Exendin-4 derivatives as selective glucagon receptor agonists

Information

  • Patent Grant
  • 9932381
  • Patent Number
    9,932,381
  • Date Filed
    Friday, June 12, 2015
    9 years ago
  • Date Issued
    Tuesday, April 3, 2018
    6 years ago
Abstract
The present invention relates to glucagon receptor agonists and their medical use, for example in the treatment of severe hypoglycemia.
Description

This application claims the benefit of European Patent Application No. 14305935.0, filed on Jun. 18, 2014, the disclosure of which is explictily incorporated by reference herein.


FIELD OF THE INVENTION

The present invention relates to exendin-4 peptide analogues which activate the glucagon receptor and their medical use, for example in the treatment of severe hypoglycemia.


BACKGROUND OF THE INVENTION

Exendin-4 is a 39 amino acid peptide which is produced by the salivary glands of the Gila monster (Heloderma suspectum) (Eng, J. et al., J. Biol. Chem., 267:7402-05, 1992). Exendin-4 is an activator of the glucagon-like peptide-1 (GLP-1) receptor, whereas it does not activate significantly the glucagon receptor.


The amino acid sequence of exendin-4 is shown as SEQ ID NO: 1











HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2






Glucagon is a 29-amino acid peptide which is released into the bloodstream when circulating glucose is low. Glucagon's amino acid sequence is shown as SEQ ID NO 2.











HSQGTFTSDYSKYLDSRRAQDFVQWLMNT-OH






During hypoglycemia, when blood glucose levels drop below normal, glucagon signals the liver to break down glycogen and release glucose, causing an increase of blood glucose levels to reach a normal level. Hypoglycemia is a common side effect in diabetics who are treated with insulin due to elevated blood glucose levels. Thus, glucagon's most predominant role in glucose regulation is to counteract insulin action and maintain blood glucose levels.


Glucagon has an isoelectric point of approximately 7 and is therefore only poorly soluble (<0.2 mg/ml) in the pH range of 4-8. It is well soluble (>10 mg/ml) at pH values below 3 or above 9 (Bromer, W. W., Handbook of Experimental Pharmacology, Vol 66/1, 1983). Consequently, the currently available commercial solutions of glucagon (GlucaGen® HypoKit, Glucagon emergency rescue kit) are acidic and need to be prepared freshly before use due to the chemical and biophysical instability of glucagon in solution at low pH (Joshi, A. B. et al, Int. J. Ph. Sci., 203, 115-125, 2000).


The preparation of glucagon formulations with enhanced stability compared to the commercial kit solutions are described in patent applications WO9947160, WO12059762, US2011/0097386, US2011/0237510, US2011/049713, WO12012460, WO12122535, US2012/0071817, and WO13101749, the contents of which are herein incorporated by reference.


The preparation of stabilized analogues of glucagon is described in patent applications WO14016300, WO11049713, WO07056362, WO08086086, and WO09155257, the contents of which are herein incorporated by reference.


The use of 4-Thiazolylalanine in position 1 of a synthetic peptide has been described in WO07140284 for GLP-1 receptor agonists. Conversely, 4-Thiazolylalanine in the present invention surprisingly provides highly active glucagon receptor agonists with reduced activity at the GLP-1 receptor when compared to peptides that carry the natural histidine at position 1 (native glucagon).


BRIEF SUMMARY OF THE INVENTION

Provided herein are exendin-4 analogues which potently and selectively activate the glucagon receptor and show a higher solubility at a near neutral pH and an enhanced chemical stability in solution compared to natural glucagon. All the compounds carry the artificial amino acid 4-Thiazolylalanine at position 1. This surprisingly results in a higher selectivity towards the glucagon receptor versus the GLP1 receptor when identical compounds are compared to each other differing only at position 1 (Tza in position 1 instead of His). The present invention therefore provides highly selective glucagon receptor agonists.


The invention provides a peptidic compound having the formula (I):









(I)


Tza-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-X10-Ser-Lys-





Gln-X14-Glu-Ser-Arg-Arg-Ala-Gln-X21-Phe-Ile-Glu-





Trp-Leu-Leu-Ala-X29-Gly-Pro-Glu-Ser-Gly-Ala-Pro-





Pro-Pro-Ser-R1








    • X10 represents an amino acid residue selected from Tyr, Leu, Val, Ile, Phe, Phenylglycine, 1-Naphthylalanine, 2-Fluorophenylalanine, Cyclohexylglycine and tert-Leucine

    • X14 represents an amino acid residue selected from Leu and Nle

    • X21 represents an amino acid residue selected from Asp and Glu,

    • X29 represents an amino acid residue selected from Gly and Thr,

    • R1 represents OH or NH2

      or a salt or solvate thereof.





The compounds of the invention are glucagon receptor agonists as determined by the observation that they are capable of stimulating intracellular cAMP formation upon binding at the receptor for glucagon. The compounds exhibit at least a relative activity of 0.1%, preferably 0.5%, more preferably 1.0% and even more preferably 10.0% compared to that of natural glucagon at the glucagon receptor.


The compounds of the invention also activate the GLP1 receptor as determined by the observation that they are capable of stimulating intracellular cAMP formation upon binding at the receptor for GLP1. The activity of a given compound of this invention (expressed by its activity relative to the activity of GLP1 at the GLP1 receptor) is below 10%, more preferably below 5% and even more preferably below 2% compared to the activity of the same compound at the glucagon receptor (expressed by its activity relative to the activity of glucagon at the glucagon receptor).


Surprisingly, it was found that peptidic compounds of the formula I with 4-Thiazolylalanine at position 1 showed increased glucagon receptor activation and increased selectivity towards the activity on the GLP-1 receptor compared to derivatives having a histidine at this position. Histidine is the naturally occurring amino acid in glucagon at position 1 and has been shown to be important for the activation mechanism of the glucagon receptor (Unson, C. G. et al, Arch. Biochem. Biophys., 300, 747-750, 1993).


Further, the compounds of the invention preferably have an enhanced solubility at acidic and/or physiological pH values, e.g., at pH 4.5 and/or at pH 7.4 at 25° C., preferably at least 0.5 mg/ml, more preferably at least 1.0 mg/ml and even more preferably at least 10.0 mg/ml.


Furthermore, the compounds of the invention preferably have a high stability when stored for 14 days at 50° C. in solution at pH 7.3 (determined by chromatographic analyses as described in the Examples). Preferably, newly formed degradation products are below 40%, more preferably below 30%, even more preferably at below 20%.


In an embodiment, the C-terminal group R1 is NH2.


In a further embodiment, the C-terminal group R1 is OH.


A further embodiment relates to a group of compounds, wherein

    • X10 represents Leu,
    • X14 represents an amino acid residue selected from Leu and Nle,
    • X21 represents an amino acid residue selected from Asp and Glu,
    • X29 represents an amino acid residue selected from Gly and Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents Tyr,
    • X14 represents an amino acid residue selected from Leu and Nle,
    • X21 represents Glu,
    • X29 represents an amino acid residue selected from Gly and Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents Val,
    • X14 represents Leu,
    • X21 represents Glu,
    • X29 represents an amino acid residue selected from Gly and Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents Ile,
    • X14 represents an amino acid residue selected from Leu and Nle,
    • X21 represents Glu,
    • X29 represents Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents 1-Naphthylalanine,
    • X14 represents an amino acid residue selected from Leu and Nle,
    • X21 represents an amino acid residue selected from Asp and Glu,
    • X29 represents Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents 2-Fluorophenylalanine,
    • X14 represents an amino acid residue selected from Leu and Nle,
    • X21 represents Asp,
    • X29 represents Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents Cyclohexylglycine,
    • X14 represents an amino acid residue selected from Leu and Nle,
    • X21 represents an amino acid residue selected from Asp and Glu,
    • X29 represents Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents an amino acid residue selected from Tyr, Leu, Val, Ile, Phenylglycine, 1-Naphthylalanine, 2-Fluorophenylalanine and Cyclohexylglycine,
    • X14 represents Leu,
    • X21 represents an amino acid residue selected from Asp and Glu,
    • X29 represents an amino acid residue selected from Gly and Thr,
    • R1 represents OH


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents an amino acid residue selected from Tyr, Leu, Ile, Phe, 1-Naphthylalanine, Cyclohexylglycine and tert-Leucine,
    • X14 represents Nle,
    • X21 represents an amino acid residue selected from Asp and Glu,
    • X29 represents Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents an amino acid residue selected from Leu, Phe, 1-Naphthylalanine, 2-Fluorophenylalanine and Cyclohexylglycine,
    • X14 represents an amino acid residue selected from Leu and Nle
    • X21 represents Asp,
    • X29 represents Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents an amino acid residue selected from Tyr, Leu, Val, Ile, Phenylglycine, 1-Naphthylalanine, Cyclohexylglycine and tert-Leucine,
    • X14 represents an amino acid residue selected from Leu and Nle
    • X21 represents Glu,
    • X29 represents an amino acid residue selected from Gly and Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents an amino acid residue selected from Tyr, Leu, Val, Ile, Phe, Phenylglycine, 1-Naphthylalanine, 2-Fluorophenylalanine, Cyclohexylglycine and tert-Leucine,
    • X14 represents an amino acid residue selected from Leu and Nle
    • X21 represents an amino acid residue selected from Asp and Glu,
    • X29 represents Thr,
    • R1 represents OH,


      or a salt or solvate thereof.


A further embodiment relates to a group of compounds, wherein

    • X10 represents an amino acid residue selected from Tyr, Leu and Val,
    • X14 represents Leu,
    • X21 represents Glu,
    • X29 represents Gly,
    • R1 represents OH,


      or a salt or solvate thereof.


Specific examples of peptidic compounds of formula (I) are the compounds of SEQ ID NO: 3-25 as well as salts or solvates thereof.


Specific examples of peptidic compounds of formula (I) are the compounds of SEQ ID NO: 3, 5, 6, 9, 15, 20, 23, 24, and 25 as well as salts or solvates thereof.


In certain embodiments, i.e. when the compound of formula (I) comprises genetically encoded amino acid residues, the invention further provides a nucleic acid (which may be DNA or RNA) encoding said compound, an expression vector comprising such a nucleic acid, and a host cell containing such a nucleic acid or expression vector.


In a further aspect, the present invention provides a composition comprising a compound of the invention in admixture with a carrier. In preferred embodiments, the composition is a pharmaceutically acceptable composition and the carrier is a pharmaceutically acceptable carrier. The compound of the invention may be in the form of a salt, e.g. a pharmaceutically acceptable salt or a solvate, e.g. a hydrate. In still a further aspect, the present invention provides a composition for use in a method of medical treatment, particularly in human medicine.


In certain embodiments, the nucleic acid or the expression vector may be used as therapeutic agents, e.g. in gene therapy.


The compounds of formula (I) are suitable for therapeutic application without an additionally therapeutically effective agent. In other embodiments, however, the compounds are used together with at least one additional therapeutically active agent, as described in “combination therapy”.


Compounds of this invention and formulation thereof may primarily be used to treat hypoglycemia, increase blood glucose levels, as adjunctive therapy with insulin, but also to reduce and maintain body weight, as antidote for beta-blockers and calcium-channel blockers toxication and to induce temporary relaxation of the gastro-intestinal system for radiological uses.


DETAILED DESCRIPTION OF THE INVENTION

Definitions


The amino acid sequences of the present invention contain the conventional one letter and three letter codes for naturally occurring amino acids, as well as generally accepted three letter codes for other amino acids, such as Nle (Norleucine).


Furthermore, the following codes were used for the amino acids shown in Table 1:














Structure
Name
Code









embedded image


L-4-Thiazolylalanine
Tza







embedded image


L-Cyclohexylglycine
Chg







embedded image


L-Phenylglycine
Phg







embedded image


L-tert-Leucine
Tle







embedded image


L-2-Fluorophenylalanine
2F-Phe







embedded image


L-1-Naphthylalanine
1-Nal









The term “native exendin-4” refers to native exendin-4 having the sequence











(SEQ ID NO: 1)



HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2.






The invention provides peptidic compounds as defined above.


The peptidic compounds of the present invention comprise a linear backbone of amino carboxylic acids linked by peptide, i.e. carboxamide bonds. Preferably, the amino carboxylic acids are α-amino carboxylic acids and more preferably L-α-amino carboxylic acids, unless indicated otherwise. The peptidic compounds comprise a backbone sequence of 39 amino carboxylic acids.


For the avoidance of doubt, in the definitions provided herein, it is generally intended that the sequence of the peptidic moiety differs from native exendin-4 at least at one of those positions which are stated to allow variation. Amino acids within the peptide moiety can be considered to be numbered consecutively from 1 to 39 in the conventional N-terminal to C-terminal direction. Reference to a “position” within peptidic moiety should be constructed accordingly, as should reference to positions within native exendin-4 and other molecules, e.g., in exendin-4, His is at position 1, Gly at position 2, . . . , Met at position 14, . . . and Ser at position 39.


In a further aspect, the present invention provides a composition comprising a compound of the invention as described herein, or a salt or solvate thereof, in admixture with a carrier.


The invention also provides the use of a compound of the present invention for use as a medicament, particularly for the treatment of a condition as described herein.


The invention also provides a composition wherein the composition is a pharmaceutically acceptable composition, and the carrier is a pharmaceutically acceptable carrier.


Peptide Synthesis


The skilled person is aware of a variety of different methods to prepare peptides that are described in this invention. These methods include but are not limited to synthetic approaches and recombinant gene expression. Thus, one way of preparing these peptides is the synthesis in solution or on a solid support and subsequent isolation and purification. A different way of preparing the peptides is gene expression in a host cell in which a DNA sequence encoding the peptide has been introduced. Alternatively, the gene expression can be achieved without utilizing a cell system. The methods described above may also be combined in any way.


A preferred way to prepare the peptides of the present invention is solid phase synthesis on a suitable resin. Solid phase peptide synthesis is a well established methodology (see for example: Stewart and Young, Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, Ill., 1984; E. Atherton and R. C. Sheppard, Solid Phase Peptide Synthesis. A Practical Approach, Oxford-IRL Press, New York, 1989). Solid phase synthesis is initiated by attaching an N-terminally protected amino acid with its carboxy terminus to an inert solid support carrying a cleavable linker. This solid support can be any polymer that allows coupling of the initial amino acid, e.g. a trityl resin, a chlorotrityl resin, a Wang resin or a Rink resin in which the linkage of the carboxy group (or carboxamide for Rink resin) to the resin is sensitive to acid (when Fmoc strategy is used). The polymer support must be stable under the conditions used to deprotect the α-amino group during the peptide synthesis.


After the first amino acid has been coupled to the solid support, the α-amino protecting group of this amino acid is removed. The remaining protected amino acids are then coupled one after the other in the order represented by the peptide sequence using appropriate amide coupling reagents, for example BOP, HBTU, HATU or DIC (N,N′-diisopropylcarbodiimide)/HOBt (1-hydroxybenzotriazol), wherein BOP, HBTU and HATU are used with tertiary amine bases. Alternatively, the liberated N-terminus can be functionalized with groups other than amino acids, for example carboxylic acids, etc.


Finally the peptide is cleaved from the resin and deprotected. This can be achieved by using King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The raw material can then be purified by chromatography, e.g. preparative RP-HPLC, if necessary.


Potency


As used herein, the term “potency” or “in vitro potency” is a measure for the ability of a compound to activate the receptors for GLP-1 or glucagon in a cell-based assay. Numerically, it is expressed as the “EC50 value”, which is the effective concentration of a compound that induces a half maximal increase of response (e.g. formation of intracellular cAMP) in a dose-response experiment.


Therapeutic Uses


The compounds of the invention are agonists of the glucagon receptor. Such agonists may at first provide therapeutic benefit to address a clinical need for targeting hypoglycemia.


Hypoglycemia induced by anti-hyperglycemic medication, e.g. insulin treatment, is an important risk in the therapy of T1 DM and T2DM to maintain glycemic control. The attempt to achieve tight glucose control can increase the risk of hypoglycemia in the outpatient and in the critical care setting. In a healthy state, fasting plasma glucose concentrations are usually above 70 mg/dL. If blood sugar levels drop below this threshold, mild hypoglycemia occurs at first with symptoms that can still be self-treated. These symptoms can include weakness, sleepiness, faintness, blurred vision or a feeling of sadness and unhappiness. Hypoglycemic symptoms also depend on the age of the patient and are predominantly neurological in older people whereas in children a change in behavior is frequently observed. Hypoglycemic events during the night can result in morning headache, poor sleep quality, vivid dreams, nightmares, profuse sweating in bed and restless behavior. Sleepwalking has also been reported during nocturnal hypoglycemia. If blood sugar levels drop even further, an event of severe hypoglycemia may be the consequence. Severe hypoglycemia is associated with a serum glucose value below 40-50 mg/dL and this event can result in neuroglycopenic symptoms such as seizure or coma which requires the assistance of a second person. Hypoglycemia can affect the brain resulting in confusion (abnormal behavior or both, such as the inability to complete routine tasks), visual disturbances, seizures and sometimes loss of consciousness. The frequent occurrence of hypoglycemia can result in reduced awareness thus increasing the risk of severe hypoglycemia significantly. Profound and prolonged severe hypoglycemia can result in death, whereas potential mechanisms responsible for hypoglycemia-induced death include brain death and cardiac arrhythmias. On average, patients with T1 DM experience 2 episodes of symptomatic hypoglycemia per week and 1 episode of severe hypoglycemia per year. The incidence of hypoglycemia in patients with T2DM treated with insulin is about one-third of that seen in T1 DM. This number may increase in patients with a longer duration of insulin treatment, the occurrence of comorbidities and the age of the patients.


The treatment of hypoglycemia depends on the duration and the intensity of the hypoglycemic event. Mild and moderate hypoglycemia can easily be self-treated by drinking or eating sugar-containing beverages or food. Severe hypoglycemia on the other hand requires the help of another person. While the intravenous application of a carbohydrate is restricted to health care professionals the administration of glucagon as a rescue medication can be carried out by any trained person either by subcutaneous or intramuscular injection. Glucagon is a peptide hormone that is produced by pancreatic alpha cells and released into the bloodstream when circulating glucose is low. As islet hormone with effects counter to those of insulin, glucagon is raising blood glucose levels by stimulating gluconeogenesis and glycogenolysis (while simultaneously inhibiting glycolysis and glycogen synthesis) to circumvent a hypoglycemic state.


Two commercial glucagon emergency kits are approved as rescue medication for severe hypoglycemia. The Glucagon Emergency Kit (Eli Lilly and Co, Indianapolis, Ind.) and the GlucaGen® Hypokit® (Novo Nordisk A/S, Bagsværd, Denmark). The kits contain a vial of glucagon powder and a syringe filled with solvent. The glucagon kit needs to be reconstituted before use. The solvent is transferred from the syringe into the vial and the vial is shaken until all solid has dissolved. The solution is then pulled back into the syringe and after removal of air bubbles in the syringe the kit is ready for administration into the leg or the abdomen. The recommended dose is 1 mg of glucagon in 1 mL of sterile water for adults and children weighing more than 25 kg and for children aged 6 to 8 or above. For children under 25 kg or younger than 6 to 8 years of age half the dose (0.5 mL) is recommended.


The FDA-approved instructions for both commercially available glucagon products allow only for immediate usage after the lyophilized powder is reconstituted in aqueous solution. Because of the complex procedure comprising different steps to solve the lyophilized powder carefully and complete an injection these products need to be administered to patients by caregivers or relatives of patients in case of an emergency situation. Based on these requirements glucagon remains an underutilized therapeutic approach despite its documented benefit to immediately improve hypoglycemia.


A glucagon receptor agonistic product with improved stability in solution, as described in this invention, could enable a ready-to-use pen device suitable for self-injection of the patient. Beyond its benefit as rescue medication such a product could offer the opportunity to become a therapy component as insulin counterpart for glucose optimization.


A distinct application may be the use in an automated closed loop artificial pancreas control system with a dual pump delivery of insulin and glucagon receptor agonist as described in this invention. Such an implantable system measures subcutaneously blood glucose and insulin is given to the patient to bring glucose levels back to a normal level. In contrast, a stabilized glucagon receptor agonist is administered by the artificial pancreas system to prevent glucose levels from going too low.


Accordingly, the compounds of the invention may be used for the treatment of mild to moderate hypoglycemia or in an event of severe hypoglycemia. Furthermore, the following forms of hypoglycemia could be treated with compounds of the invention as such are: induced by anti-diabetic treatments, e.g. insulin therapy, reactive or post-prandial hypoglycemia, fasting hypoglycemia, alcohol-induced hypoglycemia, post gastric-bypass hypoglycemia, non-diabetic hypoglycemia and pregnancy-associated hypoglycemia.


As outlined above glucagon is a hormone with acute effects counter to those of insulin, raising blood glucose levels by stimulating gluconeogenesis and glycogenolysis to circumvent a hypoglycemic state. However, recent data in rodents and humans reveal that glucagon could have also beneficial effects on energy balance, body fat mass and nutrient intake. Therefore, compounds of this invention may be used for variety of conditions or disorders beyond treatment of hypoglycemia. The compounds of this invention may be used in combination with other therapeutic active drugs. Relevant therapeutic use comprises treatment or prevention of hypoglycemia, both acute and chronic, Type 2 diabetes mellitus, delaying progression from prediabetes to type 2 diabetes, e.g. in states of impaired glucose tolerance and/or impaired fasting glucose, gestational diabetes, type 1 diabetes mellitus, obesity, diseases associated with overweight to obesity, metabolic syndrome/diabesity, cardiovascular diseases, regulation of appetite and satiety in the treatment of eating disorders, e.g. bulimia and maintaining a reduced body weight following successful weight loss.


For cases of beta-blocker poisoning where symptomatic bradycardia and hypotension are present, high-dose glucagon is considered the first-line antidote. Therefore, an injection of compounds of the current invention may be used as a defense in an overdose of beta-blockers and calcium-channel blockers.


An extra-hepatic effect of glucagon is the relaxation of smooth muscles cells in the gastrointestinal tract, comprising stomach, duodenum, small intestine, and colon. Compounds of this invention and pharmaceutical formulation thereof may be used as smooth muscle cell relaxant in combination with diagnostic imaging techniques for the gastro-intestinal tract, e.g. radiography, CT scanning, sonography, MRI imaging and nuclear medicine imaging.


Accordingly, compounds of this invention and formulation thereof may be used to treat hypoglycemia, increase blood glucose levels, as adjunctive therapy with insulin, to reduce and maintain body weight, as antidote for beta-blockers and calcium-channel blockers toxication and to induce temporary relaxation of the gastro-intestinal system for radiological uses.


Pharmaceutical Compositions


The term “pharmaceutical composition” indicates a mixture containing ingredients that are compatible when mixed and which may be administered. A pharmaceutical composition may include one or more medicinal drugs. Additionally, the pharmaceutical composition may include carriers, solvents, adjuvants, emollients, expanders, stabilizers and other components, whether these are considered active or inactive ingredients. Guidance for the skilled in preparing pharmaceutical compositions may be found, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins.


The exendin-4 peptide derivatives of the present invention, or salts thereof, are administered in conjunction with an acceptable pharmaceutical carrier, diluent, or excipient as part of a pharmaceutical composition. A “pharmaceutically acceptable carrier” is a carrier which is physiologically acceptable while retaining the therapeutic properties of the substance with which it is administered. Standard acceptable pharmaceutical carriers and their formulations are known to one skilled in the art and described, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins. One exemplary pharmaceutically acceptable carrier is physiological saline solution.


Acceptable pharmaceutical carriers or diluents include those used in formulations suitable for oral, rectal, nasal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, and transdermal) administration. The compounds of the present invention will typically be administered parenterally.


The term “salt” or “pharmaceutically acceptable salt” means salts of the compounds of the invention which are safe and effective for use in mammals. Pharmaceutically acceptable salts may include, but are not limited to, acid addition salts and basic salts. Examples of acid addition salts include chloride, sulfate, hydrogen sulfate, (hydrogen) phosphate, acetate, citrate, tosylate or mesylate salts. Examples of basic salts include salts with inorganic cations, e.g. alkaline or alkaline earth metal salts such as sodium, potassium, magnesium or calcium salts and salts with organic cations such as amine salts. Further examples of pharmaceutically acceptable salts are described in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins or in Handbook of Pharmaceutical Salts, Properties, Selection and Use, e.d. P. H. Stahl, C. G. Wermuth, 2002, jointly published by Verlag Helvetica Chimica Acta, Zurich, Switzerland, and Wiley-VCH, Weinheim, Germany.


The term “solvate” means complexes of the compounds of the invention or salts thereof with solvent molecules, e.g. organic solvent molecules and/or water.


The term “therapeutically effective amount” of a compound refers to a nontoxic but sufficient amount of the compound to provide the desired effect. The amount of a compound of the formula (I) necessary to achieve the desired biological effect depends on a number of factors, for example the specific compound chosen, the intended use, the mode of administration and the clinical condition of the patient. An appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation.


Pharmaceutical compositions of the invention are those suitable for parenteral (for example subcutaneous, intramuscular, intradermal or intravenous), oral, rectal, topical and peroral (for example sublingual) administration, although the most suitable mode of administration depends in each individual case on the nature and severity of the condition to be treated and on the nature of the compound of formula (I) used in each case.


Suitable pharmaceutical compositions may be in the form of separate units, for example capsules, tablets and powders in vials or ampoules, each of which contains a defined amount of the compound; as powders or granules; as solution or suspension in an aqueous or nonaqueous liquid; or as an oil-in-water or water-in-oil emulsion. It may be provided in single dose injectable form, for example in the form of a pen. The compositions may, as already mentioned, be prepared by any suitable pharmaceutical method which includes a step in which the active ingredient and the carrier (which may consist of one or more additional ingredients) are brought into contact.


Combination Therapy


In addition to its use as medication for hypoglycemic events, the compounds of the present invention, glucagon receptor agonists can be widely combined with other pharmacologically active compounds, such as all drugs mentioned in the Rote Liste 2014, e.g. with all antidiabetics mentioned in the Rote Liste 2014, chapter 12, all weight-reducing agents or appetite suppressants mentioned in the Rote Liste 2014, chapter 1, all lipid-lowering agents mentioned in the Rote Liste 2014, chapter 58, all antihypertensives and nephroprotectives, mentioned in the Rote Liste 2014, or all diuretics mentioned in the Rote Liste 2014, chapter 36.


The active ingredient combinations can be used especially for a synergistic improvement in action. They can be applied either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation. When the active ingredients are administered by separate administration of the active ingredients, this can be done simultaneously or successively.


Most of the active ingredients mentioned hereinafter are disclosed in the USP Dictionary of USAN and International Drug Names, US Pharmacopeia, Rockville 2011.


Other active substances which are suitable for such combinations include in particular those which for example add a therapeutic effect to one or more active substances with respect to one of the indications mentioned and/or which allow the dosage of one or more active substances to be reduced.


Therapeutic agents which are suitable for combinations include, for example, antidiabetic agents such as:


Insulin and Insulin derivatives, for example: Glargin/Lantus®, Glulisin/Apidra®, Detemir/Levemir®, Lispro/Humalog®/Liprolog®, Degludec/DegludecPlus, Aspart, basal insulin and analogues (e.g. LY2963016), PEGylated insulin Lispro (LY2605541), Humulin®, Linjeta, SuliXen®, NN1045, Insulin plus Symlin, fast-acting and short-acting insulins (e.g. Linjeta, PH20, NN1218, HinsBet), (APC-002) hydrogel, oral, inhalable, transdermal and sublingual insulins (e.g. Exubera®, Nasulin®, Afrezza, Tregopil, TPM 02, Capsulin, Oral-lyn®, Cobalamin® oral insulin, ORMD-0801, NN1953, VIAtab). Additionally included are also those insulin derivatives which are bonded to albumin or another protein by a bifunctional linker such as HM12460A (LAPS insulin). Additionally included are also those insulin derivatives which are bonded to albumin or another protein by a bifunctional linker such as HM12460A (LAPS insulin).


GLP-1, GLP-1 analogues and GLP-1 receptor agonists, for example: Lixisenatide/AVE0010/ZP10/Lyxumia, Exenatide/Exendin-4/Byetta/Bydureon/ITCA 650, Liraglutide/Victoza, Semaglutide, Taspoglutide, Albiglutide, Dulaglutide, rExendin-4, CJC-1134-PC, PB-1023, TTP-054, HM-112600, CM-3, GLP-1 Eligen, ORMD-0901, NN-9924, Nodexen, Viador-GLP-1, CVX-096, ZYOG-1, ZYD-1, MAR-701, ZP-2929, ZP-3022, CAM-2036, DA-15864, ARI-2651, ARI-2255, Exenatide-XTEN and Glucagon-Xten, MAR709, HM1525A, dual GLP1R/GlucagonR agonists, dual GLP1R/GIPR agonists, triple GLP1R/GlucagonR/GIPR agonists, combinations of GLP1R agonists with insulin derivatives such as IDegLira, Lixilan etc.


DPP-4 inhibitors, for example: Alogliptin/Nesina, Linagliptin/BI-1356/Ondero/Trajenta/Tradjenta/Trayenta/Tradzenta, Saxagliptin/Onglyza, Sitagliptin/Januvia/Xelevia/Tesave/Janumet/Velmetia, Vildagliptin, Anagliptin, Gemigliptin, Tenegliptin, Melogliptin, Trelagliptin, DA-1229, MK-3102, KM-223.


SGLT2 inhibitors, for example: Canaglifozin, Dapaglifloxin, Remoglifoxin, Sergliflozin, Empagliflozin, Ipraglifloxin, Tofoglifloxin, luseoglifloxin, LX-4211, PF-04971729, RO-4998452, EGT-0001442, DSP-3235.


Biguanides (e.g. Metformin, Buformin, Phenformin), Thiazolidinediones (e.g. Pioglitazone, Rivoglitazone, Rosiglitazone, Troglitazone), dual PPAR agonists (e.g. Aleglitazar, Muraglitazar, Tesaglitazar), Sulfonylureas (e.g. Tolbutamide, Glibenclamide, Glimepiride/Amaryl, Glipizide), Meglitinides (e.g. Nateglinide, Repaglinide, Mitiglinide), Alpha-glucosidase inhibitors (e.g. Acarbose, Miglitol, Voglibose), Amylin and Amylin analogues (e.g. Pramlintide, Symlin).


GPR119 agonists (e.g. GSK-263A, PSN-821, MBX-2982, APD-597), GPR40 agonists (e.g. TAK-875, TUG-424, P-1736, JTT-851, GW9508).


Other suitable combination partners are: Cycloset, inhibitors of 11-beta-HSD (e.g. LY2523199, BMS770767, RG-4929, BMS816336, AZD-8329, HSD-016, BI-135585), activators of glucokinase (e.g. TTP-399, AMG-151, TAK-329), inhibitors of DGAT (e.g. LCQ-908), inhibitors of protein tyrosine phosphatase 1 (e.g. Trodusquemine), inhibitors of glucose-6-phosphatase, inhibitors of fructose-1,6-bisphosphatase, inhibitors of glycogen phosphorylase, inhibitors of phosphoenol pyruvate carboxykinase, inhibitors of glycogen synthase kinase, inhibitors of pyruvate dehydrokinase, alpha2-antagonists, CCR-2 antagonists.


One or more lipid lowering agents are also suitable as combination partners, such as for example: HMG-CoA-reductase inhibitors (e.g. Simvastatin, Atorvastatin), fibrates (e.g. Bezafibrate, Fenofibrate), nicotinic acid and the derivatives thereof (e.g. Niacin),


PPAR-(alpha, gamma or alpha/gamma) agonists or modulators (e.g. Aleglitazar), PPAR-delta agonists, ACAT inhibitors (e.g. Avasimibe), cholesterol absorption inhibitors (e.g. Ezetimibe), bile acid-binding substances (e.g. Cholestyramine), ileal bile acid transport inhibitors, MTP inhibitors, or modulators of PCSK9.


HDL-raising compounds such as: CETP inhibitors (e.g. Torcetrapib, Anacetrapid, Dalcetrapid, Evacetrapid, JTT-302, DRL-17822, TA-8995) or ABC1 regulators.


Other suitable combination partners are one or more active substances for the treatment of obesity, such as for example: Sibutramine, Tesofensine, Orlistat, antagonists of the cannabinoid-1 receptor, MCH-1 receptor antagonists, MC4 receptor agonists, NPY5 or NPY2 antagonists (e.g. Velneperit), beta-3-agonists, leptin or leptin mimetics, agonists of the 5HT2c receptor (e.g. Lorcaserin), or the combinations of bupropione/naltrexone, bupropione/zonisamide, bupropione/phentermine or pramlintide/metreleptin.


Other suitable combination partners are:


Further gastrointestinal peptides such as Peptide YY 3-36 (PYY3-36) or analogues thereof, pancreatic polypeptide (PP) or analogues thereof, GIP receptor agonists or antagonists, ghrelin antagonists or inverse agonists, Xenin and analogues thereof.


Moreover, combinations with drugs for influencing high blood pressure, chronic heart failure or atherosclerosis, such as e.g.: Angiotensin II receptor antagonists (e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbesartan, olmesartan, tasosartan, azilsartan), ACE inhibitors, ECE inhibitors, diuretics, beta-blockers, calcium antagonists, centrally acting hypertensives, antagonists of the alpha-2-adrenergic receptor, inhibitors of neutral endopeptidase, thrombocyte aggregation inhibitors and others or combinations thereof are suitable.


In another aspect, this invention relates to the use of a compound according to the invention or a physiologically acceptable salt thereof combined with at least one of the active substances described above as a combination partner, for preparing a medicament which is suitable for the treatment or prevention of diseases or conditions which can be affected by binding to the glucagon receptor. This is preferably a disease in the context of the metabolic syndrome, particularly one of the diseases or conditions listed above, most particularly diabetes or obesity or complications thereof.


The use of the compounds according to the invention, or a physiologically acceptable salt thereof, in combination with one or more active substances may take place simultaneously, separately or sequentially.


The use of the compound according to the invention, or a physiologically acceptable salt thereof, in combination with another active substance may take place simultaneously or at staggered times, but particularly within a short space of time. If they are administered simultaneously, the two active substances are given to the patient together; if they are used at staggered times, the two active substances are given to the patient within a period of less than or equal to 12 hours, but particularly less than or equal to 6 hours.


Consequently, in another aspect, this invention relates to a medicament which comprises a compound according to the invention or a physiologically acceptable salt of such a compound and at least one of the active substances described above as combination partners, optionally together with one or more inert carriers and/or diluents.


The compound according to the invention, or physiologically acceptable salt or solvate thereof, and the additional active substance to be combined therewith may both be present together in one formulation, for example a tablet or capsule, a ready-to-use formulation in an appropriate syringe or device, a lyophilizate which can be reconstituted prior to injection or separately in two identical or different formulations, for example as so-called kit-of-parts.





LEGENDS TO THE FIGURES


FIG. 1


Blood glucose excursions after subcutaneous administration of GCG or SEQ. ID 5 in terminally anaesthetized rats. Values are mean±SEM, n=6-8 rats.



FIG. 2


Blood glucose excursions after subcutaneous administration of GCG or SEQ. ID 6 in terminally anaesthetized rats. Values are mean±SEM, n=6-8 rats.



FIG. 3


Effect of subcutaneous SEQ. ID 5 and human glucagon on blood glucose in dog



FIG. 4


Effect of subcutaneous and intramuscular SEQ. ID 5 on blood glucose in dog



FIG. 5


Effect of subcutaneous SEQ. ID 5 vs. SEQ. ID 6 on blood glucose in dog





METHODS

Abbreviations employed are as follows:

  • 2F-Phe 2-Fluorophenylalanine
  • AA amino acid
  • cAMP cyclic adenosine monophosphate
  • Boc tert-butyloxycarbonyl
  • BOP (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate
  • BSA bovine serum albumin
  • tBu tertiary butyl
  • Chg Cyclohexylglycine
  • CTC 2-Chlorotrityl chloride
  • DIC N,N′-diisopropylcarbodiimide
  • DIPEA N,N-diisopropylethylamine
  • DMEM Dulbecco's modified Eagle's medium
  • DMF dimethyl formamide
  • EDT ethanedithiol
  • FBS fetal bovine serum
  • Fmoc fluorenylmethyloxycarbonyl
  • GCG Glucagon
  • GLP-1 Glucagon related peptide 1
  • HATU 2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate
  • HBSS Hanks' Balanced Salt Solution
  • HBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium hexafluorophosphate
  • HEPES 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid
  • HOBt 1-hydroxybenzotriazole
  • HOSu N-hydroxysuccinimide
  • HPLC High Performance Liquid Chromatography
  • HTRF Homogenous Time Resolved Fluorescence
  • IBMX 3-isobutyl-1-methylxanthine
  • Nal 1-Naphthylalanine
  • PBS phosphate buffered saline
  • PEG polyethylene glycole
  • Phg Phenylglycine
  • RP-HPLC reversed-phase high performance liquid chromatography
  • s.c. subcutaneous
  • TFA trifluoroacetic acid
  • Tle tert-Leucine
  • TRIS Tris(hydroxymethyl)-aminomethan
  • Trt trityl
  • Tza 4-Thiazolylalanine
  • UV ultraviolet


    General Synthesis of Peptidic Compounds


    Materials:


For solid phase peptide synthesis preloaded Fmoc-Ser(tBu)-Wang resin was used. Fmoc-Ser(tBu)-Wang resin was purchased from Novabiochem with a loading of 0.3 mmol/g.


Fmoc protected natural amino acids were purchased from Protein Technologies Inc., Senn Chemicals, Merck Biosciences, Novabiochem, Iris Biotech or Bachem.


The following standard amino acids were used throughout the syntheses: Fmoc-L-Ala-OH, Fmoc-L-Arg(Pbf)-OH, Fmoc-L-Asn(Trt)-OH, Fmoc-L-Asp(OtBu)-OH, Fmoc-L-Gln(Trt)-OH, Fmoc-L-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-L-His(Trt)-OH, Fmoc-L-Ile-OH, Fmoc-L-Leu-OH, Fmoc-L-Lys(Boc)-OH, Fmoc-L-Phe-OH, Fmoc-L-Pro-OH, Fmoc-L-Ser(tBu)-OH, Fmoc-L-Thr(tBu)-OH, Fmoc-L-Trp(Boc)-OH, Fmoc-L-Tyr(tBu)-OH, Fmoc-L-Val-OH.


In addition, the following special amino acids were purchased from the same suppliers as above: Fmoc-L-Tza-OH, Fmoc-L-Phg-OH, Fmoc-L-Nal-OH, Fmoc-L-2F-Phe-OH, Fmoc-L-Chg-OH, Fmoc-L-Tle-OH


The solid phase peptide syntheses were performed on a Prelude Peptide Synthesizer (Protein Technologies Inc) using standard Fmoc chemistry and HBTU/DIPEA activation. DMF was used as the solvent. Deprotection: 20% piperidine/DMF for 2×2.5 min. Washes: 7×DMF. Coupling 2:5:10 200 mM AA/500 mM HBTU/2M DIPEA in DMF. 2× for 20 min. Washes: 5×DMF.


All the peptides that had been synthesized were cleaved from the resin with King's cleavage cocktail consisting of 82.5% TFA, 5% phenol, 5% water, 5% thioanisole, 2.5% EDT. The crude peptides were then precipitated in diethyl or diisopropyl ether, centrifuged, and lyophilized. Peptides were analyzed by analytical HPLC and checked by ESI mass spectrometry. Crude peptides were purified by a conventional preparative RP-HPLC purification procedure.


General Preparative HPLC Purification Procedure:


The crude peptides were purified either on an Akta Purifier System or on a Jasco semiprep HPLC System. Preparative RP-C18-HPLC columns of different sizes and with different flow rates were used depending on the amount of crude peptide to be purified. Acetonitrile+0.1% TFA (B) and water+0.1% TFA (A) were employed as eluents. Product-containing fractions were collected and lyophilized to obtain the purified product, typically as TFA salt.


Solubility and Stability Testing of Exendin-4 Derivatives:


Prior to the testing of solubility and stability of a peptide batch, its content was determined. Therefore, two parameters were investigated, its purity (HPLC-UV) and the amount of salt load of the batch (ion chromatography).


For solubility testing, the target concentration was 10 mg/mL pure compound. Therefore, solutions from solid samples were prepared in different buffer systems with a concentration of 10 mg/mL compound based on the previously determined content. HPLC-UV was performed after 2 h of gentle agitation from the supernatant, which was obtained by 20 min of centrifugation at 4000 rpm.


The solubility was then determined by comparison with the UV peak areas obtained with a stock solution of the peptide at a concentration of 2 mg/mL in pure water or a variable amount of acetonitrile (optical control that all of the compound was dissolved).


For solubility testing, analytical Chromatography was performed with a Waters UPLC system on a Waters ACQUITY UPLC® CSH™ C18 1.7 μm (150×2.1 mm) at 50° C. with a gradient elution at a flow rate of 0.5 mL/min and monitored at 210-225 nm. The gradients were set up as 20% B (0-3 min) to 75% B (3-23 min) followed by a wash step at 98% B (23.5-30.5) and a equilibration period (31-37 min at 20% B). Buffer A=0.5% trifluoracetic acid in water and B=0.35%) trifluoracetic acid in acetonitrile. Optionally, the LC was coupled to an Waters LCT Premier ESI-TOF mass spectrometer using the positive ion mode.


For stability testing, the target concentration was 1.0 mg/mL pure compound in a pH 7.3 TRIS buffer (50 mM) containing m-cresol (30 mM), sodium chloride (85 mM) and polysorbate 20 (8 μM). The solution was stored for 14 days at 50° C. After that time, the solution was analysed by UPLC.


For stability testing, UPLC was performed on an Waters Acquity UPLC H-Class system with a Waters Acquity UPLC BEH130 C18 1.7 μm column (2.1×100 mm) at 40° C. with a gradient elution at a flow rate of 0.5 mL/min and monitored at 215 and 280 nm. The gradients were set up as 10% B to 90% B over 19.2 min and then 90% B for 0.8 min. Buffer A=0.1% formic acid in water and B=0.1% formic acid in acetonitrile.


For determination of the amount of the remaining peptide, the peak areas of the target compound at t0 and t14 were compared, resulting in “% Remaining peptide”, following the equation

% Remaining peptide=[(peak area peptide t14)×100]/peak area peptide t0.


The “% Normalized purity” is defined by the % Relative purity at day 14 in relation to the % Relative purity at t0 following the equation

% Normalized purity=[(% Relative purity t14)×100)]/% Relative purity t0


The % Relative purity at t0 was calculated by dividing the peak are of the peptide at t0 by the sum of all peak areas at t0 following the equation

% Relative purity t0=[(peak area t0)×100]/sum of all peak areas t0


Likewise, the % relative purity t14 was calculated by dividing the peak are of the peptide at t14 by the sum of all peak areas at t14 following the equation

% Relative purity t14=[(peak area t14)×100]/sum of all peak areas t14


The potential difference between “% Normalized purity” and “% Remaining peptide” reflects the amount of peptide which did not remain soluble upon stress conditions.


This precipitate includes non-soluble degradation products, polymers and/or fibrils, which have been removed prior to analysis by centrifugation.


Anion Chromatography:


Instrument: Dionex ICS-2000, pre/column: Ion Pac AG-18 2×50 mm (Dionex)/AS18 2×250 mm (Dionex), eluent: aqueous sodium hydroxide, flow: 0.38 mL/min, gradient: 0-6 min: 22 mM KOH, 6-12 min: 22-28 mM KOH, 12-15 min: 28-50 mM KOH, 15-20 min: 22 mM KOH, suppressor: ASRS 300 2 mm, detection: conductivity.


In Vitro Cellular Assays for Glucagon Receptor Efficacy:


Agonism of compounds for the respective receptor was determined by functional assays measuring cAMP response of HEK-293 cell lines stably expressing human GLP-1 or glucagon receptor.


cAMP content of cells was determined using a kit from Cisbio Corp. (cat. no. 62AM4PEC) based on HTRF (Homogenous Time Resolved Fluorescence). For preparation, cells were split into T175 culture flasks and grown overnight to near confluency in medium (DMEM/10% FBS). Medium was then removed and cells washed with PBS lacking calcium and magnesium, followed by proteinase treatment with accutase (Sigma-Aldrich cat. no. A6964). Detached cells were washed and resuspended in assay buffer (1×HBSS; 20 mM HEPES, 0.1% BSA, 2 mM IBMX) and cellular density determined. They were then diluted to 400000 cells/ml and 25 μl-aliquots dispensed into the wells of 96-well plates. For measurement, 25 μl of test compound in assay buffer was added to the wells, followed by incubation for 30 minutes at room temperature. After addition of HTRF reagents diluted in lysis buffer (kit components), the plates were incubated for 1 hr, followed by measurement of the fluorescence ratio at 665/620 nm. In vitro potency of agonists was quantified by determining the concentrations that caused 50% activation of maximal response (EC50).


Blood Glucose Profile in Anesthetized Rats:


The method aimed to study a test compound on the process of hepatic glycogenolysis. The rats had free access to food until the start of the experiment. It can be stated that the rise of blood glucose after administration of glucagon (GCG) or GCG-mimetic, and which lasted for about 60 to 90 minutes, was the result of the GCG- or GCG-mimetic-induced breakdown of hepatic glycogen. The effect of GCG-mimetic on hepatic glycogenolysis and the subsequent hyperglycemic peak in the blood was compared to the effect obtained with a subcutaneous bolus injection of GCG at a dose of 30 μg/kg.


Blood glucose levels were assayed in anaesthetized male Wistar rats as described previously (Herling et al. Am J Physiol. 1998; 274:G1087-93). Rats were anaesthetized with an intraperitoneal injection of pentobarbital sodium (60 mg/kg) and ketamine (10 mg/kg) and tracheotomized. Anesthesia was maintained for up to 5 hours by subcutaneous infusion of pentobarbital sodium (adjusted to the anesthetic depth of the individual animal; about 24 mg/kg/h). Body temperature was monitored with a rectal probe thermometer, and temperature was maintained at 37° C. by means of a heated surgical table. Blood samples for glucose analysis (10 μl) were obtained from the tip of the tail every 15 minutes. The rats were allowed to stabilize their blood glucose levels after surgery for up to 2 hours. Then, GCG as reference compound, or the test compound were administered subcutaneously. For GCG a dose of 30 μg/kg was used to induce hepatic glycogenolysis. The test compound SEQ. ID 5 was administered in doses of 10, 20 and 30 μg/kg, and the test compound SEQ. ID 6 was administered in doses of 10 and 30 μg/kg.


Blood Glucose Profile in Normoglycemic Beagle Dogs:


Male normoglycemic Beagle dogs were fasted overnight before and during the entire experiment. The animals were randomized to groups of n=6 per group. At time point 0 min the animals were treated with single doses of the test compound or native human glucagon as reference compound. The injection solutions were prepared freshly prior to the experiment. The test compound was administered as a single injection via three different routes (s.c., i.m. and i.v.) at doses of 1-100 μg/kg. Blood sampling is performed consecutively via puncture of the jugular vein (vena jugularis) before drug administration (=0 min) and thereafter up to 240 min. Blood glucose was determined enzymatically (hexokinase method) from whole blood, insulin was analyzed from K-EDTA plasma with a dog-specific ELISA assay.


EXAMPLES

The invention is further illustrated by the following examples.


Example 1
Synthesis of SEQ ID NO: 25

The solid phase synthesis was carried out on preloaded Fmoc-Ser(tBu)-Wang resin. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Fmoc-Tza-OH and in position 10 Fmoc-Tle-OH were used in the solid phase synthesis protocol. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1% TFA).


Finally, the molecular mass of the purified peptide was confirmed by LC-MS.


Example 2
Synthesis of SEQ ID NO: 24

The solid phase synthesis was carried out on preloaded Fmoc-Ser(tBu)-Wang resin. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Fmoc-Tza-OH and in position 10 Fmoc-Chg-OH were used in the solid phase synthesis protocol. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1% TFA).


Finally, the molecular mass of the purified peptide was confirmed by LC-MS.


Example 3
Synthesis of SEQ ID NO: 5

The solid phase synthesis was carried out on preloaded Fmoc-Ser(tBu)-Wang resin. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Fmoc-Tza-OH was used in the solid phase synthesis protocol. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1% TFA).


Finally, the molecular mass of the purified peptide was confirmed by LC-MS.


In an analogous way, the peptides SEQ ID NO: 3-36 were synthesized, see table 2.









TABLE 2







list of synthesized peptides and comparison of calculated vs. found


molecular weight.









SEQ ID
calc. mass
found mass





 3
4259.68
4259.3


 4
4229.66
4229.8


 5
4279.67
4279.7


 6
4323.73
4323.6


 7
4259.68
4259.8


 8
4273.71
4273.7


 9
4215.63
4216.0


10
4293.70
4295.1


11
4357.80
4358.2


12
4273.71
4272.8


13
4293.70
4293.7


14
4273.71
4274.3


15
4259.68
4259.7


16
4273.71
4273.4


17
4323.73
4323.4


18
4311.69
4311.3


19
4343.70
4343.3


20
4293.70
4293.5


21
4311.69
4311.4


22
4343.76
4343.4


23
4285.72
4285.2


24
4299.69
4299.0


25
4273.65
4273.0


26
4242.64
4242.5


27
4212.61
4212.5


28
4262.56
4262.2


29
4306.68
4306.6


30
4242.64
4240.1


31
4256.66
4256.5


32
4276.65
4276.2


33
4340.75
4340.2


34
4256.66
4256.6


35
4242.64
4242.5


36
4256.66
4254.1









Example 4
Chemical Stability and Solubility

Solubility and chemical stability of peptidic compounds were assessed as described in Methods. The results are given in Table 3.









TABLE 3







Chemical stability and solubility












Stability (pH7.3,
Stability (pH7.3,



Solubility
50° C., 2 w)
50° C., 2 w)


SEQ ID
(pH7.4) [mg/ml]
[% NormalizedPurity]
[% Remaining Peptide]













 2
<0.2
70
n/a


 1
>10.0
37
33


 3
>10.0
94
92


 6
>10.0
92
94


 5
>10.0
96
88


 9
>10.0
83
70


15
>10.0
86
75


20
>10.0
90
90


23
>10.0
94
92


24
>10.0
95
90


25
>10.0
89
82









Example 5
In Vitro Data on GLP-1 and Glucagon Receptor

Potencies of peptidic compounds at the GLP-1 and glucagon receptors were determined by exposing cells expressing human glucagon receptor (hGLUC R), and human GLP-1 receptor (hGLP-1 R) to the listed compounds at increasing concentrations and measuring the formed cAMP as described in Methods.


The results for Exendin-4 derivatives with activity at the human GLP-1 receptor (hGLP-1 R) and the human glucagon receptor (hGLUC R) are shown in Table 4.









TABLE 4







EC50 values of exendin-4 peptide analogues at GLP-1 and Glucagon


receptors (indicated in pM)










EC50 hGLP-1 R
EC50 hGLUC R


SEQ ID NO
[pM]
[pM]












 1
0.4
>10000000


 2
56.6
1.0


 3
44333.3
1.8


 4
3300.0
0.7


 5
2190.0
0.6


 6
9300.0
0.5


 7
4190.0
2.4


 8
5800.0
2.2


 9
12200.0
2.2


10
45000.0
6.0


11
11700.0
0.9


12
20000.0
1.0


13
32100.0
3.1


14
52900.0
1.2


15
34500.0
2.2


16
19700.0
0.9


17
6940.0
1.0


18
25800.0
3.1


19
6640.0
0.7


20
38900.0
3.8


21
49700.0
1.4


22
8570.0
1.0


23
50700.0
3.5


24
8310.0
0.7


25
23100.0
0.8









Example 6
Comparison Testing

A selection of exendin-4 derivatives comprising the artificial amino acid 4-thiazolylalanine in position 1 has been tested in comparison to corresponding compounds that have histidine in position 1. Histidine at position 1 is essential for the activation of the receptor in glucagon but also in many related peptides including GLP-1 and exendin-4. Therefore it is surprising that the artificial amino acid 4-thiazolylalanine leads to an even higher activation of the receptor compared to identical compounds that have the natural histidine at position 1. Furthermore, the activation of the GLP-1 receptor which counterregulates the glucagon effect is surprisingly reduced by the introduction of the artificial amino acid 4-thiazolylalanine. This leads to even more selective glucagon receptor agonists with a higher GCG/GLP-1 activity ratio. The reference pair compounds and the corresponding EC50 values at GLP-1 and Glucagon receptors (indicated in pM) are given in Table 5.









TABLE 5







Comparison of exendin-4 derivatives comprising the artificial amino


acid 4-thiazolylalanine in position 1 vs. exendin-4 derivatives


having the natural amino acid histidine in position 1. EC50


values at GLP-1 and Glucagon receptors are indicated in pM.











SEQ ID
Amino acid
EC50
EC50



NO
in position 1
hGLP-1R
hGlucagon-R
Ratio














2
His
56.6
1.0
  57:1


3
Tza
44333.3
1.8
24630:1


26
His
1240.0
9.4
 132:1


4
Tza
3300.0
0.7
 4714:1


27
His
80.8
1.3
  62:1


5
Tza
2190.0
0.6
 3650:1


28
His
52.4
1.0
  52:1


6
Tza
9300.0
0.5
18600:1


29
His
145.0
0.9
 161:1


7
Tza
4190.0
2.4
 1746:1


30
His
1180.0
6.5
 182:1


8
Tza
5800.0
2.2
 2636:1


31
His
941.0
4.1
 230:1


10
Tza
45000.0
6.0
 7500:1


32
His
18700.0
12.0
 1558:1


11
Tza
11700.0
0.9
13000:1


33
His
159.0
1.1
 145:1


12
Tza
20000.0
1.0
20000:1


34
His
363.0
1.4
 259:1


15
Tza
34500.0
2.2
15682:1


35
His
934.0
7.1
 132:1


15
Tza
19700.0
0.9
21888:1


36
His
358.5
1.4
 256:1









Example 7
Effect of SEQ. ID 5 and SEQ. ID 6 on Glucose Release in Anesthetized Rats after S.C. Injection

During the 2 hr pre-treatment period blood glucose stabilized at a level of about 6 mmol/l, representing normal fed values in rats. GCG at the dose of 30 μg/kg caused a rapid rise of blood glucose, which peaked after 30 minutes at blood glucose levels of about 10 to 11 mmol/l. The test compound SEQ. ID 5 at doses of 10, 20 and 30 μg/kg subcutaneously caused a dose-dependent increase of blood glucose, which peaked 30, 45 and 90 min after injection, respectively. The dose of 20 μg/kg of SEQ. ID 5 demonstrated a nearly comparable shape of blood glucose excursion compared to 30 μg/kg GCG (FIG. 1).


The test compound SEQ. ID 6 at doses of 10 and 30 μg/kg caused a dose-dependent increase of blood glucose, which peaked 30 and 60 min after injection, respectively. The dose of 10 μg/kg of SEQ. ID 6 demonstrated a more powerful blood glucose excursion compared to 30 μg/kg GCG (FIG. 2).


Example 8
Effect of SEQ. ID. 5 and SEQ. ID 6 on Glucose Release in Normoglycemic Beagle Dogs after S.C. Injection

In animals and humans injection of glucagon leads to a rapid recruitment of hepatic glycogen which is immediately broken down to glucose. This results in an acute but short lasting increase in blood glucose. In normoglycemic Beagle dogs subcutaneous (s.c.) injection of 1 μg/kg human glucagon leads to rapid increase of blood glucose by 2-3 mmol/L within 15 min. s.c. injection of SEQ. ID 5 and SEQ. ID 6 mimicked the effect of human glucagon on blood glucose. In the dog the net total glucose response (change in blood glucose AUC(0-240 min) from baseline) after injection of 1 μg/kg s.c. SEQ. ID 5 was similar to that of 1 μg/kg s.c. human glucagon. Blood glucose response to SEQ. ID 5 increased depending on the dose until a peak increase of ˜3.5-4 mmol/L was reached with 10 μg/kg s.c. (FIG. 3). Beyond this higher doses of s.c. SEQ. ID 5 did no longer result in higher glucose excursion. In dog the onset of glucose response s.c. SEQ. ID 5 was similar to that of human glucagon while the duration of the glucose response was slightly longer. SEQ. ID 5 was active through all parenteral routes as subcutaneous, intramuscular and intravenous injections resulted in rapid and transient blood glucose increase. There was no difference in activity and blood glucose time-action profile between subcutaneously and intramuscularly injections SEQ. ID 5 in dogs (FIG. 4).


With respect to induction of a blood glucose response SEQ. ID 5 and SEQ. ID 6 were similarly active in normoglycemic dogs (FIG. 5).









TABLE 10







Sequences








SEQ.



ID
sequence





 1
H-G-E-G-T-F-T-S-D-L-S-K-Q-M-E-E-E-A-



V-R-L-F-I-E-W-L-K-N-G-G-P-S-S-G-A-P-



P-P-S-NH2





 2
H-S-Q-G-T-F-T-S-D-Y-S-K-Y-L-D-S-R-R-



A-Q-D-F-V-Q-W-L-M-N-T-OH





 3
Tza-S-Q-G-T-F-T-S-D-L-S-K-Q-Nle-E-S-



R-R-A-Q-D-F-I-E-W-L-L-A-T-G-P-E-S-G-



A-P-P-P-S-OH





 4
Tza-S-Q-G-T-F-T-S-D-L-S-K-Q-L-E-S-R-



R-A-Q-E-F-I-E-W-L-L-A-G-G-P-E-S-G-A-



P-P-P-S-OH





 5
Tza-S-Q-G-T-F-T-S-D-Y-S-K-Q-L-E-S-R-



R-A-Q-E-F-I-E-W-L-L-A-G-G-P-E-S-G-A-



P-P-P-S-OH





 6
Tza-S-Q-G-T-F-T-S-D-Y-S-K-Q-L-E-S-R-



R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-A-



P-P-P-S-OH





 7
Tza-S-Q-G-T-F-T-S-D-V-S-K-Q-L-E-S-R-



R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-A-



P-P-P-S-OH





 8
Tza-S-Q-G-T-F-T-S-D-I-S-K-Q-L-E-S-R-



R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-A-



P-P-P-S-OH





 9
Tza-S-Q-G-T-F-T-S-D-V-S-K-Q-L-E-S-R-



R-A-Q-E-F-I-E-W-L-L-A-G-G-P-E-S-G-A-



P-P-P-S-OH





10
Tza-S-Q-G-T-F-T-S-D-Phg-S-K-Q-L-E-S-



R-R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-



A-P-P-P-S-OH





11
Tza-S-Q-G-T-F-T-S-D-1Nal-S-K-Q-L-E-



S-R-R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-



G-A-P-P-P-S-OH





12
Tza-S-Q-G-T-F-T-S-D-L-S-K-Q-L-E-S-R-



R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-A-



P-P-P-S-OH





13
Tza-S-Q-G-T-F-T-S-D-F-S-K-Q-Nle-E-S-



R-R-A-Q-D-F-I-E-W-L-L-A-T-G-P-E-S-G-



A-P-P-P-S-OH





14
Tza-S-Q-G-T-F-T-S-D-I-S-K-Q-Nle-E-S-



R-R-A-Q-E-F-1-E-W-L-L-A-T-G-P-E-S-G-



A-P-P-P-S-OH





15
Tza-S-Q-G-T-F-T-S-D-L-S-K-Q-L-E-S-R-



R-A-Q-D-F-I-E-W-L-L-A-T-G-P-E-S-G-A-



P-P-P-S-OH





16
Tza-S-Q-G-T-F-T-S-D-L-S-K-Q-Nle-E-S-



R-R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-



A-P-P-P-S-OH





17
Tza-S-Q-G-T-F-T-S-D-Y-S-K-Q-Nle-E-S-



R-R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-



A-P-P-P-S-OH





18
Tza-S-Q-G-T-F-T-S-D-2FPhe-S-K-Q-Nle-



E-S-R-R-A-Q-D-F-I-E-W-L-L-A-T-G-P-E-



S-G-A-P-P-P-S-OH





19
Tza-S-Q-G-T-F-T-S-D-1Nal-S-K-Q-Nle-



E-S-R-R-A-Q-D-F-I-E-W-L-L-A-T-G-P-E-



S-G-A-P-P-P-S-OH





20
Tza-S-Q-G-T-F-T-S-D-Chg-S-K-Q-Nle-E-



S-R-R-A-Q-D-F-I-E-W-L-L-A-T-G-P-E-S-



G-A-P-P-P-S-OH





21
Tza-S-Q-G-T-F-T-S-D-2FPhe-S-K-Q-L-E-



S-R-R-A-Q-D-F-I-E-W-L-L-A-T-G-P-E-S-



G-A-P-P-P-S-OH





22
Tza-S-Q-G-T-F-T-S-D-1Nal-S-K-Q-L-E-



S-R-R-A-Q-D-F-I-E-W-L-L-A-T-G-P-E-S-



G-A-P-P-P-S-OH





23
Tza-S-Q-G-T-F-T-S-D-Chg-S-K-Q-L-E-S-



R-R-A-Q-D-F-I-E-W-L-L-A-T-G-P-E-S-G-



A-P-P-P-S-OH





24
Tza-S-Q-G-T-F-T-S-D-Chg-S-K-Q-Nle-E-



S-R-R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-



G-A-P-P-P-S-OH





25
Tza-S-Q-G-T-F-T-S-D-Tle-S-K-Q-Nle-E-



S-R-R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-



G-A-P-P-P-S-OH





26
H-S-Q-G-T-F-T-S-D-L-S-K-Q-Nle-E-S-R-



R-A-Q-D-F-I-E-W-L-L-A-T-G-P-E-S-G-A-



P-P-P-S-OH





27
H-S-Q-G-T-F-T-S-D-L-S-K-Q-L-E-S-R-R-



A-Q-E-F-I-E-W-L-L-A-G-G-P-E-S-G-A-P-



P-P-S-OH





28
H-S-Q-G-T-F-T-S-D-Y-S-K-Q-L-E-S-R-R-



A-Q-E-F-I-E-W-L-L-A-G-G-P-E-S-G-A-P-



P-P-S-OH





29
H-S-Q-G-T-F-T-S-D-Y-S-K-Q-L-E-S-R-R-



A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-A-P-



P-P-S-OH





30
H-S-Q-G-T-F-T-S-D-V-S-K-Q-L-E-S-R-R-



A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-A-P-



P-P-S-OH





31
H-S-Q-G-T-F-T-S-D-I-S-K-Q-L-E-S-R-R-



A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-A-P-



P-P-S-OH





32
H-S-Q-G-T-F-T-S-D-Phg-S-K-Q-L-E-S-R-



R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-A-



P-P-P-S-OH





33
H-S-Q-G-T-F-T-S-D-1Nal-S-K-Q-L-E-S-



R-R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-



A-P-P-P-S-OH





34
H-S-Q-G-T-F-T-S-D-L-S-K-Q-L-E-S-R-R-



A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-A-P-



P-P-S-OH





35
H-S-Q-G-T-F-T-S-D-L-S-K-Q-L-E-S-R-R-



A-Q-D-F-I-E-W-L-L-A-T-G-P-E-S-G-A-P-



P-P-S-OH





36
H-S-Q-G-T-F-T-S-D-L-S-K-Q-Nle-E-S-R-



R-A-Q-E-F-I-E-W-L-L-A-T-G-P-E-S-G-A-



P-P-P-S-OH








Claims
  • 1. A peptidic compound having the formula (I): Tza-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-X10-Ser-Lys-Gln-X14-Glu-Ser-Arg-Arg-Ala-Gln-X21-Phe-Ile-Glu-Trp-Leu-Leu-Ala-X29-Gly-Pro-Glu-Ser-Gly-Ala-Pro-Pro-Pro-Ser-R1  (I)wherein,X10 represents an amino acid residue selected from Tyr, Leu, Val, Ile, Phe, Phenylglycine, 1-Naphthylalanine, 2-Fluorophenylalanine, Cyclohexylglycine and tert-Leucine;X14 represents an amino acid residue selected from Leu and Nle;X21 represents an amino acid residue selected from Asp and Glu;X29 represents an amino acid residue selected from Gly and Thr; andR1 represents OH or NH2;
  • 2. The peptidic compound of claim 1, wherein R1 represents OH.
  • 3. The peptidic compound of claim 1, wherein, X10 represents Leu;X14 represents an amino acid residue selected from Leu and Nle;X21 represents an amino acid residue selected from Asp and Glu;X29 represents an amino acid residue selected from Gly and Thr; andR1 represents OH;
  • 4. The peptidic compound of claim 1, wherein, X10 represents Tyr;X14 represents an amino acid residue selected from Leu and Nle;X21 represents Glu;X29 represents an amino acid residue selected from Gly and Thr; andR1 represents OH;
  • 5. The peptidic compound of claim 1, wherein, X10 represents 1-Naphthylalanine;X14 represents an amino acid residue selected from Leu and Nle;X21 represents an amino acid residue selected from Asp and Glu;X29 represents Thr; andR1 represents OH;
  • 6. The peptidic compound of claim 1, wherein, X10 represents Cyclohexylglycine;X14 represents an amino acid residue selected from Leu and Nle;X21 represents an amino acid residue selected from Asp and Glu;X29 represents Thr; andR1 represents OH;
  • 7. The peptidic compound of claim 1, wherein, X10 represents an amino acid residue selected from Tyr, Leu, Val, Ile, Phenylglycine, 1-Naphthylalanine, 2-Fluorophenylalanine and Cyclohexylglycine;X14 represents Leu;X21 represents an amino acid residue selected from Asp and Glu;X29 represents an amino acid residue selected from Gly and Thr; andR1 represents OH;
  • 8. The peptidic compound of claim 1, wherein, X10 represents an amino acid residue selected from Tyr, Leu, Ile, Phe, 1-Naphthylalanine, Cyclohexylglycine and tert-Leucine;X14 represents Nle;X21 represents an amino acid residue selected from Asp and Glu;X29 represents Thr; andR1 represents OH;
  • 9. The peptidic compound of claim 1, wherein, X10 represents an amino acid residue selected from Leu, Phe, 1-Naphthylalanine, 2-Fluorophenylalanine and Cyclohexylglycine;X14 represents an amino acid residue selected from Leu and Nle;X21 represents Asp;X29 represents Thr; andR1 represents OH;
  • 10. The peptidic compound of claim 1, wherein, X10 represents an amino acid residue selected from Tyr, Leu, Val, Ile, Phenylglycine, 1-Naphthylalanine, Cyclohexylglycine and tert-Leucine;X14 represents an amino acid residue selected from Leu and Nle;X21 represents Glu;X29 represents an amino acid residue selected from Gly and Thr; andR1 represents OH;
  • 11. The peptidic compound of claim 1, wherein, X10 represents an amino acid residue selected from Tyr, Leu, Val, Ile, Phe, Phenylglycine, 1-Naphthylalanine, 2-Fluorophenylalanine, Cyclohexylglycine and tert-Leucine;X14 represents an amino acid residue selected from Leu and Nle;X21 represents an amino acid residue selected from Asp and Glu;X29 represents Thr; andR1 represents OH;
  • 12. The peptidic compound of claim 1, wherein, X10 represents an amino acid residue selected from Tyr, Leu and Val;X14 represents Leu;X21 represents Glu;X29 represents Gly; andR1 represents OH;
  • 13. The peptidic compound of claim 1, wherein the peptidic compound is selected from the compounds of SEQ ID NO: 3-25 or a salt or solvate thereof.
  • 14. The peptidic compound of claim 1, wherein the peptidic compound is selected from the compounds of SEQ ID NO:3, 5, 6, 9, 15, 20, 23, 24 and 25 or a salt or solvate thereof.
  • 15. A pharmaceutical composition comprising the peptidic compound of claim 1 and at least one pharmaceutically acceptable carrier.
  • 16. A method for treating hypoglycemia or type 2 diabetes mellitus in a patient in need thereof, the method comprising administering to the patient a therapeutically effective amount of at least one peptidic compound of claim 1.
  • 17. A pharmaceutical composition comprising at least one peptidic compound of claim 1 or a physiologically acceptable salt or solvent thereof.
  • 18. A method for treating hypoglycemia in a patient in need thereof, the method comprising administering to the patient a therapeutically effective amount of at least one peptidic compound of claim 1.
  • 19. The method of claim 18, wherein the at least one peptidic compound and the at least one other compound are administered simultaneously, separately, or sequentially.
  • 20. The method of claim 18, wherein the at least one peptidic compound is administered parenterally.
  • 21. A method for treating hypoglycemia in a patient in need thereof, the method comprising administering to the patient a therapeutically effective amount of at least one peptidic compound of claim 1 and a therapeutically effective amount of at least one other compound useful for treating hypoglycemia.
Priority Claims (1)
Number Date Country Kind
14305935 Jun 2014 EP regional
US Referenced Citations (634)
Number Name Date Kind
5424286 Eng Jun 1995 A
5641757 Bornstein et al. Jun 1997 A
6284727 Kim et al. Sep 2001 B1
6329336 Bridon et al. Dec 2001 B1
6344180 Holst et al. Feb 2002 B1
6410511 L'Italien et al. Jun 2002 B2
6429197 Coolidge et al. Aug 2002 B1
6451974 Hansen Sep 2002 B1
6458924 Knudsen et al. Oct 2002 B2
6482799 Tuse et al. Nov 2002 B1
6506724 Hiles et al. Jan 2003 B1
6514500 Bridon et al. Feb 2003 B1
6528486 Larsen et al. Mar 2003 B1
6579851 Goeke et al. Jun 2003 B2
6593295 Bridon et al. Jul 2003 B2
6703359 Young et al. Mar 2004 B1
6706689 Coolidge et al. Mar 2004 B2
6723530 Drucker Apr 2004 B1
6821949 Bridon et al. Nov 2004 B2
6828303 Kim et al. Dec 2004 B2
6849714 Bridon et al. Feb 2005 B1
6858576 Young et al. Feb 2005 B1
6861236 Moll et al. Mar 2005 B2
6872700 Young et al. Mar 2005 B1
6884579 Holst et al. Apr 2005 B2
6887470 Bridon et al. May 2005 B1
6887849 Bridon et al. May 2005 B2
6894024 Coolidge et al. May 2005 B2
6902744 Kolterman et al. Jun 2005 B1
6924264 Prickett et al. Aug 2005 B1
6956026 Beeley et al. Oct 2005 B2
6969702 Bertilsson et al. Nov 2005 B2
6972319 Pan et al. Dec 2005 B1
6982248 Coolidge et al. Jan 2006 B2
6989366 Beeley et al. Jan 2006 B2
6998387 Goke et al. Feb 2006 B1
7056734 Egan et al. Jun 2006 B1
7056887 Coolidge et al. Jun 2006 B2
7105489 Hathaway et al. Sep 2006 B2
7105490 Beeley et al. Sep 2006 B2
7115569 Beeley et al. Oct 2006 B2
7138375 Beeley et al. Nov 2006 B2
7138546 Tang Nov 2006 B2
7141240 Perfetti et al. Nov 2006 B2
7141547 Rosen et al. Nov 2006 B2
7144863 Defelippis et al. Dec 2006 B2
7153825 Young et al. Dec 2006 B2
7157555 Beeley et al. Jan 2007 B1
7179788 Defelippis et al. Feb 2007 B2
7189690 Rosen et al. Mar 2007 B2
7220721 Beeley et al. May 2007 B1
7223725 Beeley et al. May 2007 B1
7256253 Bridon et al. Aug 2007 B2
7259136 Hathaway et al. Aug 2007 B2
7259233 Dodd et al. Aug 2007 B2
7259234 Bachovchin et al. Aug 2007 B2
7265087 Göke et al. Sep 2007 B1
7271149 Glaesner et al. Sep 2007 B2
7297761 Beeley et al. Nov 2007 B2
7312196 L'Italien et al. Dec 2007 B2
7329646 Sun et al. Feb 2008 B2
7399489 Kolterman et al. Jul 2008 B2
7399744 Mack et al. Jul 2008 B2
7407932 Young et al. Aug 2008 B2
7407955 Himmelsbach et al. Aug 2008 B2
7414107 Larsen Aug 2008 B2
7419952 Beeley et al. Sep 2008 B2
7442680 Young et al. Oct 2008 B2
7442682 Kitaura et al. Oct 2008 B2
7452858 Hiles et al. Nov 2008 B2
7456254 Wright et al. Nov 2008 B2
7476652 Brunner-Schwarz et al. Jan 2009 B2
7507714 Pan et al. Mar 2009 B2
7521423 Young et al. Apr 2009 B2
7544657 Ebbehøj et al. Jun 2009 B2
7563871 Wright et al. Jul 2009 B2
7576050 Greig et al. Aug 2009 B2
7585837 Shechter et al. Sep 2009 B2
7592010 Rosen et al. Sep 2009 B2
7595293 Engelund et al. Sep 2009 B2
7595294 Nestor Sep 2009 B2
7608692 Prickett et al. Oct 2009 B2
7612176 Wright et al. Nov 2009 B2
7632806 Juul-Mortensen et al. Dec 2009 B2
7638299 Cho et al. Dec 2009 B2
7682356 Alessi et al. Mar 2010 B2
7683030 Prickett et al. Mar 2010 B2
7691963 Prickett et al. Apr 2010 B2
7696161 Beeley et al. Apr 2010 B2
7700549 Beeley et al. Apr 2010 B2
7704953 Herman et al. Apr 2010 B2
7713930 Brunner-Schwarz et al. May 2010 B2
7723471 Levy et al. May 2010 B2
7741269 Young et al. Jun 2010 B2
7749955 Hansen et al. Jul 2010 B2
7772189 Herman et al. Aug 2010 B2
7790681 Hathaway et al. Sep 2010 B2
7799344 Oberg Sep 2010 B2
7799759 Rosen et al. Sep 2010 B2
7803404 Hokenson et al. Sep 2010 B2
7829664 Tatake et al. Nov 2010 B2
7847079 Rosen et al. Dec 2010 B2
7858740 Beeley et al. Dec 2010 B2
7867972 Ballance et al. Jan 2011 B2
7879028 Alessi et al. Feb 2011 B2
7888314 Hathaway et al. Feb 2011 B2
7897560 Dorwald et al. Mar 2011 B2
7906146 Kolterman et al. Mar 2011 B2
7928065 Young et al. Apr 2011 B2
7928186 Chang Apr 2011 B2
7935786 Larsen May 2011 B2
7939494 Khan et al. May 2011 B2
7960341 Hathaway et al. Jun 2011 B2
7977306 Rosen et al. Jul 2011 B2
7981861 Coolidge et al. Jul 2011 B2
7989585 Dodd et al. Aug 2011 B2
7994121 Bachovchin et al. Aug 2011 B2
7994122 Riber et al. Aug 2011 B2
8008255 Ong et al. Aug 2011 B2
8012464 Rosen et al. Sep 2011 B2
8026210 Young et al. Sep 2011 B2
8030273 Au et al. Oct 2011 B2
8039432 Bridon et al. Oct 2011 B2
8057822 Prickett et al. Nov 2011 B2
8071539 Rosen et al. Dec 2011 B2
8076288 Levy et al. Dec 2011 B2
8080516 Bridon et al. Dec 2011 B2
8084414 Bridon et al. Dec 2011 B2
8093206 Bridon et al. Jan 2012 B2
8097239 Johnsson et al. Jan 2012 B2
8097586 Lv et al. Jan 2012 B2
8114632 Melarkode et al. Feb 2012 B2
8114833 Pedersen et al. Feb 2012 B2
8114958 Soares et al. Feb 2012 B2
8114959 Juul-Mortensen Feb 2012 B2
8119648 Himmelsbach et al. Feb 2012 B2
8143217 Balkan et al. Mar 2012 B2
8158579 Ballance et al. Apr 2012 B2
8158583 Knudsen et al. Apr 2012 B2
8178495 Chilkoti May 2012 B2
8178541 Himmelsbach et al. May 2012 B2
8197450 Glejbol et al. Jun 2012 B2
8211439 Rosen et al. Jul 2012 B2
8232281 Dugi et al. Jul 2012 B2
8236760 Pimentel et al. Aug 2012 B2
8252739 Rosen et al. Aug 2012 B2
8263545 Levy et al. Sep 2012 B2
8263550 Beeley et al. Sep 2012 B2
8263554 Tatarkiewicz et al. Sep 2012 B2
8268781 Gotthardt et al. Sep 2012 B2
8278272 Greig et al. Oct 2012 B2
8278420 Wang et al. Oct 2012 B2
8288338 Young et al. Oct 2012 B2
8293726 Habib Oct 2012 B2
8293869 Bossard et al. Oct 2012 B2
8293871 Wright et al. Oct 2012 B2
8299024 Rabinovitch et al. Oct 2012 B2
8299025 Alessi et al. Oct 2012 B2
8329419 Nicolaou et al. Dec 2012 B2
8329648 Fineman et al. Dec 2012 B2
8338368 Dimarchi et al. Dec 2012 B2
8343910 Shechter et al. Jan 2013 B2
8372804 Richardson et al. Feb 2013 B2
8377869 Richardson et al. Feb 2013 B2
8389473 Hathaway et al. Mar 2013 B2
8404637 Levy et al. Mar 2013 B2
8410047 Bock et al. Apr 2013 B2
8420604 Hokenson et al. Apr 2013 B2
8424518 Smutney et al. Apr 2013 B2
8445647 Prickett et al. May 2013 B2
8450270 Dimarchi et al. May 2013 B2
8454971 Day et al. Jun 2013 B2
8481490 Tatarkiewicz et al. Jul 2013 B2
8485180 Smutney et al. Jul 2013 B2
8497240 Levy et al. Jul 2013 B2
8499757 Smutney et al. Aug 2013 B2
8546327 Dimarchi et al. Oct 2013 B2
8551946 Dimarchi et al. Oct 2013 B2
8551947 Coolidge et al. Oct 2013 B2
8557769 Coskun et al. Oct 2013 B2
8557771 Fan et al. Oct 2013 B2
8569481 Köster et al. Oct 2013 B2
8575097 Xu et al. Nov 2013 B2
8580919 Bossard et al. Nov 2013 B2
8598120 Soares et al. Dec 2013 B2
8603761 Nicolaou et al. Dec 2013 B2
8603969 Levy et al. Dec 2013 B2
8614181 Juul-Mortensen et al. Dec 2013 B2
8617613 Wright et al. Dec 2013 B2
8636001 Smutney et al. Jan 2014 B2
8641683 Glejbol et al. Feb 2014 B2
8642544 Alfaro-Lopez et al. Feb 2014 B2
8664232 Himmelsbach et al. Mar 2014 B2
8669228 Dimarchi et al. Mar 2014 B2
8673927 Dugi et al. Mar 2014 B2
8697647 Levy et al. Apr 2014 B2
8697838 Dimarchi Apr 2014 B2
8710002 Rothkopf Apr 2014 B2
8710181 Christiansen et al. Apr 2014 B2
8716221 Lv et al. May 2014 B2
8729018 Chilkoti May 2014 B2
8729019 Oberg et al. May 2014 B2
8735350 Shechter et al. May 2014 B2
8748376 Ludvigsen et al. Jun 2014 B2
8759290 James Jun 2014 B2
8759295 Ghosh et al. Jun 2014 B2
8772232 Lau et al. Jul 2014 B2
8778872 Dimarchi et al. Jul 2014 B2
8785396 Leone-Bay et al. Jul 2014 B2
8801700 Alessi et al. Aug 2014 B2
8809499 Fan et al. Aug 2014 B2
8816047 Levetan et al. Aug 2014 B2
8841255 Chilkoti Sep 2014 B2
8853157 Knudsen et al. Oct 2014 B2
8853160 Greig et al. Oct 2014 B2
8877252 Wright et al. Nov 2014 B2
8877709 Shechter et al. Nov 2014 B2
8883449 Kjeldsen et al. Nov 2014 B2
8889619 Bai et al. Nov 2014 B2
8900593 Day et al. Dec 2014 B2
8969288 Dimarchi et al. Mar 2015 B2
8969294 Bianchi et al. Mar 2015 B2
8980830 Dimarchi et al. Mar 2015 B2
8981047 Dimarchi et al. Mar 2015 B2
9018164 Dimarchi et al. Apr 2015 B2
9181305 Haack et al. Nov 2015 B2
20010011071 Knudsen et al. Aug 2001 A1
20010027180 Isaacs Oct 2001 A1
20010043934 L'Italien et al. Nov 2001 A1
20020061838 Holmquist et al. May 2002 A1
20020137666 Beeley et al. Sep 2002 A1
20020146405 Coolidge et al. Oct 2002 A1
20030036504 Kolterman et al. Feb 2003 A1
20030050237 Kim et al. Mar 2003 A1
20030069182 Rinella et al. Apr 2003 A1
20030087820 Young et al. May 2003 A1
20030087821 Beeley et al. May 2003 A1
20030092606 L'Italien et al. May 2003 A1
20030119021 Koster et al. Jun 2003 A1
20030119734 Flink et al. Jun 2003 A1
20030180287 Gombotz et al. Sep 2003 A1
20030216287 Tang Nov 2003 A1
20030220255 Knudsen et al. Nov 2003 A1
20040023871 Hiles et al. Feb 2004 A1
20040029784 Hathaway Feb 2004 A1
20040037826 Michelsen et al. Feb 2004 A1
20040038865 Gelber et al. Feb 2004 A1
20040048783 Brunner-Schwarz et al. Mar 2004 A1
20040097510 Himmelsbach et al. May 2004 A1
20040209255 Koster et al. Oct 2004 A1
20040209803 Baron et al. Oct 2004 A1
20040242853 Greig et al. Dec 2004 A1
20040266670 Hiles et al. Dec 2004 A9
20040266678 Beeley et al. Dec 2004 A1
20040266683 Hathaway et al. Dec 2004 A1
20040266692 Young et al. Dec 2004 A1
20050009742 Bertilsson et al. Jan 2005 A1
20050009847 Bertilsson et al. Jan 2005 A1
20050009988 Harris et al. Jan 2005 A1
20050043238 Young et al. Feb 2005 A1
20050059601 Beeley et al. Mar 2005 A1
20050096276 Coolidge et al. May 2005 A1
20050101537 Beeley et al. May 2005 A1
20050106214 Chen May 2005 A1
20050143303 Quay et al. Jun 2005 A1
20050171019 Young et al. Aug 2005 A1
20050186174 Bossard Aug 2005 A1
20050197287 Mack et al. Sep 2005 A1
20050209142 Bertilsson et al. Sep 2005 A1
20050215469 Beeley et al. Sep 2005 A1
20050215475 Ong et al. Sep 2005 A1
20050267034 Prickett et al. Dec 2005 A1
20050271702 Wright et al. Dec 2005 A1
20050281879 Chen et al. Dec 2005 A1
20060003918 Kim et al. Jan 2006 A1
20060057137 Steiness Mar 2006 A1
20060069029 Kolterman et al. Mar 2006 A1
20060073182 Wong et al. Apr 2006 A1
20060074012 Hiles et al. Apr 2006 A1
20060079448 Bertilsson et al. Apr 2006 A1
20060084605 Engelund et al. Apr 2006 A1
20060094652 Levy et al. May 2006 A1
20060094653 Levy et al. May 2006 A1
20060110423 Wright et al. May 2006 A1
20060135586 Kozlowski et al. Jun 2006 A1
20060135747 Levy et al. Jun 2006 A1
20060148713 Beeley et al. Jul 2006 A1
20060165733 Betz et al. Jul 2006 A1
20060171920 Shechter et al. Aug 2006 A1
20060172001 Ong et al. Aug 2006 A1
20060178304 Juul-Mortensen et al. Aug 2006 A1
20060183677 Young et al. Aug 2006 A1
20060183682 Juul-Mortensen Aug 2006 A1
20060210614 Quay et al. Sep 2006 A1
20060247167 Schlein et al. Nov 2006 A1
20060275252 Harris et al. Dec 2006 A1
20060287221 Knudsen et al. Dec 2006 A1
20060293232 Levy et al. Dec 2006 A1
20060293499 Bentley et al. Dec 2006 A1
20070010424 Pedersen et al. Jan 2007 A1
20070010656 Beeley et al. Jan 2007 A1
20070014818 Betz et al. Jan 2007 A1
20070021336 Anderson et al. Jan 2007 A1
20070037750 Young et al. Feb 2007 A1
20070049531 Knudsen et al. Mar 2007 A1
20070059373 Oberg Mar 2007 A1
20070059374 Hokenson et al. Mar 2007 A1
20070065469 Betz et al. Mar 2007 A1
20070066528 Beeley et al. Mar 2007 A1
20070092482 Bossard et al. Apr 2007 A1
20070129284 Kjeldsen et al. Jun 2007 A1
20070166352 Wright et al. Jul 2007 A1
20070196416 Li et al. Aug 2007 A1
20070281940 Dugi et al. Dec 2007 A1
20080045461 Ewing Feb 2008 A1
20080071063 Allan et al. Mar 2008 A1
20080091176 Alessi et al. Apr 2008 A1
20080119393 Beeley et al. May 2008 A1
20080119569 Wright et al. May 2008 A1
20080125348 Wright et al. May 2008 A1
20080125349 Wright et al. May 2008 A1
20080125351 Wright et al. May 2008 A1
20080125353 Hiles et al. May 2008 A1
20080125361 Ludvigsen et al. May 2008 A1
20080171848 Christiansen et al. Jul 2008 A1
20080176802 Prickett et al. Jul 2008 A1
20080176804 Mack et al. Jul 2008 A1
20080200390 Prickett et al. Aug 2008 A1
20080213288 Michelsen et al. Sep 2008 A1
20080214467 Prickett et al. Sep 2008 A1
20080233053 Gross et al. Sep 2008 A1
20080249007 Lau et al. Oct 2008 A1
20080249018 Kolterman et al. Oct 2008 A1
20080249089 Himmelsbach et al. Oct 2008 A1
20080255159 Himmelsbach et al. Oct 2008 A1
20080260838 Hokenson et al. Oct 2008 A1
20080260847 Wright et al. Oct 2008 A1
20080274952 Soares et al. Nov 2008 A1
20080280814 Ludvigsen et al. Nov 2008 A1
20080300171 Balkan et al. Dec 2008 A1
20080312157 Levy et al. Dec 2008 A1
20080318865 Juul-Mortensen Dec 2008 A1
20090011976 Ludvigsen et al. Jan 2009 A1
20090018053 L'Italien et al. Jan 2009 A1
20090029913 Beeley et al. Jan 2009 A1
20090035253 Wright et al. Feb 2009 A1
20090036364 Levy et al. Feb 2009 A1
20090043264 Glejbol et al. Feb 2009 A1
20090054315 Bock et al. Feb 2009 A1
20090069226 Ong et al. Mar 2009 A1
20090082255 Brunner-Schwarz et al. Mar 2009 A1
20090088369 Steiness Apr 2009 A1
20090098130 Bradshaw et al. Apr 2009 A1
20090110647 Richardson et al. Apr 2009 A1
20090111749 Richardson et al. Apr 2009 A1
20090137456 Dimarchi et al. May 2009 A1
20090137466 Anderson et al. May 2009 A1
20090163423 Young et al. Jun 2009 A1
20090170750 Kjeldsen et al. Jul 2009 A1
20090176704 Beeley et al. Jul 2009 A1
20090180953 Gotthardt et al. Jul 2009 A1
20090186817 Ghosh et al. Jul 2009 A1
20090186819 Carrier et al. Jul 2009 A1
20090203597 Rabinovitch et al. Aug 2009 A1
20090203603 Baron et al. Aug 2009 A1
20090215688 Knudsen et al. Aug 2009 A1
20090215694 Kolterman et al. Aug 2009 A1
20090221485 James Sep 2009 A1
20090226431 Habib Sep 2009 A1
20090232775 Bertilsson et al. Sep 2009 A1
20090232807 Glaesner et al. Sep 2009 A1
20090232891 Gelber et al. Sep 2009 A1
20090239796 Fineman et al. Sep 2009 A1
20090247463 Wright et al. Oct 2009 A1
20090253625 Greig et al. Oct 2009 A1
20090258818 Surolia et al. Oct 2009 A1
20090264352 Anderson et al. Oct 2009 A1
20090280169 Leonard Nov 2009 A1
20090280170 Lee et al. Nov 2009 A1
20090286716 Knudsen et al. Nov 2009 A1
20090286723 Levy et al. Nov 2009 A1
20090291886 Ong et al. Nov 2009 A1
20090298757 Bloom et al. Dec 2009 A1
20090308290 Smutney et al. Dec 2009 A1
20090308391 Smutney et al. Dec 2009 A1
20090308392 Smutney et al. Dec 2009 A1
20090325860 Constantino et al. Dec 2009 A1
20100009904 Lv et al. Jan 2010 A1
20100016806 Glejbol et al. Jan 2010 A1
20100022455 Chilkoti Jan 2010 A1
20100029554 Ghosh et al. Feb 2010 A1
20100041867 Shechter et al. Feb 2010 A1
20100056451 Juul-Mortensen et al. Mar 2010 A1
20100087365 Cherif-Cheikh et al. Apr 2010 A1
20100099619 Levy et al. Apr 2010 A1
20100137558 Lee et al. Jun 2010 A1
20100152097 Wright et al. Jun 2010 A1
20100152111 Wright et al. Jun 2010 A1
20100168011 Jennings, Jr. et al. Jul 2010 A1
20100173844 Ludvigsen et al. Jul 2010 A1
20100185184 Alessi et al. Jul 2010 A1
20100190699 Dimarchi et al. Jul 2010 A1
20100190701 Day et al. Jul 2010 A1
20100190715 Schlein et al. Jul 2010 A1
20100196405 Ng et al. Aug 2010 A1
20100197565 Smutney et al. Aug 2010 A1
20100210505 Bossard et al. Aug 2010 A1
20100216692 Brunner-Schwarz et al. Aug 2010 A1
20100240586 Bao et al. Sep 2010 A1
20100247661 Hokenson et al. Sep 2010 A1
20100261637 Spetzler et al. Oct 2010 A1
20100278924 Oberg et al. Nov 2010 A1
20100292172 Ghosh et al. Nov 2010 A1
20100317056 Tiwari et al. Dec 2010 A1
20100317576 Rothkopf Dec 2010 A1
20100331246 Dimarchi et al. Dec 2010 A1
20110003004 Hokenson et al. Jan 2011 A1
20110034373 Coskun et al. Feb 2011 A1
20110034377 Young et al. Feb 2011 A1
20110059181 Hu et al. Mar 2011 A1
20110065633 Dimarchi et al. Mar 2011 A1
20110065731 Dugi et al. Mar 2011 A1
20110071076 Beeley et al. Mar 2011 A1
20110091420 Liu et al. Apr 2011 A1
20110097386 Steiner et al. Apr 2011 A1
20110097751 Nicolaou et al. Apr 2011 A1
20110098217 Dimarchi et al. Apr 2011 A1
20110112277 Kozlowski et al. May 2011 A1
20110118136 Köster et al. May 2011 A1
20110123487 Chilkoti May 2011 A1
20110129522 Mevorat-Kaplan et al. Jun 2011 A1
20110136737 Levy et al. Jun 2011 A1
20110152181 Alsina-Fernandez et al. Jun 2011 A1
20110152182 Alsina-Fernandez et al. Jun 2011 A1
20110152185 Plum et al. Jun 2011 A1
20110166062 Dimarchi et al. Jul 2011 A1
20110166554 Alessi et al. Jul 2011 A1
20110171178 Levetan et al. Jul 2011 A1
20110178014 Hathaway et al. Jul 2011 A1
20110178242 Harris et al. Jul 2011 A1
20110190200 Dimarchi et al. Aug 2011 A1
20110195897 Kajihara et al. Aug 2011 A1
20110230409 Knudsen et al. Sep 2011 A1
20110237503 Alsina-Fernandez et al. Sep 2011 A1
20110237510 Steiner et al. Sep 2011 A1
20110245162 Fineman et al. Oct 2011 A1
20110257092 Dimarchi et al. Oct 2011 A1
20110263496 Fineman et al. Oct 2011 A1
20110281798 Kolterman et al. Nov 2011 A1
20110288003 Dimarchi et al. Nov 2011 A1
20110301080 Bush et al. Dec 2011 A1
20110301081 Becker et al. Dec 2011 A1
20110301084 Lau et al. Dec 2011 A1
20110306549 Tatarkiewicz et al. Dec 2011 A1
20120004168 Young et al. Jan 2012 A1
20120021978 Werner et al. Jan 2012 A1
20120040899 Costello et al. Feb 2012 A1
20120046222 Alfaro-Lopez et al. Feb 2012 A1
20120071510 Leone-Bay et al. Mar 2012 A1
20120071817 Ward et al. Mar 2012 A1
20120094356 Chung et al. Apr 2012 A1
20120100070 Ahn et al. Apr 2012 A1
20120122783 Dimarchi et al. May 2012 A1
20120135922 Prickett et al. May 2012 A1
20120136318 Lanin et al. May 2012 A1
20120148586 Chou et al. Jun 2012 A1
20120149639 Balkan et al. Jun 2012 A1
20120157932 Glejbol et al. Jun 2012 A1
20120172295 Dimarchi et al. Jul 2012 A1
20120177697 Chen Jul 2012 A1
20120196795 Xu et al. Aug 2012 A1
20120196796 Soares et al. Aug 2012 A1
20120196802 Lv et al. Aug 2012 A1
20120196804 Dimarchi et al. Aug 2012 A1
20120208755 Leung et al. Aug 2012 A1
20120208831 Himmelsbach et al. Aug 2012 A1
20120209213 Theucher Aug 2012 A1
20120225810 Pedersen et al. Sep 2012 A1
20120231022 Bass et al. Sep 2012 A1
20120238493 Dimarchi et al. Sep 2012 A1
20120238496 Fan et al. Sep 2012 A1
20120253023 Levy et al. Oct 2012 A1
20120258912 Bentley et al. Oct 2012 A1
20120258985 Kozlowski et al. Oct 2012 A1
20120264683 Coskun et al. Oct 2012 A1
20120264684 Kajihara et al. Oct 2012 A1
20120276098 Hamilton et al. Nov 2012 A1
20120277154 Fan et al. Nov 2012 A1
20120283179 Brunner-Schwarz et al. Nov 2012 A1
20120294855 Van Cauter et al. Nov 2012 A1
20120295836 Knudsen et al. Nov 2012 A1
20120295846 Hagendorf et al. Nov 2012 A1
20120295850 Tatarkiewicz et al. Nov 2012 A1
20120302501 Coolidge et al. Nov 2012 A1
20120309975 Colca et al. Dec 2012 A1
20120316108 Chen et al. Dec 2012 A1
20120316138 Colca et al. Dec 2012 A1
20120322725 Dimarchi et al. Dec 2012 A1
20120322728 Colca et al. Dec 2012 A1
20120329715 Greig et al. Dec 2012 A1
20130005664 Chilkoti Jan 2013 A1
20130023470 Young et al. Jan 2013 A1
20130023471 Rabinovitch et al. Jan 2013 A1
20130046245 Raab et al. Feb 2013 A1
20130053350 Colca et al. Feb 2013 A1
20130065826 Soula et al. Mar 2013 A1
20130079277 Chilkoti Mar 2013 A1
20130079278 Lau et al. Mar 2013 A1
20130084277 Arnold et al. Apr 2013 A1
20130085099 Chilkoti Apr 2013 A1
20130085104 Chilkoti Apr 2013 A1
20130089878 Nicolaou et al. Apr 2013 A1
20130090286 Dimarchi et al. Apr 2013 A1
20130095037 Gotthardt et al. Apr 2013 A1
20130096258 Bossard et al. Apr 2013 A1
20130104887 Smutney et al. May 2013 A1
20130116172 Dimarchi et al. May 2013 A1
20130116175 Shechter et al. May 2013 A1
20130118491 Richardson et al. May 2013 A1
20130123178 Dimarchi et al. May 2013 A1
20130123462 Dimarchi et al. May 2013 A1
20130125886 Richardson et al. May 2013 A1
20130130977 Wright et al. May 2013 A1
20130137631 Levy et al. May 2013 A1
20130137645 Rosendahl May 2013 A1
20130142795 Bai et al. Jun 2013 A1
20130156849 De Fougerolles et al. Jun 2013 A1
20130157934 Dimarchi et al. Jun 2013 A1
20130157953 Petersen et al. Jun 2013 A1
20130164310 Annathur et al. Jun 2013 A1
20130165370 Bock et al. Jun 2013 A1
20130165379 Kolterman et al. Jun 2013 A1
20130172274 Chilkoti Jul 2013 A1
20130178411 Chilkoti Jul 2013 A1
20130178415 Soula et al. Jul 2013 A1
20130184203 Alfaro-Lopez et al. Jul 2013 A1
20130184443 Bentley et al. Jul 2013 A1
20130189365 Hokenson et al. Jul 2013 A1
20130199527 Smutney et al. Aug 2013 A1
20130203660 Day et al. Aug 2013 A1
20130209586 Hathaway et al. Aug 2013 A1
20130217622 Lee et al. Aug 2013 A1
20130236974 De Fougerolles Sep 2013 A1
20130237592 De Fougerolles et al. Sep 2013 A1
20130237593 De Fougerolles et al. Sep 2013 A1
20130237594 De Fougerolles et al. Sep 2013 A1
20130244278 De Fougerolles et al. Sep 2013 A1
20130244279 De Fougerolles et al. Sep 2013 A1
20130245104 De Fougerolles et al. Sep 2013 A1
20130245105 De Fougerolles et al. Sep 2013 A1
20130245106 De Fougerolles et al. Sep 2013 A1
20130245107 De Fougerolles et al. Sep 2013 A1
20130252281 De Fougerolles et al. Sep 2013 A1
20130253043 De Fougerolles et al. Sep 2013 A1
20130259923 Bancel et al. Oct 2013 A1
20130259924 Bancel et al. Oct 2013 A1
20130266640 De Fougerolles et al. Oct 2013 A1
20130280206 Kozlowski et al. Oct 2013 A1
20130281368 Bilsky et al. Oct 2013 A1
20130281374 Levy et al. Oct 2013 A1
20130284912 Vogel et al. Oct 2013 A1
20130288958 Lau et al. Oct 2013 A1
20130289241 Bai et al. Oct 2013 A1
20130291866 Smutney et al. Nov 2013 A1
20130291867 Smutney et al. Nov 2013 A1
20130296236 Silvestre et al. Nov 2013 A1
20130303442 Levy et al. Nov 2013 A1
20130310310 Liu et al. Nov 2013 A1
20130310538 Chilkoti Nov 2013 A1
20130331322 Young et al. Dec 2013 A1
20130336893 Haack et al. Dec 2013 A1
20130338065 Smutney et al. Dec 2013 A1
20130338071 Knudsen et al. Dec 2013 A1
20130345134 Sauerberg et al. Dec 2013 A1
20140007873 Smutney et al. Jan 2014 A1
20140011732 Spetzler et al. Jan 2014 A1
20140014106 Smutney et al. Jan 2014 A1
20140017208 Osei Jan 2014 A1
20140031281 Wright et al. Jan 2014 A1
20140038891 Prickett et al. Feb 2014 A1
20140056924 Van Cauter Feb 2014 A1
20140066368 Mack et al. Mar 2014 A1
20140083421 Smutney et al. Mar 2014 A1
20140088003 Wright et al. Mar 2014 A1
20140100156 Haack et al. Apr 2014 A1
20140107019 Erickson et al. Apr 2014 A1
20140107021 Dimarchi et al. Apr 2014 A1
20140120120 Woo et al. May 2014 A1
20140121352 Shechter et al. May 2014 A1
20140128318 Jung et al. May 2014 A1
20140128604 Himmelsbach et al. May 2014 A1
20140135348 Dugi et al. May 2014 A1
20140141467 Tiwari et al. May 2014 A1
20140142037 Yue May 2014 A1
20140162943 Alfaro-Lopez et al. Jun 2014 A1
20140187483 Steiness Jul 2014 A1
20140200183 Hathaway et al. Jul 2014 A1
20140206608 Haack et al. Jul 2014 A1
20140206609 Haack et al. Jul 2014 A1
20140206613 Rabinovitch et al. Jul 2014 A1
20140206615 Knudsen et al. Jul 2014 A1
20140212419 Dimarchi et al. Jul 2014 A1
20140212440 Jung et al. Jul 2014 A1
20140213513 Haack et al. Jul 2014 A1
20140213516 Chilkoti Jul 2014 A1
20140220029 Michelsen et al. Aug 2014 A1
20140220134 Zierhut et al. Aug 2014 A1
20140221280 Bloom Aug 2014 A1
20140221281 Haack et al. Aug 2014 A1
20140221282 Sun et al. Aug 2014 A1
20140227264 Rabinovitch et al. Aug 2014 A1
20140235535 Erickson et al. Aug 2014 A1
20140243263 Rothkopf Aug 2014 A1
20140249299 Levy et al. Sep 2014 A1
20140308358 Oberg et al. Oct 2014 A1
20140309168 Rosendahl Oct 2014 A1
20140315953 Leone-Bay et al. Oct 2014 A1
20150011467 Bloom et al. Jan 2015 A1
20150126440 Day et al. May 2015 A1
20150164995 Kadereit et al. Jun 2015 A1
20150164996 Kadereit et al. Jun 2015 A1
20150164997 Haack et al. Jun 2015 A1
20150166625 Haack et al. Jun 2015 A1
20150166627 Kadereit et al. Jun 2015 A1
20150216941 Bley et al. Aug 2015 A1
20150232527 Gong et al. Aug 2015 A1
20150315260 Bossart et al. Nov 2015 A1
20150322128 Bossart et al. Nov 2015 A1
20150322129 Bossart et al. Nov 2015 A1
20150368311 Haack et al. Dec 2015 A1
20160168225 Haack et al. Jun 2016 A1
20160220643 Haack et al. Aug 2016 A1
20160235855 Xiong et al. Aug 2016 A1
20170008944 Bossart et al. Jan 2017 A1
Foreign Referenced Citations (330)
Number Date Country
101538323 Sep 2009 CN
102649947 Sep 2009 CN
101559041 Oct 2009 CN
101663317 Mar 2010 CN
101870728 Oct 2010 CN
101601646 Mar 2011 CN
102100906 Jun 2011 CN
102363633 Feb 2012 CN
102421796 Apr 2012 CN
101444618 Jun 2012 CN
102532301 Jul 2012 CN
102816244 Dec 2012 CN
102827270 Dec 2012 CN
101670096 Jan 2013 CN
103304660 Sep 2013 CN
103421094 Dec 2013 CN
103665148 Mar 2014 CN
103833841 Jun 2014 CN
103908657 Jul 2014 CN
101798588 Oct 2014 CN
102766204 Oct 2014 CN
104926934 Sep 2015 CN
1 140 145 Jul 2005 EP
0 619 322 Dec 2005 EP
1 609 478 Dec 2005 EP
1 143 989 Dec 2006 EP
1 658 856 Mar 2010 EP
1 684 793 Sep 2011 EP
1 633 391 Oct 2011 EP
2 387 989 Nov 2011 EP
1 633 390 Jan 2012 EP
2 494 983 Sep 2012 EP
2 626 368 Aug 2013 EP
2 664 374 Nov 2013 EP
1 817 048 Feb 2014 EP
2 769 990 Aug 2014 EP
2014-227368 Dec 2014 JP
10-2012-0137271 Dec 2012 KR
10-2012-0139579 Dec 2012 KR
10-2014-0018462 Feb 2014 KR
10-2014-0058104 May 2014 KR
10-2014-0058387 May 2014 KR
10-2014-0130659 Nov 2014 KR
10-2014-0133493 Nov 2014 KR
2009121626 Feb 2011 RU
1996019229 Jun 1996 WO
1998005351 Feb 1998 WO
1998008871 Mar 1998 WO
1998030231 Jul 1998 WO
1999007404 Feb 1999 WO
1999025727 May 1999 WO
1999025728 May 1999 WO
1999034822 Jul 1999 WO
1999043708 Sep 1999 WO
1999047160 Sep 1999 WO
1999064061 Dec 1999 WO
2000015224 Mar 2000 WO
2000037098 Jun 2000 WO
2000041546 Jul 2000 WO
2000041548 Jul 2000 WO
2000055119 Sep 2000 WO
2000066629 Nov 2000 WO
2000071175 Nov 2000 WO
2000073331 Dec 2000 WO
2001051078 Jul 2001 WO
2002016309 Feb 2002 WO
2002034285 May 2002 WO
2002067989 Sep 2002 WO
2003011892 Feb 2003 WO
2003020201 Mar 2003 WO
2003061362 Jul 2003 WO
2003077851 Sep 2003 WO
2003084563 Oct 2003 WO
2003092581 Nov 2003 WO
2003099314 Dec 2003 WO
2003101395 Dec 2003 WO
2003105888 Dec 2003 WO
2003105897 Dec 2003 WO
2004004779 Jan 2004 WO
2004004780 Jan 2004 WO
2004004781 Jan 2004 WO
2004005342 Jan 2004 WO
2004012672 Feb 2004 WO
2004018468 Mar 2004 WO
2004035623 Apr 2004 WO
2004045592 Jun 2004 WO
2004056313 Jul 2004 WO
2004056317 Jul 2004 WO
2004089280 Oct 2004 WO
2004089985 Oct 2004 WO
2004105781 Dec 2004 WO
2004105790 Dec 2004 WO
2005000222 Jan 2005 WO
2005000360 Jan 2005 WO
2005012347 Feb 2005 WO
2005021022 Mar 2005 WO
2005046716 May 2005 WO
2005048989 Jun 2005 WO
2005049061 Jun 2005 WO
2005049069 Jun 2005 WO
2005054291 Jun 2005 WO
2005077072 Aug 2005 WO
2005077094 Aug 2005 WO
2005102293 Nov 2005 WO
2005110425 Nov 2005 WO
2005115437 Dec 2005 WO
2005117584 Dec 2005 WO
2005120492 Dec 2005 WO
2006017688 Feb 2006 WO
2006024275 Mar 2006 WO
2006024631 Mar 2006 WO
2006029634 Mar 2006 WO
2006037811 Apr 2006 WO
2006044531 Apr 2006 WO
2006051103 May 2006 WO
2006051110 May 2006 WO
2006066024 Jun 2006 WO
2006069388 Jun 2006 WO
2006073890 Jul 2006 WO
2006074600 Jul 2006 WO
2006083254 Aug 2006 WO
2006086769 Aug 2006 WO
2006097535 Sep 2006 WO
2006110887 Oct 2006 WO
2006114396 Nov 2006 WO
2006125763 Nov 2006 WO
2006134340 Dec 2006 WO
2006138572 Dec 2006 WO
2007019331 Feb 2007 WO
2007022123 Feb 2007 WO
2007024700 Mar 2007 WO
2007033316 Mar 2007 WO
2007033372 Mar 2007 WO
2007035665 Mar 2007 WO
2007047834 Apr 2007 WO
2007047922 Apr 2007 WO
2007056362 May 2007 WO
2007064691 Jun 2007 WO
2007065156 Jun 2007 WO
2007067964 Jun 2007 WO
2007075534 Jul 2007 WO
2007109354 Sep 2007 WO
2007120899 Oct 2007 WO
2007121411 Oct 2007 WO
2007128761 Nov 2007 WO
2007133778 Nov 2007 WO
2007139941 Dec 2007 WO
2007140284 Dec 2007 WO
2008021133 Feb 2008 WO
2008021560 Feb 2008 WO
2008023050 Feb 2008 WO
2008038147 Apr 2008 WO
2008058461 May 2008 WO
2008071972 Jun 2008 WO
2008073448 Jun 2008 WO
2008081418 Jul 2008 WO
2008086086 Jul 2008 WO
2008098212 Aug 2008 WO
2008101017 Aug 2008 WO
2008148839 Dec 2008 WO
2008152403 Dec 2008 WO
2009020802 Feb 2009 WO
2009024015 Feb 2009 WO
2009029847 Mar 2009 WO
2009030771 Mar 2009 WO
2009035540 Mar 2009 WO
2009055740 Apr 2009 WO
2009055742 Apr 2009 WO
2009058662 May 2009 WO
2009058734 May 2009 WO
2009063072 May 2009 WO
2009067268 May 2009 WO
2009095479 Aug 2009 WO
2009099763 Aug 2009 WO
2005081619 Sep 2009 WO
2009113099 Sep 2009 WO
2009137078 Nov 2009 WO
2009137080 Nov 2009 WO
2009143014 Nov 2009 WO
2009143285 Nov 2009 WO
2009152477 Dec 2009 WO
2009153960 Dec 2009 WO
2009155257 Dec 2009 WO
2009155258 Dec 2009 WO
2009158704 Dec 2009 WO
2010011439 Jan 2010 WO
2010013012 Feb 2010 WO
2010043566 Apr 2010 WO
2010070251 Jun 2010 WO
2010070252 Jun 2010 WO
2010070253 Jun 2010 WO
2010070255 Jun 2010 WO
2010071807 Jun 2010 WO
2010096052 Aug 2010 WO
2010096142 Aug 2010 WO
2010102148 Sep 2010 WO
2010120476 Oct 2010 WO
2010121559 Oct 2010 WO
2010123290 Oct 2010 WO
2010133675 Nov 2010 WO
2010133676 Nov 2010 WO
2010138671 Dec 2010 WO
2010142665 Dec 2010 WO
2010148089 Dec 2010 WO
2011000095 Jan 2011 WO
2011006497 Jan 2011 WO
2011011675 Jan 2011 WO
2011012718 Feb 2011 WO
2011020319 Feb 2011 WO
2011020320 Feb 2011 WO
2011024110 Mar 2011 WO
2011039096 Apr 2011 WO
2011049713 Apr 2011 WO
2011052523 May 2011 WO
2011056713 May 2011 WO
2011058082 May 2011 WO
2011058083 May 2011 WO
2011075393 Jun 2011 WO
2011075514 Jun 2011 WO
2011075623 Jun 2011 WO
2011080103 Jul 2011 WO
2011084453 Jul 2011 WO
2011084456 Jul 2011 WO
2011084459 Jul 2011 WO
2011087671 Jul 2011 WO
2011087672 Jul 2011 WO
2011088837 Jul 2011 WO
2011094337 Aug 2011 WO
2011109784 Sep 2011 WO
2011117415 Sep 2011 WO
2011117416 Sep 2011 WO
2011119657 Sep 2011 WO
2011143208 Nov 2011 WO
2011143209 Nov 2011 WO
2011144751 Nov 2011 WO
2011156407 Nov 2011 WO
2011153965 Dec 2011 WO
2011160630 Dec 2011 WO
2011162830 Dec 2011 WO
2011163012 Dec 2011 WO
2011163272 Dec 2011 WO
2012163473 Dec 2011 WO
2012012352 Jan 2012 WO
2012012460 Jan 2012 WO
2012015975 Feb 2012 WO
2012031518 Mar 2012 WO
2012035139 Mar 2012 WO
2012050923 Apr 2012 WO
2012059762 May 2012 WO
2012064892 May 2012 WO
2012080471 Jun 2012 WO
2012088116 Jun 2012 WO
2012088157 Jun 2012 WO
2012122535 Sep 2012 WO
2012130015 Oct 2012 WO
2012138941 Oct 2012 WO
2012140647 Oct 2012 WO
2012150503 Nov 2012 WO
2012158965 Nov 2012 WO
2012162547 Nov 2012 WO
2012167744 Dec 2012 WO
2012169798 Dec 2012 WO
2012173422 Dec 2012 WO
2012177443 Dec 2012 WO
2012177444 Dec 2012 WO
2012177929 Dec 2012 WO
2013002580 Jan 2013 WO
2013004983 Jan 2013 WO
2013009545 Jan 2013 WO
2013029279 Mar 2013 WO
2013041678 Mar 2013 WO
2013060850 May 2013 WO
2013074910 May 2013 WO
2013174478 May 2013 WO
2013078500 Jun 2013 WO
2013090648 Jun 2013 WO
2013092703 Jun 2013 WO
2013093720 Jun 2013 WO
2013101749 Jul 2013 WO
2013104861 Jul 2013 WO
2013148871 Oct 2013 WO
2013148966 Oct 2013 WO
2013151663 Oct 2013 WO
2013151664 Oct 2013 WO
2013151665 Oct 2013 WO
2013151666 Oct 2013 WO
2013151667 Oct 2013 WO
2013151668 Oct 2013 WO
2013151669 Oct 2013 WO
2013151670 Oct 2013 WO
2013151671 Oct 2013 WO
2013151672 Oct 2013 WO
2013151736 Oct 2013 WO
2013160397 Oct 2013 WO
2013163162 Oct 2013 WO
2013164484 Nov 2013 WO
2013171135 Nov 2013 WO
2013177565 Nov 2013 WO
2013186240 Dec 2013 WO
2013192130 Dec 2013 WO
2014012069 Jan 2014 WO
2014016300 Jan 2014 WO
2014017843 Jan 2014 WO
2014017845 Jan 2014 WO
2014017849 Jan 2014 WO
2014027253 Feb 2014 WO
2014027254 Feb 2014 WO
2014041195 Mar 2014 WO
2014041375 Mar 2014 WO
2014056872 Apr 2014 WO
2014073842 May 2014 WO
2014073845 May 2014 WO
2014081872 May 2014 WO
2014091316 Jun 2014 WO
2014096145 Jun 2014 WO
2014140222 Sep 2014 WO
2014152460 Sep 2014 WO
2014158900 Oct 2014 WO
2014170496 Oct 2014 WO
2015055801 Apr 2015 WO
2015055802 Apr 2015 WO
2015067716 May 2015 WO
2015086728 Jun 2015 WO
2015086729 Jun 2015 WO
2015086730 Jun 2015 WO
2015086731 Jun 2015 WO
2015086732 Jun 2015 WO
2015086733 Jun 2015 WO
2015100876 Jul 2015 WO
2015104314 Jul 2015 WO
Non-Patent Literature Citations (187)
Entry
US 8,729,011, 05/2014, Dimarchi et al. (withdrawn)
Bromer, “Chemical Characteristics of Glucagon,” Handbook of Experimental Pharmacology 66:1-22 (1983).
Donnelly, “The structure and function of the glucagon-like peptide-1 receptor and its ligands,” Br. J. Pharmacol. 166 (1):27-41 (May 2012).
Eng et al., “Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas,” J. Biol. Chem. 267(11):7402-5 (Apr. 1992).
Herling et al., “Pharmacodynamic profile of a novel inhibitor of the hepatic glucose-6-phosphatase system,” Am. J. Physiol. 274(6 Pt 1):G1087-93 (Jun. 1998).
Joshi et al., “The degradation pathways of glucagon in acidic solutions,” Int. J. Pharm. 203(1-2):115-25 (Aug. 2000).
King et al., “A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis,” Int. J. Pept. Protein Res. 36(3):255-66 (Sep. 1990).
Robberecht et al., “Comparative efficacy of seven synthetic glucagon analogs, modified in position 1, 2 and/or 12, on liver and heart adenylate cyclase from rat,” Peptides 7(1):109-12 (1986).
Rovó et al., “Rational design of α-helix-stabilized exendin-4 analogues,” Biochemistry 53(22):3540-52 (May 2014).
Ueda et al., “Identification of glycosylated exendin-4 analogue with prolonged blood glucose-lowering activity through glycosylation scanning substitution,” Bioorg. Med. Chem. Lett 20(15):4631-4 (Jun. 2010).
Unson et al., “The role of histidine-1 in glucagon action,” Arch. Biochem. Biophys. 300(2):747-50 (Feb. 1993).
Extended European Search Report from the European Patent Office for European Application No. 14305935, dated Nov. 3, 2014 (4 pages).
International Search Report from International Application No. PCT/EP2015/063607, dated Sep. 23, 2015.
Written Opinion of the International Searching Authority from International Application No. PCT/EP2015/063607, dated Sep. 23, 2015.
Amylin Pharmaceuticals, Inc. (2007) “Byetta: Exenatide Injection,” Product Information. Accessible on the Internet at URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021773s012lbl.pdf. [Last Accessed Jun. 2, 2014].
Baggio et al. (2007) “Biology of incretins: GLP-1 and GIP,” Gastroenterology. 132:2131-2157.
Bhat et al. (Jun. 1, 2013) “A novel GIP-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 receptors exhibits weight reducing and anti-diabetic properties,” Biochem. Pharmacol. 85:1655-1662.
Bhat et al. (Mar. 17, 2013) “A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice,” Diabetologia. 56:1417-1424.
Biron et al. (2006) “Optimized selective N-methylation of peptides on solid support,” J. Peptide Sci. 12:213-219.
Bis et al. (Jun. 27, 2014) “Antimicrobial preservatives induce aggregation of interferon alpha-2a: the order in which preservatives induce protein aggregation is independent of the protein,” Int. J. Pharm. 472:356-361.
Braga et al. (2005) “Making Crystals from Crystals: a green route to crystal engineering and polymorphism,” Chem. Commun. 2005:3635-3645.
Bunck et al. (Sep. 2011) “Effects of Exenatide on Measures of B-Cell Function After 3 Years in Metformin-Treated Patients with Type 2 Diabetes,” Diabetes Care. 34:2041-2047.
Buse et al. (2009) “Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel group, multinational, open-label trial (LEAD-6),” The Lacenet. 374:39-47.
Chae et al. (2010) “The fatty acid conjugated exendin-4 analogs for type 2 antidiabetic therapeutics,” Journal of Controlled Release. 144:10-16.
Chen et al. (Jan. 2014) “Hyaluronic acid-based drug conjugates: state-of-the-art and perspectives,” J. Biomed. Nanotechnol. 10(1):4-16.
Chhabra et al. (1998) “An Appraisal of New Variants of Dde Amine Protecting Group for Solid Phase Peptide Synthesis,” Tetrahedron Letters. 39:1603-1606.
Creutzfeld et al. (1978) “Gastric inhibitory polypeptide (GIP) and insulin in obesity: increased response to stimulation and defective feedback control of serum levels,” Diabetologia. 14:15-24.
Day et al. (2009) “A New Glucagon and GLP-1 co-agonist Eliminates Obesity in Rodents,” Nature Chemical Biology. 5(10):749-757.
Deacon (2004) “Circulation and degradation of GIP and GLP-1,” Horm. Metab. Res. 36:761-765.
Druce et al. (2009) “Investigation of structure-activity relationships of Oxyntomodulin (Oxm) using Oxm analogs,” Endocrinology. 150(4)1712-1722.
Drucker et al. (2010) “Liraglutide,” New Reviews—Drug Discovery. 9(4):267-268.
Eng et al. (1990) “Purification and structure of exendin-3, a new pancreatic secretagogue isolated from Heloderma horridum venom,” J. Biol. Chem. 265:20259-20262.
Eng et al. (1996) “Prolonged Effect of Exendin-4 on Hyperglycemia of db/db Mice,” Diabetes. 45:152A. Abstract 554.
Ferry, Jr. “Diabetes Health (cont.),” MedicineNet. Accessible on the Internet at URL: http://www.onhelath.com/diabetes_health/page3.htm. [Last Accessed Aug. 22, 2013].
Ficht et al. (2008) “Solid-phase Synthesis of Peptide and Glycopeptide Thioesters through Side-Chain-Anchoring Strategies,” Chem. Eur. J. 14:3620-3629.
Finan et al. (Dec. 8, 2014) “A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents,” Nat. Med. 21(1):27-36.—with supplementary information.
Finan et al. (Oct. 30, 2013) “Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans,” Sci. Trans. Med. 5:209RA151.
Furman (Mar. 15, 2012) “The development of Byetta (exenatide) from the venom of the Gilo monster as an anti-diabetic agent,” Toxicon. 59:464-471.
Gault et al. (2007) “Chemical gastric inhibitory polypeptide receptor antagonism protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat and cafeteria diets,” Diabetologia. 50:1752-1762.
Gault et al. (Aug. 1, 2011) “Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity,” Clin Sci (Lond). 121:107-117.
Gentilella et al. (2009) “Exenatide: A Review from Pharmacology to Clinical Practice,” Diabetes, Obesity, and Metabolism. 11:544-556.
Göke et al. (1993) “Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells,” J. Biol. Chem. 268:19650-19655.
Hadji-Georgopoulos et al. (1983) “Increased gastric inhibitory polypeptide levels in patients with symptomatic postprandial hypoglycemia,” J. Endocrinol. Metabol. 56(4):648-652.
Hargrove et al. (2007) “Biological Activity of AC3174, A Peptide Analog of Exendin-4,” Regulatory Peptides. 141:113-119.
Heppner et al. (2010) “Glucagon regulation of energy metabolism,” Physiol. Behav. 100:545-548.
Hjorth et al. (1994) “Glucagon and Glucagon-like Peptide 1: Selective Receptor Recognition via Distinct Peptide Epitopes,” The Journal of Biological Chemistry. 269(48):30121-30124.
Holst (2007) “The physiology of glucagon-like peptide 1,” Physiol. Rev. 87(4):1409-1439.
Kaiser et al. (1970) “Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides.” Anal. Biochem. 34:595-598.
Kamerzell et al. (2011) “Protein—excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development,” Adv. Drug Deliv. Rev. 63:1118-1159.
Kazakos et al. (2011) “Incretin effect: GLP-1, GIP, DPP4,” Diabetes Res Clin Pract. 93(Suppl 1):S32-S36. et al. (2011) “Incretin effect: GLP-1, GIP, DPP4,” Diabetes Res Clin Pract. 93(Suppl 1):S32-S36.
Knudsen et al. (2000) “Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration” J. Med. Chem. 43(9):1664-1669.
Kong et al. (2010) “Long acting hyaluronate—exendin 4 conjugate for the treatment of type 2 diabetes,” Biomaterials. 31:4121-4128.
Korczyn et al. (2002) “Emerging Therapies in the Pharmacological Treatment of Parkinson's Disease,” Drugs. 62:775-786.
Kosinski et al. (Mar. 16, 2012) “The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin,” Obesity (Silver Spring). 20:1566-1571.
Krstenansky et al. (1986) “Importance of the 10-13 Region of Glucagon for Its Receptor Interaction and Activation of Adenylate Cyclase,” Biochemistry. 25(13):3833-3839.
Lee et al. (May 10, 2013) “Hormonal Response to a Mixed-Meal Challenge After Reversal of Gastric Bypass for Hypoglycemia,” J. Clin. Endocrinol. Metab. 98(7):E1208-E1212.
Li et al. (Jul.. 25, 2012) “Cloning, expressing of Exendin-4 analogue and bioactivity analysis in vivo,” Chinese Journal of Biotechnology. 28(7):877-886.
Liu et al. (2011) “Solid phase peptide synthesis and analysis for exendin-4,” China Biotechnology. 31(2):69-73.—English abstract and drawings.
Lorenz et al. (2013) “Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity” Bioorg. Med. Chem. Lett. 23(14):4011-4018.
Lozano et al. (2013) “Polyarginine nanocapsules: a new platform for intracellular drug delivery,” Journal of Nanoparticle Research. 15:1515. pp. 1-14.
Margolis (2003) “Diagnosis of Huntington Disease,” Clin. Chem. 49:1726-1732.
Martin et al. (1998) “Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis,” Brain Res. Bull. 46:281-309.
McLaughlin et al. (2010) “Reversible Hyperinsulinemic Hypoglycemia after Gastric Bypass: A Consequence of Altered Nutrient Delivery,” J. Clin. Endocrinol. Metabol. 95(4):1851-1855.
Medline Plus “Obesity,” National Insitute of Health. Accessible on the Internet at URL: http://www.nlm.nih.gov/medlineplus/obesity.html. [Last Accessed Aug. 22, 2013].
Meier (Sep. 4, 2012) “GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus,” Nat. Rev. Endocrinol. 8:728-742.
Meier et al. (May 21, 2015) “Incretin-based therapies: where will we be 50 years from now?” Diabetologia. 58:1745-1750.
Miyawaki et al. (2002) “Inhibition of gastric inhibitory polypeptide signaling prevents obesity,” Nat. Med. 8(7):738-742.
Murage et al. (2008) “Search for alpha-helical propensity in the receptor-bound conformation of glucagon-like peptide-1,” Bioorg. Med. Chem. 16:10106-10112.
Nauck et al. (1993) “Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations,” J. Clin. Endocrinol. Metab. 76:912-917.
Norris et al. (2009) “Exenatide Efficacy and Safety: A Systematic Review,” Diabetic Medicine. 26:837-846.
Norwegian Institute of Public Health (Dec. 19, 2013) ATC/DDD Index for Cardiovascular System.
Oh et al. (2010) “Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives,” Journal of Controlled Release. 141:2-12.
Pan et al. (2006) “Design of a long acting peptide functioning as both a glucagon-like peptide-1 receptor agonist and a glucagon receptor antagonist.” Journal of Biological Chemistry. 281(18):12506-12515.
Pedersen et al. (2006) “N- and C-terminal hydrophobic patches are involved in fibrillation of glucagon,” Biochemistry. 45:14503-14512.
Pocai (2009) “Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice,” Diabetes. 58(10):2258-2266.
Rentier et al. (Mar. 26, 2015) “Synthesis of diastereomerically pure Lys(Nϵ-lipoyl) building blocks and their use in Fmoc/tBu solid phase synthesis of lipoyl-containing peptides for diagnosis of primary biliary cirrhosis,” Journal of Peptide Science. 21(5):408-414.
Seddon (2004) “Pseudopolymorph: A polemic,” Crystal Growth and Design. 4(6):1087.
Shiau et al. (1998) “The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen,” Cell. 95(7):927-937.
St. John Providence Health System “Preventing Obesity in Children,” St. John Providence Health System. Accessible on the Internet at URL: http://www.stjohnprovidence.org/HealthInfoLib/swarticle.aspx?type=85&id=P07863. [Last Accessed Aug. 22, 2013].
Tasyurek et al. (Jul. 2014) “Incretins: Their physiology and application in the treatment of diabetes mellitus,” Diabetes Metab. Res. Rev. 30(5):354-371.
United Healthcare “Diabetes,” United Healthcare. Accessible on the Internet at URL: http://www.uhc.com/source4women/health_topics/diabetes/relatedinformation/d0f0417b073bf110VgnVCM1000002f10b10a.htm. [Last Accessed Aug. 22, 2013].
Vippagunta et al. (2001) “Crystalline Solids,” Advanced Drug Delivery Reviews. 48:3-26.
Vojkovsky (1995) “Detection of secondary amines on solid phase,” Peptide Research 8:236-237.
Ward et al. (Nov. 2013) “Peptide lipidation stabilizes structure to enhance biological function,” Mol. Metabol. 2(4):468-479.
World Health Organization (2007) “Prevention of Cardiovascular Disease,” World Health Organization. pp. 1-86.
Yun et al. (Feb. 2012) “Solution Structure of LXXLL-related Cofactor Peptide of Orphan Nuclear Receptor FTZ-F1.” Bulletin of the Korean Chemical Society, 33(2):583-588.
Stoessl et al. (2008) “Potential therapeutic targets for Parkinson's disease,” Expert Opinion on Therapeutic Targets. 12(4):425-436.
Bayram et al. (Sep. 2014) “Effects of glucagon-like peptide-1 in diabetic rat small resistance arteries,” Journal of Cardiovascular Pharmacology. 64(3):277-84.
Brom et al. (Feb. 1, 2014) “Non-invasive quantification of the beta cell mass by SPECT with 111In-labelled exendin,” Diabetologia. 57(5):950-959.
Cai et al. (Dec. 2014) “Rb and p107 are required for alpha cell survival, beta cell cycle control and glucagon-like peptide-1 action,” Diabetologia. 57(12):2555-2565.
Charokopou et al. (Nov. 2014) “Cost-effectiveness of saxagliptin compared to GLP-1 analogues as an add-on to insulin in the treatment of type 2 diabetes mellitus from a UK health care perspective,” Value in Health. 17(7):A347. Abstract No. PDB89.
Chen et al. (Dec. 14, 2013) “Exendin-4 is effective against metabolic disorders induced by intrauterine and postnatal overnutrition in rodents,” Diabetologia. 57(3):614-622.
Choi et al. (Jun. 2014) “A long-acting exendin-4 analog conjugate to the human fcfragment reveals low immunogenic potential,” Diabetes. 63(Suppl 1):A259-A260. Abstract No. 1009-P.
Clemmensen et al. (Dec. 30, 2013) “GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet,” Diabetes. 63(4):1422-1427.
De Marinis et al. (Jun. 2014) “Differential action of GLP-1 and GIP on human pancreatic islet function and viability,” Diabetes. 63(Suppl 1):A52. Abstract No. 196-OR.
De Marinis et al. (Sep. 2014) “Differential action of GLP-1 and GIP on human pancreatic islet function and viability,” Diabetologia. 57(Suppl 1):S171. Abstract No. 401.
Eriksson et al. (Feb. 10, 2014) “Detection of metastatic insulinoma by positron emission tomography with [(68)ga]exendin-4—a case report,” J. Clin. Endocrinol. Metab. 99(5):1519-1524.
Eriksson et al. (May 2014) “Effects of the glucagon-like peptide-1 analog exendin-4 on reendothelialization and intimal hyperplasia formation in an animal model of vascular injury,” Arteriosclerosis, Thrombosis, and Vascular Biology. 34(Suppl 1): Abstract No. 515.
Gong et al. (Apr. 18, 2014) “Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors,” Neuropharmacology. 84:31-45.
Gupta et al. (Sep. 25, 2014) “Mitigation of autophagy ameliorates hepatocellular damage following ischemia reperfusion injury in murine steatotic liver,” Am. J. Physiol. Gastrointest. Liver Physiol. 307(11):G1088-G1099.
Jerlhag et al. (Jun. 2014) “A glucagon like peptide-1 analogue reduces alcohol intake and prevents relapse drinking,” Alcoholism: Clinical and Experimental Research. 38(Suppl 1):85A. Abstract No. 0339.
Jin et al. (Jun. 24, 2014) “Dipeptidyl peptidase IV inhibitor MK-0626 attenuates pancreatic islet injury in tacrolimus-induced diabetic rats,” PloS one. 9(6):e100798. pp. 1-10.
Johnson et al. (Sep. 5, 2014) “A Potent α/β-Peptide Analogue of GLP-1 with Prolonged Action in Vivo,” Journal of the American Chemical Society. 136(37):12848-12851.
Kwon et al. (Sep. 2014) “Pharmacological evaluation of once-weekly potentials by combination of long-acting insulin with long-acting exendin4 in an animal model,” Diabetologia. 57(Suppl 1):S398-S399. Abstract No. 972.
Li et al. (Apr. 2014) “Vascular protective effect of exendin-4 in experimental models of oxidative stress,” Cytotherapy. 16(4 Suppl):S37-S38. Abstract No. 115.
Li et al. (Nov. 5, 2014) “Exendin-4 promotes endothelial barrier enhancement via PKA-and Epac1-dependent Rac1 activation,” American Journal of Physiology. 308(2):C164-C175.
Lim et al. (Nov. 18, 2014) “Evaluation of PEGylated Exendin-4 Released from Poly (Lactic-co-Glycolic Acid) Microspheres for Antidiabetic Therapy,” Journal of Pharmaceutical Sciences. 104(1):72-80.
Lovshin et al. (Oct. 2014) “Blood pressure-lowering effects of incretin-based diabetes therapies,” Canadian Journal of Diabetes. 38(5):364-71.
Lynch et al. (Jun. 24, 2014) “A novel DPP IV-resistant C-terminally extended glucagon analogue exhibits weight-lowering and diabetes-protective effects in high-fat-fed mice mediated through glucagon and GLP-1 receptor activation,” Diabetologia. 57(9):1927-1936.
Maas et al. (Oct. 2014) “Impact of the mTOR inhibitor Everolimus on peptide receptor radionuclide therapy in a transgenic neuroendocrine tumor mouse model,” European Journal of Nuclear Medicine and Molecular Imaging. 41(Suppl 2):5529. Abstract No. P593.
Masjkur et al. (Nov. 4, 2014) “Hes3 is Expressed in the Adult Pancreatic Islet and Regulates Gene Expression, Cell Growth, and Insulin Release,” The Journal of Biological Chemistry. 289(51):35503-35516.
Mondragon et al. (Aug. 13, 2014) “Divergent effects of liraglutide, exendin-4, and sitagliptin on beta-cell mass and indicators of pancreatitis in a mouse model of hyperglycaemia,” PloS one. 9(8):e104873. pp. 1-9.
Nagai et al. (Sep. 2014) “Effects of sitagliptin on body fat and intrahepatic lipid content in Japanese overweight patients with type 2 diabetes,” Diabetologia. 57(Suppl 1):S356. Abstract No. 876.
Patel et al. (Sep. 29, 2014) “Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice,” Canadian Journal of Physiology and Pharmacology. 92(12):975-983.
Pathak et al. (Nov. 6, 2014) “Antagonism of gastric inhibitory polypeptide (GIP) by palmitoylation of GIP analogues with N- and C-terminal modifications improves obesity and metabolic control in high fat fed mice”; Molecular and Cellular Endocrinology. 401:120-129.
Pi et al. (2014) “[Clinical research progresses on glucagon-like peptide-1 analogs in treatment of diabetes mellitus],” [Jianyan Yixue Yu Linchuang]. 11(6):830-832.—with English machine translation.
Qian et al. (Jun. 19, 2014) “Analysis of the interferences in quantitation of a site-specifically PEGylated exendin-4 analog by the Bradford method,” Analytical Biochemistry. 465C:50-52.
Roed et al. (Nov. 22, 2013) “Real-time trafficking and signaling of the glucagon-like peptide-1 receptor,” Mol. Cell Endocrinol. 382(2):938-949.
Russell et al. (Jun. 2014) “The novel GLP-1-GLP-2 dual agonist ZP-GG-72 increases intestinal growth and improves insulin sensitivity in DIO mice,” Diabetes. 63(Suppl 1):A98. Abstract No. 374-OR.
Schattauer GmbH (Jun. 12, 2014) Meeting Abstracts of the Swiss Society of Radiology and the Swiss Society of Nuclear Medicine 2014. Nuklearmedizin. 53(2):A111-A126.
Tashiro et al. (Jan. 10, 2014) “A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis,” Peptides. 54:19-26.
Tweedie et al. (May 2014) “Exendin-4, a candidate treatment for the clinical management of traumatic brain injury,” Brain Injury. 28(5-6):549-550. Abstract No. 0101.
Vioix et al. (Nov. 2014) “Cost-minimisation analysis of dapagliflozin compared to lixisenatide as an add-on to insulin in the treatment of type 2 diabetes mellitus from a UK health care perspective,” Value in Health. 17(7):A348. Abstract No. PDB95.
Wang et al. (Jun. 2014) “Microfluidic multiplexer perifusion device for studying islet immunotoxicity,” Diabetes. 63(Suppl 1):A555. Abstract No. 2181-P.
Wu et al. (May 24, 2014) “(64)Cu labeled sarcophagine exendin-4 for microPET imaging of glucagon like peptide-1 receptor expression,” Theranostics. 4(8):770-777.
Xu et al. (Feb. 11, 2014) “Exendin-4 alleviates high glucose-induced rat mesangial cell dysfunction through the AMPK pathway,” Cell. Physiol. Biochem. 33(2):423-432.
Xu et al. (Sep. 2014) “Insulinoma imaging with glucagon-like peptide-1 receptor targeting probe (18)F-FBEM-Cys (39)-exendin-4,” Journal of Cancer Research and Clinical Oncology. 140(9):1479-1488.
Yang et al. (2014) “Design, synthesis and biological evaluation of novel peptide MC62 analogues as potential antihyperglycemic agents,” European Journal of Medicinal Chemistry. 73:105-111.
Yang et al. (Jun. 2014) “Exendin-4, an analogue of glucagon-like peptide-1, attenuates hyperalgesia through serotonergic pathways in rats with neonatal colonic sensitivity,” J. Physiol. Pharmacol. 65(3):349-357.
Yosida et al. (May 13, 2014) “Involvement of cAMP/EPAC/TRPM2 activation in glucose- and incretin-induced insulin secretion,” Diabetes. 63(10):3394-3403.
Zhang et al. (Aug. 2014) “GLP-1 ameliorates the proliferation activity of INS-1 cells inhibited by intermittent high glucose concentrations through the regulation of cyclins,” Molecular Medicine Reports. 10(2):683-688.
Aramadhaka et al. (Apr. 18, 2013) “Connectivity maps for biosimilar drug discovery in venoms: The case of Gila Monster Venom and the anti-diabetes drug Byetta®,” Toxicon. 69:160-167.
Bhavsar et al. (Mar. 2013) “Evolution of exenatide as a diabetes therapeutic,” Curr. Diabetes Rev. 9(2):161-193.
Gao et al. (Jun. 4, 2012) “A site-specific PEGylated analog of exendin-4 with improved pharmacokinetics and pharmacodynamics in vivo,” J. Pharm. Pharmacol. 64(11):1646-1653.
Gupta (May 2013) “Glucagon-like peptide-1 analogues: An overview,” Indian J. Endocrinol. Metab. 17(3):413-421.
Hou et al. (Jan. 23, 2013) “Long-term treatment with EXf, a peptide analog of Exendin-4, improves β-cell function and survival in diabetic KKAy mice,” Peptides. 40:123-132.
Kim et al. (Nov. 9, 2012) “Site-specific PEGylated Exendin-4 modified with a high molecular weight trimeric PEG reduces steric hindrance and increases type 2 antidiabetic therapeutic effects,” Bioconjug. Chem. 23(11):2214-2220.
Lee et al. (Oct. 17, 2013) “Decanoic acid-modified glycol chitosan hydrogels containing tightly adsorbed palmityl-acylated exendin-4 as a long-acting sustained-release anti-diabetic system,” Acta Biomater. 10(2):812-820.
Parkes et al. (Dec. 12, 2012) “Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1,” Expert Opin. Drug Discov. 8(2):219-244.
Qian et al. (Jul. 1, 2013) “Characterization of a site-specific PEGylated analog of exendin-4 and determination of the PEGylation site,” Int. J. Pharm. 454(1):553-558.
Simonsen et al. (Jan. 11, 2013) “The C-terminal extension of exendin-4 provides additional metabolic stability when added to GLP-1, while there is minimal effect of truncating exendin-4 in anaesthetized pigs,” Regul. Pept. 181:17-21.
Sun et al. (Nov. 6, 2013) “Bifunctional PEGylated exenatide-amylinomimetic hybrids to treat metabolic disorders: an example of long-acting dual hormonal therapeutics,” J. Med. Chem. 56(22):9328-9341.
Yim et al. (Aug. 8, 2013) “Synthesis and preclinical characterization of [64Cu]NODAGA-MAL-exendin-4 with a Nϵ-maleoyl-L-lysyl-glycine linkage,” Nucl. Med. Biol. 40(8):1006-1012.
Yue et al. (Jan. 28, 2013) “Development of a new thiol site-specific prosthetic group and its conjugation with [Cys(40)]-exendin-4 for in vivo targeting of insulinomas,” Bioconjug. Chem. 24(7):1191-1200.
European Search Report corresponding to European Patent Application No. 12172010, dated Apr. 19, 2013, pp. 1-6.
European Search Report corresponding to European Patent Application No. 12306232, dated Apr. 19, 2013, pp. 1-4.
European Search Report corresponding to European Patent Application No. 12306647, dated May 22, 2013, pp. 1-6.
European Search Report corresponding to European Patent Application No. 13305222, dated Jul. 15, 2013, pp. 1-10.
European Search Report corresponding to European Patent Application No. 13306712, dated May 27, 2014, pp. 1-9.
European Search Report corresponding to European Patent Application No. 13306713, dated Jun. 12, 2014, pp. 1-11.
European Search Report corresponding to European Patent Application No. 13306714, dated May 28, 2014, pp. 1-9.
European Search Report corresponding to European Patent Application No. 13306715, dated Jun. 12, 2014, pp. 1-7.
European Search Report corresponding to European Patent Application No. 13306716, dated May 27, 2014, pp. 1-12.
European Search Report corresponding to European Patent Application No. 13306717, dated Jun. 3, 2014, pp. 1-11.
European Search Report corresponding to European Patent Application No. 14305501, dated Sep. 23, 2014, pp. 1-5.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/062090, dated Nov. 24, 2014, pp. 1-18.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/070882, dated Dec. 1, 2014, pp. 1-40.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/077307, dated Feb. 12, 2015, pp. 1-28.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/077310, dated Feb. 2, 2015, pp. 1-27.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/077312, dated Feb. 13, 2015, pp. 1-24.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2013/077313, dated Feb. 12, 2015, pp. 1-23.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077336, dated Feb. 26, 2016, pp. 1-14.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077337, dated Jun. 14, 2016, pp. 1-6.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077338, dated Jun. 14, 2016, pp. 1-8.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077339, dated Jun. 14, 2016, pp. 1-7.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077340, dated Jun. 14, 2016, pp. 1-10.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/EP2014/077341, dated Jun. 14, 2016, pp. 1-10.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/070882, dated Dec. 5, 2013, pp. 1-11.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/077307, dated Feb. 18, 2014, pp. 1-9.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/077310, dated Feb. 18, 2014, pp. 1-9.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/077312, dated Feb. 18, 2014, pp. 1-9.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/077313, dated Feb. 18, 2014, pp. 1-9.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077336, dated Mar. 18, 2015, pp. 1-12.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077337, dated Apr. 1, 2015, pp. 1-11.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077338, dated Mar. 26, 2015, pp. 1-12.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077339, dated May 11, 2015, pp. 1-11.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077340, dated Mar. 18, 2015, pp. 1-15.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2014/077341, dated Mar. 18, 2015, pp. 1-14.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2015/057416, dated Jun. 22, 2015, pp. 1-10.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2015/057417, dated Jun. 17, 2015, pp. 1-10.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2015/057418, dated Jun. 19, 2015, pp. 1-10.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2016/062496, dated Aug. 3, 2016, pp. 1-9.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2016/063305, dated Oct. 4, 2016, pp. 1-16.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2016/063332, dated Aug. 10, 2016, pp. 1-12.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2016/063339, dated Aug. 8, 2016, pp. 1-17.
International Search Report with Written Opinion corresponding to International Patent Application No. PCT/EP2013/062090, dated Feb. 7, 2014, pp. 1-14.
Pocai (Dec. 14, 2013) “Action and therapeutic potential of oxyntomodulin,” Molecular Metabolism 3:2412-51.
Related Publications (1)
Number Date Country
20150368311 A1 Dec 2015 US