This invention relates to devices and methods for delivering agents for orthopedic and other uses. In particular such devices and methods are useful in delivering agents to heal damaged tissue or prior to more invasive and traumatic orthopedic procedures. The invention includes use of a drug delivery device that is implanted or otherwise delivered in and/or adjacent to a bone and/or other soft tissue or connective tissue.
The invention includes methods and devices for providing a expandable delivery device that is implanted in bone and/or soft tissue in a minimally invasive manner and allows for delivery of various bioactive agents.
The expandable delivery device may comprise stents, anchors, or other support structures described herein. These expandable delivery devices can provide several functions such as: creating a support structure for damaged bone (fracture, tumor site, trauma, osteoporosis, osteonecrosis, etc.) in such case a filler may not be required to maintain support; creating a space in which substantial or sufficient amounts of filler and/or bioactive agents can be delivered into with capacitance (such that the healing response is improved over a duration of time); and/or delivery of a drug containing polymer designed to create a healing response for bone, cartilage, tendons, ligaments, joints, and/or joint resurfacing.
The term bioactive agent is meant to include any material that allows for an improvement in the rate of healing of damage tissue. For example, an agent may include cements and/or fillers includes bone chips, demineralized bone matrix (DBM), calcium sulfate, coralline hydroxyapatite, biocoral, tricalcium phosphate, calcium phosphate, polymethyl methacrylate (PMMA), biodegradable ceramics, bioactive glasses, hyaluronic acid, lactoferrin, bone morphogenic proteins (BMPs) such as recombinant human bone morphogenetic proteins (rhBMPs), other materials described herein, or combinations thereof. Bioactive agents may also include any agent disclosed herein or combinations thereof, including radioactive materials; radiopaque materials; cytogenic agents; cytotoxic agents; cytostatic agents; thrombogenic agents, for example polyurethane, cellulose acetate polymer mixed with bismuth trioxide, and ethylene vinyl alcohol; lubricious, hydrophilic materials; phosphor cholene; anti-inflammatory agents, for example non-steroidal anti-inflammatories (NSAIDs) such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (e.g., VIOXX® from Merck & Co., Inc., Whitehouse Station, N.J.; CELEBREX® from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors); immunosuppressive agents, for example Sirolimus (RAPAMUNE®, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response.
a illustrates a variation of a method of using the delivery device to anchor soft tissue to hard tissue (e.g., tendon to bone).
b illustrates a variation of cross-section E-E of
The wall 6 can have one or more first struts 10. The first struts 10 can be configured to be deformable and/or expandable. The wall 6 can have can have one or more second struts 12. The second struts 12 can be substantially undeformable and substantially inflexible. The first struts 10 can be flexibly (e.g., deformably rotatably) attached to the second struts 12.
The wall 6 can be configured to expand radially away from the longitudinal axis 4, for example in two opposite radial directions. A first set of first struts 10 can be aligned parallel to each other with respect to the longitudinal axis 4. A second set of first struts 10 can be aligned parallel to each other with respect to the longitudinal axis 4. The second set of first struts 10 can be on the opposite side of the longitudinal axis 4 from the first set of first struts 10. The second struts 12 can attached any or all sets of first struts 10 to other sets of first struts 10.
The second struts 12 can have one or more ingrowth ports. The ingrowth ports 14 can be configured to encourage biological tissue ingrowth therethrough during use. The ingrowth ports 14 can be configured to releasably and/or fixedly attach to a deployment tool or other tool. The ingrowth ports 14 can be configured to increase, and/or decrease, and/or focus pressure against the surrounding biological tissue during use. The ingrowth ports 14 can be configured to increase and/or decrease the stiffness of the second struts 12. The ingrowth ports 14 can be configured to receive and/or attach to a buttress.
The first struts 10 can be configured to have a “V” shape. The space between adjacent first struts 10 can be configured to receive and/or attach to a locking pin during use.
The wall 6 can have a wall thickness 16. The wall thickness 16 can be from about 0.25 mm (0.098 in.) to about 5 mm (0.2 in.), for example about 1 mm (0.04 in.). The wall 6 can have an inner diameter 18. The inner diameter 18 can be from about 1 mm (0.04 in.) to about 30 mm (1.2 in.), for example about 6 mm (0.2 in.). The wall thickness 16 and/or the inner diameter 18 can vary with respect to the length along the longitudinal axis 4. The wall thickness 16 and/or the inner diameter 18 can vary with respect to the angle formed with a plane parallel to the longitudinal axis 4.
The first struts 10 on a first longitudinal half of the expandable delivery device 2 can be oriented (e.g., the direction of the pointed end of the “V” shape) in the opposite direction as the first struts 10 on a second longitudinal half of the expandable delivery device 2.
Variations of the expandable delivery devices (including those labeled as expandable support devices) and methods of use, and tools for deployment are disclosed in the following applications, all of which are incorporated by reference herein in their entireties: PCT application No. PCT/US05/034115, filed 21 Sep. 2005; U.S. Provisional Application No. 60/675,512, filed Apr. 27, 2005; U.S. Provisional Application No. 60/699,577, filed Jul. 14, 2005; U.S. Provisional Application No. 60/699,576, filed Jul. 14, 2005; U.S. Provisional Patent Application No. 60/675,543, filed 27 Apr. 2005; PCT Application No. PCT/US2005/034742, filed 26 Sep. 2005; PCT Application No. PCT/US2005/034728, filed 26 Sep. 2005; PCT Application No. PCT/US2005/037126, filed 12 Oct. 2005; U.S. Provisional Patent Application No. 60/723,309, filed 4 Oct. 2005; U.S. Provisional Patent Application No. 60/675,512, filed 27 Apr. 2005; and U.S. Provisional Patent Application No. 60/699,577, filed 14 Jul. 2005.
The deployment tool 38 can be a pair of wedges, an expandable jack, other expansion tools, or combinations thereof.
An access tool 54 can be used to gain access to the damage site 52 and or increase the size of the damage site 52 to allow deployment of the expandable delivery device 2. The access tool 54 can be a rotating or vibrating drill 56 that can have a handle 58. The drill 56 can be operating, as shown by arrows 60. The drill 56 can then be translated, as shown by arrow 62, toward and into the vertebra 48 so as to pass into the damage site 52.
A second deployment system 38b can enter through a second incision 66b (as shown) in the skin 68 on the posterior or the first incision 66a. The second deployment tool 38b can be translated through muscle (not shown), around nerves 72, and anterior of the vertebral column 46. The second deployment system 38b can be steerable. The second deployment system 38b can be steered, as shown by arrow 74, to align the distal tip of the second expandable delivery device 2b with a second access port 64b on a second damage site 52b. The second access port 64b can face anteriorly. The second deployment system 38b can translate, as shown by arrow 76, to position the second expandable delivery device 2 in the second damage site 52b.
The vertebra 48 can have multiple damage sites 52 and expandable delivery devices 2 deployed therein. The expandable delivery devices 2 can be deployed from the anterior, posterior, both lateral, superior, inferior, any angle, or combinations of the directions thereof.
The first access port 64a can be substantially centered with respect to the first damage site 52a. The first expandable delivery device (not shown) can expand, as shown by arrows 78, substantially equidirectionally, aligned with the center of the first access port 64a. The second access port 64b can be substantially not centered with respect to the second damage site 52b. The second expandable delivery device (not shown) can substantially anchor to a side of the damage site 52 and/or the surface of the disc 50, and then expand, as shown by arrows 80, substantially directionally away from the disc 50.
The access port 64 can have an access port diameter 82. The access port diameter 82 can be from about 1.5 mm (0.060 in.) to about 40 mm (2 in.), for example about 8 mm (0.3 in.). The access port diameter 82 can be a result of the size of the access tool 54. After the expandable delivery device 2 is deployed, the damage site 52 can have a deployed diameter 84. The deployed diameter 84 can be from about 1.5 mm (0.060 in.) to about 120 mm (4.7 in.), for example about 20 mm (0.8 in.). The deployed diameter 84 can be greater than, equal to, or less than the access port diameter 82.
The locking pin 86 can be parallel with the longitudinal axis 4, as shown in
The buttress 88 can have a coil 92. The coil 92 can have turns 94 of a wire, ribbon, or other coiled element.
The buttress 88 can be a series of connected hoops.
A gap 114 can be between the tongue 110 and the groove 112. The gap 114 can be wider than the height of the teeth 108. The gap 114 can be configured to allow the first wedge 102 to be sufficiently distanced from the second wedge 104 so the teeth 108 on the first wedge 102 can be disengaged from the teeth 108 on the second wedge 104.
The buttress 88 in a compact configuration can be placed inside of the longitudinal channel 8 of the deployed expandable delivery device 2.
The expandable delivery device 2 can have a minimum inner diameter 122 and a maximum inner diameter 124. The minimum inner diameter 122 can be less than the pre-deployed inner diameter. The minimum inner diameter 122 can be from about 0.2 mm (0.01 in.) to about 120 mm (4.7 in.), for example about 2 mm (0.08 in.). be from about 1.5 mm (0.060 in.) to about 40 mm (2 in.), for example about 8 mm (0.3 in.). The maximum inner diameter 124 can be more than the pre-deployed inner diameter. The maximum inner diameter 124 can be from about 1.5 mm (0.060 in.) to about 120 min (4.7 in.), for example about 18 mm (0.71 in.).
The second joints 32 can form angles less than about 90°. As shown in
Once the expandable delivery device 2 is deployed, the longitudinal channel 8 and the remaining void volume in the damage site 52 can be filled with, for example, biocompatible coils, bone cement, morselized bone, osteogenic powder, beads of bone, polymerizing fluid, paste, a matrix (e.g., containing an osteogenic agent and/or an anti-inflammatory agent, and/or any other agent disclosed supra), Orthofix, cyanoacrylate, or combinations thereof.
The expandable delivery device 2 can be implanted in the place of all or part of a vertebral disc 50. For example, if the disc 50 has herniated, the expandable delivery device 2 can be implanted into the hernia in the disc annulus, and/or the expandable delivery device 2 can be implanted into the disc nucleus.
As discussed above, the expandable delivery devices may act as expandable delivery devices that are implanted in bone and/or soft tissue in a minimally invasive manner and allows for delivery of various bioactive agents. It is noted that in any of the above examples, the expandable delivery device may be combined with bioactive agents or fillers to improve the healing response of the damaged tissue.
Once the device is expanded it creates instant support. In addition, the device can it will deliver a bioactive agent via a coating on the device or by creating a space ideal for packing the device with non hardening fillers such as bioactive agents and/or bone chips, ceramics, polymers, as described herein.
In order to create the ideal healing condition, the expandable member/expandable delivery device forms a structure upon deployment that results in fixation within the tissue. The device may be fabricated as discussed herein and may be either self expanding, balloon expanded, or mechanically expanded. The bioactive agents provide the biochemical accelerators used to promote healing, increase bone density, etc. The bioactive agents can be designed to release slowly over long periods in order to produce the needed healing effects for each particular application.
The expandable delivery device 2 can be inserted into a bone experiencing osteoporosis (e.g., that has lost normal density and as a result is fragile).
The device 2 can be implanted in a bone, such as the femur 202a, as shown. The device 2 can be implanted closer to the hip joint 204 or, for example, in any location where delivery of a bioactive agent is desired. The device 2 can be coated with the agent. The device 2 can be loaded with one or more additional bioactive agents.
a and 79b illustrate that the delivery device 2 can be used to fixably or removably anchor tendon to bone, such as into the humerus 202b and the ulna and/or radius 202c. One or more expandable delivery devices 2 can be inserted into a tendon 206. The delivery device 2 can be a radially expanding or unexpanding anchor. The delivery device 2 can be a tether. The device 2 can be located entirely within a tendon and/or bone adjacent to the tendon and/or other surrounding tissue. The delivery device 2 can be initially positioned in the tendon and/or bone in a radially contracted configuration. The delivery device 2 can then be radially expanded, for example, fixing the tendon to the bone. The radial expansion of the delivery device 2 can expand the size of the longitudinal channel 8. Before or after positioning and/or radially expanding the delivery device 2, the longitudinal channel 8 can be left empty or filled with one or more agents, fillers, or any other material disclosed herein (e.g., BMP, bone chips, morselized bone, autograft, allograft, xenograft, combinations thereof). The longitudinal channel 8 can be in fluid communication with the surrounding tissue, such as the soft tissue (e.g., ligaments and/or tendons) and/or bones and/or body fluids (e.g., blood, synovial fluid). A deployment tool 210 can deliver agents, fillers or any other materials disclosed herein to the target site, such as in the longitudinal channel 8 and/or elsewhere in and/or around the delivery device 2.
The delivered agents, fillers, or any other materials disclosed herein can be either pre-loaded on or in the delivery device 2 or placed into the longitudinal channel 8 after the delivery device has been radially expanded in vivo. The delivery device 2 can be a hollow screw or anchor (e.g., expandable or non-expandable). The agents, fillers, or any other materials disclosed herein can elute or otherwise flow from the delivery device 2, for example through the ingrowth ports 14, to the surrounding tissue (e.g., tendon, ligament, bone, cartilage, tendon, body fluids, combinations thereof).
Also for example, the terminal ends of the damaged ACL sections can be attached to the exterior of the radial exterior of the delivery device 2, as shown. The delivery device 2 can fix the first section of the damaged ACL to the second section of the damaged ACL. The delivery device 2 can be located entirely within the damaged ACL 208 and/or located around an ACL graft (e.g., a patellar tendon autograft, allograft or xenograft).
The expandable delivery device 2 can be placed in the vertebral bodies, bones of the hand and/or finger, long bones, or combinations thereof.
The expandable delivery devices 2 can be deployed into an existing bone tunnel or into a tunnel formed by a drill, tamp, reamer (e.g., to remove more bone), or combinations thereof. The expandable delivery devices 2 can act as a tool to position the expandable delivery devices 2 within the fracture, for example, and then expand the distal end of the expandable delivery devices 2 to stabilize. The expandable delivery devices 2 can be threaded into place (e.g., self-deployed without a pre-formed tunnel or with a completely or partially pre-formed tunnel). One or two ends of the device 2 can be threaded. The threads can be on the radial interior and/or exterior of the delivery device 2. Multiple threads can be oriented in the same or different directions (e.g., to prevent backing-out of tissues on opposite sides of the delivery device). The expandable delivery devices 2 can be expanded at either end first (e.g., to align a fracture plane), in the center first, at both ends concurrently, or concurrently along the entire length. The expandable delivery devices 2 can self-anchor. The expandable delivery devices 2 can be anchored to surrounding tissue with a separate device (e.g., peg, brad, hook, thread, or combinations thereof.
The expandable delivery devices 2 can be filled, for example in the longitudinal channel 8 and/or in the ingrowth ports 14, with bone chips, cement, drugs, polymers, other metal structures, mixes of all theses and/or bioactive agents as described herein. The expandable delivery devices 2 can be filled before or after the expandable delivery device 2 is radially expanded at the target site, and/or before the expandable delivery device 2 is positioned at the target site. Any of the materials on or on the delivery device 2 can elute, leech, flow or otherwise exit the device 2 through the ingrowth ports 14, the longitudinal channel 8, or via micropores in the wall 6, out of a coating (e.g., a polymer or cloth, or any other coating described herein) on the surface of the delivery device 2, or combinations thereof. The expandable delivery devices 2 can be radiopaque. The expandable delivery devices 2 can provide a stabilizing force to the surrounding tissue.
The expandable delivery devices 2 can be covered with a polymer and/or a vessel or chamber to hold one or more agents (e.g., drugs). The expandable delivery devices 2 can be removed from the target site (e.g., bone), for example, by radially contracting the expandable support device 2. The expandable delivery device 2 can be radially contracted and repositioned at the target site, for example, if placement or sizing errors occur. The expandable delivery device 2 can be removed from the target site after a desired healing takes place.
Any or all elements of the expandable delivery devices 2, supports, or stents and/or other devices or apparatuses described herein can be made from, for example, a single or multiple stainless steel alloys, nickel titanium alloys (e.g., Nitinol), cobalt-chrome alloys (e.g., ELGILOY® from Elgin Specialty Metals, Elgin, Ill.; CONICHROME® from Carpenter Metals Corp., Wyomissing, Pa.), nickel-cobalt alloys (e.g., MP35N® from Magellan Industrial Trading Company, Inc., Westport, Conn.), molybdenum alloys (e.g., molybdenum TZM alloy, for example as disclosed in International Pub. No. WO 03/082363 A2, published 9 Oct. 2003, which is herein incorporated by reference in its entirety), tungsten-rhenium alloys, for example, as disclosed in International Pub. No. WO 03/082363, polymers such as polyethylene teraphathalate (PET), polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, aromatic polyesters, such as liquid crystal polymers (e.g., Vectran, from Kuraray Co., Ltd., Tokyo, Japan), ultra high molecular weight polyethylene (i.e., extended chain, high-modulus or high-performance polyethylene) fiber and/or yarn (e.g., SPECTRA® Fiber and SPECTRA® Guard, from Honeywell International, Inc., Morris Township, N.J., or DYNEEMA® from Royal DSM N.V., Heerlen, the Netherlands), polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), polyether ketone (PEK), polyether ether ketone (PEEK), poly ether ketone ketone (PEKK) (also poly aryl ether ketone ketone), nylon, polyether-block co-polyamide polymers (e.g., PEBAX® from ATOFINA, Paris, France), aliphatic polyether polyurethanes (e.g., TECOFLEX® from Thermedics Polymer Products, Wilmington, Mass.), polyvinyl chloride (PVC), polyurethane, thermoplastic, fluorinated ethylene propylene (FEP), absorbable or resorbable polymers such as polyglycolic acid (PGA), poly-L-glycolic acid (PLGA), polylactic acid (PLA), poly-L-lactic acid (PLLA), polycaprolactone (PCL), polyethyl acrylate (PEA), polydioxanone (PDS), and pseudo-polyamino tyrosine-based acids, extruded collagen, silicone, zinc, echogenic, radioactive, radiopaque materials, a biomaterial (e.g., cadaver tissue, collagen, allograft, autograft, xenograft, bone cement, morselized bone, osteogenic powder, beads of bone) any of the other materials listed herein or combinations thereof. Examples of radiopaque materials are barium sulfate, zinc oxide, titanium, stainless steel, nickel-titanium alloys, tantalum and gold.
Any or all elements of the expandable delivery devices 2, supports, or stents and/or other devices or apparatuses described herein, can be, have, and/or be completely or partially coated with agents and/or a matrix a matrix for cell ingrowth or used with a fabric, for example a covering (not shown) that acts as a matrix for cell ingrowth. The matrix and/or fabric can be, for example, polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, PTFE, ePTFE, nylon, extruded collagen, silicone or combinations thereof.
Any of the expandable delivery devices 2, supports, or stents and/or elements of the expandable delivery devices 2, supports, or stents could be made from a biodegrading polymer as well. In such a case, the bioactive agents could be in the polymer, on the polymer, or on the bore of the vehicle. The bioactive agents and/or carrier would be designed to slowly elute from the vehicle.
The expandable delivery devices 2, supports, or stents and/or elements of the expandable delivery devices, supports, or stents and/or other devices or apparatuses described herein and/or the fabric can be filled, coated, layered and/or otherwise made with and/or from cements, fillers, glues, and/or an agent delivery matrix known to one having ordinary skill in the art and/or a therapeutic and/or diagnostic agent. Any of these cements and/or fillers and/or glues can be osteogenic and osteoinductive growth factors.
Examples of such cements and/or fillers includes bone chips, demineralized bone matrix (DBM), calcium sulfate, coralline hydroxyapatite, biocoral, tricalcium phosphate, calcium phosphate, polymethyl methacrylate (PMMA), biodegradable ceramics, bioactive glasses, hyaluronic acid, lactoferrin, bone morphogenic proteins (BMPs) such as recombinant human bone morphogenetic proteins (rhBMPs), other materials described herein, or combinations thereof.
The agents within these matrices can include any agent disclosed herein or combinations thereof, including radioactive materials; radiopaque materials; cytogenic agents; cytotoxic agents; cytostatic agents; thrombogenic agents, for example polyurethane, cellulose acetate polymer mixed with bismuth trioxide, and ethylene vinyl alcohol; lubricious, hydrophilic materials; phosphor cholene; anti-inflammatory agents, for example non-steroidal anti-inflammatories (NSAIDs) such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (e.g., VIOXX® from Merck & Co., Inc., Whitehouse Station, N.J.; CELEBREX® from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors); immunosuppressive agents, for example Sirolimus (RAPAMUNE®, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response. Examples of other agents are provided in Walton et al, Inhibition of Prostoglandin E2 Synthesis in Abdominal Aortic Aneurysms, Circulation, Jul. 6, 1999, 48-54; Tambiah et al, Provocation of Experimental Aortic Inflammation Mediators and Chlamydia Pneumoniae, Brit. J. Surgery 88 (7), 935-940; Franklin et al, Uptake of Tetracycline by Aortic Aneurysm Wall and Its Effect on Inflammation and Proteolysis, Brit. J. Surgery 86 (6), 771-775; Xu et al, Sp1 Increases Expression of Cyclooxygenase-2 in Hypoxic Vascular Endothelium, J. Biological Chemistry 275 (32) 24583-24589; and Pyo et al, Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms, J. Clinical Investigation 105 (11), 1641-1649 which are all incorporated by reference in their entireties.
It is apparent to one skilled in the art that various changes and modifications can be made to this disclosure, and equivalents employed, without departing from the spirit and scope of the invention. Elements shown with any variation are exemplary for the specific variation and can be used on or in combination with any other variation within this disclosure.
This application is a continuation of U.S. patent application Ser. No. 12/139,367, filed Jun. 13, 2008, which is a continuation of PCT International Application No. PCT/US2006/062337, filed Dec. 19, 2006, which claims the benefit of U.S. Provisional Application No. 60/751,882, filed Dec. 19, 2005, all of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60751882 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12139367 | Jun 2008 | US |
Child | 12693382 | US | |
Parent | PCT/US2006/062337 | Dec 2006 | US |
Child | 12139367 | US |