxy-4-(15-carboxy-pentadecanoylamino)-butyryl-, (S)-4-Carboxy-4-{3-[3-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)-propionylamino]-propionylamino}-butyryl-, (S)-4-Carboxy-4-{3-[(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino}-butyryl-, (S)-4-Carboxy-4-((9Z,12Z)-octadeca-9,12-dienoylamino)-butyryl-, (S)-4-Carboxy-4-[6-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)-hexanoylamino]-butyryl-, (S)-4-Carboxy-4-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)-butyryl-, (S)-4-Carboxy-4-tetradecanoylamino-butyryl-, (S)-4-(11-Benzyloxycarbonyl-undecanoylamino)-4-carboxy-butyryl-, (S)-4-Carboxy-4-[11-((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxy-hexylcarbamoyl)-undecanoylamino]-butyryl-, (S)-4-Carboxy-4-((Z)-octadec-9-enoylamino)-butyryl-, (S)-4-Carboxy-4-(4-dodecyloxy-benzoylamino)-butyryl-, (S)-4-Carboxy-4-henicosanoylamino-butyryl-, (S)-4-Carboxy-4-docosanoylamino-butyryl-, (S)-4-Carboxy-4-((Z)-nonadec-10-enoylamino)-butyryl-, (S)-4-Carboxy-4-(4-decyloxy-benzoylamino)-butyryl-, (S)-4-Carboxy-4-[(4′-octyloxy-biphenyl-4-carbonyl)-amino]-butyryl-, (S)-4-Carboxy-4-(12-phenyl-dodecanoylamino)-butyryl-, (S)-4-Carboxy-4-icosanoylamino-butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-hexadecanoylamino-butyrylamino)-butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino-butyrylamino)-butyryl-, 3-(3-Octadecanoylamino-propionylamino)-propionyl-, 3-(3-Hexadecanoylamino-propionylamino)-propionyl-, 3-Hexadecanoylamino-propionyl-, (S)-4-Carboxy-4-[(R)-4-((3R,5S,7R,8R,9R,10S,12S,13R,14R,17R)-3,7,12-trihydroxy-8,10,13-trimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl)-pentanoylamino]-butyryl-, (S)-4-Carboxy-4-[(R)-4-((3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl)-pentanoylamino]-butyryl-, (S)-4-Carboxy-4-((9S,10R)-9,10,16-trihydroxy-hexadecanoylamino)-butyryl-, Tetradecanoyl-, 11-Carboxy-undecanoyl-, 11-Benzyloxycarbonyl-undecanoyl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-tetradecanoylamino-butyrylamino)-butyryl-, 6-[Hydroxy-(naphthalene-2-yloxy)-phosphoryloxy]-hexanoyl-, 6-[Hydroxy-(5-phenyl-pentyloxy)-phosphoryloxy]-hexanoyl-, 4-(Naphthalene-2-sulfonylamino)-4-oxo-butyryl-, 4-(Biphenyl-4-sulfonylamino)-4-oxo-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)- butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}-butyryl-, (S)-4-Carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyryl-, (S)-4-Carboxy-2-{(S)-4-carboxy-2-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}-butyryl-, (S)-4-Carboxy-2-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}-butyryl-, (S)-4-Carboxy-4-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-butyryl-, (S)-4-Carboxy-2-{(S)-4-carboxy-2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}-butyryl-, (S)-4-Carboxy-2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-butyryl-, 2-(2-{2-[2-(2-{2-[(S)-4-Carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetyl-, 2-(2-{2-[(S)-4-Carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetyl, (S)-4-Carboxy-4-((S)-4-carboxy-4-{(S)-4-carboxy-4-[(S)-4-carboxy-4-(19-carboxy-nonadecanoylamino)-butyrylamino]-butyrylamino}-butyrylamino)-butyryl, 2-(2-{2-[2-(2-{2-[(S)-4-Carboxy-4-(16-1H-tetrazol-5-yl-hexadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetyl-, 2-(2-{2-[2-(2-{2-[(S)-4-Carboxy-4-(16-carboxy-hexadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetyl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-butyrylamino}-butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-{2-[2-(2-{2-[2-(2-{(S)-4-carboxy-4-[10-(4-carboxy-phenoxy)-decanoylamino]-butyrylamino}-ethoxy)-ethoxy]-acetylamino}-ethoxy)-ethoxy]-acetylamino}-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(7-carboxy-heptanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(11-carboxy-undecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(13-carboxy-tridecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(15-carboxy-pentadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}-butyryl-, and (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(19-carboxy-nonadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}-butyryl-.
Further preferred are stereoisomers, particularly enantiomers of these groups, either S- or R-enantiomers. The term “R” in Table 1 is intended to mean the attachment site of —C(O)—R5 at the peptide back bone, i.e. particularly the ε-amino group of Lys.
According to one embodiment, R5 is selected from the group consisting of (S)-4-carboxy-4-hexadecanoylamino-butyryl (γE-x53), (S)-4-carboxy-4-octadecanoylamino-butyryl (γE-x70) 4-hexadecanoylamino-butyryl (GABA-x53) 4-{3-[(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino}-butyryl- (GABA-x60), 4-octadecanoylamino-butyryl (GABA-x70), 4-((Z)-octadec-9-enoylamino)-butyryl (GABA-x74), 6-[(4,4-Diphenyl-cyclohexyloxy)-hydroxy-phosphoryloxy]-hexanoyl (Phospho1), Hexadecanoyl (x53), (S)-4-Carboxy-4-(15-carboxy-pentadecanoylamino)-butyryl (x52), (S)-4-Carboxy-4-{3-[3-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)-propionylamino]-propionylamino}-butyryl (γE-x59), (S)-4-Carboxy-4-{3-[(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino}-butyryl (γE-x60), (S)-4-Carboxy-4-((9Z,12Z)-octadeca-9,12-dienoylamino)-butyryl (γE-x61), (S)-4-Carboxy-4-[6-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)-hexanoylamino]-butyryl (γE-x64), (S)-4-Carboxy-4-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)-butyryl (γE-x65), (S)-4-carboxy-4-tetradecanoylamino-butyryl (γE-x69), (S)-4-(11-Benzyloxycarbonyl-undecanoylamino)-4-carboxy-butyryl (γE-x72), (S)-4-carboxy-4-[11-((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxy-hexylcarbamoyl)-undecanoylamino]-butyryl (γE-x73), (S)-4-Carboxy-4-((Z)-octadec-9-enoylamino)-butyryl (γE-x74), (S)-4-Carboxy-4-(4-dodecyloxy-benzoylamino)-butyryl (γE-x75), (S)-4-Carboxy-4-henicosanoylamino-butyryl (γE-x76), (S)-4-Carboxy-4-docosanoylamino-butyryl (γE-x77), (S)-4-Carboxy-4-((Z)-nonadec-10-enoylamino)-butyryl (γE-x79), (S)-4-Carboxy-4-(4-decyloxy-benzoylamino)-butyryl (γE-x80), (S)-4-Carboxy-4-[(4′-octyloxy-biphenyl-4-carbonyl)-amino]-butyryl (γE-x81), (S)-4-Carboxy-4-(12-phenyl-dodecanoylamino)-butyryl (γE-x82), (S)-4-Carboxy-4-icosanoylamino-butyryl (γE-x95), (S)-4-Carboxy-4-((S)-4-carboxy-4-hexadecanoylamino-butyrylamino)-butyryl (γE-γE-x53), (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino-butyrylamino)-butyryl (γE-γE-x70), and 3-(3-Octadecanoylamino-propionylamino)-propionyl(β-Ala-β-Ala-x70).
According to another embodiment, R5 is selected from the group consisting of (S)-4-carboxy-4-octadecanoylamino-butyryl (γE-x70), (S)-4-carboxy-4-hexadecanoylamino-butyryl (γE-x53), and hexadecanoyl (x53).
According to yet another embodiment, R5 is (S)-4-carboxy-4-hexadecanoylamino-butyryl (γE-x53).
In some embodiments of the invention, position X14 and/or X40 represents Lysine (Lys). According to some embodiments, Lys at position 14 and optionally at position 40 is functionalized, e.g. with a group —C(O)R5 as described above. In other embodiments, X40 is absent and X14 is Lys functionalized with —C(O)—R5, —C(O)O—R5, —C(O)NH—R5, —S(O)2-R5 or R5, preferably by —C(O)—R5, wherein R5 is as defined above. In particular, X14 is Lys functionalized with C(O)—R5, wherein R5 is selected from the group consisting of (S)-4-carboxy-4-hexadecanoylamino-butyryl (γE-x53), (S)-4-carboxy-4-octadecanoylamino-butyryl (γE-x70), 4-hexadecanoylamino-butyryl (GABA-x53), 4-{3-[(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino}-butyryl-(GABA-x60), 4-octadecanoylamino-butyryl (GABA-x70), 4-((Z)-octadec-9-enoylamino)-butyryl (GABA-x74), 6-[(4,4-Diphenyl-cyclohexyloxy)-hydroxy-phosphoryloxy]-hexanoyl (Phospho1), Hexadecanoyl (x53), (S)-4-Carboxy-4-(15-carboxy-pentadecanoylamino)-butyryl (x52), (S)-4-Carboxy-4-{3-[3-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)-propionylamino]-propionylamino}-butyryl (γE-x59), (S)-4-Carboxy-4-{3-[(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino}-butyryl (γE-x60), (S)-4-Carboxy-4-((9Z,12Z)-octadeca-9,12-dienoylamino)-butyryl (γE-x61), (S)-4-Carboxy-4-[6-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)-hexanoylamino]-butyryl (γE-x64), (S)-4-Carboxy-4-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)-butyryl (γE-x65), (S)-4-carboxy-4-tetradecanoylamino-butyryl (γE-x69), (S)-4-(11-Benzyloxycarbonyl-undecanoylamino)-4-carboxy-butyryl (γE-x72), (S)-4-carboxy-4-[11-((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxy-hexylcarbamoyl)-undecanoylamino]-butyryl (γE-x73), (S)-4-Carboxy-4-((Z)-octadec-9-enoylamino)-butyryl (γE-x74), (S)-4-Carboxy-4-(4-dodecyloxy-benzoylamino)-butyryl (γE-x75), (S)-4-Carboxy-4-henicosanoylamino-butyryl (γE-x76), (S)-4-Carboxy-4-docosanoylamino-butyryl (γE-x77), (S)-4-Carboxy-4-((Z)-nonadec-10-enoylamino)-butyryl (γE-x79), (S)-4-Carboxy-4-(4-decyloxy-benzoylamino)-butyryl (γE-x80), (S)-4-Carboxy-4-[(4′-octyloxy-biphenyl-4-carbonyl)-amino]-butyryl (γE-x81), (S)-4-Carboxy-4-(12-phenyl-dodecanoylamino)-butyryl (γE-x82), (S)-4-Carboxy-4-icosanoylamino-butyryl (γE-x95), (S)-4-Carboxy-4-((S)-4-carboxy-4-hexadecanoylamino-butyrylamino)-butyryl (γE-γE-x53), (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino-butyrylamino)-butyryl (γE-γE-x70), and 3-(3-Octadecanoylamino-propionylamino)-propionyl(β-Ala-β-Ala-x70).
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds of formula (I), wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds, wherein
A further embodiment relates to a group of compounds of formula (I), wherein
A further embodiment relates to a group of compounds of formula (I), wherein
A still further preferred embodiment relates to a group of compounds wherein
A still further preferred embodiment relates to a group of compounds, wherein
the functionalized Lys in position 14 is functionalized at its ε-amino group with —C(O)—R5, and —C(O)—R5 is (S)-4-carboxy-4-hexadecanoyl-amino-butyryl, (S)-4-carboxy-4-octadecanoylamino-butyryl, hexadecanoyl or octadecanoyl.
A still further preferred embodiment relates to a group of compounds wherein
A still further preferred embodiment relates to a group of compounds wherein
A further embodiment relates to a group of compounds, wherein
In one embodiment, the invention provides a peptidic compound having the formula (I):
R1—Z—R2 (I),
wherein Z is a peptide moiety having the formula (IIa)
In another embodiment, the invention provides a peptidic compound having the formula (I):
R1—Z—R2 (I),
wherein Z is a peptide moiety having the formula (IIb)
In another embodiment, the invention provides a peptidic compound having the formula (I):
R1—Z—R2 (I),
wherein Z is a peptide moiety having the formula (IIc)
In another embodiment, the invention provides a peptidic compound having the formula (I):
R1—Z—R2 (I),
wherein Z is a peptide moiety having the formula (IId)
Specific examples of peptidic compounds of the invention are the compounds of SEQ ID NO: 4-181, as well as salts and solvates thereof.
Further specific examples of peptidic compounds of the invention are the compounds of SEQ ID NO: 4-181 and 196-223 as well as salts and solvates thereof.
Further specific examples of peptidic compounds of the invention are the compounds of SEQ ID NO: 7, 11-13, 22, 24-31, 34-39, 44-48, 86, 97, 123-124, 130-159, 164, 166, 173-176, as well as salts and solvates thereof.
Further specific examples of peptidic compounds of formula (I) are the compounds of SEQ ID NO: 7, 11-13, 22, 24-31, 34-39, 44-48, 86, 97, 123-124, 130-159, 164, 166, 173-176, 196-223, 226-229 as well as salts and solvates thereof.
In some embodiments, the compound of the invention is selected from the group consisting of SEQ ID NOs.: 25, 31, 133, 148, 153, 155 and 158. In other embodiments, the compound of the invention is selected from the group consisting of SEQ ID NOs.: 209, 210, 211, 212 and 213.
According to one particular embodiment, the compound of the invention is represented by SEQ ID NO.: 97 (see Table 10). In another particular embodiment, the compound of formula (I) is represented by SEQ ID NO.: 24 (see Table 10).
In certain embodiments, i.e. when the compound of formula (I) comprises genetically encoded amino acid residues, the invention further provides a nucleic acid (which may be DNA or RNA) encoding said compound, an expression vector comprising such a nucleic acid, and a host cell containing such a nucleic acid or expression vector.
In a further aspect, the present invention provides a composition comprising a compound of the invention in admixture with a carrier. In preferred embodiments, the composition is a pharmaceutically acceptable composition and the carrier is a pharmaceutically acceptable carrier. The compound of the invention may be in the form of a salt, e.g. a pharmaceutically acceptable salt or a solvate, e.g. a hydrate. In still a further aspect, the present invention provides a composition for use in a method of medical treatment, particularly in human medicine.
In certain embodiments, the nucleic acid or the expression vector may be used as therapeutic agents, e.g. in gene therapy.
The compounds of formula (I) are suitable for therapeutic application without an additionally therapeutically effective agent. In other embodiments, however, the compounds are used together with at least one additional therapeutically active agent, as described in “combination therapy”.
The compounds of formula (I) are particularly suitable for the treatment or prevention of diseases or disorders caused by, associated with and/or accompanied by disturbances in carbohydrate and/or lipid metabolism, e.g. for the treatment or prevention of hyperglycemia, type 2 diabetes, impaired glucose tolerance, type 1 diabetes, obesity and metabolic syndrome. Further, the compounds of the invention are particularly suitable for the treatment or prevention of degenerative diseases, particularly neurodegenerative diseases.
The compounds described find use, inter alia, in preventing weight gain or promoting weight loss. By “preventing” is meant inhibiting or reducing when compared to the absence of treatment, and is not necessarily meant to imply complete cessation of a disorder.
The compounds of the invention may cause a decrease in food intake and/or increase in energy expenditure, resulting in the observed effect on body weight.
Independently of their effect on body weight, the compounds of the invention may have a beneficial effect on circulating cholesterol levels, being capable of improving lipid levels, particularly LDL, as well as HDL levels (e.g. increasing HDL/LDL ratio).
Thus, the compounds of the invention can be used for direct or indirect therapy of any condition caused or characterised by excess body weight, such as the treatment and/or prevention of obesity, morbid obesity, obesity linked inflammation, obesity linked gallbladder disease, obesity induced sleep apnea. They may also be used for treatment and prevention of the metabolic syndrome, diabetes, hypertension, atherogenic dyslipidemia, atherosclerosis, arteriosclerosis, coronary heart disease, or stroke. Their effects in these conditions may be as a result of or associated with their effect on body weight, or may be independent thereof.
Preferred medical uses include delaying or preventing disease progression in type 2 diabetes, treating metabolic syndrome, treating obesity or preventing overweight, for decreasing food intake, increase energy expenditure, reducing body weight, delaying the progression from impaired glucose tolerance (IGT) to type 2 diabetes; delaying the progression from type 2 diabetes to insulin-requiring diabetes; regulating appetite; inducing satiety; preventing weight regain after successful weight loss; treating a disease or state related to overweight or obesity; treating bulimia; treating binge eating; treating atherosclerosis, hypertension, type 2 diabetes, IGT, dyslipidemia, coronary heart disease, hepatic steatosis, treatment of beta-blocker poisoning, use for inhibition of the motility of the gastrointestinal tract, useful in connection with investigations of the gastrointestinal tract using techniques such as X-ray, CT- and NMR-scanning.
Further preferred medical uses include treatment or prevention of degenerative disorders, particularly neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, e.g spinocerebellar ataxia, Kennedy disease, myotonic dystrophy, Lewy body dementia, multi-systemic atrophy, amyotrophic lateral sclerosis, primary lateral sclerosis, spinal muscular atrophy, prion-associated diseases, e.g. Creutzfeldt-Jacob disease, multiple sclerosis, telangiectasia, Batten disease, corticobasal degeneration, subacute combined degeneration of spinal cord, Tabes dorsalis, Tay-Sachs disease, toxic encephalopathy, infantile Refsum disease, Refsum disease, neuroacanthocytosis, Niemann-Pick disease, Lyme disease, Machado-Joseph disease, Sandhoff disease, Shy-Drager syndrome, wobbly hedgehog syndrome, proteopathy, cerebral β-amyloid angiopathy, retinal ganglion cell degeneration in glaucoma, synucleinopathies, tauopathies, frontotemporal lobar degeneration (FTLD), dementia, cadasil syndrome, hereditary cerebral hemorrhage with amyloidosis, Alexander disease, seipinopathies, familial amyloidotic neuropathy, senile systemic amyloidosis, serpinopathies, AL (light chain) amyloidosis (primary systemic amyloidosis), AH (heavy chain) amyloidosis, AA (secondary) amyloidosis, aortic medial amyloidosis, ApoAI amyloidosis, ApoAII amyloidosis, ApoAIV amyloidosis, familial amyloidosis of the Finnish type (FAF), Lysozyme amyloidosis, Fibrinogen amyloidosis, Dialysis amyloidosis, Inclusion body myositis/myopathy, Cataracts, Retinitis pigmentosa with rhodopsin mutations, medullary thyroid carcinoma, cardiac atrial amyloidosis, pituitary prolactinoma, Hereditary lattice corneal dystrophy, Cutaneous lichen amyloidosis, Mallory bodies, corneal lactoferrin amyloidosis, pulmonary alveolar proteinosis, odontogenic (Pindborg) tumor amyloid, cystic fibrosis, sickle cell disease or critical illness myopathy (CIM).
Definitions
The amino acid sequences of the present invention contain the conventional one letter and three letter codes for naturally occurring amino acids, as well as generally accepted three letter codes for other amino acids, such as Aib (α-aminoisobutyric acid), Orn (ornithin), Dab (2,4-diamino butyric acid), Dap (2,3-diamino propionic acid), Nle (norleucine), GABA (γ-aminobutyric acid) or Ahx (ε-aminohexanoic acid).
The term “native exendin-4” refers to native exendin-4 having the sequence HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 (SEQ ID NO: 1).
The invention provides peptidic compounds as defined above.
The peptidic compounds of the present invention comprise a linear backbone of amino carboxylic acids linked by peptide, i.e. carboxamide bonds. Preferably, the amino carboxylic acids are α-amino carboxylic acids and more preferably L-α-amino carboxylic acids, unless indicated otherwise. The peptidic compounds preferably comprise a backbone sequence of 39-40 amino carboxylic acids.
The peptidic compounds may be functionalized (covalently linked) with chemical moieties at their N-terminus, C-terminus and at least one side chain. The N-terminus of the peptidic compound may be unmodified, i.e. an NH2 group or a mono- or bisfunctionalized NH2 group.
At the C-terminus, the peptidic compounds may be unmodified, i.e. have a OH group or be modified, e.g. with functionalized OH group or an NH2 group or a monofunctionalized or bisfunctionalized NH2 group as described above (see R)
The term “alkyl”, as used herein, refers to saturated, monovalent hydrocarbon radicals. The alkyl groups can be linear, i.e. straight-chain, or branched.
The term “alkanediyl” or “alkylene”, as used herein, refers to saturated, divalent hydrocarbon radicals. As far as applicable, the preceding explanations regarding alkyl groups apply correspondingly to alkanediyl groups, which thus can likewise be linear and branched. Examples of divalent alkyl groups are —CH2— (=methylene), —CH2—CH2—, —CH2—CH2—CH2—, —CH2—CH2—CH2—CH2—, —CH(CH3)—, —C(CH3)2—, —CH(CH3)—CH2—, —CH2—CH(CH3)—, —C(CH3)2—CH2—, —CH2—C(CH3)2—.
The term “cycloalkyl”, as used herein, unless otherwise indicated, refers to a monovalent radical of a saturated or partially saturated hydrocarbon ring system, which can be monocyclic. Examples of cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
The term “heterocycloalkyl” or “heterocyclyl”, as used herein unless otherwise indicated, refers to a cycloalkyl as defined above, in which 1, 2 or 3 carbon atoms are replaced by nitrogen, oxygen or sulfur atoms, provided that the heterocycloalkyl system is stable and suitable as a subgroup for the desired purpose of the compound of the formula (I) such as use as a drug substance. Depending on the definition of the respective heterocyclic group, in one embodiment of the invention the number of ring heteroatoms which can be present in a heterocyclic group, independently of the number of ring heteroatoms in any other heterocyclic group, is 1, 2, 3 or 4, in another embodiment 1, 2 or 3, in another embodiment 1 or 2, in another embodiment 2, in another embodiment 1, wherein the ring heteroatoms can be identical or different. The heterocycloalkyl group can be attached by any ring carbon atom or saturated ring nitrogen atom.
Halogen is fluorine, chlorine, bromine or iodine.
The peptidic compounds of the present invention may have unmodified side chains or carry at least one modification at one of the side chains.
For the avoidance of doubt, in the definitions provided herein, it is generally intended that the sequence of the peptidic moiety (II) differs from native exendin-4 at least at one of those positions which are stated to allow variation. Amino acids within the peptide moiety (II) can be considered to be numbered consecutively from 0 to 40 in the conventional N-terminal to C-terminal direction. Reference to a “position” within peptidic moiety (II) should be constructed accordingly, as should reference to positions within native exendin-4 and other molecules.
The amino acid residues at position 14 and optionally at position 40, having a side chain with an —NH2 group, e.g. Lys, Orn, Dab or Dap are conjugated to a functional group, e.g. acyl groups. Thus, one or more selected amino acids of the peptides in the present invention may carry a covalent attachment at their side chains. In some cases those attachments may be lipophilic. These lipophilic side chain attachments have the potential to reduce in vivo clearance of the peptides thus increasing their in vivo half-lives.
The lipophilic attachment may consist of a lipophilic moiety which can be a branched or unbranched, aliphatic or unsaturated acyclic moiety and/or a cyclic moiety selected from one or several aliphatic or unsaturated homocycles or heterocycles, aromatic condensed or non-condensed homocycles or heterocycles, ether linkages, unsaturated bonds and substituents, e.g. hydroxy and/or carboxy groups. The lipophilic moiety may be attached to the peptide either by alkylation, reductive amination or by an amide bond or a sulfonamide bond in case of amino acids carrying an amino group at their side chain, an ester bond in case of amino acids carrying a hydroxy group at their side chain or thioether or thioester linkages in case of amino acids carrying a thiol group at their side chain or it may be attached to a modified side chain of an amino acid thus allowing the introduction of a lipophilic moiety by click-chemistry or Michael-addition.
Nonlimiting examples of lipophilic moieties that can be attached to amino acid side chains include fatty acids, e.g. C8-30 fatty acids such as palmitic acid, myristic acid, stearic acid and oleic acid, and/or cyclic groups as described above or derivatives thereof.
There might be one or several linkers between the amino acid of the peptide and the lipophilic attachment. Nonlimiting examples of those linkers are β-alanine, γ-glutamic acid, γ-aminobutyric acid and/or ε-aminohexanoic acid or dipeptides, such as β-Ala-β-Ala and/or γ-Glu-γ-Glu in all their stereo-isomer forms (S and R enantiomers).
Thus, one nonlimiting example of a side chain attachment is palmitic acid which is covalently linked to the α-amino group of glutamic acid forming an amide bond. The γ-carboxy group of this substituted glutamic acid can form an amide bond with the side chain amino group of a lysine within the peptide.
In a further aspect, the present invention provides a composition comprising a compound of the invention as described herein, or a salt or solvate thereof, in admixture with a carrier.
The invention also provides the use of a compound of the present invention for use as a medicament, particularly for the treatment of a condition as described below.
The invention also provides a composition wherein the composition is a pharmaceutically acceptable composition, and the carrier is a pharmaceutically acceptable carrier.
Peptide Synthesis
The skilled person is aware of a variety of different methods to prepare peptides that are described in this invention. These methods include but are not limited to synthetic approaches and recombinant gene expression. Thus, one way of preparing these peptides is the synthesis in solution or on a solid support and subsequent isolation and purification. A different way of preparing the peptides is gene expression in a host cell in which a DNA sequence encoding the peptide has been introduced. Alternatively, the gene expression can be achieved without utilizing a cell system. The methods described above may also be combined in any way.
A preferred way to prepare the peptides of the present invention is solid phase synthesis on a suitable resin. Solid phase peptide synthesis is a well established methodology (see for example: Stewart and Young, Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, Ill., 1984; E. Atherton and R. C. Sheppard, Solid Phase Peptide Synthesis. A Practical Approach, Oxford-IRL Press, New York, 1989). Solid phase synthesis is initiated by attaching an N-terminally protected amino acid with its carboxy terminus to an inert solid support carrying a cleavable linker. This solid support can be any polymer that allows coupling of the initial amino acid, e.g. a trityl resin, a chlorotrityl resin, a Wang resin or a Rink resin in which the linkage of the carboxy group (or carboxamide for Rink resin) to the resin is sensitive to acid (when Fmoc strategy is used). The polymer support must be stable under the conditions used to deprotect the α-amino group during the peptide synthesis.
After the first amino acid has been coupled to the solid support, the α-amino protecting group of this amino acid is removed. The remaining protected amino acids are then coupled one after the other in the order represented by the peptide sequence using appropriate amide coupling reagents, for example BOP (benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium), HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium), HATU (O-(7-azabenztriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium) or DIC (N,N′-diisopropylcarbodiimide)/HOBt (1-hydroxybenzotriazol), wherein BOP, HBTU and HATU are used with tertiary amine bases. Alternatively, the liberated N-terminus can be functionalized with groups other than amino acids, for example carboxylic acids, etc.
Usually, reactive side chain groups of the amino acids are protected with suitable blocking groups. These protecting groups are removed after the desired peptides have been assembled. They are removed concomitantly with the cleavage of the desired product from the resin under the same conditions. Protecting groups and the procedures to introduce protecting groups can be found in Protective Groups in Organic Synthesis, 3d ed., Greene, T. W. and Wuts, P. G. M., Wiley & Sons (New York: 1999).
In some cases it might be desirable to have side chain protecting groups that can selectively be removed while other side chain protecting groups remain intact. In this case the liberated functionality can be selectively functionalized. For example, a lysine may be protected with an ivDde protecting group (S. R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603) which is labile to a very nucleophilic base, for example 4% hydrazine in DMF (dimethyl formamide). Thus, if the N-terminal amino group and all side chain functionalities are protected with acid labile protecting groups, the ivDde ([1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbutyl) group can be selectively removed using 4% hydrazine in DMF and the corresponding free amino group can then be further modified, e.g. by acylation. The lysine can alternatively be coupled to a protected amino acid and the amino group of this amino acid can then be deprotected resulting in another free amino group which can be acylated or attached to further amino acids.
Finally the peptide is cleaved from the resin. This can be achieved by using King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The raw material can then be purified by chromatography, e.g. preparative RP-HPLC, if necessary.
Potency
As used herein, the term “potency” or “in vitro potency” is a measure for the ability of a compound to activate the receptors for GLP-1 or glucagon in a cell-based assay. Numerically, it is expressed as the “EC50 value”, which is the effective concentration of a compound that induces a half maximal increase of response (e.g. formation of intracellular cAMP) in a dose-response experiment.
Therapeutic Uses
According to one aspect, the compounds of the invention are for use in medicine, particularly human medicine.
The compounds of the invention are agonists for the receptors for GLP-1 and for glucagon (e.g. “dual agonists”) and may provide an attractive option for targeting the metabolic syndrome by allowing simultaneous treatment of obesity and diabetes.
Metabolic syndrome is a combination of medical disorders that, when occurring together, increase the risk of developing type 2 diabetes, as well as atherosclerotic vascular disease, e.g. heart disease and stroke. Defining medical parameters for the metabolic syndrome include diabetes mellitus, impaired glucose tolerance, raised fasting glucose, insulin resistance, urinary albumin secretion, central obesity, hypertension, elevated triglycerides, elevated LDL cholesterol and reduced HDL cholesterol.
Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health and life expectancy and due to its increasing prevalence in adults and children it has become one of the leading preventable causes of death in modern world. It increases the likelihood of various other diseases, including heart disease, type 2 diabetes, obstructive sleep apnoe, certain types of cancer, as well as osteoarthritis, and it is most commonly caused by a combination of excess food intake, reduced energy expenditure, as well as genetic susceptibility.
Diabetes mellitus, often simply called diabetes, is a group of metabolic diseases in which a person has high blood sugar levels, either because the body does not produce enough insulin, or because cells do not respond to the insulin that is produced. The most common types of diabetes are: (1) type 1 diabetes, where the body fails to produce insulin; (2) type 2 diabetes, where the body fails to use insulin properly, combined with an increase in insulin deficiency over time, and (3) gestational diabetes, where women develop diabetes due to their pregnancy. All forms of diabetes increase the risk of long-term complications, which typically develop after many years. Most of these long-term complications are based on damage to blood vessels and can be divided into the two categories “macrovascular” disease, arising from atherosclerosis of larger blood vessels and “microvascular” disease, arising from damage of small blood vessels. Examples for macrovascular disease conditions are ischemic heart disease, myocardial infarction, stroke and peripheral vascular disease. Examples for microvascular diseases are diabetic retinopathy, diabetic nephropathy, as well as diabetic neuropathy.
The receptors for GLP-1 and glucagon are both members of the family B of G-protein coupled receptors. They are highly related to each other and share not only a significant level of sequence identity, but have also similar mechanisms of ligand recognition and intracellular signaling pathways.
Similarly, the peptides GLP-1 and glucagon are homologous to each other, with similar length and regions of high sequence identity. Both are produced from a common precursor, preproglucagon, which is differentially processed in a tissue-specific manner to yield e.g. GLP-1 in intestinal endocrine cells and glucagon in alpha cells of pancreatic islets.
The incretin hormone GLP-1 is secreted by intestinal endocrine cells in response to food and enhances meal-stimulated insulin secretion. Evidence suggests that GLP-1 secretion is reduced in subjects with impaired glucose tolerance or type 2 diabetes, whereas responsiveness to GLP-1 is still preserved in these patients. Thus, targeting of the GLP-1 receptor with suitable agonists offers an attractive approach for treatment of metabolic disorders, including diabetes. The receptor for GLP-1 is distributed widely, being found mainly in pancreatic islets, brain, heart, kidney and the gastrointestinal tract. In the pancreas, GLP-1 acts in a strictly glucose-dependent manner by increasing secretion of insulin from beta cells. This glucose-dependency shows that activation of GLP-1 receptors is unlikely to cause hypoglycemia.
At the beta cell level, GLP-1 has been shown to promote glucose sensitivity, neogenesis, proliferation, transcription of proinsulin and hypertrophy, as well as antiapoptosis. Other relevant effects of GLP-1 beyond the pancreas include delayed gastric emptying, increased satiety, decreased food intake, reduction of body weight, as well as neuroprotective and cardioprotective effects. In patients with type 2 diabetes, such extrapancreatic effects could be particularly important considering the high rates of comorbidities like obesity and cardiovascular disease.
Glucagon is a 29-amino acid peptide hormone that is produced by pancreatic alpha cells and released into the bloodstream when circulating glucose is low. An important physiological role of glucagon is to stimulate glucose output in the liver, which is a process providing the major counterregulatory mechanism for insulin in maintaining glucose homeostasis in vivo.
Glucagon receptors are however also expressed in extrahepatic tissues such as kidney, heart, adipocytes, lymphoblasts, brain, retina, adrenal gland and gastrointestinal tract, suggesting a broader physiological role beyond glucose homeostasis. Accordingly, recent studies have reported that glucagon has therapeutically positive effects on energy management, including stimulation of energy expenditure and thermogenesis, accompanied by reduction of food intake and body weight loss. Altogether, stimulation of glucagon receptors might be useful in the treatment of obesity and the metabolic syndrome.
Oxyntomodulin is a 37-amino acid peptide hormone consisting of glucagon with an eight amino acids encompassing C-terminal extension. Like GLP-1 and glucagon, it is preformed in preproglucagon and cleaved and secreted in a tissue-specific manner by endocrinal cells of the small bowel. Oxyntomodulin is known to stimulate both, the receptors for GLP-1 and glucagon and is therefore the prototype of a dual agonist.
As GLP-1 is known for its anti-diabetic effects, GLP-1 and glucagon are both known for their food intake-suppressing effects and glucagon is also a mediator of additional energy expenditure, it is conceivable that a combination of the activities of the two hormones in one molecule can yield a powerful medication for treatment of the metabolic syndrome and in particular its components diabetes and obesity.
Accordingly, the compounds of the invention may be used for treatment of glucose intolerance, insulin resistance, pre-diabetes, increased fasting glucose, type 2 diabetes, hypertension, dyslipidemia, arteriosclerosis, coronary heart disease, peripheral artery disease, stroke or any combination of these individual disease components.
In addition, they may be used for control of appetite, feeding and calorie intake, increase of energy expenditure, prevention of weight gain, promotion of weight loss, reduction of excess body weight and altogether treatment of obesity, including morbid obesity.
Further disease states and health conditions which could be treated with the compounds of the invention are obesity-linked inflammation, obesity-linked gallbladder disease and obesity-induced sleep apnea.
Although all these conditions could be associated directly or indirectly with obesity, the effects of the compounds of the invention may be mediated in whole or in part via an effect on body weight, or independent thereof.
Further, diseases to be treated are neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease, or other degenerative diseases as described above.
Pharmaceutical Compositions
The term “pharmaceutical composition” indicates a mixture containing ingredients that are compatible when mixed and which may be administered. A pharmaceutical composition may include one or more medicinal drugs. Additionally, the pharmaceutical composition may include carriers, buffers, acidifying agents, alkalizing agents, solvents, adjuvants, tonicity adjusters, emollients, expanders, preservatives, physical and chemical stabilizers e.g. surfactants, antioxidants and other components, whether these are considered active or inactive ingredients. Guidance for the skilled in preparing pharmaceutical compositions may be found, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins and in R. C. Rowe et al (Ed), Handbook of Pharmaceutical Excipients, PhP, May 2013 update.
The exendin-4 peptide derivatives of the present invention, or salts thereof, are administered in conjunction with an acceptable pharmaceutical carrier, diluent, or excipient as part of a pharmaceutical composition. A “pharmaceutically acceptable carrier” is a carrier which is physiologically acceptable (e.g. physiologically acceptable pH) while retaining the therapeutic properties of the substance with which it is administered. Standard acceptable pharmaceutical carriers and their formulations are known to one skilled in the art and described, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins and in R. C. Rowe et al (Ed), Handbook of Pharmaceutical excipients, PhP, May 2013 update. One exemplary pharmaceutically acceptable carrier is physiological saline solution.
In one embodiment carriers are selected from the group of buffers (e.g. citrate/citric acid), acidifying agents (e.g. hydrochloric acid), alkalizing agents (e.g. sodium hydroxide), preservatives (e.g. phenol), co-solvents (e.g. polyethylene glycol 400), tonicity adjusters (e.g. mannitol), stabilizers (e.g. surfactant, antioxidants, amino acids).
Concentrations used are in a range that is physiologically acceptable.
Acceptable pharmaceutical carriers or diluents include those used in formulations suitable for oral, rectal, nasal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, and transdermal) administration. The compounds of the present invention will typically be administered parenterally.
The term “pharmaceutically acceptable salt” means salts of the compounds of the invention which are safe and effective for use in mammals. Pharmaceutically acceptable salts may include, but are not limited to, acid addition salts and basic salts. Examples of acid addition salts include chloride, sulfate, hydrogen sulfate, (hydrogen) phosphate, acetate, citrate, tosylate or mesylate salts. Examples of basic salts include salts with inorganic cations, e.g. alkaline or alkaline earth metal salts such as sodium, potassium, magnesium or calcium salts and salts with organic cations such as amine salts. Further examples of pharmaceutically acceptable salts are described in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins or in Handbook of Pharmaceutical Salts, Properties, Selection and Use, e.d. P. H. Stahl, C. G. Wermuth, 2002, jointly published by Verlag Helvetica Chimica Acta, Zurich, Switzerland, and Wiley-VCH, Weinheim, Germany.
The term “solvate” means complexes of the compounds of the invention or salts thereof with solvent molecules, e.g. organic solvent molecules and/or water.
In the pharmaceutical composition, the exendin-4 derivative can be in monomeric or oligomeric form.
The term “therapeutically effective amount” of a compound refers to a nontoxic but sufficient amount of the compound to provide the desired effect. The amount of a compound of the formula I necessary to achieve the desired biological effect depends on a number of factors, for example the specific compound chosen, the intended use, the mode of administration and the clinical condition of the patient. An appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation For example the “therapeutically effective amount” of a compound of the formula (I) is about 0.01 to 50 mg/dose, preferably 0.1 to 10 mg/dose.
Pharmaceutical compositions of the invention are those suitable for parenteral (for example subcutaneous, intramuscular, intradermal or intravenous), oral, rectal, topical and peroral (for example sublingual) administration, although the most suitable mode of administration depends in each individual case on the nature and severity of the condition to be treated and on the nature of the compound of formula I used in each case.
Suitable pharmaceutical compositions may be in the form of separate units, for example capsules, tablets and powders in vials or ampoules, each of which contains a defined amount of the compound; as powders or granules; as solution or suspension in an aqueous or nonaqueous liquid; or as an oil-in-water or water-in-oil emulsion. It may be provided in single or multiple dose injectable form, for example in the form of a pen. The compositions may, as already mentioned, be prepared by any suitable pharmaceutical method which includes a step in which the active ingredient and the carrier (which may consist of one or more additional ingredients) are brought into contact.
In certain embodiments the pharmaceutical composition may be provided together with a device for application, for example together with a syringe, an injection pen or an autoinjector. Such devices may be provided separate from a pharmaceutical composition or prefilled with the pharmaceutical composition.
Combination Therapy
The compounds of the present invention, dual agonists for the GLP-1 and glucagon receptors, can be widely combined with other pharmacologically active compounds, such as all drugs mentioned in the Rote Liste 2012 and/or the Rote Liste 2013, e.g. with all antidiabetics mentioned in the Rote Liste 2012, chapter 12, and/or the Rote Liste 2013, chapter 12, all weight-reducing agents or appetite suppressants mentioned in the Rote Liste 2012, chapter 1, and/or the Rote Liste 2013, chapter 1, all lipid-lowering agents mentioned in the Rote Liste 2012, chapter 58, and/or the Rote Liste 2013, chapter 58, all antihypertensives and nephroprotectives, mentioned in the Rote Liste 2012 and/or the Rote Liste 2013, or all diuretics mentioned in the Rote Liste 2012, chapter 36, and/or the Rote Liste 2013, chapter 36.
The active ingredient combinations can be used especially for a synergistic improvement in action. They can be applied either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation. When the active ingredients are administered by separate administration of the active ingredients, this can be done simultaneously or successively.
Most of the active ingredients mentioned hereinafter are disclosed in the USP Dictionary of USAN and International Drug Names, US Pharmacopeia, Rockville 2011.
Other active substances which are suitable for such combinations include in particular those which for example potentiate the therapeutic effect of one or more active substances with respect to one of the indications mentioned and/or which allow the dosage of one or more active substances to be reduced.
Therapeutic agents which are suitable for combinations include, for example, antidiabetic agents such as:
Insulin and Insulin derivatives, for example: Glargine/Lantus®, 270-330 U/mL of insulin glargine (EP 2387989 A), 300 U/mL of insulin glargine (EP 2387989 A), Glulisin/Apidra®, Detemir/Levemir®, Lispro/Humalog®/Liprolog®, Degludec/DegludecPlus, Aspart, basal insulin and analogues (e.g. LY-2605541, LY2963016, NN1436), PEGylated insulin Lispro, Humulin®, Linjeta, SuliXen®, NN1045, Insulin plus Symlin, PE0139, fast-acting and short-acting insulins (e.g. Linjeta, PH20, NN1218, HinsBet), (APC-002)hydrogel, oral, inhalable, transdermal and sublingual insulins (e.g. Exubera®, Nasulin®, Afrezza, Tregopil, TPM 02, Capsulin, Oral-lyn®, Cobalamin® oral insulin, ORMD-0801, NN1953, NN1954, NN1956, VIAtab, Oshadi oral insulin). Additionally included are also those insulin derivatives which are bonded to albumin or another protein by a bifunctional linker.
GLP-1, GLP-1 analogues and GLP-1 receptor agonists, for example: Lixisenatide/AVE0010/ZP10/Lyxumia, Exenatide/Exendin-4/Byetta/Bydureon/ITCA 650/AC-2993, Liraglutide/Victoza, Semaglutide, Taspoglutide, Syncria/Albiglutide, Dulaglutide, rExendin-4, CJC-1134-PC, PB-1023, TTP-054, Langlenatide/HM-11260C, CM-3, GLP-1 Eligen, ORMD-0901, NN-9924, NN-9926, NN-9927, Nodexen, Viador-GLP-1, CVX-096, ZYOG-1, ZYD-1, GSK-2374697, DA-3091, MAR-701, MAR709, ZP-2929, ZP-3022, TT-401, BHM-034. MOD-6030, CAM-2036, DA-15864, ARI-2651, ARI-2255, Exenatide-XTEN and Glucagon-Xten.
DPP-4 inhibitors, for example: Alogliptin/Nesina, Trajenta/Linagliptin/BI-1356/Ondero/Trajenta/Tradjenta/Trayenta/Tradzenta, Saxagliptin/Onglyza, Sitagliptin/Januvia/Xelevia/Tesave/Janumet/Velmetia, Galvus/Vildagliptin, Anagliptin, Gemigliptin, Teneligliptin, Melogliptin, Trelagliptin, DA-1229, Omarigliptin/MK-3102, KM-223, Evogliptin, ARI-2243, PBL-1427, Pinoxacin.
SGLT2 inhibitors, for example: Invokana/Canaglifozin, Forxiga/Dapagliflozin, Remoglifozin, Sergliflozin, Empagliflozin, Ipragliflozin, Tofogliflozin, Luseogliflozin, LX-4211, Ertuglifozin/PF-04971729, RO-4998452, EGT-0001442, KGA-3235/DSP-3235, LIK066, SBM-TFC-039,
Biguanides (e.g. Metformin, Buformin, Phenformin), Thiazolidinediones (e.g. Pioglitazone, Rivoglitazone, Rosiglitazone, Troglitazone), dual PPAR agonists (e.g. Aleglitazar, Muraglitazar, Tesaglitazar), Sulfonylureas (e.g. Tolbutamide, Glibenclamide, Glimepiride/Amaryl, Glipizide), Meglitinides (e.g. Nateglinide, Repaglinide, Mitiglinide), Alpha-glucosidase inhibitors (e.g. Acarbose, Miglitol, Voglibose), Amylin and Amylin analogues (e.g. Pramlintide, Symlin).
GPR119 agonists (e.g. GSK-263A, PSN-821, MBX-2982, APD-597, ZYG-19, DS-8500), GPR40 agonists (e.g. Fasiglifam/TAK-875, TUG-424, P-1736, JTT-851, GW9508).
Other suitable combination partners are: Cycloset, inhibitors of 11-beta-HSD (e.g. LY2523199, BMS770767, RG-4929, BMS816336, AZD-8329, HSD-016, BI-135585), activators of glucokinase (e.g. TTP-399, AMG-151, TAK-329, GKM-001), inhibitors of DGAT (e.g. LCQ-908), inhibitors of protein tyrosinephosphatase 1 (e.g. Trodusquemine), inhibitors of glucose-6-phosphatase, inhibitors of fructose-1,6-bisphosphatase, inhibitors of glycogen phosphorylase, inhibitors of phosphoenol pyruvate carboxykinase, inhibitors of glycogen synthase kinase, inhibitors of pyruvate dehydrokinase, alpha2-antagonists, CCR-2 antagonists, SGLT-1 inhibitors (e.g. LX-2761).
One or more lipid lowering agents are also suitable as combination partners, such as for example: HMG-CoA-reductase inhibitors (e.g. Simvastatin, Atorvastatin), fibrates (e.g. Bezafibrate, Fenofibrate), nicotinic acid and the derivatives thereof (e.g. Niacin), PPAR-(alpha, gamma or alpha/gamma) agonists or modulators (e.g. Aleglitazar), PPAR-delta agonists, ACAT inhibitors (e.g. Avasimibe), cholesterol absorption inhibitors (e.g. Ezetimibe), Bile acid-binding substances (e.g. Cholestyramine), ileal bile acid transport inhibitors, MTP inhibitors, or modulators of PCSK9.
HDL-raising compounds such as: CETP inhibitors (e.g. Torcetrapib, Anacetrapid, Dalcetrapid, Evacetrapid, JTT-302, DRL-17822, TA-8995) or ABC1 regulators.
Other suitable combination partners are one or more active substances for the treatment of obesity, such as for example: Sibutramine, Tesofensine, Orlistat, antagonists of the cannabinoid-1 receptor, MCH-1 receptor antagonists, MC4 receptor agonists, NPY5 or NPY2 antagonists (e.g. Velneperit), beta-3-agonists, leptin or leptin mimetics, agonists of the 5HT2c receptor (e.g. Lorcaserin), or the combinations of bupropione/naltrexone, bupropione/zonisamide, bupropione/phentermine or pramlintide/metreleptin.
Other suitable combination partners are:
Further gastrointestinal peptides such as Peptide YY 3-36 (PYY3-36) or analogues thereof, pancreatic polypeptide (PP) or analogues thereof.
Glucagon receptor agonists or antagonists, GIP receptor agonists or antagonists, ghrelin antagonists or inverse agonists, Xenin and analogues thereof.
Moreover, combinations with drugs for influencing high blood pressure, chronic heart failure or atherosclerosis, such as e.g.: Angiotensin II receptor antagonists (e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbesartan, olmesartan, tasosartan, azilsartan), ACE inhibitors, ECE inhibitors, diuretics, beta-blockers, calcium antagonists, centrally acting hypertensives, antagonists of the alpha-2-adrenergic receptor, inhibitors of neutral endopeptidase, thrombocyte aggregation inhibitors and others or combinations thereof are suitable.
In another aspect, this invention relates to the use of a compound according to the invention or a physiologically acceptable salt thereof combined with at least one of the active substances described above as a combination partner, for preparing a medicament which is suitable for the treatment or prevention of diseases or conditions which can be affected by binding to the receptors for GLP-1 and glucagon and by modulating their activity. This is preferably a disease in the context of the metabolic syndrome, particularly one of the diseases or conditions listed above, most particularly diabetes or obesity or complications thereof.
The use of the compounds according to the invention, or a physiologically acceptable salt thereof, in combination with one or more active substances may take place simultaneously, separately or sequentially.
The use of the compound according to the invention, or a physiologically acceptable salt thereof, in combination with another active substance may take place simultaneously or at staggered times, but particularly within a short space of time. If they are administered simultaneously, the two active substances are given to the patient together; if they are used at staggered times, the two active substances are given to the patient within a period of less than or equal to 12 hours, but particularly less than or equal to 6 hours.
Consequently, in another aspect, this invention relates to a medicament which comprises a compound according to the invention or a physiologically acceptable salt of such a compound and at least one of the active substances described above as combination partners, optionally together with one or more inert carriers and/or diluents.
The compound according to the invention, or physiologically acceptable salt or solvate thereof, and the additional active substance to be combined therewith may both be present together in one formulation, for example a tablet or capsule, or separately in two identical or different formulations, for example as so-called kit-of-parts.
a) Effect of SEQ ID NO: 97 and Liraglutide (all 0.02 mg/kg, s.c.) on remaining gastric contents (as indicator for gastric emptying)
b) Effect of SEQ ID NO: 97 and Liraglutide all 0.02 mg/kg, s.c., on small intestinal motility
c) Effect of SEQ ID NO: 97, at 0.02 and 0.002 mg/kg, s.c., on remaining gastric contents (as indicator for gastric emptying)
d) Effect of SEQ ID NO: 97, at 0.02 and 0.002 mg/kg, s.c., on small intestinal motility
Abbreviations employed are as follows:
ivDde: 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)3-methyl-butyl
Dde: 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-ethyl
TFA: trifluoroacetic acid
BOP benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate
HBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium hexafluorophosphate
HATU O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate
DIC N,N′-diisopropylcarbodiimide
HOBt 1-hydroxybenzotriazol
DMF dimethyl formamide
EDT ethanedithiol
HPLC High Performance Liquid Chromatography
Boc tert-butyloxycarbonyl
Fmoc fluorenyloxycarbonyl
PEG Polyethylene Glycol
HTRF Homogenous Time Resolved Fluorescence
BSA bovine serum albumin
FBS fetal bovine serum
DMEM Dulbecco's modified Eagle's medium
PBS phosphate buffered saline
HEPES 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid
IBMX 3-Isobutyl-1-methylxanthine
General Synthesis of Peptidic Compounds
Materials:
Different Rink-Amide resins (4-(2′,4′-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin, Merck Biosciences; 4-[(2,4-Dimethoxyphenyl)(Fmoc-amino)methyl]phenoxy acetamido methyl resin, Agilent Technologies) were used for the synthesis of peptide amides with loadings in the range of 0.3-0.4 mmol/g. Suppliers were Merck Biosciences and Agilent Technologies. From the same suppliers 2-chloro-trityl-chloride polystyrene resins with loadings up to 1.4 mmol/g were purchased and used for the synthesis of peptide acids.
Fmoc protected natural amino acids were purchased from Protein Technologies Inc., Senn Chemicals, Merck Biosciences, Novabiochem, Iris Biotech or Bachem. The following standard amino acids were used throughout the syntheses: Fmoc-L-Ala-OH, Fmoc-L-Asn(Trt)-OH, Fmoc-L-Asp(OtBu)-OH, Fmoc-L-Cys(Trt)-OH, Fmoc-L-Gln(Trt)-OH, Fmoc-L-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-L-His(Trt)-OH, Fmoc-L-Ile-OH, Fmoc-L-Leu-OH, Fmoc-L-Lys(Boc)-OH, Fmoc-L-Met-OH, Fmoc-L-Phe-OH, Fmoc-L-Pro-OH, Fmoc-L-Ser(tBu)-OH, Fmoc-L-Thr(tBu)-OH, Fmoc-L-Trp(Boc)-OH, Fmoc-L-Tyr(tBu)-OH, Fmoc-L-Val-OH.
In addition, the following special amino acids were purchased from the same suppliers as above: Fmoc-L-Lys(ivDde)-OH, Fmoc-Aib-OH, Fmoc-D-Ser(tBu)-OH, Fmoc-D-Ala-OH, Boc-L-His(Boc)-OH (available as toluene solvate) and Boc-L-His(Trt)-OH.
The solid phase peptide syntheses were performed on a Prelude Peptide Synthesizer (Protein Technologies Inc) using standard Fmoc chemistry and HBTU/DIPEA activation. DMF was used as the solvent. Deprotection: 20% piperidine/DMF for 2×2.5 min. Washes: 7×DMF. Coupling 2:5:10 200 mM AA/500 mM HBTU/2M DIPEA in DMF 2× for 20 min. Washes: 5×DMF.
In cases where a Lys-side chain was modified, Fmoc-L-Lys(ivDde)-OH was used in the corresponding position. After completion of the synthesis, the ivDde group was removed according to a modified literature procedure (S. R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. The following acylations were carried out by treating the resin with the N-hydroxy succinimide esters of the desired acid or using coupling reagents like HBTU/DIPEA or HOBt/DIC.
All the peptides that had been synthesized were cleaved from the resin with King's cleavage cocktail consisting of 82.5% TFA, 5% phenol, 5% water, 5% thioanisole, 2.5% EDT. The crude peptides were then precipitated in diethyl or diisopropyl ether, centrifuged, and lyophilized. Peptides were analysed by analytical HPLC and checked by ESI mass spectrometry. Crude peptides were purified by a conventional preparative HPLC purification procedure.
Analytical HPLC was performed on an Agilent 1100 Series HPLC system with a Waters XBridge BEH130 3.5 μm C18 column (2.1×150 mm) at 40° C. with a gradient elution at a flow rate of 0.5 mL/min and monitored at 215 and 280 nm. The gradients were set up as 10% B to 90% B over 15 min and then 90% B for 1 min or as 15% B to 50% B over 12.5 min and then 50% B to 90% B over 3 min. Buffer A=0.1% formic acid in water and B=0.1% formic acid in acetonitrile.
General Preparative HPLC Purification Procedure:
The crude peptides were purified either on an Äkta Purifier System or on a Jasco semiprep HPLC System. Preparative RP-C18-HPLC columns of different sizes and with different flow rates were used depending on the amount of crude peptide to be purified. Acetonitrile+0.1% TFA (B) and water+0.1% TFA (A) were employed as eluents. Product-containing fractions were collected and lyophilized to obtain the purified product.
Solubility and Stability-Testing of Exendin-4 Derivatives
Prior to the testing of solubility and stability of a peptide batch, its content was determined. Therefore, two parameters were investigated, its purity (HPLC-UV) and the amount of salt load of the batch (ion chromatography). Since synthesized peptides contain primarily trifluoroacetate anions, only anion chromatography was performed.
For solubility testing, the target concentration was 1.0 mg/mL pure compound. Therefore, solutions from solid samples were prepared in different buffer systems with a concentration of 1.0 mg/mL compound based on the previously determined content. HPLC-UV was performed after 2 h of gentle agitation from the supernatant, which was obtained by 20 min of centrifugation at 4000 rpm.
The solubility was then determined by comparison with the UV peak areas obtained with a stock solution of the peptide at a concentration of 2 mg/mL in pure water or a variable amount of acetonitrile (optical control that all of the compound was dissolved). This analysis also served as starting point (t0) for the stability testing.
For stability testing, an aliquot of the supernatant obtained for solubility was stored for 7 days at 25° C. After that time course, the sample was centrifuged for 20 min at 4000 rpm and the supernatant was analysed with HPLC-UV.
For determination of the amount of the remaining peptide, the peak areas of the target compound at t0 and t7 were compared, resulting in “% remaining peptide”, following the equation
% remaining peptide=[(peak area peptide t7)×100]/peak area peptide t0.
The amount of soluble degradation products was calculated from the comparison of the sum of the peak areas from all observed impurities reduced by the sum of peak areas observed at t0 (i.e. to determine the amount of newly formed peptide-related species). This value was given in percentual relation to the initial amount of peptide at t0, following the equation:
% soluble degradation products={[(peak area sum of impurities t7)−(peak area sum of impurities t0)]×100}/peak area peptide t0
The potential difference from the sum of “% remaining peptide” and “% soluble degradation products” to 100% reflects the amount of peptide which did not remain soluble upon stress conditions following the equation
% precipitate=100−([% remaining peptide]+[% soluble degradation products])
This precipitate includes non-soluble degradation products, polymers and/or fibrils, which have been removed from analysis by centrifugation.
Anion Chromatography
Instrument: Dionex ICS-2000, pre/column: Ion Pac AG-18 2×50 mm (Dionex)/AS18 2×250 mm (Dionex), eluent: aqueous sodium hydroxide, flow: 0.38 mL/min, gradient: 0-6 min: 22 mM KOH, 6-12 min: 22-28 mM KOH, 12-15 min: 28-50 mM KOH, 15-20 min: 22 mM, suppressor: ASRS 300 2 mm, detection: conductivity.
HPLC-UV
Instrument: Agilent 1100, column: X-Bridge C18 3.5 μm 2.1×150 mm (Waters), eluent: A: H20+500 ppm TFA/B: Methanol, flow: 0.55 mL/min, gradient: 0-5 min: 10-60% B; 5-15 min: 60-99% B; detection: 214 nm.
In Vitro Cellular Assays for GLP-1 Receptor and Glucagon Receptor Efficacy
Agonism of compounds for the two receptors was determined by functional assays measuring cAMP response of HEK-293 cell lines stably expressing human GLP-1 or glucagon receptor.
cAMP content of cells was determined using a kit from Cisbio Corp. (cat. no. 62AM4PEC) based on HTRF (Homogeneous Time Resolved Fluorescence). For preparation, cells were split into T175 culture flasks and grown overnight to near confluency in medium (DMEM/10% FBS). Medium was then removed and cells washed with PBS lacking calcium and magnesium, followed by proteinase treatment with accutase (Sigma-Aldrich cat. no. A6964). Detached cells were washed and resuspended in assay buffer (1×HBSS; 20 mM HEPES, 0.1% BSA, 2 mM IBMX) and cellular density determined. They were then diluted to 400000 cells/ml and 25 μl-aliquots dispensed into the wells of 96-well plates. For measurement, 25 μl of test compound in assay buffer was added to the wells, followed by incubation for 30 minutes at room temperature. After addition of HTRF reagents diluted in lysis buffer (kit components), the plates were incubated for 1 hr, followed by measurement of the fluorescence ratio at 665/620 nm. In vitro potency of agonists was quantified by determining the concentrations that caused 50% activation of maximal response (EC50).
Bioanalytical Screening Method for Quantification of Peptide GLP1-GCG Receptor Agonists in Mice
Mice were dosed 1 mg/kg subcutaneously (s.c.). The mice were sacrificed and blood samples were collected after 0.25, 1, 2, 4, 8, 16 and 24 hours post application. Plasma samples were analysed after protein precipitation via liquid chromatography mass spectrometry (LC/MS). PK parameters and half-life were calculated using WinonLin Version 5.2.1 (non-compartment model).
Gastric Emptying and Intestinal Passage in Mice
Female NMRI-mice of a body weight between 20 and 30 g were used. Mice were adapted to housing conditions for at least one week.
Mice were overnight fasted, while water remained available all the time. On the study day, mice were weighed, single-caged and allowed access to 500 mg of feed for 30 min, while water was removed. At the end of the 30 min feeding period, remaining feed was removed and weighed. 60 min later, a coloured, non-caloric bolus was instilled via gavage into the stomach. The test compound/reference compound or its vehicle in the control group was administered subcutaneously, to reach C max when coloured bolus was administered. After another 30 min, the animals were sacrificed and the stomach and the small intestine prepared. The filled stomach was weighed, emptied, carefully cleaned and dried and reweighed. The calculated stomach content indicated the degree of gastric emptying. The small intestine was straightened without force and measured in length. Then the distance from the gastric beginning of the gut to the tip of the farthest travelled intestinal content bolus was measured. The intestinal passage was given as relation in percent of the latter distance and the total length of the small intestine.
Statistical analyses were performed with Everstat 6.0 by 1-way-ANOVA, followed by Dunnetts or Newman-Keuls as post-hoc test, respectively. Differences were considered statistically significant at the p<0.05 level. As post hoc test Dunnet's Test was applied to compare versus vehicle control, only. Newman-Keul's Test was applied for all pairwise comparisons (i.e. versus vehicle and reference groups).
Automated Assessment of Feed Intake in Mice
Female NMRI-mice of a body weight between 20 and 30 g were used. Mice were adapted to housing conditions for at least one week and for at least one day single-caged in the assessment equipment, when basal data were recorded simultaneously. On the study day, test product was administered subcutaneously close to the lights-off phase (12 h lights off) and assessment of feed consumption was directly started afterwards.
Assessment included continued monitoring (every 30 min) over 22 hours. Repetition of this procedure over several days was possible. Restriction of assessment to 22 hours was for practical reasons to allow for reweighing of animals, refilling of feed and water and drug administration between procedures. Results could be assessed as cumulated data over 22 hours or differentiated to 30 min intervals.
Statistical analyses were performed with Everstat 6.0 by two-way ANOVA on repeated measures and Dunnetts post-hoc analyses. Differences were considered statistically significant at the p<0.05 level.
Acute and Subchronic Effects of Exendin-4 Derivatives after Subcutaneous Treatment on Blood Glucose and Body Weight in Female Diet-Induced Obese (DIO) C57BL/6NCrl Mice (10 Months on High-Fat Diet)
Female C57BL/6NCrl mice were housed in groups in a specific pathogen-free barrier facility on a 12-h light/dark cycle with free access to water and high-fat diet. After 10 months on high-fat diet, mice were stratified to treatment groups (n=8), so that each group had similar mean body weight.
An aged-matched group with ad-libitum access to standard chow was included as standard control group.
Before the experiment, mice were subcutaneously (s.c.) injected with vehicle solution and weighed for 3 days to acclimate them to the procedures.
1) Acute effect on blood glucose in fed DIO mice: initial blood samples were taken just before first administration (s.c.) of vehicle (phosphate buffer solution) or the exendin-4 derivatives at doses of 3, 10, and 100 μg/kg (dissolved in phosphate puffer), respectively. The volume of administration was 5 mL/kg. The animals had access to water and their corresponding diet during the experiment, food consumption was determined at all time points of blood sampling. Blood glucose levels were measured at t=0.5 h, t=1 h, t=2 h, t=4 h, t=6 h, t=8 h, and t=24 h (method: d-glucose hexokinase, hemolysate, AU640 Beckman Coulter). Blood sampling was performed by tail incision without anaesthesia.
Comparable data can also be obtained when using male mice.
2) Subchronic effect on body weight: all animals were treated once daily s.c. in the morning, at the beginning of the light phase (12 h lights on) with either vehicle or exendin-4 derivatives at the abovementioned doses for 4 weeks. Body weight was recorded daily. On days 6 and 28, total fat mass was measured by nuclear magnetic resonance (NMR) using a Bruker minispec (Ettlingen, Germany).
Comparable data can be obtained for both female and male mice.
Statistical analyses were performed with Everstat 6.0 by repeated measures two-way ANOVA and Dunnetts post-hoc analyses (glucose profile) and 1-way-ANOVA, followed by Dunnetts post-hoc test (body weight, body fat). Differences versus vehicle-treated DIO control mice were considered statistically significant at the p<0.05 level.
Acute and Subchronic Effects of Exendin-4 Derivatives after Subcutaneous Treatment on Blood Glucose and HbA1c in Female Leptin-Receptor Deficient Diabetic db/db Mice
Female BKS.Cg-m+/+Leprdb/J (db/db) and BKS.Cg-m+/+Leprdb/+ (lean control) mice were obtained from Charles River Laboratories, Germany, at an age of 9-10 weeks. The animals were housed in groups in a specific pathogen-free barrier facility on a 12-h light/dark cycle with free access to water and rodent-standard chow. After 1 week of acclimatization, blood samples were drawn from the tail without anaesthesia and blood glucose (method: d-glucose hexokinase, hemolysate, AU640 Beckman Coulter) and HbA1c level (method: hemolysate, Cobas6000 c501, Roche Diagnostics, Germany) were determined.
HbA1c is a glycosylated form of haemoglobin whose level reflects the average level of glucose to which the erythrocyte has been exposed during its lifetime. In mice, HbA1c is a relevant biomarker for the average blood glucose level during the preceding 4 weeks (erythrocyte life span in mouse˜47 days).
Db/db mice were stratified to treatment groups (n=8), so that each group had similar baseline blood glucose and HbA1c levels.
1) Acute effect on blood glucose in fed db/db mice: initial blood samples were taken just before first administration (s.c.) of vehicle (phosphate buffer solution) or exendin-4 derivatives at doses of 3, 10, and 100 μg/kg (dissolved in phosphate puffer), respectively. The volume of administration was 5 mL/kg. The animals had access to water and chow during the experiment, food consumption was determined at all time points of blood sampling. Blood glucose levels were measured at t=0.5 h, t=1 h, t=2 h, t=4 h, t=6 h, t=8 h, and t=24 h. Blood sampling was performed by tail incision without anaesthesia.
Comparable data can also be obtained when using male mice.
2) Subchronic effect on blood glucose and HbA1c: all animals were treated once daily s.c. with either vehicle or exendin-4 derivatives at the abovementioned doses for 4 weeks. At the end of the study, blood samples (tail, no anaesthesia) were analyzed for glucose and HbA1c.
Comparable data can be obtained for both female and male mice.
Statistical analyses were performed with Everstat 6.0 by repeated measures two-way ANOVA and Dunnetts post-hoc analyses. Differences versus vehicle-treated db/db control mice were considered statistically significant at the p<0.05 level.
The invention is further illustrated by the following examples.
Synthesis of SEQ ID NO: 4
The solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2′,4′-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.34 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(ivDde)-OH and in position 1 Boc-His(Boc)-OH were used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S. R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Palm-Glu(γOSu)-OtBu was coupled to the liberated amino-group. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1% TFA).
Finally, the molecular mass of the purified peptide was confirmed by LC-MS.
Synthesis of SEQ ID NO: 5
The solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2′,4′-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.34 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(ivDde)-OH and in position 1 Boc-His(Boc)-OH were used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S. R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Palm (γOSu) was coupled to the liberated amino-group. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1% TFA).
Finally, the molecular mass of the purified peptide was confirmed by LC-MS.
Synthesis of SEQ ID NO: 6
The solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2′,4′-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.34 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 and in position 40 Fmoc-Lys(ivDde)-OH and in position 1 Boc-His(Boc)-OH were used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S. R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Palm-Glu(γOSu)-OtBu was coupled to the liberated amino-group. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1% TFA).
Finally, the molecular mass of the purified peptide was confirmed by LC-MS.
Synthesis of SEQ ID NO: 7
The solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2′,4′-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.34 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(ivDde)-OH and in position 1 Boc-His(Boc)-OH were used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S. R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Fmoc-GABA was coupled to the liberated amino-group employing the coupling reagents HBTU/DIPEA followed by Fmoc-deprotection with 20% piperidine in DMF. Finally palmitic acid was coupled to the amino-group of GABA using HBTU/DIPEA. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1% TFA).
Finally, the molecular mass of the purified peptide was confirmed by LC-MS.
Synthesis of SEQ ID NO: 8
The solid phase synthesis was carried out on Agilent Technologies Rink-Amide resin (4-[(2,4-Dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetomido methyl resin), 75-150 μm, loading of 0.38 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(ivDde)-OH and in position 1 Boc-His(Boc)-OH were used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S. R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Fmoc-Glu-OtBu was coupled to the liberated amino-group using HBTU/DIPEA for activation followed by the removal of the Fmoc-group with 20% piperidine in DMF. Stearic acid was coupled onto the resulting amino group after activation with HBTU/DIPEA. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1% TFA).
Finally, the molecular mass of the purified peptide was confirmed by LC-MS.
Synthesis of SEQ ID NO: 9
The solid phase synthesis was carried out on Agilent Technologies Rink-Amide resin (4-[(2,4-Dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetomido methyl resin), 75-150 μm, loading of 0.38 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(ivDde)-OH and in position 1 Boc-His(Boc)-OH were used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S. R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Fmoc-Glu-OtBu was coupled to the liberated amino-group using HBTU/DIPEA for activation followed by the removal of the Fmoc-group with 20% piperidine in DMF. 4-Dodecyloxy benzoic acid was coupled onto the resulting amino group after activation with HBTU/DIPEA. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1% TFA).
Finally, the molecular mass of the purified peptide was confirmed by LC-MS.
Synthesis of SEQ ID NO: 10
The solid phase synthesis was carried out on Agilent Technologies Cl-Trt-Cl resin (2,α-Dichlorobenzhydryl-polystyrene crosslinked with divinylbenzene), 75-150 m, loading of 1.4 mmol/g. Fmoc-Ser-OAllyl was synthesized according to literature (S. Ficht, R. J. Payne, R. T. Guy, C.-H. Wong, Chem. Eur. J. 14, 2008, 3620-3629) and coupled via the side chain hydroxyl function onto Cl-Trt-Cl-resin using DIPEA in dichloromethane. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(ivDde)-OH and in position 1 Boc-His(Boc)-OH were used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S. R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Fmoc-Glu-OtBu was coupled to the liberated amino-group using HBTU/DIPEA for activation followed by the removal of the Fmoc-group with 20% piperidine in DMF. Palmitic acid was coupled onto the resulting amino group after activation with HBTU/DIPEA. The allyl-ester group was removed employing the procedure described in literature (S. Ficht, R. J. Payne, R. T. Guy, C.-H. Wong, Chem. Eur. J. 14, 2008, 3620-3629) followed by activation of the C-terminus with HOBt/DIC in DMF and addition of n-propylamin. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1% TFA).
Finally, the molecular mass of the purified peptide was confirmed by LC-MS.
In an analogous way, the other peptides listed in Table 2 were synthesized.
In an analogous way, the following peptides of Table 3 can be synthesized:
Solubility and chemical stability of peptidic compounds were assessed as described in Methods. The results are given in Table 4.
Potencies of peptidic compounds at the GLP-1 and glucagon receptors were determined by exposing cells expressing human glucagon receptor (hGlucagon R) or human GLP-1 receptor (hGLP-1 R) to the listed compounds at increasing concentrations and measuring the formed cAMP as described in Methods.
The results are shown in Table 5:
Pharmacokinetic profiles were determined as described in Methods. Calculated T1/2 and cmax values are shown in Table 6.
Female NMRI-mice, weighing on average 25-30 g, received 0.02 mg/kg of SEQ ID NO: 97, Liraglutide (SEQ ID NO: 195) as reference compound, or phosphate buffered saline (vehicle control) subcutaneously, 30 min prior to the administration of the coloured bolus. 30 min later, the assessment of stomach contents and intestinal passage was done (
In another study, female NMRI-mice, weighing on average 25-30 g, were administered subcutaneously 0.02 and 0.002 mg/kg of SEQ ID NO: 97 or phosphate buffered saline (vehicle control), 30 min prior to the administration of the coloured bolus. 30 min later, the assessment of stomach contents and intestinal passage was done (
In the study with reference compound Liraglutide, SEQ ID NO: 97 reduced intestinal passage by 67% (versus 44% and 34%, respectively) and increased gastric content by 90% (versus 19% and 21%, respectively) (p<0.0001 versus vehicle control and versus comparators, 1-W-ANOVA, followed by Newman-Keul's post-hoc test) (
When SEQ ID NO: 97 was tested at 0.02 and 0.002 mg/kg, s.c. versus PBS-control, intestinal passage was reduced by 43% and 63%, respectively, and gastric content was increased by 37% and 47%, respectively (p<0.0001 versus vehicle control, 1-W-ANOVA, followed by Dunnett's post-hoc test) (
Fed female NMRI-mice, weighing on average 25-30 g, were administered 0.01 or 0.1 mg/kg of SEQ ID NO: 97 or phosphate buffered saline (vehicle control) subcutaneously, directly prior to start of feeding monitoring (time=0 h). Lights-off phase (dark phase) started 4 hours later.
At the tested doses, SEQ ID NO: 97 demonstrated a dose-dependent reduction of feed intake, reaching 23% (p<0.0001) and 66% (p<0.0001, 2-W-ANOVA-RM, post hoc Dunnett's Test) at the end of the study, respectively (
1) Glucose Profile
After blood sampling to determine the blood glucose baseline level, fed diet-induced obese female C57BL/6NCrl mice were administered 3, 10 or 100 μg/kg of SEQ ID NO: 97 or phosphate buffered solution (vehicle control on standard or high-fat diet) subcutaneously. At predefined time points, more blood samples were taken to measure blood glucose and generate the blood glucose profile over 24 h.
At the tested doses, SEQ ID NO: 97 demonstrated a significant dose-dependent decrease in blood glucose compared to DIO control mice, lasting at least 8 h in the low and medium dose group and >24 h in the high dose group (p<0.0001, 2-W-ANOVA-RM, post hoc Dunnett's Test;
2) Body Weight
Female obese C57BL/6NCrl mice were treated for 4 weeks once daily subcutaneously in the morning, at the beginning of the light phase (12 h lights on) with 3, 10 or 100 μg/kg SEQ ID NO: 97 or vehicle. Body weight was recorded daily, and body fat content was determined before the start of treatment and after 4 weeks of treatment.
Treatment with SEQ ID NO: 97 reduced body weight, whereas in the high-fat diet control group an increase in body weight could be observed. These changes resulted from a decrease (or increase in the HFD control group) in body fat, as shown by the absolute changes in body fat content. These changes reached statistical significance in the medium and high dose group (*: p<0.05, 1-W-ANOVA, post hoc Dunnett's Test, Table 7).
1. Glucose Profile
After blood sampling to determine the blood glucose baseline level, fed diabetic female db/db mice were administered 3, 10 or 100 μg/kg of SEQ ID NO: 97 or phosphate buffered solution (vehicle-treated db/db control) subcutaneously. At predefined time points, more blood samples were taken to measure blood glucose and generate the blood glucose profile over 24 h.
At the tested doses, SEQ ID NO: 97 demonstrated a significant decrease in blood glucose compared to db/db control mice, lasting up to 8 h in the low and medium dose group and >24 h in the high dose group (p<0.0001 for lean control mice; p<0.01 1-8 h after treatment for low and medium dose, p≤0.0002 4-24 h for high dose; 2-W-ANOVA-RM, post hoc Dunnett's Test;
2. Blood Glucose & HbA1c
Female diabetic mice were treated for 4 weeks once daily subcutaneously with 3, 10 or 100 μg/kg SEQ ID NO: 97 or vehicle. Blood glucose and HbA1c were determined before start of treatment and at the end of the study after 4 weeks of treatment.
Before treatment started, no significant differences in blood glucose levels could be detected between db/db groups, only the lean control animals had significant lower glucose levels. During the 4 weeks of treatment, glucose levels increased in the vehicle-treated db/db control group, indicating a worsening of the diabetic situation. All SEQ ID NO: 97-treated animals displayed a significant lower blood glucose level than the db control mice at the end of the study (p<0.0001 for lean control mice; p<0.01 in SEQ ID NO: 97 groups; 2-W-ANOVA-RM, post hoc Dunnett's Test;
Corresponding to blood glucose, at the beginning of the study, no significant differences in HbA1c levels could be detected between db/db groups, only the lean control animals had significant lower levels. During the 4 weeks of treatment, HbA1c increased in the vehicle-treated db/db control group, corresponding to the increasing blood glucose levels. Animals treated with high dose SEQ ID NO: 97 displayed a significant lower HbA1c level than the db control mice at the end of the study (p<0.0001, 2-W-ANOVA-RM, post hoc Dunnett's Test;
A selection of inventive exendin-4 derivatives comprising a functionalized amino acid in position 14 has been tested versus corresponding compounds having in this position 14 a ‘non-functionalized’ amino acid. The reference pair compounds and the corresponding EC50 values at GLP-1 and Glucagon receptors (indicated in pM) are given in Table 8. As shown, the inventive exendin-4 derivatives show a superior activity in comparison to the compounds with a ‘non-functionalized’ amino acid in position 14.
Body Weight
Male obese C57BL/6NCrl mice were treated for 3 weeks twice daily subcutaneously with 0.5, 1.5, 5 or 15 μg/kg SEQ ID NO: 24 or vehicle. Body weight was recorded daily, and body fat content was determined before the start and after 3 weeks of treatment.
Treatment with SEQ ID NO: 24 reduced body weight significantly at dosages of 1.5, 5 and 15 μg/kg (*: p<0.05, 1-W-ANOVA, post hoc Dunnett's Test, Table 9,
1. Glucose Profile
After blood sampling to determine the blood glucose baseline level, fed diabetic female db/db mice were administered 50 μg/kg of SEQ ID NO: 24 or phosphate buffered solution (vehicle-treated db/db control) twice daily subcutaneously. At predefined time points, more blood samples were taken to measure blood glucose and generate the blood glucose profile over 24 h.
At the tested dose, SEQ ID NO: 24 demonstrated a significant decrease in blood glucose compared to db/db control mice, lasting >24 h (p<0.001; 2-W-ANOVA-RM, post hoc Dunnett's Test;
2. Blood Glucose & HbA1c
Female diabetic mice were treated for 4 weeks subcutaneously with 50 μg/kg SEQ ID NO: 24 or vehicle twice daily. Blood glucose and HbA1c were determined before start of treatment and at the end of the study after 4 weeks of treatment.
Before treatment started, no significant differences in blood glucose levels could be detected between db/db groups, only the lean control animals had significant lower glucose levels. During the 4 weeks of treatment, glucose levels increased in the vehicle-treated db/db control group, indicating a worsening of the diabetic situation. The SEQ ID NO: 24-treated animals displayed a significant lower blood glucose level than the db control mice at the end of the study (p<0.01 in SEQ ID NO: 24 group; 2-W-ANOVA-RM, post hoc Dunnett's Test;
Corresponding to blood glucose, at the beginning of the study, no significant differences in HbA1c levels could be detected between db/db groups, only the lean control animals had significant lower levels. During the 4 weeks of treatment, HbA1c increased in the vehicle-treated db/db control group, corresponding to the increasing blood glucose levels. Animals treated with SEQ ID NO: 24 displayed a significantly lower HbA1c level than the db control mice at the end of the study (p<0.001, 2-W-ANOVA-RM, post hoc Dunnett's Test;
Number | Date | Country | Kind |
---|---|---|---|
12306232 | Oct 2012 | EP | regional |
13305222 | Feb 2013 | EP | regional |
This application is a continuation of U.S. patent application Ser. No. 15/130,647, filed Apr. 15, 2016, which is a division of U.S. patent application Ser. No. 14/049,597, filed Oct. 9, 2013, now U.S. Pat. No. 9,365,632, which claims priority to European Patent Application No. 13305222.5, filed Feb. 27, 2013, and European Patent Application No. 12306232.5, filed Oct. 19, 2012, the entire disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5424286 | Eng | Jun 1995 | A |
5641757 | Bornstein et al. | Jun 1997 | A |
6284727 | Kim et al. | Sep 2001 | B1 |
6329336 | Bridon et al. | Dec 2001 | B1 |
6344180 | Holst et al. | Feb 2002 | B1 |
6410511 | L'Italien et al. | Jun 2002 | B2 |
6429197 | Coolidge et al. | Aug 2002 | B1 |
6451974 | Hansen | Sep 2002 | B1 |
6458924 | Knudsen et al. | Oct 2002 | B2 |
6482799 | Tusé et al. | Nov 2002 | B1 |
6506724 | Hiles et al. | Jan 2003 | B1 |
6514500 | Bridon et al. | Feb 2003 | B1 |
6528486 | Larsen et al. | Mar 2003 | B1 |
6579851 | Goeke et al. | Jun 2003 | B2 |
6593295 | Bridon et al. | Jul 2003 | B2 |
6703359 | Young et al. | Mar 2004 | B1 |
6706689 | Coolidge et al. | Mar 2004 | B2 |
6723530 | Drucker | Apr 2004 | B1 |
6821949 | Bridon et al. | Nov 2004 | B2 |
6828303 | Kim et al. | Dec 2004 | B2 |
6849714 | Bridon et al. | Feb 2005 | B1 |
6858576 | Young et al. | Feb 2005 | B1 |
6861236 | Moll et al. | Mar 2005 | B2 |
6872700 | Young et al. | Mar 2005 | B1 |
6884579 | Holst et al. | Apr 2005 | B2 |
6887470 | Bridon et al. | May 2005 | B1 |
6887849 | Bridon et al. | May 2005 | B2 |
6894024 | Coolidge et al. | May 2005 | B2 |
6902744 | Kolterman et al. | Jun 2005 | B1 |
6924264 | Prickett et al. | Aug 2005 | B1 |
6956026 | Beeley et al. | Oct 2005 | B2 |
6969702 | Bertilsson et al. | Nov 2005 | B2 |
6972319 | Pan et al. | Dec 2005 | B1 |
6982248 | Coolidge et al. | Jan 2006 | B2 |
6989366 | Beeley et al. | Jan 2006 | B2 |
6998387 | Goke et al. | Feb 2006 | B1 |
7056734 | Egan et al. | Jun 2006 | B1 |
7056887 | Coolidge et al. | Jun 2006 | B2 |
7105489 | Hathaway et al. | Sep 2006 | B2 |
7105490 | Beeley et al. | Sep 2006 | B2 |
7115569 | Beeley et al. | Oct 2006 | B2 |
7138375 | Beeley et al. | Nov 2006 | B2 |
7138546 | Tang | Nov 2006 | B2 |
7141240 | Perfetti et al. | Nov 2006 | B2 |
7141547 | Rosen et al. | Nov 2006 | B2 |
7144863 | Defelippis et al. | Dec 2006 | B2 |
7153825 | Young et al. | Dec 2006 | B2 |
7157555 | Beeley et al. | Jan 2007 | B1 |
7179788 | Defelippis et al. | Feb 2007 | B2 |
7189690 | Rosen et al. | Mar 2007 | B2 |
7220721 | Beeley et al. | May 2007 | B1 |
7223725 | Beeley et al. | May 2007 | B1 |
7256253 | Bridon et al. | Aug 2007 | B2 |
7259136 | Hathaway et al. | Aug 2007 | B2 |
7259233 | Dodd et al. | Aug 2007 | B2 |
7259234 | Bachovchin et al. | Aug 2007 | B2 |
7265087 | Göke et al. | Sep 2007 | B1 |
7271149 | Glaesner et al. | Sep 2007 | B2 |
7297761 | Beeley et al. | Nov 2007 | B2 |
7312196 | L'Italien et al. | Dec 2007 | B2 |
7329646 | Sun et al. | Feb 2008 | B2 |
7399489 | Kolterman et al. | Jul 2008 | B2 |
7399744 | Mack et al. | Jul 2008 | B2 |
7407932 | Young et al. | Aug 2008 | B2 |
7407955 | Himmelsbach et al. | Aug 2008 | B2 |
7414107 | Larsen | Aug 2008 | B2 |
7419952 | Beeley et al. | Sep 2008 | B2 |
7442680 | Young et al. | Oct 2008 | B2 |
7442682 | Kitaura et al. | Oct 2008 | B2 |
7452858 | Hiles et al. | Nov 2008 | B2 |
7456254 | Wright et al. | Nov 2008 | B2 |
7476652 | Brunner-Schwarz et al. | Jan 2009 | B2 |
7507714 | Pan et al. | Mar 2009 | B2 |
7521423 | Young et al. | Apr 2009 | B2 |
7544657 | Ebbehøj et al. | Jun 2009 | B2 |
7563871 | Wright et al. | Jul 2009 | B2 |
7576050 | Greig et al. | Aug 2009 | B2 |
7585837 | Shechter et al. | Sep 2009 | B2 |
7592010 | Rosen et al. | Sep 2009 | B2 |
7595293 | Engelund et al. | Sep 2009 | B2 |
7595294 | Nestor | Sep 2009 | B2 |
7608692 | Prickett et al. | Oct 2009 | B2 |
7612176 | Wright et al. | Nov 2009 | B2 |
7632806 | Juul-Mortensen et al. | Dec 2009 | B2 |
7638299 | Cho et al. | Dec 2009 | B2 |
7682356 | Alessi et al. | Mar 2010 | B2 |
7683030 | Prickett et al. | Mar 2010 | B2 |
7691963 | Prickett et al. | Apr 2010 | B2 |
7696161 | Beeley et al. | Apr 2010 | B2 |
7700549 | Beeley et al. | Apr 2010 | B2 |
7704953 | Herman et al. | Apr 2010 | B2 |
7713930 | Brunner-Schwarz et al. | May 2010 | B2 |
7723471 | Levy et al. | May 2010 | B2 |
7741269 | Young et al. | Jun 2010 | B2 |
7749955 | Hansen et al. | Jul 2010 | B2 |
7772189 | Herman et al. | Aug 2010 | B2 |
7790681 | Hathaway et al. | Sep 2010 | B2 |
7799344 | Oberg | Sep 2010 | B2 |
7799759 | Rosen et al. | Sep 2010 | B2 |
7803404 | Hokenson et al. | Sep 2010 | B2 |
7829664 | Tatake et al. | Nov 2010 | B2 |
7847079 | Rosen et al. | Dec 2010 | B2 |
7858740 | Beeley et al. | Dec 2010 | B2 |
7867972 | Ballance et al. | Jan 2011 | B2 |
7879028 | Alessi et al. | Feb 2011 | B2 |
7888314 | Hathaway et al. | Feb 2011 | B2 |
7897560 | Dorwald et al. | Mar 2011 | B2 |
7906146 | Kolterman et al. | Mar 2011 | B2 |
7928065 | Young et al. | Apr 2011 | B2 |
7928186 | Chang | Apr 2011 | B2 |
7935786 | Larsen | May 2011 | B2 |
7939494 | Khan et al. | May 2011 | B2 |
7960341 | Hathaway et al. | Jun 2011 | B2 |
7977306 | Rosen et al. | Jul 2011 | B2 |
7981861 | Coolidge et al. | Jul 2011 | B2 |
7989585 | Dodd et al. | Aug 2011 | B2 |
7994121 | Bachovchin et al. | Aug 2011 | B2 |
7994122 | Riber et al. | Aug 2011 | B2 |
8008255 | Ong et al. | Aug 2011 | B2 |
8012464 | Rosen et al. | Sep 2011 | B2 |
8026210 | Young et al. | Sep 2011 | B2 |
8030273 | Lau et al. | Oct 2011 | B2 |
8039432 | Bridon et al. | Oct 2011 | B2 |
8057822 | Prickett et al. | Nov 2011 | B2 |
8071539 | Rosen et al. | Dec 2011 | B2 |
8076288 | Levy et al. | Dec 2011 | B2 |
8080516 | Bridon et al. | Dec 2011 | B2 |
8084414 | Bridon et al. | Dec 2011 | B2 |
8093206 | Bridon et al. | Jan 2012 | B2 |
8097239 | Johnsson et al. | Jan 2012 | B2 |
8097586 | Lv et al. | Jan 2012 | B2 |
8114632 | Melarkode et al. | Feb 2012 | B2 |
8114833 | Pedersen et al. | Feb 2012 | B2 |
8114958 | Soares et al. | Feb 2012 | B2 |
8114959 | Juul-Mortensen | Feb 2012 | B2 |
8119648 | Himmelsbach et al. | Feb 2012 | B2 |
8143217 | Balkan et al. | Mar 2012 | B2 |
8158579 | Ballance et al. | Apr 2012 | B2 |
8158583 | Knudsen et al. | Apr 2012 | B2 |
8178495 | Chilkoti | May 2012 | B2 |
8178541 | Himmelsbach et al. | May 2012 | B2 |
8197450 | Glejbol et al. | Jun 2012 | B2 |
8211439 | Rosen et al. | Jul 2012 | B2 |
8232281 | Dugi et al. | Jul 2012 | B2 |
8236760 | Pimentel et al. | Aug 2012 | B2 |
8252739 | Rosen et al. | Aug 2012 | B2 |
8263545 | Levy et al. | Sep 2012 | B2 |
8263550 | Beeley et al. | Sep 2012 | B2 |
8263554 | Tatarkiewicz et al. | Sep 2012 | B2 |
8268781 | Gotthardt et al. | Sep 2012 | B2 |
8278272 | Greig et al. | Oct 2012 | B2 |
8278420 | Wang et al. | Oct 2012 | B2 |
8288338 | Young et al. | Oct 2012 | B2 |
8293726 | Habib | Oct 2012 | B2 |
8293869 | Bossard et al. | Oct 2012 | B2 |
8293871 | Wright et al. | Oct 2012 | B2 |
8299024 | Rabinovitch et al. | Oct 2012 | B2 |
8299025 | Alessi et al. | Oct 2012 | B2 |
8329419 | Nicolaou et al. | Dec 2012 | B2 |
8329648 | Fineman et al. | Dec 2012 | B2 |
8338368 | Dimarchi et al. | Dec 2012 | B2 |
8343910 | Shechter et al. | Jan 2013 | B2 |
8372804 | Richardson et al. | Feb 2013 | B2 |
8377869 | Richardson et al. | Feb 2013 | B2 |
8389473 | Hathaway et al. | Mar 2013 | B2 |
8404637 | Levy et al. | Mar 2013 | B2 |
8410047 | Bock et al. | Apr 2013 | B2 |
8420604 | Hokenson et al. | Apr 2013 | B2 |
8424518 | Smutney et al. | Apr 2013 | B2 |
8426361 | Levy et al. | Apr 2013 | B2 |
8431685 | Wright et al. | Apr 2013 | B2 |
8445647 | Prickett et al. | May 2013 | B2 |
8450270 | Dimarchi et al. | May 2013 | B2 |
8454971 | Day et al. | Jun 2013 | B2 |
8461105 | Wright et al. | Jun 2013 | B2 |
8481490 | Tatarkiewicz et al. | Jul 2013 | B2 |
8485180 | Smutney et al. | Jul 2013 | B2 |
8497240 | Levy et al. | Jul 2013 | B2 |
8499757 | Smutney et al. | Aug 2013 | B2 |
8546327 | Dimarchi et al. | Oct 2013 | B2 |
8551946 | Dimarchi et al. | Oct 2013 | B2 |
8551947 | Coolidge et al. | Oct 2013 | B2 |
8557769 | Coskun et al. | Oct 2013 | B2 |
8557771 | Fan et al. | Oct 2013 | B2 |
8569481 | Köster et al. | Oct 2013 | B2 |
8575097 | Xu et al. | Nov 2013 | B2 |
8580919 | Bossard et al. | Nov 2013 | B2 |
8598120 | Soares et al. | Dec 2013 | B2 |
8603761 | Nicolaou et al. | Dec 2013 | B2 |
8603969 | Levy et al. | Dec 2013 | B2 |
8614181 | Juul-Mortensen et al. | Dec 2013 | B2 |
8617613 | Wright et al. | Dec 2013 | B2 |
8636001 | Smutney et al. | Jan 2014 | B2 |
8641683 | Glejbol et al. | Feb 2014 | B2 |
8642544 | Alfaro-Lopez et al. | Feb 2014 | B2 |
8664232 | Himmelsbach et al. | Mar 2014 | B2 |
8669228 | Dimarchi et al. | Mar 2014 | B2 |
8673927 | Dugi et al. | Mar 2014 | B2 |
8697647 | Levy et al. | Apr 2014 | B2 |
8697838 | Dimarchi et al. | Apr 2014 | B2 |
8710002 | Rothkopf | Apr 2014 | B2 |
8710181 | Christiansen et al. | Apr 2014 | B2 |
8716221 | Lv et al. | May 2014 | B2 |
8729018 | Chilkoti | May 2014 | B2 |
8729019 | Oberg et al. | May 2014 | B2 |
8735350 | Shechter et al. | May 2014 | B2 |
8748376 | Ludvigsen et al. | Jun 2014 | B2 |
8759290 | James | Jun 2014 | B2 |
8759295 | Ghosh et al. | Jun 2014 | B2 |
8772232 | Lau et al. | Jul 2014 | B2 |
8778872 | Dimarchi et al. | Jul 2014 | B2 |
8785396 | Leone-Bay et al. | Jul 2014 | B2 |
8801700 | Alessi et al. | Aug 2014 | B2 |
8809499 | Fan et al. | Aug 2014 | B2 |
8816047 | Levetan et al. | Aug 2014 | B2 |
8841255 | Chilkoti | Sep 2014 | B2 |
8853157 | Knudsen et al. | Oct 2014 | B2 |
8853160 | Greig et al. | Oct 2014 | B2 |
8877252 | Wright et al. | Nov 2014 | B2 |
8877709 | Shechter et al. | Nov 2014 | B2 |
8883449 | Kjeldsen et al. | Nov 2014 | B2 |
8889619 | Bai et al. | Nov 2014 | B2 |
8900593 | Day et al. | Dec 2014 | B2 |
8969288 | Dimarchi et al. | Mar 2015 | B2 |
8969294 | Bianchi et al. | Mar 2015 | B2 |
8980830 | Dimarchi et al. | Mar 2015 | B2 |
8981047 | Dimarchi et al. | Mar 2015 | B2 |
9018164 | Dimarchi et al. | Apr 2015 | B2 |
9181305 | Haack et al. | Nov 2015 | B2 |
9365632 | Haack et al. | Jun 2016 | B2 |
9670261 | Haack et al. | Jun 2017 | B2 |
9694053 | Haack et al. | Jul 2017 | B2 |
9745360 | Haack et al. | Aug 2017 | B2 |
9750788 | Kadereit et al. | Sep 2017 | B2 |
9751926 | Kadereit et al. | Sep 2017 | B2 |
9758561 | Bossart et al. | Sep 2017 | B2 |
9771406 | Bossart et al. | Sep 2017 | B2 |
9775904 | Bossart et al. | Oct 2017 | B2 |
9789165 | Kadereit et al. | Oct 2017 | B2 |
20010011071 | Knudsen et al. | Aug 2001 | A1 |
20010027180 | Isaacs | Oct 2001 | A1 |
20010043934 | L'Italien et al. | Nov 2001 | A1 |
20020061838 | Holmquist et al. | May 2002 | A1 |
20020137666 | Beeley et al. | Sep 2002 | A1 |
20020146405 | Coolidge et al. | Oct 2002 | A1 |
20030036504 | Kolterman et al. | Feb 2003 | A1 |
20030050237 | Kim et al. | Mar 2003 | A1 |
20030069182 | Rinella et al. | Apr 2003 | A1 |
20030087820 | Young et al. | May 2003 | A1 |
20030087821 | Beeley et al. | May 2003 | A1 |
20030092606 | L'Italien et al. | May 2003 | A1 |
20030119021 | Koster et al. | Jun 2003 | A1 |
20030119734 | Flink et al. | Jun 2003 | A1 |
20030180287 | Gombotz et al. | Sep 2003 | A1 |
20030216287 | Tang | Nov 2003 | A1 |
20030220255 | Knudsen et al. | Nov 2003 | A1 |
20040023871 | Hiles et al. | Feb 2004 | A1 |
20040029784 | Hathaway | Feb 2004 | A1 |
20040037826 | Michelsen et al. | Feb 2004 | A1 |
20040038865 | Gelber et al. | Feb 2004 | A1 |
20040048783 | Brunner-Schwarz et al. | Mar 2004 | A1 |
20040097510 | Himmelsbach et al. | May 2004 | A1 |
20040209255 | Koster et al. | Oct 2004 | A1 |
20040209803 | Baron et al. | Oct 2004 | A1 |
20040242853 | Greig et al. | Dec 2004 | A1 |
20040266670 | Hiles et al. | Dec 2004 | A9 |
20040266678 | Beeley et al. | Dec 2004 | A1 |
20040266683 | Hathaway et al. | Dec 2004 | A1 |
20040266692 | Young et al. | Dec 2004 | A1 |
20050009742 | Bertilsson et al. | Jan 2005 | A1 |
20050009847 | Bertilsson et al. | Jan 2005 | A1 |
20050009988 | Harris et al. | Jan 2005 | A1 |
20050043238 | Young et al. | Feb 2005 | A1 |
20050059601 | Beeley et al. | Mar 2005 | A1 |
20050096276 | Coolidge et al. | May 2005 | A1 |
20050101537 | Beeley et al. | May 2005 | A1 |
20050106214 | Chen | May 2005 | A1 |
20050143303 | Quay et al. | Jun 2005 | A1 |
20050171019 | Young et al. | Aug 2005 | A1 |
20050186174 | Bossard | Aug 2005 | A1 |
20050197287 | Mack et al. | Sep 2005 | A1 |
20050209142 | Bertilsson et al. | Sep 2005 | A1 |
20050215469 | Beeley et al. | Sep 2005 | A1 |
20050215475 | Ong et al. | Sep 2005 | A1 |
20050267034 | Prickett et al. | Dec 2005 | A1 |
20050271702 | Wright et al. | Dec 2005 | A1 |
20050281879 | Chen et al. | Dec 2005 | A1 |
20060003918 | Kim et al. | Jan 2006 | A1 |
20060057137 | Steiness | Mar 2006 | A1 |
20060069029 | Kolterman et al. | Mar 2006 | A1 |
20060073182 | Wong et al. | Apr 2006 | A1 |
20060074012 | Hiles et al. | Apr 2006 | A1 |
20060079448 | Bertilsson et al. | Apr 2006 | A1 |
20060084605 | Engelund et al. | Apr 2006 | A1 |
20060094652 | Levy et al. | May 2006 | A1 |
20060094653 | Levy et al. | May 2006 | A1 |
20060110423 | Wright et al. | May 2006 | A1 |
20060135586 | Kozlowski et al. | Jun 2006 | A1 |
20060135747 | Levy et al. | Jun 2006 | A1 |
20060148713 | Beeley et al. | Jul 2006 | A1 |
20060165733 | Betz et al. | Jul 2006 | A1 |
20060171920 | Shechter et al. | Aug 2006 | A1 |
20060172001 | Ong et al. | Aug 2006 | A1 |
20060178304 | Juul-Mortensen et al. | Aug 2006 | A1 |
20060183677 | Young et al. | Aug 2006 | A1 |
20060183682 | Juul-Mortensen | Aug 2006 | A1 |
20060210614 | Quay et al. | Sep 2006 | A1 |
20060247167 | Schlein et al. | Nov 2006 | A1 |
20060275252 | Harris et al. | Dec 2006 | A1 |
20060287221 | Knudsen et al. | Dec 2006 | A1 |
20060293232 | Levy et al. | Dec 2006 | A1 |
20060293499 | Bentley et al. | Dec 2006 | A1 |
20070010424 | Pedersen et al. | Jan 2007 | A1 |
20070010656 | Beeley et al. | Jan 2007 | A1 |
20070014818 | Betz et al. | Jan 2007 | A1 |
20070021336 | Anderson et al. | Jan 2007 | A1 |
20070037750 | Young et al. | Feb 2007 | A1 |
20070049531 | Knudsen et al. | Mar 2007 | A1 |
20070059373 | Oberg | Mar 2007 | A1 |
20070059374 | Hokenson et al. | Mar 2007 | A1 |
20070065469 | Betz et al. | Mar 2007 | A1 |
20070066528 | Beeley et al. | Mar 2007 | A1 |
20070092482 | Bossard et al. | Apr 2007 | A1 |
20070129284 | Kjeldsen et al. | Jun 2007 | A1 |
20070166352 | Wright et al. | Jul 2007 | A1 |
20070196416 | Li et al. | Aug 2007 | A1 |
20070281940 | Dugi et al. | Dec 2007 | A1 |
20080071063 | Allan et al. | Mar 2008 | A1 |
20080091176 | Alessi et al. | Apr 2008 | A1 |
20080119393 | Beeley et al. | May 2008 | A1 |
20080119569 | Wright et al. | May 2008 | A1 |
20080125348 | Wright et al. | May 2008 | A1 |
20080125349 | Wright et al. | May 2008 | A1 |
20080125351 | Wright et al. | May 2008 | A1 |
20080125353 | Hiles et al. | May 2008 | A1 |
20080125361 | Ludvigsen et al. | May 2008 | A1 |
20080171848 | Christiansen et al. | Jul 2008 | A1 |
20080176802 | Prickett et al. | Jul 2008 | A1 |
20080176804 | Mack et al. | Jul 2008 | A1 |
20080200390 | Prickett et al. | Aug 2008 | A1 |
20080213288 | Michelsen et al. | Sep 2008 | A1 |
20080214467 | Prickett et al. | Sep 2008 | A1 |
20080233053 | Gross et al. | Sep 2008 | A1 |
20080249007 | Lau et al. | Oct 2008 | A1 |
20080249018 | Kolterman et al. | Oct 2008 | A1 |
20080249089 | Himmelsbach et al. | Oct 2008 | A1 |
20080255159 | Himmelsbach et al. | Oct 2008 | A1 |
20080260838 | Hokenson et al. | Oct 2008 | A1 |
20080260847 | Wright et al. | Oct 2008 | A1 |
20080274952 | Soares et al. | Nov 2008 | A1 |
20080280814 | Ludvigsen et al. | Nov 2008 | A1 |
20080300171 | Balkan et al. | Dec 2008 | A1 |
20080312157 | Levy et al. | Dec 2008 | A1 |
20080318865 | Juul-Mortensen | Dec 2008 | A1 |
20090011976 | Ludvigsen et al. | Jan 2009 | A1 |
20090018053 | L'Italien et al. | Jan 2009 | A1 |
20090029913 | Beeley et al. | Jan 2009 | A1 |
20090035253 | Wright et al. | Feb 2009 | A1 |
20090036364 | Levy et al. | Feb 2009 | A1 |
20090043264 | Glejbol et al. | Feb 2009 | A1 |
20090054315 | Bock et al. | Feb 2009 | A1 |
20090069226 | Ong et al. | Mar 2009 | A1 |
20090082255 | Brunner-Schwarz et al. | Mar 2009 | A1 |
20090088369 | Steiness | Apr 2009 | A1 |
20090098130 | Bradshaw et al. | Apr 2009 | A1 |
20090110647 | Richardson et al. | Apr 2009 | A1 |
20090111749 | Richardson et al. | Apr 2009 | A1 |
20090137456 | Dimarchi et al. | May 2009 | A1 |
20090137466 | Anderson et al. | May 2009 | A1 |
20090163423 | Young et al. | Jun 2009 | A1 |
20090170750 | Kjeldsen et al. | Jul 2009 | A1 |
20090176704 | Beeley et al. | Jul 2009 | A1 |
20090180953 | Gotthardt et al. | Jul 2009 | A1 |
20090186817 | Ghosh et al. | Jul 2009 | A1 |
20090186819 | Carrier et al. | Jul 2009 | A1 |
20090203597 | Rabinovitch et al. | Aug 2009 | A1 |
20090203603 | Baron et al. | Aug 2009 | A1 |
20090215688 | Knudsen et al. | Aug 2009 | A1 |
20090215694 | Kolterman et al. | Aug 2009 | A1 |
20090221485 | James | Sep 2009 | A1 |
20090226431 | Habib | Sep 2009 | A1 |
20090232775 | Bertilsson et al. | Sep 2009 | A1 |
20090232807 | Glaesner et al. | Sep 2009 | A1 |
20090232891 | Gelber et al. | Sep 2009 | A1 |
20090239796 | Fineman et al. | Sep 2009 | A1 |
20090247463 | Wright et al. | Oct 2009 | A1 |
20090253625 | Greig et al. | Oct 2009 | A1 |
20090258818 | Surolia et al. | Oct 2009 | A1 |
20090264352 | Anderson et al. | Oct 2009 | A1 |
20090280169 | Leonard | Nov 2009 | A1 |
20090280170 | Lee et al. | Nov 2009 | A1 |
20090286716 | Knudsen et al. | Nov 2009 | A1 |
20090286723 | Levy et al. | Nov 2009 | A1 |
20090291886 | Ong et al. | Nov 2009 | A1 |
20090298757 | Bloom et al. | Dec 2009 | A1 |
20090308390 | Smutney et al. | Dec 2009 | A1 |
20090308391 | Smutney et al. | Dec 2009 | A1 |
20090308392 | Smutney et al. | Dec 2009 | A1 |
20090325860 | Constantino et al. | Dec 2009 | A1 |
20100009904 | Lv et al. | Jan 2010 | A1 |
20100016806 | Glejbol et al. | Jan 2010 | A1 |
20100022455 | Chilkoti | Jan 2010 | A1 |
20100029554 | Ghosh et al. | Feb 2010 | A1 |
20100041867 | Shechter et al. | Feb 2010 | A1 |
20100056451 | Juul-Mortensen et al. | Mar 2010 | A1 |
20100087365 | Cherif-Cheikh et al. | Apr 2010 | A1 |
20100099619 | Levy et al. | Apr 2010 | A1 |
20100137558 | Lee et al. | Jun 2010 | A1 |
20100152097 | Wright et al. | Jun 2010 | A1 |
20100152111 | Wright et al. | Jun 2010 | A1 |
20100168011 | Jennings, Jr. et al. | Jul 2010 | A1 |
20100173844 | Ludvigsen et al. | Jul 2010 | A1 |
20100185184 | Alessi et al. | Jul 2010 | A1 |
20100190699 | Dimarchi et al. | Jul 2010 | A1 |
20100190701 | Day et al. | Jul 2010 | A1 |
20100190715 | Schlein et al. | Jul 2010 | A1 |
20100196405 | Ng et al. | Aug 2010 | A1 |
20100197565 | Smutney et al. | Aug 2010 | A1 |
20100210505 | Bossard et al. | Aug 2010 | A1 |
20100216692 | Brunner-Schwarz et al. | Aug 2010 | A1 |
20100240586 | Bao et al. | Sep 2010 | A1 |
20100247661 | Hokenson et al. | Sep 2010 | A1 |
20100261637 | Spetzler et al. | Oct 2010 | A1 |
20100278924 | Oberg et al. | Nov 2010 | A1 |
20100292172 | Ghosh et al. | Nov 2010 | A1 |
20100317056 | Tiwari et al. | Dec 2010 | A1 |
20100317576 | Rothkopf | Dec 2010 | A1 |
20100331246 | Dimarchi et al. | Dec 2010 | A1 |
20110003004 | Hokenson et al. | Jan 2011 | A1 |
20110034373 | Coskun et al. | Feb 2011 | A1 |
20110034377 | Young et al. | Feb 2011 | A1 |
20110059181 | Hu et al. | Mar 2011 | A1 |
20110065633 | Dimarchi et al. | Mar 2011 | A1 |
20110065731 | Dugi et al. | Mar 2011 | A1 |
20110071076 | Beeley et al. | Mar 2011 | A1 |
20110091420 | Liu et al. | Apr 2011 | A1 |
20110097386 | Steiner et al. | Apr 2011 | A1 |
20110097751 | Nicolaou et al. | Apr 2011 | A1 |
20110098217 | Dimarchi et al. | Apr 2011 | A1 |
20110112277 | Kozlowski et al. | May 2011 | A1 |
20110118136 | Köster et al. | May 2011 | A1 |
20110123487 | Chilkoti | May 2011 | A1 |
20110129522 | Mevorat-Kaplan et al. | Jun 2011 | A1 |
20110136737 | Levy et al. | Jun 2011 | A1 |
20110152181 | Alsina-Fernandez et al. | Jun 2011 | A1 |
20110152182 | Alsina-Fernandez et al. | Jun 2011 | A1 |
20110152185 | Plum et al. | Jun 2011 | A1 |
20110166062 | Dimarchi et al. | Jul 2011 | A1 |
20110166554 | Alessi et al. | Jul 2011 | A1 |
20110171178 | Levetan et al. | Jul 2011 | A1 |
20110178014 | Hathaway et al. | Jul 2011 | A1 |
20110178242 | Harris et al. | Jul 2011 | A1 |
20110190200 | Dimarchi et al. | Aug 2011 | A1 |
20110195897 | Kajihara et al. | Aug 2011 | A1 |
20110230409 | Knudsen et al. | Sep 2011 | A1 |
20110237503 | Alsina-Fernandez et al. | Sep 2011 | A1 |
20110237510 | Steiner et al. | Sep 2011 | A1 |
20110245162 | Fineman et al. | Oct 2011 | A1 |
20110257092 | Dimarchi et al. | Oct 2011 | A1 |
20110263496 | Fineman et al. | Oct 2011 | A1 |
20110281798 | Kolterman et al. | Nov 2011 | A1 |
20110288003 | Dimarchi et al. | Nov 2011 | A1 |
20110301080 | Bush et al. | Dec 2011 | A1 |
20110301081 | Becker et al. | Dec 2011 | A1 |
20110301084 | Lau et al. | Dec 2011 | A1 |
20110306549 | Tatarkiewicz et al. | Dec 2011 | A1 |
20120004168 | Young et al. | Jan 2012 | A1 |
20120021978 | Werner et al. | Jan 2012 | A1 |
20120040899 | Costello et al. | Feb 2012 | A1 |
20120046222 | Alfaro-Lopez et al. | Feb 2012 | A1 |
20120071510 | Leone-Bay et al. | Mar 2012 | A1 |
20120071817 | Ward et al. | Mar 2012 | A1 |
20120094356 | Chung et al. | Apr 2012 | A1 |
20120100070 | Ahn et al. | Apr 2012 | A1 |
20120122783 | Dimarchi et al. | May 2012 | A1 |
20120135922 | Prickett et al. | May 2012 | A1 |
20120136318 | Lanin et al. | May 2012 | A1 |
20120148586 | Chou et al. | Jun 2012 | A1 |
20120149639 | Balkan et al. | Jun 2012 | A1 |
20120157932 | Glejbol et al. | Jun 2012 | A1 |
20120172295 | Dimarchi et al. | Jul 2012 | A1 |
20120177697 | Chen | Jul 2012 | A1 |
20120196795 | Ku et al. | Aug 2012 | A1 |
20120196796 | Soares et al. | Aug 2012 | A1 |
20120196802 | Lv et al. | Aug 2012 | A1 |
20120196804 | Dimarchi et al. | Aug 2012 | A1 |
20120208755 | Leung et al. | Aug 2012 | A1 |
20120208831 | Himmelsbach et al. | Aug 2012 | A1 |
20120209213 | Theucher | Aug 2012 | A1 |
20120225810 | Pedersen et al. | Sep 2012 | A1 |
20120231022 | Bass et al. | Sep 2012 | A1 |
20120238493 | Dimarchi et al. | Sep 2012 | A1 |
20120238496 | Fan et al. | Sep 2012 | A1 |
20120253023 | Levy et al. | Oct 2012 | A1 |
20120258912 | Bentley et al. | Oct 2012 | A1 |
20120258985 | Kozlowski et al. | Oct 2012 | A1 |
20120264683 | Coskun et al. | Oct 2012 | A1 |
20120264684 | Kajihara et al. | Oct 2012 | A1 |
20120276098 | Hamilton et al. | Nov 2012 | A1 |
20120277154 | Fan et al. | Nov 2012 | A1 |
20120283179 | Brunner-Schwarz et al. | Nov 2012 | A1 |
20120294855 | Van Cauter et al. | Nov 2012 | A1 |
20120295836 | Knudsen et al. | Nov 2012 | A1 |
20120295846 | Hagendorf et al. | Nov 2012 | A1 |
20120295850 | Tatarkiewicz et al. | Nov 2012 | A1 |
20120302501 | Coolidge et al. | Nov 2012 | A1 |
20120309975 | Colca et al. | Dec 2012 | A1 |
20120316108 | Chen et al. | Dec 2012 | A1 |
20120316138 | Colca et al. | Dec 2012 | A1 |
20120322725 | Dimarchi et al. | Dec 2012 | A1 |
20120322728 | Colca et al. | Dec 2012 | A1 |
20120329715 | Greig et al. | Dec 2012 | A1 |
20130005664 | Chilkoti | Jan 2013 | A1 |
20130023470 | Young et al. | Jan 2013 | A1 |
20130023471 | Rabinovitch et al. | Jan 2013 | A1 |
20130046245 | Raab et al. | Feb 2013 | A1 |
20130053350 | Colca et al. | Feb 2013 | A1 |
20130065826 | Soula et al. | Mar 2013 | A1 |
20130079277 | Chilkoti | Mar 2013 | A1 |
20130079278 | Lau et al. | Mar 2013 | A1 |
20130084277 | Arnold et al. | Apr 2013 | A1 |
20130085099 | Chilkoti | Apr 2013 | A1 |
20130085104 | Chilkoti | Apr 2013 | A1 |
20130089878 | Nicolaou et al. | Apr 2013 | A1 |
20130090286 | Dimarchi et al. | Apr 2013 | A1 |
20130095037 | Gotthardt et al. | Apr 2013 | A1 |
20130096258 | Bossard et al. | Apr 2013 | A1 |
20130104887 | Smutney et al. | May 2013 | A1 |
20130116172 | Dimarchi et al. | May 2013 | A1 |
20130116175 | Shechter et al. | May 2013 | A1 |
20130118491 | Richardson et al. | May 2013 | A1 |
20130123178 | Dimarchi et al. | May 2013 | A1 |
20130123462 | Dimarchi et al. | May 2013 | A1 |
20130125886 | Richardson et al. | May 2013 | A1 |
20130130977 | Wright et al. | May 2013 | A1 |
20130137631 | Levy et al. | May 2013 | A1 |
20130137645 | Rosendahl | May 2013 | A1 |
20130142795 | Bai et al. | Jun 2013 | A1 |
20130156849 | De Fougerolles et al. | Jun 2013 | A1 |
20130157934 | Dimarchi et al. | Jun 2013 | A1 |
20130157953 | Petersen et al. | Jun 2013 | A1 |
20130164310 | Annathur et al. | Jun 2013 | A1 |
20130165370 | Bock et al. | Jun 2013 | A1 |
20130165379 | Kolterman et al. | Jun 2013 | A1 |
20130172274 | Chilkoti | Jul 2013 | A1 |
20130178411 | Chilkoti | Jul 2013 | A1 |
20130178415 | Soula et al. | Jul 2013 | A1 |
20130184203 | Alfaro-Lopez et al. | Jul 2013 | A1 |
20130184443 | Bentley et al. | Jul 2013 | A1 |
20130189365 | Hokenson et al. | Jul 2013 | A1 |
20130199527 | Smutney et al. | Aug 2013 | A1 |
20130203660 | Day et al. | Aug 2013 | A1 |
20130209586 | Hathaway et al. | Aug 2013 | A1 |
20130217622 | Lee et al. | Aug 2013 | A1 |
20130236974 | De Fougerolles | Sep 2013 | A1 |
20130237592 | De Fougerolles et al. | Sep 2013 | A1 |
20130237593 | De Fougerolles et al. | Sep 2013 | A1 |
20130237594 | De Fougerolles et al. | Sep 2013 | A1 |
20130244278 | De Fougerolles et al. | Sep 2013 | A1 |
20130244279 | De Fougerolles et al. | Sep 2013 | A1 |
20130245104 | De Fougerolles et al. | Sep 2013 | A1 |
20130245105 | De Fougerolles et al. | Sep 2013 | A1 |
20130245106 | De Fougerolles et al. | Sep 2013 | A1 |
20130245107 | De Fougerolles et al. | Sep 2013 | A1 |
20130252281 | De Fougerolles et al. | Sep 2013 | A1 |
20130253043 | De Fougerolles et al. | Sep 2013 | A1 |
20130259923 | Bancel et al. | Oct 2013 | A1 |
20130259924 | Bancel et al. | Oct 2013 | A1 |
20130266640 | De Fougerolles et al. | Oct 2013 | A1 |
20130280206 | Kozlowski et al. | Oct 2013 | A1 |
20130281368 | Bilsky et al. | Oct 2013 | A1 |
20130281374 | Levy et al. | Oct 2013 | A1 |
20130284912 | Vogel et al. | Oct 2013 | A1 |
20130288958 | Lau et al. | Oct 2013 | A1 |
20130289241 | Bai et al. | Oct 2013 | A1 |
20130291866 | Smutney et al. | Nov 2013 | A1 |
20130291867 | Smutney et al. | Nov 2013 | A1 |
20130296236 | Silvestre et al. | Nov 2013 | A1 |
20130303442 | Levy et al. | Nov 2013 | A1 |
20130310310 | Liu et al. | Nov 2013 | A1 |
20130310538 | Chilkoti | Nov 2013 | A1 |
20130331322 | Young et al. | Dec 2013 | A1 |
20130336893 | Haack et al. | Dec 2013 | A1 |
20130338065 | Smutney et al. | Dec 2013 | A1 |
20130338071 | Knudsen et al. | Dec 2013 | A1 |
20130345134 | Sauerberg et al. | Dec 2013 | A1 |
20140007873 | Smutney et al. | Jan 2014 | A1 |
20140011732 | Spetzler et al. | Jan 2014 | A1 |
20140014106 | Smutney et al. | Jan 2014 | A1 |
20140017208 | Osei | Jan 2014 | A1 |
20140031281 | Wright et al. | Jan 2014 | A1 |
20140038891 | Prickett et al. | Feb 2014 | A1 |
20140056924 | Van Cauter | Feb 2014 | A1 |
20140066368 | Mack et al. | Mar 2014 | A1 |
20140083421 | Smutney et al. | Mar 2014 | A1 |
20140088003 | Wright et al. | Mar 2014 | A1 |
20140100156 | Haack et al. | Apr 2014 | A1 |
20140107019 | Erickson et al. | Apr 2014 | A1 |
20140107021 | Dimarchi et al. | Apr 2014 | A1 |
20140120120 | Woo et al. | May 2014 | A1 |
20140121352 | Shechter et al. | May 2014 | A1 |
20140128318 | Jung et al. | May 2014 | A1 |
20140128604 | Himmelsbach et al. | May 2014 | A1 |
20140135348 | Dugi et al. | May 2014 | A1 |
20140141467 | Tiwari et al. | May 2014 | A1 |
20140142037 | Yue | May 2014 | A1 |
20140162943 | Alfaro-Lopez et al. | Jun 2014 | A1 |
20140187483 | Steiness | Jul 2014 | A1 |
20140200183 | Hathaway et al. | Jul 2014 | A1 |
20140206608 | Haack et al. | Jul 2014 | A1 |
20140206609 | Haack et al. | Jul 2014 | A1 |
20140206613 | Rabinovitch et al. | Jul 2014 | A1 |
20140206615 | Knudsen et al. | Jul 2014 | A1 |
20140212419 | Dimarchi et al. | Jul 2014 | A1 |
20140212440 | Jung et al. | Jul 2014 | A1 |
20140213513 | Haack et al. | Jul 2014 | A1 |
20140213516 | Chilkoti | Jul 2014 | A1 |
20140220029 | Michelsen et al. | Aug 2014 | A1 |
20140220134 | Zierhut et al. | Aug 2014 | A1 |
20140221280 | Bloom | Aug 2014 | A1 |
20140221281 | Haack et al. | Aug 2014 | A1 |
20140221282 | Sun et al. | Aug 2014 | A1 |
20140227264 | Hamilton et al. | Aug 2014 | A1 |
20140235535 | Erickson et al. | Aug 2014 | A1 |
20140243263 | Rothkopf | Aug 2014 | A1 |
20140249299 | Levy et al. | Sep 2014 | A1 |
20140308358 | Oberg et al. | Oct 2014 | A1 |
20140309168 | Rosendahl | Oct 2014 | A1 |
20140315953 | Leone-Bay et al. | Oct 2014 | A1 |
20150011467 | Bloom et al. | Jan 2015 | A1 |
20150126440 | Day et al. | May 2015 | A1 |
20150164995 | Kadereit et al. | Jun 2015 | A1 |
20150164996 | Kadereit et al. | Jun 2015 | A1 |
20150164997 | Haack et al. | Jun 2015 | A1 |
20150166625 | Haack et al. | Jun 2015 | A1 |
20150166627 | Kadereit et al. | Jun 2015 | A1 |
20150216941 | Bley et al. | Aug 2015 | A1 |
20150232527 | Gong et al. | Aug 2015 | A1 |
20150315260 | Bossart et al. | Nov 2015 | A1 |
20150322128 | Bossart et al. | Nov 2015 | A1 |
20150322129 | Bossart et al. | Nov 2015 | A1 |
20150368311 | Haack et al. | Dec 2015 | A1 |
20160168225 | Haack et al. | Jun 2016 | A1 |
20160220643 | Haack et al. | Aug 2016 | A1 |
20160235855 | Xiong et al. | Aug 2016 | A1 |
20170216406 | Haack et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1938334 | Mar 2007 | CN |
101538323 | Sep 2009 | CN |
101559041 | Oct 2009 | CN |
101663317 | Mar 2010 | CN |
101798588 | Aug 2010 | CN |
101870728 | Oct 2010 | CN |
101601646 | Mar 2011 | CN |
102100906 | Jun 2011 | CN |
102363633 | Feb 2012 | CN |
102421796 | Apr 2012 | CN |
101444618 | Jun 2012 | CN |
102532301 | Jul 2012 | CN |
102649947 | Aug 2012 | CN |
102816244 | Dec 2012 | CN |
102827270 | Dec 2012 | CN |
101670096 | Jan 2013 | CN |
103304660 | Sep 2013 | CN |
103421094 | Dec 2013 | CN |
102552883 | Feb 2014 | CN |
103665148 | Mar 2014 | CN |
103833841 | Jun 2014 | CN |
103908657 | Jul 2014 | CN |
102766204 | Oct 2014 | CN |
104926934 | Sep 2015 | CN |
1 140 145 | Jul 2005 | EP |
0 619 322 | Dec 2005 | EP |
1 609 478 | Dec 2005 | EP |
1 143 989 | Dec 2006 | EP |
1 658 856 | Mar 2010 | EP |
1 684 793 | Sep 2011 | EP |
1 633 391 | Oct 2011 | EP |
2 387 989 | Nov 2011 | EP |
1 633 390 | Jan 2012 | EP |
2 494 983 | Sep 2012 | EP |
2 626 368 | Aug 2013 | EP |
2 664 374 | Nov 2013 | EP |
1 817 048 | Feb 2014 | EP |
2 769 990 | Aug 2014 | EP |
2014-227368 | Dec 2014 | JP |
10-2012-0137271 | Dec 2012 | KR |
10-2012-0139579 | Dec 2012 | KR |
10-2014-0018462 | Feb 2014 | KR |
10-2014-0058104 | May 2014 | KR |
10-2014-0058387 | May 2014 | KR |
10-2014-0130659 | Nov 2014 | KR |
10-2014-0133493 | Nov 2014 | KR |
2009121626 | Feb 2011 | RU |
1996019229 | Jun 1996 | WO |
1998005351 | Feb 1998 | WO |
1998008871 | Mar 1998 | WO |
1998030231 | Jul 1998 | WO |
1999007404 | Feb 1999 | WO |
1999025727 | May 1999 | WO |
1999025728 | May 1999 | WO |
1999034822 | Jul 1999 | WO |
1999043708 | Sep 1999 | WO |
1999047160 | Sep 1999 | WO |
1999064061 | Dec 1999 | WO |
2000015224 | Mar 2000 | WO |
2000037098 | Jun 2000 | WO |
2000041546 | Jul 2000 | WO |
2000041548 | Jul 2000 | WO |
2000055119 | Sep 2000 | WO |
2000066629 | Nov 2000 | WO |
2000071175 | Nov 2000 | WO |
2000073331 | Dec 2000 | WO |
2001051078 | Jul 2001 | WO |
2002016309 | Feb 2002 | WO |
2002034285 | May 2002 | WO |
2002067989 | Sep 2002 | WO |
2003011892 | Feb 2003 | WO |
2003020201 | Mar 2003 | WO |
2003061362 | Jul 2003 | WO |
2003077851 | Sep 2003 | WO |
2003084563 | Oct 2003 | WO |
WO 2003087139 | Oct 2003 | WO |
2003092581 | Nov 2003 | WO |
2003099314 | Dec 2003 | WO |
2003101395 | Dec 2003 | WO |
2003105888 | Dec 2003 | WO |
2003105897 | Dec 2003 | WO |
2004004779 | Jan 2004 | WO |
2004004780 | Jan 2004 | WO |
2004004781 | Jan 2004 | WO |
2004005342 | Jan 2004 | WO |
2004012672 | Feb 2004 | WO |
2004018468 | Mar 2004 | WO |
2004035623 | Apr 2004 | WO |
2004045592 | Jun 2004 | WO |
2004056313 | Jul 2004 | WO |
2004056317 | Jul 2004 | WO |
2004062685 | Jul 2004 | WO |
2004089280 | Oct 2004 | WO |
2004089985 | Oct 2004 | WO |
2004105781 | Dec 2004 | WO |
2004105790 | Dec 2004 | WO |
2005000222 | Jan 2005 | WO |
2005000360 | Jan 2005 | WO |
2005012347 | Feb 2005 | WO |
2005021022 | Mar 2005 | WO |
2005046716 | May 2005 | WO |
2005048989 | Jun 2005 | WO |
2005049061 | Jun 2005 | WO |
2005049069 | Jun 2005 | WO |
2005054291 | Jun 2005 | WO |
2005077072 | Aug 2005 | WO |
2005077094 | Aug 2005 | WO |
2005081619 | Sep 2005 | WO |
2005102293 | Nov 2005 | WO |
2005110425 | Nov 2005 | WO |
2005115437 | Dec 2005 | WO |
2005117584 | Dec 2005 | WO |
2005120492 | Dec 2005 | WO |
2006017688 | Feb 2006 | WO |
2006024275 | Mar 2006 | WO |
2006024631 | Mar 2006 | WO |
2006029634 | Mar 2006 | WO |
2006037811 | Apr 2006 | WO |
2006044531 | Apr 2006 | WO |
2006051103 | May 2006 | WO |
2006051110 | May 2006 | WO |
2006066024 | Jun 2006 | WO |
2006069388 | Jun 2006 | WO |
2006073890 | Jul 2006 | WO |
2006074600 | Jul 2006 | WO |
2006083254 | Aug 2006 | WO |
2006086769 | Aug 2006 | WO |
2006097535 | Sep 2006 | WO |
2006110887 | Oct 2006 | WO |
2006114396 | Nov 2006 | WO |
2006125763 | Nov 2006 | WO |
WO 2006127948 | Nov 2006 | WO |
2006134340 | Dec 2006 | WO |
2006138572 | Dec 2006 | WO |
2007019331 | Feb 2007 | WO |
2007022123 | Mar 2007 | WO |
2007024700 | Mar 2007 | WO |
2007033316 | Mar 2007 | WO |
2007033372 | Mar 2007 | WO |
2007035665 | Mar 2007 | WO |
2007047834 | Apr 2007 | WO |
2007047922 | Apr 2007 | WO |
2007056362 | May 2007 | WO |
2007064691 | Jun 2007 | WO |
2007065156 | Jun 2007 | WO |
2007067964 | Jun 2007 | WO |
2007075534 | Jul 2007 | WO |
2007109354 | Sep 2007 | WO |
2007120899 | Oct 2007 | WO |
2007121411 | Oct 2007 | WO |
2007128761 | Nov 2007 | WO |
2007133778 | Nov 2007 | WO |
2007139941 | Dec 2007 | WO |
2007140284 | Dec 2007 | WO |
2008021133 | Feb 2008 | WO |
2008021560 | Feb 2008 | WO |
2008023050 | Feb 2008 | WO |
2008038147 | Apr 2008 | WO |
2008058461 | May 2008 | WO |
2008071972 | Jun 2008 | WO |
2008073448 | Jun 2008 | WO |
2008081418 | Jul 2008 | WO |
2008086086 | Jul 2008 | WO |
2008098212 | Aug 2008 | WO |
2008101017 | Aug 2008 | WO |
2008148839 | Dec 2008 | WO |
2008152403 | Dec 2008 | WO |
2009020802 | Feb 2009 | WO |
2009024015 | Feb 2009 | WO |
2009029847 | Mar 2009 | WO |
2009030771 | Mar 2009 | WO |
2009035540 | Mar 2009 | WO |
2009055740 | Apr 2009 | WO |
2009055742 | Apr 2009 | WO |
2009058662 | May 2009 | WO |
2009058734 | May 2009 | WO |
2009063072 | May 2009 | WO |
2009067268 | May 2009 | WO |
WO 2009087081 | Jul 2009 | WO |
2009095479 | Aug 2009 | WO |
2009099763 | Aug 2009 | WO |
2009113099 | Sep 2009 | WO |
2009137078 | Nov 2009 | WO |
2009137080 | Nov 2009 | WO |
2009143014 | Nov 2009 | WO |
2009143285 | Nov 2009 | WO |
2009152477 | Dec 2009 | WO |
2009153960 | Dec 2009 | WO |
2009155257 | Dec 2009 | WO |
2009155258 | Dec 2009 | WO |
2009158704 | Dec 2009 | WO |
2010011439 | Jan 2010 | WO |
2010013012 | Feb 2010 | WO |
2010043566 | Apr 2010 | WO |
2010070251 | Jun 2010 | WO |
2010070252 | Jun 2010 | WO |
2010070253 | Jun 2010 | WO |
2010070255 | Jun 2010 | WO |
2010071807 | Jun 2010 | WO |
2010096052 | Aug 2010 | WO |
2010096142 | Aug 2010 | WO |
2010102148 | Sep 2010 | WO |
2010120476 | Oct 2010 | WO |
2010121559 | Oct 2010 | WO |
2010123290 | Oct 2010 | WO |
2010133675 | Nov 2010 | WO |
2010133676 | Nov 2010 | WO |
2010138671 | Dec 2010 | WO |
2010142665 | Dec 2010 | WO |
2010148089 | Dec 2010 | WO |
2011000095 | Jan 2011 | WO |
2011006497 | Jan 2011 | WO |
2011011675 | Jan 2011 | WO |
2011012718 | Feb 2011 | WO |
2011020319 | Feb 2011 | WO |
2011020320 | Feb 2011 | WO |
2011024110 | Mar 2011 | WO |
2011039096 | Apr 2011 | WO |
2011049713 | Apr 2011 | WO |
2011052523 | May 2011 | WO |
2011056713 | May 2011 | WO |
2011058082 | May 2011 | WO |
2011058083 | May 2011 | WO |
WO 2011051864 | May 2011 | WO |
2011075393 | Jun 2011 | WO |
2011075514 | Jun 2011 | WO |
2011075623 | Jun 2011 | WO |
2011080103 | Jul 2011 | WO |
2011084453 | Jul 2011 | WO |
2011084456 | Jul 2011 | WO |
2011084459 | Jul 2011 | WO |
2011087671 | Jul 2011 | WO |
2011087672 | Jul 2011 | WO |
2011088837 | Jul 2011 | WO |
2011094337 | Aug 2011 | WO |
2011109784 | Sep 2011 | WO |
2011117415 | Sep 2011 | WO |
2011117416 | Sep 2011 | WO |
2011119657 | Sep 2011 | WO |
2011143208 | Nov 2011 | WO |
2011143209 | Nov 2011 | WO |
2011144751 | Nov 2011 | WO |
WO 2011144673 | Nov 2011 | WO |
2011153965 | Dec 2011 | WO |
2011156407 | Dec 2011 | WO |
2011160630 | Dec 2011 | WO |
2011162830 | Dec 2011 | WO |
2011163012 | Dec 2011 | WO |
2011163272 | Dec 2011 | WO |
2011163473 | Dec 2011 | WO |
2012012352 | Jan 2012 | WO |
2012012460 | Jan 2012 | WO |
2012015975 | Feb 2012 | WO |
2012031518 | Mar 2012 | WO |
2012035139 | Mar 2012 | WO |
2012050923 | Apr 2012 | WO |
2012059762 | May 2012 | WO |
2012064892 | May 2012 | WO |
2012080471 | Jun 2012 | WO |
2012088116 | Jun 2012 | WO |
2012088157 | Jun 2012 | WO |
2012122535 | Sep 2012 | WO |
2012130015 | Oct 2012 | WO |
2012138941 | Oct 2012 | WO |
2012140647 | Oct 2012 | WO |
2012150503 | Nov 2012 | WO |
2012158965 | Nov 2012 | WO |
2012162547 | Nov 2012 | WO |
2012167744 | Dec 2012 | WO |
2012169798 | Dec 2012 | WO |
2012173422 | Dec 2012 | WO |
2012177443 | Dec 2012 | WO |
2012177444 | Dec 2012 | WO |
2012177929 | Dec 2012 | WO |
2013002580 | Jan 2013 | WO |
2013004983 | Jan 2013 | WO |
2013009545 | Jan 2013 | WO |
2013029279 | Mar 2013 | WO |
2013041678 | Mar 2013 | WO |
2012174478 | May 2013 | WO |
2013060850 | May 2013 | WO |
2013074910 | May 2013 | WO |
2013078500 | Jun 2013 | WO |
2013090648 | Jun 2013 | WO |
2013092703 | Jun 2013 | WO |
2013093720 | Jun 2013 | WO |
2013101749 | Jul 2013 | WO |
2013104861 | Jul 2013 | WO |
2013164483 | Jul 2013 | WO |
2013148871 | Oct 2013 | WO |
2013148966 | Oct 2013 | WO |
2013151663 | Oct 2013 | WO |
2013151664 | Oct 2013 | WO |
2013151665 | Oct 2013 | WO |
2013151666 | Oct 2013 | WO |
2013151667 | Oct 2013 | WO |
2013151668 | Oct 2013 | WO |
2013151669 | Oct 2013 | WO |
2013151670 | Oct 2013 | WO |
2013151671 | Oct 2013 | WO |
2013151672 | Oct 2013 | WO |
2013151736 | Oct 2013 | WO |
2013160397 | Oct 2013 | WO |
2013163162 | Oct 2013 | WO |
2013164484 | Nov 2013 | WO |
2013171135 | Nov 2013 | WO |
2013177565 | Nov 2013 | WO |
2013186240 | Dec 2013 | WO |
2013192129 | Dec 2013 | WO |
2013192130 | Dec 2013 | WO |
2014012069 | Jan 2014 | WO |
2014016300 | Jan 2014 | WO |
2014017843 | Jan 2014 | WO |
2014017845 | Jan 2014 | WO |
2014017849 | Jan 2014 | WO |
2014027253 | Feb 2014 | WO |
2014027254 | Feb 2014 | WO |
2014041195 | Mar 2014 | WO |
2014041375 | Mar 2014 | WO |
2014049610 | Apr 2014 | WO |
2014056872 | Apr 2014 | WO |
2014073842 | May 2014 | WO |
2014073845 | May 2014 | WO |
2014081872 | May 2014 | WO |
2014091316 | Jun 2014 | WO |
2014096145 | Jun 2014 | WO |
2014140222 | Sep 2014 | WO |
2014152460 | Sep 2014 | WO |
2014158900 | Oct 2014 | WO |
2014170496 | Oct 2014 | WO |
2015055801 | Apr 2015 | WO |
2015055802 | Apr 2015 | WO |
2015067716 | May 2015 | WO |
2015086728 | Jun 2015 | WO |
2015086729 | Jun 2015 | WO |
2015086730 | Jun 2015 | WO |
2015086731 | Jun 2015 | WO |
2015086732 | Jun 2015 | WO |
2015086733 | Jun 2015 | WO |
2015100876 | Jul 2015 | WO |
2015104314 | Jul 2015 | WO |
20151132599 | Sep 2015 | WO |
WO 2015155139 | Oct 2015 | WO |
WO 2015155140 | Oct 2015 | WO |
2016065090 | Apr 2016 | WO |
20161055610 | Apr 2016 | WO |
2016198604 | Dec 2016 | WO |
2016198624 | Dec 2016 | WO |
Entry |
---|
US 8,729,011 B2, 05/2014, Dimarchi et al. (withdrawn) |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/077313, dated Feb. 12, 2015. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077336, dated Feb. 26, 2016. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077337, dated Jun. 14, 2016. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077338, dated Jun. 14, 2016. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077339, dated Jun. 14, 2016. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077340, dated Jun. 14, 2016. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077341, dated Jun. 14, 2016. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/062090, dated Feb. 7, 2014. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/070882, dated Dec. 5, 2013. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/077307, dated Feb. 18, 2014. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/077310, dated Feb. 18, 2014. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/077312, dated Feb. 18, 2014. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/077313, dated Feb. 18, 2014. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077336, dated Mar. 18, 2015 |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077337, dated Apr. 1, 2015 |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077338, dated Mar. 26, 2015 |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077339, dated May 11, 2015 |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077340, dated Mar. 18, 2015. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077341, dated Mar. 18, 2015. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2015/057416, dated Jun. 22, 2015. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2015/057417, dated Jun. 17, 2015. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2015/057418, dated Jun. 19, 2015. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2015/063607, dated Sep. 23, 2015. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2016/062496, dated Aug. 3, 2016. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2016/063332, dated Aug. 10, 2016. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2016/063339, dated Aug. 8, 2016. |
Stoessl et al. (2008) “Potential therapeutic targets for Parkinson's disease,” Expert Opinion on Therapeutic Targets. 12(4):425-436. |
Aramadhaka et al. (Apr. 18, 2013) “Connectivity maps for biosimilar drug discovery in venoms: The case of Gila Monster Venom and the anti-diabetes drug Byetta®,” Toxicon. 69:160-167. |
Bhavsar et al. (Mar. 2013) “Evolution of exenatide as a diabetes therapeutic,” Curr. Diabetes Rev. 9(2):161-193. |
Gao et al. (Jun. 4, 2012) “A site-specific PEGylated analog of exendin-4 with improved pharmacokinetics and pharmacodynamics in vivo,” J. Pharm. Pharmacol. 64(11):1646-1653. |
Gupta (May 2013) “Glucagon-like peptide-1 analogues: An overview,” Indian J. Endocrinol. Metab. 17(3):413-421. |
Hou et al. (Jan. 23, 2013) “Long-term treatment with EXf, a peptide analog of Exendin-4, improves β-cell function and survival in diabetic KKAy mice,” Peptides. 40:123-132. |
Kim et al. (Nov. 9, 2012) “Site-specific PEGylated Exendin-4 modified with a high molecular weight trimeric PEG reduces steric hindrance and increases type 2 antidiabetic therapeutic effects,” Bioconjug. Chem. 23(11):2214-2220. |
Lee et al. (Oct. 17, 2013) “Decanoic acid-modified glycol chitosan hydrogels containing tightly adsorbed palmityl-acylated exendin-4 as a long-acting sustained-release anti-diabetic system,” Acta Biomater. 10(2):812-820. |
Parkes et al. (Dec. 12, 2012) “Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1,” Expert Opin. Drug Discov. 8(2):219-244. |
Qian et al. (Jul. 1, 2013) “Characterization of a site-specific PEGylated analog of exendin-4 and determination of the PEGylation site,” Int. J. Pharm. 454(1):553-558. |
Simonsen et al. (Jan. 11, 2013) “The C-terminal extension of exendin-4 provides additional metabolic stability when added to GLP-1, while there is minimal effect of truncating exendin-4 in anaesthetized pigs,” Regul. Pept. 181:17-21. |
Sun et al. (Nov. 6, 2013) “Bifunctional PEGylated exenatide-amylinomimetic hybrids to treat metabolic disorders: an axample of long-acting dual hormonal therapeutics,” J. Med. Chem. 56(22):9328-9341. |
Yim et al. (Aug. 8, 2013) “Synthesis and preclinical characterization of [64Cu]NODAGA-MAL-exendin-4 with a Nεmaleoyl-L-lysyl-glycine linkage,” Nucl. Med. Biol. 40(8):1006-1012. |
Yue et al. (Jan. 28, 2013) “Development of a new thiol site-specific prosthetic group and its conjugation with [Cys(40)] exendin-4 for in vivo targeting of insulinomas,” Bioconjug. Chem. 24(7):1191-1200. |
Lorenz et al. (2013) “Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity” Bioorg. Med. Chem. Lett. 23(14):4011-4018. |
Lozano et al. (2013) “Polyarginine nanocapsules: a new platform for intracellular drug delivery,” Journal of Nanoparticle Research. 15:1515. pp. 1-14. |
Margolis (2004) “Diagnosis of Huntington Disease,” Clin. Chem. 49:1726-1732. |
Martin et al. (1998) “Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis,” Brain Res. Bull. 46:281-309. |
McLaughlin et al. (2010) “Reversible Hyperinsulinemic Hypoglycemia after Gastric Bypass: A Consequence of Altered Nutrient Delivery,” J. Clin. Endocrinol. Metabol. 95(4):1851-1855. |
Medline Plus “Obesity,” National Insitute of Health. Accessible on the Internet at URL: http://www.nlm.nih.gov/medlineplus/obesity.html. [Last Accessed Aug. 22, 2013]. |
Meier (Sep. 4, 2012) “GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus,” Nat. Rev. Endocnnol. 8:728-742. |
Meier et al. (May 21, 2015) “Incretin-based therapies: where will we be 50 years from now?” Diabetologia. 58:1745-1750. |
Miyawaki et al. (2002) “Inhibition of gastric inhibitory polypeptide signaling prevents obesity,” Nat. Med. 8(7):738-742. |
Murage et al. (2008) “Search for alpha-helical propensity in the receptor-bound conformation of glucagon-like peptide-1,” Bioorg. Med. Chem. 16:10106-10112. |
Nauck et al. (1993) “Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations,” J. Clin. Endocrinol. Metab. 76:912-917. |
Norris et al. (2009) “Exenatide Efficacy and Safety: A Systematic Review,” Diabetic Medicine. 26:837-846. |
Norwegian Institute of Public Health (Dec. 19, 2013) ATC/DDD Index for Cardiovascular System. |
Oh et al. (2010) “Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives,” Journal of Controlled Release. 141:2-12. |
Pan et al. (2006) “Design of a long acting peptide functioning as both a glucagon-like peptide-1 receptor agonist and a glucagon receptor antagonist.” Joumal of Biological Chemistry. 281(18):12506-12515. |
Pedersen et al. (2006) “N- and C-terminal hydrophobic patches are involved in fibrillation of glucagon,” Biochemistry. 45:14503-14512. |
Pocai (2009) “Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice,” Diabetes. 58(10):2258-2266. |
Pocai (Dec. 14, 2013) “Action and therapeutic potential of oxyntomodulin,” Molecular Metabolism 3:2412-51. |
Rentier et al. (Mar. 26, 2015) “Synthesis of diastereomerically pure Lys(Nε-lipoyl) building blocks and their use in Fmoc/tBu solid phase synthesis of lipoyl-containing peptides for diagnosis of primary biliary cirrhosis,” Journal of Peptide Science. 21(5):408-414. |
Robberecht et al. (1986) “Comparative efficacy of seven synthetic glucagon analogs, modified in position 1, 2 and/or 12, on liver and heart adenylate cyclase from rat,” Peptides. 7(1):109-112. |
Rovo et al. (May 2014) “Rational design of a-helix-stabilized exendin-4 analogues,” Biochemistry. 53(22):3540-3552. |
Seddon (2004) “Pseudopolymorph: A polemic,” Crystal Growth and Design. 4(6):1087. |
Shiau et al. (1998) “The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen,” Cell. 95(7):927-937. |
St. John Providence Health System “Preventing Obesity in Children,” St. John Providence Health System. Accessible on the Internet at URL: http://www.stjohnprovidence.org/HealthInfoLib/swarticle.aspx?type=85&id=P07863. [Last Accessed Aug. 22, 2013]. |
Tasyurek et al. (Jul. 2014) “Incretins: Their physiology and application in the treatment of diabetes mellitus,” Diabetes Metab. Res. Rev. 30(5):354-371. |
Ueda et al. (2010) “Identification of glycosylated exendin-4 analogue with prolonged blood glucose-lowering activity through glycosylation scanning substitution,” Bioorg. Med. Chem. Lett. 20(15):4631-4634. |
United Healthcare “Diabetes,” United Healthcare. Accessible on the Internet at URL: http://www.uhc.com/source4women/health_topics/diabetes/relatedinformation/d0f0417b073bf110VgnVCM1000002f10b10a.htm. [Last Accessed Aug. 22, 2013]. |
Unison et al. (1993) “The role of histidine-1 in glucagon action,” Arch. Biochem. Biophys. 300(2):747-750. |
Vippagunta et al. (2001) “Crystalline Solids,” Advanced Drug Delivery Reviews. 48:3-26. |
Vojkovsky (1995) “Detection of secondary amines on solid phase,” Peptide Research 8:236-237. |
Ward et al. (Nov. 2013) “Peptide lipidation stabilizes structure to enhance biological function,” Mol. Metabol. 2(4):468-479. |
World Health Organization (2007) “Prevention of Cardiovascular Disease,” WorldHealth Organization. pp. 1-86. |
Yun et al. (Feb. 2012) “Solution Structure of LXXLL-related Cofactor Peptide of Orphan Nuclear Receptor FTZ-F1.” Bulletin of the Korean Chemical Society, 33(2):583-588. |
European Search Report corresponding to European Patent Application No. 12172010, dated Apr. 19, 2013. |
European Search Report corresponding to European Patent Application No. 12306232, dated Apr. 19, 2013. |
European Search Report corresponding to European Patent Application No. 12306647, dated May 22, 2013. |
European Search Report corresponding to European Patent Application No. 13306712, dated May 27, 2014. |
European Search Report corresponding to European Patent Application No. 13306713, dated Jun. 12, 2014. |
European Search Report corresponding to European Patent Application No. 13306714, dated May 28, 2014. |
European Search Report corresponding to European Patent Application No. 13306715, dated Jun. 12, 2014. |
European Search Report corresponding to European Patent Application No. 13306716, dated May 27, 2014. |
European Search Report corresponding to European Patent Application No. 13306717, dated Jun. 3, 2014. |
European Search Report corresponding to European Patent Application No. 13305222, dated Jul. 15, 2013. |
European Search Report corresponding to European Patent Application No. 14305501, dated Sep. 23, 2014. |
European Search Report corresponding to European Patent Application No. 14305503, dated Sep. 23, 2014. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/062090, dated Nov. 24, 2014. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/070882, dated Dec. 1, 2014. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/077307, dated Feb. 12, 2015. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/077310, dated Feb. 2, 2015. |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/077312, dated Feb. 13, 2015. |
Guryanov et al. (May 30, 2016) “Innovative chemical synthesis and conformational hints on the lipopeptide liraglutide,” J. Pept. Sci. 22:471-479. |
Lau et al. (Aug. 26, 2015) “Discovery of the once-weekly Glucagon-like Peptide-1 (GLP-1) analogue Semaglutide,” Journal of Medicinal Chemistry. 58:7370-7380. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2016/063305, dated Oct. 4, 2016. |
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2016/066299, dated Jan. 10, 2017. |
Amylin Pharmaceuticals, Inc. (2007) “Byetta: Exenatide Injection,” Product Information. Accessible on the Internet at URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021773s012lbl.pdf. [Last Accessed Jun. 2, 2014]. |
Baggio et al. (2007) “Biology of incretins: GLP-1 and GIP,” Gastroenterology. 132:2131-2157. |
Bhat et al. (Jun. 1, 2013) “A novel GIP-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 receptors exhibits weight reducing and anti-diabetic properties,” Biochem. Pharmacol. 85:1655-1662. |
Bhat et al. (Mar. 17, 2013) “A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice,” Diabetologia. 56:1417-1424. |
Biron et al. (2006) “Optimized selective N-methylation of peptides on solid support,” J. Peptide Sci. 12:213-219. |
Bis et al. (Jun. 27, 2014) “Antimicrobial preservatives induce aggregation of interferon alpha-2a: the order in which preservatives induce protein aggregation is independent of the protein,” Int. J. Pharm. 472:356-361. |
Braga et al. (2005) “Making Crystals from Crystals: a green route to crystal engineering and polymorphism,” Chem. Commun. 2005:3635-3645. |
Bromer (1983) “Chemical Characteristics of Glucagon,” Handbook of Experimental Pharmacology. 66:1-22. |
Bunck et al. (Sep. 2011) “Effects of Exenatide on Measures of B-Cell Function After 3 Years in Metformin-Treated Patients with Type 2 Diabetes,” Diabetes Care. 34:2041-2047. |
Buse et al. (2009) “Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel group, multinational, open-label trial (LEAD-6),” The Lancet. 374:39-47. |
Chae et al. (2010) “The fatty acid conjugated exendin-4 analogs for type 2 antidiabetic therapeutics,” Journal of Controlled Release. 144:10-16. |
Chen et al. (Jan. 2014) “Hyaluronic acid-based drug conjugates: state-of-the-art and perspectives,” J. Biomed. Nanotechnol. 10(1):4-16. |
Chhabra et al. (1998) “An Appraisal of New Variants of Dde Amine Protecting Group for Solid Phase Peptide Synthesis,” Tetrahedron Letters. 39:1603-1606. |
Creutzfeld et al. (1978) “Gastric inhibitory polypeptide (GIP) and insulin in obesity: increased response to stimulation and defective feedback control of serum levels,” Diabetologia. 14:15-24. |
Day et al. (2009) “A New Glucagon and GLP-1 co-agonist Eliminates Obesity in Rodents,” Nature Chemical Biology. 5(10):749-757. |
Deacon (2004) “Circulation and degradation of GIP and GLP-1,” Horm. Metab. Res. 36:761-765. |
Donnelly (May 2012) “The structure and function of the glucagon-like peptide-1 receptor and its ligands,” Br. J. Pharmacol. 166(1):27-41. |
Druce et al. (2009) “Investigation of structure-activity relationships of Oxyntomodulin (Oxm) using Oxm analogs,” Endocrinology. 150(4):1712-1722. |
Drucker et al. (2010) “Liraglutide,” New Reviews—Drug Discovery. 9(4):267-268. |
Eng et al. (1990) “Purification and structure of exendin-3, a new pancreatic secretagogue isolated from Heloderma horridum venom,” J. Biol. Chem. 265:20259-20262. |
Eng et al. (1992) “Isolation and Characterization of Exendin-4, an Exendin-3 Analogue, from Heloderma Suspectum Venom,” The Journal of Biological Chemistry. 267(11):7402-7405. |
Eng et al. (1996) “Prolonged Effect of Exendin-4 on Hyperglycemia of db/db Mice,” Diabetes. 45:152A. Abstract 554. |
Ferry, Jr.“Diabetes Health (cont.),” MedicineNet. Accessible on the Internet at URL: http://www.onhealth.com/diabetes_health/page3.htm. [Last Accessed Aug. 22, 2013]. |
Ficht et al. (2008) “Solid-phase Synthesis of Peptide and Glycopeptide Thioesters through Side-Chain-Anchoring Strategies,” Chem. Eur. J. 14:3620-3629. |
Finan et al. (Dec. 8, 2014) “A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents,” Nat. Med. 21(1):27-36.—with supplementary information. |
Finan et al. (Oct. 30, 2013) “Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans,” Sci. Trans. Med. 5:209RA151. |
Furman (Mar. 15, 2012) “The development of Byetta (exenatide) from the venom of the Gilo monster as an anti-diabetic agent,” Toxicon. 59:464-471. |
Gault et al. (2007) “Chemical gastric inhibitory polypeptide receptor antagonism protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat and cafeteria diets,” Diabetologia. 50:1752-1762. |
Gault et al. (Aug. 1, 2011) “Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity,” Clin Sci (Lond). 121:107-117. |
Gentilella et al. (2009) “Exenatide: A Review from Pharmacology to Clinical Practice,” Diabetes, Obesity, and Metabolism. 11:544-556. |
Göke et al. (1993) “Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells,” J. Biol. Chem. 268:19650-19655. |
Hadji-Georgopoulos et al. (1983) “Increased gastric inhibitory polypeptide levels in patients with symptomatic postprandial hypoglycemia,” J. Endocrinol. Metabol. 56(4):648-652. |
Hargrove et al. (2007) “Biological Activity of AC3174, A Peptide Analog of Exendin-4,” Regulatory Peptides. 141:113-119. |
Heppner et al. (2010) “Glucagon regulation of energy metabolism,” Physiol. Behav. 100:545-548. |
Herling et al. (1998) “Pharmacodynamic profile of a novel inhibitor of the hepatic glucose-6-phosphatase system,” Am. J. Physiol. 274(6 Pt 1):G1087-G1093. |
Hjorth et al. (1994) “Glucagon and Glucagon-like Peptide 1: Selective Receptor Recognition via Distinct Peptide Epitopes,” The Journal of Biological Chemistry. 269(48):30121-30124. |
Holst (2007) “The physiology of glucagon-like peptide 1,” Physiol. Rev. 87(4):1409-1439. |
Joshi et al. (2000) “The degradation pathways of glucagon in acidic solutions,” Int. J. Pharm. 203(1-2):115-125. |
Kaiser et al. (1970) “Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides.” Anal. Biochem. 34:595-598. |
Kamerzell et al. (2011) “Protein-excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development,” Adv. Drug Deliv. Rev. 63:1118-1159. |
Kazakos et al. (2011) “Incretin effect: GLP-1, GIP, DPP4,” Diabetes Res Clin Pract. 93(Suppl 1):S32-S36. et al. (2011) “Incretin effect: GLP-1, GIP, DPP4,” Diabetes Res Clin Pract. 93(Suppl 1):S32-S36. |
King et al. (1990) “A Cleavage Method which Minimizes Side Reactions Following Fmoc Solid Phase Peptide Synthesis,” International Journal of Peptide Protein Research. 36:255-266. |
Knudsen et al. (2000) “Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration” J. Med. Chem. 43(9):1664-1669. |
Kong et al. (2010) “Long acting hyaluronate—exendin 4 conjugate for the treatment of type 2 diabetes,” Biomaterials. 31:4121-4128. |
Korczyn et al. (2002) “Emerging Therapies in the Pharmacological Treatment of Parkinson's Disease,” Drugs. 62:775-786. |
Kosinski et al. (Mar. 16, 2012) “The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin,” Obesity (Silver Spring). 20:1566-1571. |
Krstenansky et al. (1986) “Importance of the 10-13 Region of Glucagon for Its Receptor Interaction and Activation of Adenylate Cyclase,” Biochemistry. 25(13):3833-3839. |
Lee et al. (May 10, 2013) “Hormonal Response to a Mixed-Meal Challenge After Reversal of Gastric Bypass for Hypoglycemia,” J. Clin. Endocrinol. Metab. 98(7):E1208-E1212. |
Li et al. (Jul. 25, 2012) “Cloning, expressing of Exendin-4 analogue and bioactivity analysis in vivo,” Chinese Journal of Biotechnology. 28(7):877-886. |
Liu et al. (2011) “Solid phase peptide synthesis and analysis for exendin-4,” China Biotechnology. 31(2):69-73.—English abstract and drawings. |
Bayram et al. (Sep. 2014) “Effects of glucagon-like peptide-1 in diabetic rat small resistance arteries,” Journal of Cardiovascular Pharmacology. 64(3):277-84. |
Brom et al. (Feb. 1, 2014) “Non-invasive quantification of the beta cell mass by SPECT with 111In-labelled exendin,” Diabetologia. 57(5):950-959. |
Cai et al. (Dec. 2014) “Rb and p107 are required for alpha cell survival, beta cell cycle control and glucagon-like peptide-1 action,” Diabetologia. 57(12):2555-2565. |
Charokopou et al. (Nov. 2014) “Cost-effectiveness of saxagliptin compared to GLP-1 analogues as an add-on to insulin in the treatment of type 2 diabetes mellitus from a UK health care perspective,” Value in Health. 17(7):A347. Abstract No. PDB89. |
Chen et al. (Dec. 14, 2013) “Exendin-4 is effective against metabolic disorders induced by intrauterine and postnatal overnutrition in rodents,” Diabetologia. 57(3):614-622. |
Choi et al. (Jun. 2014) “A long-acting exendin-4 analog conjugate to the human Fc fragment reveals low immunogenic potential,” Diabetes. 63(Suppl 1):A259-A260. Abstract No. 1009-P. |
Clemmensen et al. (Dec. 30, 2013) “GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet,” Diabetes. 63(4):1422-1427. |
De Marinis et al. (Jun. 2014) “Differential action of GLP-1 and GIP on human pancreatic islet function and viability,” Diabetes. 63(Suppl 1):A52. Abstract No. 196-OR. |
De Marinis et al. (Sep. 2014) “Differential action of GLP-1 and GIP on human pancreatic islet function and viability,” Diabetologia. 57(Suppl 1):S171. Abstract No. 401. |
Eriksson et al. (Feb. 10, 2014) “Detection of metastatic insulinoma by positron emission tomography with [(68)ga] exendin-4-a case report,” J. Clin. Endocrinol. Metab. 99(5):1519-1524. |
Eriksson et al. (May 2014) “Effects of the glucagon-like peptide-1 analog exendin-4 on reendothelialization and intimal hyperplasia formation in an animal model of vascular injury,” Arteriosclerosis, Thrombosis, and Vascular Biology. 34(Suppl 1): Abstract No. 515. |
Gong et al. (Apr. 18, 2014) “teniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors,” Neuropharmacology. 84:31-45. |
Gupta et al. (Sep. 25, 2014) “Mitigation of autophagy ameliorates hepatocellular damage following ischemia reperfusion injury in murine steatotic liver,” Am. J. Physiol. Gastrointest. Liver Physiol. 307(11):G1088-G1099. |
Jerlhag et al. (Jun. 2014) “A glucagon like peptide-1 analogue reduces alcohol intake and prevents relapse drinking,” Alcoholism: Clinical and Experimental Research. 38(Suppl 1):85A. Abstract No. 0339. |
Jin et al. (Jun. 24, 2014) “Dipeptidyl peptidase IV inhibitor MK-0626 attenuates pancreatic islet injury in tacrolimus-induced diabetic rats,” PloS one. 9(6):e100798. pp. 1-10. |
Johnson et al. (Sep. 5, 2014) “A Potent α/β-Peptide Analogue of GLP-1 with Prolonged Action in Vivo,” Journal of be American Chemical Society. 136(37):12848-12851. |
Kwon et al. (Sep. 2014) “Pharmacological evaluation of once-weekly potentials by combination of long-acting insulin with long-acting exendin4 in an animal model,” Diabetologia. 57(Suppl 1):S398-S399. Abstract No. 972. |
Li et al. (Apr. 2014) “Vascular protective effect of exendin-4 in experimental models of oxidative stress,” Cytotherapy. 16(4 Suppl):S37-S38. Abstract No. 115. |
Li et al. (Nov. 5, 2014) “Exendin-4 promotes endothelial barrier enhancement via PKA-and Epac1-dependent Rac1 activation,” American Journal of Physiology. 308(2):C164-C175. |
Lim et al. (Nov. 18, 2014) “Evaluation of PEGylated Exendin-4 Released from Poly (Lactic-co-Glycolic Acid) Microspheres for Antidiabetic Therapy,” Journal of Pharmaceutical Sciences. 104(1):72-80. |
Lovshin et al. (Oct. 2014) “Blood pressure-lowering effects of incretin-based diabetes therapies,” Canadian Journal of Diabetes. 38(5):364-71. |
Lynch et al. (Jun. 24, 2014) “A novel DPP IV-resistant C-terminally extended glucagon analogue exhibits weight-lowering and diabetes-protective effects in high-fat-fed mice mediated through glucagon and GLP-1 receptor activation,” Diabetologia. 57(9):1927-1936. |
Maas et al. (Oct. 2014) “Impact of the mTOR inhibitor Everolimus on peptide receptor radionuclide therapy in a transgenic neuroendocrine tumor mouse model,” European Journal of Nuclear Medicine and Molecular Imaging. 41 (Suppl 2):S529. Abstract No. P593. |
Masjkur et al. (Nov. 4, 2014) “Hes3 is Expressed in the Adult Pancreatic Islet and Regulates Gene Expression, Cell Growth, and Insulin Release,” The Journal of Biological Chemistry. 289(51):35503-35516. |
Mondragon et al. (Aug. 13, 2014) “Divergent effects of liraglutide, exendin-4, and sitagliptin on beta-cell mass and indicators of pancreatitis in a mouse model of hyperglycaemia,” PloS one. 9(8):e104873. pp. 1-9. |
Nagai et al. (Sep. 2014) “Effects of sitagliptin on body fat and intrahepatic lipid content in Japanese overweight patients with type 2 diabetes,” Diabetologia. 57(Suppl 1):S356. Abstract No. 876. |
Patel et al. (Sep. 29, 2014) “Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice,” Canadian Journal of Physiology and Pharmacology. 92(12):975-983. |
Pathak et al. (Nov. 6, 2014) “Antagonism of gastric inhibitory polypeptide (GIP) by palmitoylation of GIP analogues with N- and C-terminal modifications improves obesity and metabolic control in high fat fed mice”; Molecular and Cellular Endocrinology. 401:120-129. |
Pi et al. (2014) “1 [Clinical research progress on glucagon-like peptide-1 analogs in treatment of diabetes mellitus],” [Jianyan Yixue Yu Linchuang]. 11(6):830-832.—with English machine translation. |
Qian et al. (Jun. 19, 2014) “Analysis of the interferences in quantitation of a site-specifically PEGylated exendin-4 analog by the Bradford method,” Analytical Biochemistry. 465C:50-52. |
Roed et al. (Nov. 22, 2013) “Real-time trafficking and signaling of the glucagon-like peptide-1 receptor,” Mol. Cell Endocrinol. 382(2):938-949. |
Russell et al. (Jun. 2014) “The novel GLP-1-GLP-2 dual agonist ZP-GG-72 increases intestinal growth and improves insulin sensitivity in DIO mice,” Diabetes. 63(Suppl 1):A98. Abstract No. 374-OR. |
Schattauer GMBH (Jun. 12, 2014) Meeting Abstracts of the Swiss Society of Radiology and the Swiss Society of Nuclear Medicine 2014. Nuklearmedizin. 53(2):A111-A126. |
Tashiro et al. (Jan. 10, 2014) “A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis,” Peptides. 54:19-26. |
Tweedie et al. (May 2014) “Exendin-4, a candidate treatment for the clinical management of traumatic brain injury,” Brain Injury. 28(5-6):549-550. Abstract No. 0101. |
Vioix et al. (Nov. 2014) “Cost-minimisation analysis of dapagliflozin compared to lixisenatide as an add-on to insulin in the treatment of type 2 diabetes mellitus from a UK health care perspective,” Value in Health. 17(7):A348. Abstract No. PDB95. |
Wang et al. (Jun. 2014) “Microfluidic multiplexer perifusion device for studying islet immunotoxicity,” Diabetes. 63 (Suppl 1):A555. Abstract No. 2181-P. |
Wu et al. (May 24, 2014) “(64)Cu labeled sarcophagine exendin-4 for microPET imaging of glucagon like peptide-1 receptor expression,” Theranostics. 4(8):770-777. |
Xu et al. (Feb. 11, 2014) “Exendin-4 alleviates high glucose-induced rat mesangial cell dysfunction through the AMPK pathway,” Cell. Physiol. Biochem. 33(2):423-432. |
Xu et al. (Sep. 2014) “Insulinoma imaging with glucagon-like peptide-1 receptor targeting probe (18)F-FBEM-Cys (39)-exendin-4,” Journal of Cancer Research and Clinical Oncology. 140(9):1479-1488. |
Yang et al. (2014) “Design, synthesis and biological evaluation of novel peptide MC62 analogues as potential antihyperglycemic agents,” European Journal of Medicinal Chemistry. 73:105-111. |
Yang et al. (Jun. 2014) “Exendin-4, an analogue of glucagon-like peptide-1, attenuates hyperalgesia through serotonergic pathways in rats with neonatal colonic sensitivity,” J. Physiol. Pharmacol. 65(3)349-357. |
Yosida et al. (May 13, 2014) “Involvement of cAMP/EPAC/TRPM2 activation in glucose- and incretin-induced insulin secretion,” Diabetes. 63(10):3394-3403. |
Zhang et al. (Aug. 2014) “GLP-1 ameliorates the proliferation activity of INS-1 cells inhibited by intermittent high glucose concentrations through the regulation of cyclins,” Molecular Medicine Reports. 10(2):683-688. |
Kaydashev, Physiological and pharmacological effects of glucagon-like peptide 1, International Endocrinological Journal, 2012, Nr. 7(47), pp. 45-54 (English abstract). |
Number | Date | Country | |
---|---|---|---|
20180185450 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14049597 | Oct 2013 | US |
Child | 15130647 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15130647 | Apr 2016 | US |
Child | 15837958 | US |