1. Field of the Invention
The present invention relates to tissue-supporting medical devices, and more particularly to expandable, non-removable devices that are implanted within a bodily lumen of a living animal or human to support the organ and maintain patency, and that can deliver a beneficial agent to the intervention site.
2. Summary of the Related Art
In the past, permanent or biodegradable devices have been developed for implantation within a body passageway to maintain patency of the passageway. These devices are typically introduced percutaneously, and transported transluminally until positioned at a desired location. These devices are then expanded either mechanically, such as by the expansion of a mandrel or balloon positioned inside the device, or expand themselves by releasing stored energy upon actuation within the body. Once expanded within the lumen, these devices, called stents, become encapsulated within the body tissue and remain a permanent implant.
Known stent designs include monofilament wire coil stents (U.S. Pat. No. 4,969,458); welded metal cages (U.S. Pat. Nos. 4,733,665 and 4,776,337); and, most prominently, thin-walled metal cylinders with axial slots formed around the circumference (U.S. Pat. Nos. 4,733,665, 4,739,762, and 4,776,337). Known construction materials for use in stents include polymers, organic fabrics and biocompatible metals, such as, stainless steel, gold, silver, tantalum, titanium, and shape memory alloys such as Nitinol.
U.S. Pat. Nos. 4,733,665, 4,739,762, and 4,776,337 disclose expandable and deformable interluminal vascular grafts in the form of thin-walled tubular members with axial slots allowing the members to be expanded radially outwardly into contact with a body passageway. After insertion, the tubular members are mechanically expanded beyond their elastic limit and thus permanently fixed within the body. The force required to expand these tubular stents is proportional to the thickness of the wall material in a radial direction. To keep expansion forces within acceptable levels for use within the body (e.g., 5-10 atm), these designs must use very thin-walled materials (e.g., stainless steel tubing with 0.0025 inch thick walls). However, materials this thin are not visible on conventional fluoroscopic and x-ray equipment and it is therefore difficult to place the stents accurately or to find and retrieve stents that subsequently become dislodged and lost in the circulatory system.
Further, many of these thin-walled tubular stent designs employ networks of long, slender struts whose width in a circumferential direction is two or more times greater than their thickness in a radial direction. When expanded, these struts are frequently unstable, that is, they display a tendency to buckle, with individual struts twisting out of plane. Excessive protrusion of these twisted struts into the bloodstream has been observed to increase turbulence, and thus encourage thrombosis. Additional procedures have often been required to attempt to correct this problem of buckled struts. For example, after initial stent implantation is determined to have caused buckling of struts, a second, high-pressure balloon (e.g., 12 to 18 atm) would be used to attempt to drive the twisted struts further into the lumen wall. These secondary procedures can be dangerous to the patient due to the risk of collateral damage to the lumen wall.
Many of the known stents display a large elastic recovery, known in the field as “recoil,” after expansion inside a lumen. Large recoil necessitates over-expansion of the stent during implantation to achieve the desired final diameter. Over-expansion is potentially destructive to the lumen tissue. Known stents of the type described above experience recoil of up to about 6 to 12% from maximum expansion.
Large recoil also makes it very difficult to securely crimp most known stents onto delivery catheter balloons. As a result, slippage of stents on balloons during interlumenal transportation, final positioning, and implantation has been an ongoing problem. Many ancillary stent securing devices and techniques have been advanced to attempt to compensate for this basic design problem. Some of the stent securing devices include collars and sleeves used to secure the stent onto the balloon.
Another problem with known stent designs is non-uniformity in the geometry of the expanded stent. Non-uniform expansion can lead to non-uniform coverage of the lumen wall creating gaps in coverage and inadequate lumen support. Further, over expansion in some regions or cells of the stent can lead to excessive material strain and even failure of stent features. This problem is potentially worse in low expansion force stents having smaller feature widths and thicknesses in which manufacturing variations become proportionately more significant. In addition, a typical delivery catheter for use in expanding a stent includes a balloon folded into a compact shape for catheter insertion. The balloon is expanded by fluid pressure to unfold the balloon and deploy the stent. This process of unfolding the balloon causes uneven stresses to be applied to the stent during expansion of the balloon due to the folds causing the problem non-uniform stent expansion.
U.S. Pat. No. 5,545,210 discloses a thin-walled tubular stent geometrically similar to those discussed above, but constructed of a nickel-titanium shape memory alloy (“Nitinol”). This design permits the use of cylinders with thicker walls by making use of the lower yield stress and lower elastic modulus of martensitic phase Nitinol alloys. The expansion force required to expand a Nitinol stent is less than that of comparable thickness stainless steel stents of a conventional design. However, the “recoil” problem after expansion is significantly greater with Nitinol than with other materials. For example, recoil of a typical design Nitinol stent is about 9%. Nitinol is also more expensive, and more difficult to fabricate and machine than other stent materials, such as stainless steel.
All of the above stents share a critical design property: in each design, the features that undergo permanent deformation during stent expansion are prismatic, i.e., the cross sections of these features remain constant or change very gradually along their entire active length. To a first approximation, such features deform under transverse stress as simple beams with fixed or guided ends: essentially, the features act as a leaf springs. These leaf spring like structures are ideally suited to providing large amounts of elastic deformation before permanent deformation commences. This is exactly the opposite of ideal stent behavior. Further, the force required to deflect prismatic stent struts in the circumferential direction during stent expansion is proportional to the square of the width of the strut in the circumferential direction. Expansion forces thus increase rapidly with strut width in the above stent designs. Typical expansion pressures required to expand known stents are between about 5 and 10 atmospheres. These forces can cause substantial damage to tissue if misapplied.
In addition to the above-mentioned risks to a patient, restenosis is a major complication which can arise following the implantation of stents, using stent devices such as those described above, and other vascular interventions such as angioplasty. Simply defined, restenosis is a wound healing process that reduces the vessel lumen diameter by scar tissue formation and which may ultimately result in reocclusion of the lumen. Despite the introduction of improved surgical techniques, devices and pharmaceutical agents, the overall restenosis rate is still reported in the range of 25% to 50% within six to twelve months after an angioplasty procedure. To correct this problem, additional revascularization procedures are frequently required, thereby increasing trauma and risk to the patient.
Several techniques under development to address the problem of restenosis are irradiation of the injury site and the use of stents to deliver a variety of beneficial or pharmaceutical agents to the traumatized vessel lumen. In the latter case, a stent is frequently surface-coated with a beneficial agent (often a drug-impregnated polymer) and implanted at the angioplasty site. Alternatively, an external drug-impregnated polymer sheath is mounted over the stent and co-deployed in the vessel. In either case, it has proven difficult to deliver a sufficient amount of beneficial agent to the trauma site so as to satisfactorily prevent the growth of scar tissue and thereby reduce the likelihood of restenosis. Even with relatively thick coatings of the beneficial agent or sheaths of increased thickness surrounding the stents, restenosis has been found to occur. Furthermore, increasing the effective stent thickness (e.g., by providing increased coatings of the beneficial agent) is undesirable for a number of reasons, including increased trauma to the vessel lumen during implantation and reduced flow cross-section of the lumen after implantation. Moreover, coating thickness is one of several factors that affect the release kinetics of the beneficial agent, and limitations on thickness thereby limit the range of release rates, durations, and the like that can be achieved.
In view of the drawbacks of the prior art, it would be advantageous to provide a stent capable of delivering a relatively large volume of a beneficial agent to a traumatized site in a vessel lumen without increasing the effective wall thickness of the stent, and without adversely impacting the mechanical expansion properties of the stent.
It would further be advantageous to have such a stent, which also significantly increases the available depth of the beneficial agent reservoir.
It would be further advantageous to be able to expand such a stent with an expansion force at a low level independent of choice of stent materials, material thickness, or strut dimensions.
It would further be advantageous to have such a tissue-supporting device that permits a choice of material thickness that could be viewed easily on conventional fluoroscopic equipment for any material.
It would also be advantageous to have such a tissue-supporting device that is inherently stable during expansion, thus eliminating buckling and twisting of structural features during stent deployment.
In addition, it would be advantageous to have such a tissue-supporting device with minimal elastic recovery, or “recoil” of the device after expansion.
It would be advantageous to have such a tissue supporting device that can be securely crimped to the delivery catheter without requiring special tools, techniques, or ancillary clamping features.
In accordance with one aspect of the invention, an expandable medical device includes a cylindrical tube, and a network of elongated struts formed in the cylindrical tube, wherein each of the elongated struts are axially displaced from adjacent struts. A plurality of ductile hinges are formed between the elongated struts. The ductile hinges allow the cylindrical tube to be expanded or compressed from a first diameter to a second diameter by deformation of the ductile hinges. Further, at least one of the elongated struts includes at least one opening for loading of a beneficial agent therein. The at least one opening may include a plurality of openings that extend through a thickness of the at least one strut, so as to thereby define a through-opening, or the openings may have a depth less than a thickness of the at least one strut, so as to thereby define a recess. A beneficial agent is loaded within the at least one opening, wherein the beneficial agent includes antiproliferatives, antithrombins, large molecules, microspheres, biodegradable agents, or cells. The at least one opening of the at least one strut forms a protected receptor for loading the beneficial agent therein.
In accordance with a further aspect of the present invention, an expandable medical device includes a plurality of elongated struts, the plurality of elongated struts joined together to form a substantially cylindrical device which is expandable from a cylinder having a first diameter to a cylinder having a second diameter, and the plurality of struts each having a strut width in a circumferential direction. At least one of the plurality of struts includes at least one recess extending at least partially through a thickness of the strut. The at least one recess may extend entirely through the thickness of the strut so as to define a through-opening and the at least one recess may be generally rectangular or polygonal.
The invention will now be described in greater detail with reference to the preferred embodiments illustrated in the accompanying drawings, in which like elements bear like reference numerals, and wherein:
a-10c are perspective, side, and cross-sectional views of an idealized ductile hinge for purposes of analysis, and
Referring to
Formed between the slots 16 is a network of axial struts 18 and links 22. The cross section (and rectangular moment of inertia) of each of the struts 18 is preferably not constant along the length of the strut. Rather, the strut cross section changes abruptly at both ends of each strut 18 adjoining the links 22. The preferred struts 18 are thus not prismatic. Each individual strut 18 is preferably linked to the rest of the structure through a pair of reduced sections 20, one at each end, which act as stress/strain concentration features. The reduced sections 20 of the struts function as hinges in the cylindrical structure. Since the stress/strain concentration features are designed to operate into the plastic deformation range of generally ductile materials, they are referred to as ductile hinges 20. Such features are also commonly referred to as “Notch Hinges” or “Notch Springs” in ultra-precision mechanism design, where they are used exclusively in the elastic range.
With reference to the drawings and the discussion, the width of any feature is defined as its dimension in the circumferential direction of the cylinder. The length of any feature is defined as its dimension in the axial direction of the cylinder. The thickness of any feature is defined as the wall thickness of the cylinder.
Ductile hinges 20 are preferably asymmetric ductile hinges that produce different strain versus deflection-angle functions in expansion and compression. Each of the ductile hinges 20 is formed between a arc surface 28 and a concave notch surface 29. The ductile hinge 20 according to a preferred embodiment essentially takes the form of a small, prismatic curved beam having a substantially constant cross section. However, a thickness of the curved ductile hinge 20 may vary somewhat as long as the ductile hinge width remains constant along a portion of the hinge length. The width of the curved beam is measure along the radius of curvature of the beam. This small curved beam is oriented such that the smaller concave notch surface 29 is placed in tension in the device crimping direction, while the larger arc surface 28 of the ductile hinges is placed in tension in the device expansion direction. Again, there is no local minimum width of the ductile hinge 20 along the (curved) ductile hinge axis, and no concentration of material strain. During device expansion tensile strain will be distributed along the arc surface 28 of the hinge 20 and maximum expansion will be limited by the angle of the walls of the concave notch 29 which provide a geometric deflection limiting feature. The notches 29 each have two opposed angled walls 30 which function as a stop to limit geometric deflection of the ductile hinge, and thus limit maximum device expansion. As the cylindrical tubes 12 are expanded and bending occurs at the ductile hinges 20, the angled side walls 30 of the notches 29 move toward each other. Once the opposite side walls 30 of a notch come into contact with each other, they resist further expansion of the particular ductile hinge causing further expansion to occur at other sections of the tissue supporting device. This geometric deflection limiting feature is particularly useful where uneven expansion is caused by either variations in the tissue supporting device 10 due to manufacturing tolerances or uneven balloon expansion. Maximum tensile strain can therefore be reliably limited by adjusting the initial length of the arc shaped ductile hinge 20 over which the total elongation is distributed.
The presence of the ductile hinges 20 allows all of the remaining features in the tissue supporting device to be increased in width or the circumferentially oriented component of their respective rectangular moments of inertia—thus greatly increasing the strength and rigidity of these features. The net result is that elastic, and then plastic deformation commence and propagate in the ductile hinges 20 before other structural elements of the device undergo any significant elastic deformation. The force required to expand the tissue supporting device 10 becomes a function of the geometry of the ductile hinges 20, rather than the device structure as a whole, and arbitrarily small expansion forces can be specified by changing hinge geometry for virtually any material wall thickness. In particular, wall thicknesses great enough to be visible on a fluoroscope can be chosen for any material of interest.
In order to get minimum recoil, the ductile hinges 20 should be designed to operate well into the plastic range of the material, and relatively high local strain-curvatures are developed. When these conditions apply, elastic curvature is a very small fraction of plastic or total curvature, and thus when expansion forces are relaxed, the percent change in hinge curvature is very small. When incorporated into a strut network designed to take maximum advantage of this effect, the elastic springback, or “recoil,” of the overall stent structure is minimized.
In the preferred embodiment of
Yield in ductile hinges at very low gross radial deflections also provides the superior crimping properties displayed by the ductile hinge-based designs. When a tissue supporting device is crimped onto a folded catheter balloon, very little radial compression of the device is possible since the initial fit between balloon and device is already snug. Most stents simply rebound elastically after such compression, resulting in very low clamping forces and the attendant tendency for the stent to slip on the balloon. Ductile hinges, however, sustain significant plastic deformation even at the low deflections occurring during crimping onto the balloon, and therefore a device employing ductile hinges displays much higher clamping forces. The ductile hinge designs according to the present invention may be securely crimped onto a balloon of a delivery catheter by hand or by machine without the need for auxiliary retaining devices commonly used to hold known stents in place.
The ductile hinge 20 illustrated in
At intervals along the neutral axis of the struts 18, at least one and more preferably a series of through-openings 24 are formed by laser drilling or any other means known to one skilled in the art. Similarly, at least one and preferably a series of through-openings 26 are formed at selected locations in the links 22. Although the use of through-openings 24 and 26 in both the struts 18 and links 22 is preferred, it should be clear to one skilled in the art that through-openings could be formed in only one of the struts and links. In the illustrated embodiment, the through-openings 24, 26 are circular in nature and thereby form cylindrical holes extending through the width of the tissue supporting device 10. It should be apparent to one skilled in the art, however, that through-openings of any geometrical shape or configuration could of course be used without departing from the scope of the present invention.
The behavior of the struts 18 in bending is analogous to the behavior of an I-beam or truss. The outer edge elements 32 of the struts 18 correspond to the I-beam flange and carry the tensile and compressive stresses, whereas the inner elements 34 of the struts 18 correspond to the web of an I-beam which carries the shear and helps to prevent buckling and wrinkling of the faces. Since most of the bending load is carried by the outer edge elements 32 of the struts 18, a concentration of as much material as possible away from the neutral axis results in the most efficient sections for resisting strut flexure. As a result, material can be judiciously removed along the axis of the strut so as to form through-openings 24, 26 without adversely impacting the strength and rigidity of the strut. Since the struts 18 and links 22 thus formed remain essentially rigid during stent expansion, the through-openings 24, 26 are also non-deforming.
The term “agent” as used herein is intended to have its broadest possible interpretation and is used to include any therapeutic agent or drug, as well as any body analyte, such as glucose. The terms “drug” and “therapeutic agent” are used interchangeably to refer to any therapeutically active substance that is delivered to a bodily lumen of a living being to produce a desired, usually beneficial, effect. The present invention is particularly well suited for the delivery of antiproliferatives (anti-restenosis agents) such as paclitaxel and rapamycin for example, and antithrombins such as heparin, for example. Additional uses, however, include therapeutic agents in all the major therapeutic areas including, but not limited to: anti-infectives such as antibiotics and antiviral agents; analgesics, including fentanyl, sufentanil, buprenorphine and analgesic combinations; anesthetics; anorexics; antiarthritics; antiasthmatic agents such as terbutaline; anticonvulsants; antidepressants; antidiabetic agents; antidiarrheals; antihistamines; anti-inflammatory agents; antimigraine preparations; antimotion sickness preparations such as scopolamine and ondansetron; antinauseants; antineoplastics; antiparkinsonism drugs; antipruritics; antipsychotics; antipyretics; antispasmodics, including gastrointestinal and urinary; anticholinergics; sympathomimetrics; xanthine derivatives; cardiovascular preparations, including calcium channel blockers such as nifedipine; beta blockers; beta-agonists such as dobutamine and ritodrine; antianythmics; antihypertensives such as atenolol; ACE inhibitors such as ranitidine; diuretics; vasodilators, including general, coronary, peripheral, and cerebral; central nervous system stimulants; cough and cold preparations; decongestants; diagnostics; hormones such as parathyroid hormone; hypnotics; immunosuppressants; muscle relaxants; parasympatholytics; parasympathomimetrics; prostaglandins; proteins; peptides; psychostimulants; sedatives; and tranquilizers.
The through-openings 24, 26 may also be loaded with an agent, most preferably a beneficial agent, for delivery to the lumen in which the tissue support device 10 is deployed.
The term “agent” as used herein is intended to have its broadest possible interpretation and is used to include any therapeutic agent or drug, as well as any body analyte, such as glucose. The terms “drug” and “therapeutic agent” are used interchangeably to refer to any therapeutically active substance that is delivered to a bodily lumen of a living being to produce a desired, usually beneficial, effect. The present invention is particularly well suited for the delivery of antiproliferatives (anti-restenosis agents) such as paclitaxil and rapamycin for example, and antithrombins such as heparin, for example. Additional uses, however, include therapeutic agents in all the major therapeutic areas including, but not limited to: anti-infectives such as antibiotics and antiviral agents; analgesics, including fentanyl, sufentanil, buprenorphine and analgesic combinations; anesthetics; anorexics; antiarthritics; antiasthmatic agents such as terbutaline; anticonvulsants; antidepressants; antidiabetic agents; antidiarrheals; antihistamines; anti-inflammatory agents; antimigraine preparations; antimotion sickness preparations such as scopolamine and ondansetron; antinauseants; antineoplastics; antiparkinsonism drugs; antipruritics; antipsychotics; antipyretics; antispasmodics, including gastrointestinal and urinary; anticholinergics; sympathomimetrics; xanthine derivatives; cardiovascular preparations, including calcium channel blockers such as nifedipine; beta blockers; beta-agonists such as dobutamine and ritodrine; antiarrythmics; antihypertensives such as atenolol; ACE inhibitors such as ranitidine; diuretics; vasodilators, including general, coronary, peripheral, and cerebral; central nervous system stimulants; cough and cold preparations; decongestants; diagnostics; hormones such as parathyroid hormone; hypnotics; immunosuppressants; muscle relaxants; parasympatholytics; parasympathomimetrics; prostaglandins; proteins; peptides; psychostimulants; sedatives; and tranquilizers.
The openings form a protected receptor for loading beneficial agents including large molecules, microspheres, beneficial agents within a biodegradable polymer carrier, and cells.
The embodiment of the invention shown in
At intervals along the neutral axis of the struts 18, at least one and more preferably a series of through-openings 24′ are formed by laser drilling or any other means known to one skilled in the art. Similarly, at least one and preferably a series of through-openings 26′ are formed at selected locations in the links 22. Although the use of through-openings 24′ and 26′ in both the struts 18 and links 22 is preferred, it should be clear to one skilled in the art that through-openings could be formed in only one of the struts and links. In the illustrated embodiment, the through-openings 24′ in the struts 18 are generally rectangular whereas the through-openings 26′ in the links 22 are polygonal. It should be apparent to one skilled in the art, however, that through-openings of any geometrical shape or configuration could of course be used, and that the shape of through-openings 24, 24′ may be the same or different from the shape of through-openings 26, 26′, without departing from the scope of the present invention. As described in detail above, the through-openings 24′, 26′ may be loaded with an agent, most preferably a beneficial agent, for delivery to the lumen in which the tissue support device 100 is deployed.
The relatively large, protected through-openings 24, 24′, 26, 26′, as described above, make the expandable medical device of the present invention particularly suitable for delivering agents having more esoteric larger molecules or genetic or cellular agents, such as, for example, protein/enzymes, antibodies, antisense, ribozymes, gene/vector constructs, and cells (including but not limited to cultures of a patient's own endothelial cells). Many of these types of agents are biodegradable or fragile, have a very short or no shelf life, must be prepared at the time of use, or cannot be pre-loaded into delivery devices such as stents during the manufacture thereof for some other reason. The large through-openings in the expandable device of the present invention form protected areas or receptors to facilitate the loading of such an agent at the time of use, and to protect the agent from abrasion and extrusion during delivery and implantation.
The tissue supporting device 10, 100, 200 according to the present invention may be formed of any ductile material, such as steel, gold, silver, tantalum, titanium, Nitinol, other shape memory alloys, other metals, or even some plastics. One preferred method for making the tissue supporting device 10, 100, 200 involves forming a cylindrical tube 12 and then laser cutting the slots 16, notches 29 and through-openings 24, 24′, 26, 26′ or recesses 40, 42 into the tube. Alternatively, the tissue supporting device may be formed by electromachining, chemical etching followed by rolling and welding, or any other method known to one skilled in the art.
The design and analysis of stress/strain concentration for ductile hinges, and stress/strain concentration features in general, is complex. The stress concentration factor can be calculated for simple ductile hinge geometries, but is generally useful only in the linear elastic range. Stress concentration patterns for a number of other geometries can be determined through photoelastic measurements and other experimental methods. Stent designs based on the use of stress/strain concentration features, or ductile hinges, generally involve more complex hinge geometries and operate in the non-linear elastic and plastic deformation regimes.
The general nature of the relationship among applied forces, material properties, and ductile hinge geometry can be more easily understood through analysis of an idealized hinge 60 as shown in
Where b corresponds to the cylindrical tube wall thickness, h is the circumferential width of the ductile hinge, and δyp is the yield stress of the hinge material. Assuming only that expansion pressure is proportional to the plastic moment, it can be seen that the required expansion pressure to expand the tissue supporting device increases linearly with wall thickness b and as the square of ductile hinge width h. It is thus possible to compensate for relatively large changes in wall thickness b with relatively small changes in hinge width h. While the above idealized case is only approximate, empirical measurements of expansion forces for different hinge widths in several different ductile hinge geometries have confirmed the general form of this relationship. Accordingly, for different ductile hinge geometries it is possible to increase the thickness of the tissue supporting device to achieve radiopacity while compensating for the increased thickness with a much smaller decrease in hinge width.
Ideally, the stent wall thickness b should be as thin as possible while still providing good visibility on a fluoroscope. For most stent materials, including stainless steel, this would suggest a thickness of about 0.005-0.007 inches (0.127-0.178 mm) or greater. The inclusion of ductile hinges in a stent design can lower expansion forces/pressures to very low levels for any material thickness of interest. Thus ductile hinges allow the construction of optimal wall thickness tissue supporting devices at expansion force levels significantly lower than current non-visible designs.
The expansion forces required to expand the tissue supporting device 10, 100, 200 according to the present invention from an initial condition illustrated in
Many tissue supporting devices fashioned from cylindrical tubes comprise networks of long, narrow, prismatic beams of essentially rectangular cross section as shown in
By contrast, in a ductile hinge based design according to the present invention, only the hinge itself deforms during expansion. The typical ductile hinge 20 is not a long narrow beam as are the struts in the known stents. Wall thickness of the present invention may be increased to 0.005 inches (0.127 mm) or greater, while hinge width is typically 0.002-0.003 inches (0.0508-0.0762 mm), preferably 0.0025 inches (0.0635 mm) or less. Typical hinge length, at 0.002 to 0.005 inches (0.0508-0.0127 mm), is more than an order of magnitude less than typical strut length. Thus, the ratio of b:h in a typical ductile hinge 20 is 2:1 or greater. This is an inherently stable ratio, meaning that the plastic moment for such a ductile hinge beam is much lower than the critical buckling moment Mcrit, and the ductile hinge beam deforms through normal strain-curvature. Ductile hinges 20 are thus not vulnerable to buckling when subjected to bending moments during expansion of the tissue supporting device 10, 100, 200.
To provide optimal recoil and crush-strength properties, it is desirable to design the ductile hinges so that relatively large strains, and thus large curvatures, are imparted to the hinge during expansion of the tissue supporting device. Curvature is defined as the reciprocal of the radius of curvature of the neutral axis of a beam in pure bending. A larger curvature during expansion results in the elastic curvature of the hinge being a small fraction of the total hinge curvature. Thus, the gross elastic recoil of the tissue supporting device is a small fraction of the total change in circumference. It is generally possible to do this because common stent m materials, such as 316L Stainless Steel have very large elongations-to-failure (i.e., they are very ductile).
It is not practical to derive exact expressions for residual curvatures for complex hinge geometries and real materials (i.e., materials with non-idealized stress/strain curves). The general nature of residual curvatures and recoil of a ductile hinge may be understood by examining the moment-curvature relationship for the elastic-ideally-plastic rectangular hinge 60 shown in
This function is plotted in
Imparting additional curvature in the plastic zone cannot further increase the elastic curvature, but will decrease the ratio of elastic to plastic curvature. Thus, additional curvature or larger expansion of the tissue supporting device will reduce the percentage recoil of the overall stent structure.
As shown in
Where strain at the yield point is an independent material property (yield stress divided by elastic modulus); L is the length of the ductile hinge; and h is the width of the hinge. For non-idealized ductile hinges made of real materials, the constant 3 in the above expression is replaced by a slowly rising function of total strain, but the effect of geometry would remain the same. Specifically, the elastic rebound angle of a ductile hinge decreases as the hinge width h increases, and increases as the hinge length L increases. To minimize recoil, therefore, hinge width h should be increased and length L should be decreased.
Ductile hinge width h will generally be determined by expansion force criteria, so it is important to reduce hinge length to a practical minimum in order to minimize elastic rebound. Empirical data on recoil for ductile hinges of different lengths show significantly lower recoil for shorter hinge lengths, in good agreement with the above analysis.
The ductile hinges 20 of the tissue supporting device 10, 100, 200 provide a second important advantage in minimizing device recoil. The embodiment of
ΔC=RΔθ cos θ
Since elastic rebound of hinge curvature is nearly constant at any gross curvature, the net contribution to circumferential recoil ΔC is lower at higher strut angles θ. The final device circumference is usually specified as some fixed value, so decreasing overall strut length can increase the final strut angle θ. Total stent recoil can thus be minimized with ductile hinges by using shorter struts and higher hinge curvatures when expanded.
Empirical measurements have shown that tissue supporting device designs based on ductile hinges, such as the embodiment of
According to one example of the tissue supporting device of the invention, the device can be expanded by application of an internal pressure of about 2 atmospheres or less, and once expanded to a diameter between 2 and 3 times the initial diameter can withstand a compressive force of about 16 to 20 gm/mm or greater. Examples of typical compression force values for prior art devices are 3.8 to 4.0 gm/mm.
While both recoil and crush strength properties of tissue supporting devices can be improved by use of ductile hinges with large curvatures in the expanded configuration, care must be taken not to exceed an acceptable maximum strain level for the material being used. Generally, εmax is defined as maximum strain, and it is dependent on ductile hinge width h, ductile hinge length L, and bend angle θ in radians. When strain, hinge width and bend angle are determined through other criteria, an expression may be developed to determine the required lengths for the complicated ductile hinge geometry of the present invention. Typical values for the prismatic portions of the curved ductile hinges 20 range from about 0.002 to about 0.0035 inches (0.051-0.089 mm) in hinge width and about 0.002 to about 0.006 inches (0.051-0.152 mm) in hinge length.
In many designs of the prior art, circumferential expansion was accompanied by a significant contraction of the axial length of the stent which may be up to 15% of the initial device length. Excessive axial contraction can cause a number of problems in device deployment and performance including difficulty in proper placement and tissue damage. Designs based on ductile hinges 20 can minimize the axial contraction, or foreshortening, of a tissue supporting device during expansion, as discussed in greater detail in the afore-mentioned U.S. application Ser. No. 09/183,555. This ability to control axial contraction based on hinge and strut design provides great design flexibility when using ductile hinges. For example, a stent could be designed with zero axial contraction.
The stent 10, 100, 200 of the present invention illustrates the trade off between crush strength and axial contraction. Referring to
According to one example of the present invention, the struts 18 are positioned initially at an angle of about 0° to 45° with respect to a longitudinal axis of the device. As the device is expanded radially from the unexpanded state illustrated in
In addition, while ductile hinges 20 are the preferred configuration for the expandable medical device of the present invention, a stent without the defined ductile hinges would also be included within the scope of the present invention.
While the invention has been described in detail with reference to the preferred embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made and equivalents employed, without departing from the present invention.
This application is a continuation of U.S. patent application Ser. No. 10/456,292, filed Jun. 5, 2003, now U.S. Pat. No. 7,179,288, issued Feb. 20, 2007, which is a continuation of U.S. patent application Ser. No. 09/688,092, filed on Oct. 16, 2000, now abandoned, each of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3657744 | Ersek | Apr 1972 | A |
4300244 | Bokros | Nov 1981 | A |
4531936 | Gordon | Jul 1985 | A |
4542025 | Tice et al. | Sep 1985 | A |
4580568 | Gianturco | Apr 1986 | A |
4650466 | Luther | Mar 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4824436 | Wolinsky | Apr 1989 | A |
4834755 | Silvestrini et al. | May 1989 | A |
4889119 | Jamiolkowski et al. | Dec 1989 | A |
4916193 | Tang et al. | Apr 1990 | A |
4955878 | See et al. | Sep 1990 | A |
4957508 | Kaneko et al. | Sep 1990 | A |
4960790 | Stella et al. | Oct 1990 | A |
4969458 | Wiktor | Nov 1990 | A |
4989601 | Marchosky et al. | Feb 1991 | A |
4990155 | Wilkoff et al. | Feb 1991 | A |
4994071 | MacGregor | Feb 1991 | A |
5017381 | Maruyama et al. | May 1991 | A |
5019090 | Pinchuk | May 1991 | A |
5049132 | Shaffer et al. | Sep 1991 | A |
5053048 | Pinchuk | Oct 1991 | A |
5059166 | Fischell et al. | Oct 1991 | A |
5059178 | Ya et al. | Oct 1991 | A |
5059211 | Stack et al. | Oct 1991 | A |
5078726 | Kreamer | Jan 1992 | A |
5085629 | Goldberg et al. | Feb 1992 | A |
5092841 | Spears | Mar 1992 | A |
5102417 | Palmaz | Apr 1992 | A |
5139480 | Hickle et al. | Aug 1992 | A |
5157049 | Haugwitz et al. | Oct 1992 | A |
5160341 | Brenneman et al. | Nov 1992 | A |
5171217 | March et al. | Dec 1992 | A |
5171262 | MacGregor | Dec 1992 | A |
5176617 | Fischell et al. | Jan 1993 | A |
5195984 | Schatz | Mar 1993 | A |
5197978 | Hess | Mar 1993 | A |
5213580 | Slepian et al. | May 1993 | A |
5223092 | Grinnell et al. | Jun 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5242399 | Lau et al. | Sep 1993 | A |
5282823 | Schwartz et al. | Feb 1994 | A |
5283257 | Gregory et al. | Feb 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5288711 | Mitchell et al. | Feb 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5292512 | Schaefer et al. | Mar 1994 | A |
5304121 | Sahatjian | Apr 1994 | A |
5314688 | Kauffman et al. | May 1994 | A |
5342348 | Kaplan | Aug 1994 | A |
5342621 | Eury | Aug 1994 | A |
5344426 | Lau et al. | Sep 1994 | A |
5380299 | Fearnot et al. | Jan 1995 | A |
5383892 | Cardon et al. | Jan 1995 | A |
5383928 | Scott et al. | Jan 1995 | A |
5403858 | Bastard et al. | Apr 1995 | A |
5407683 | Shively | Apr 1995 | A |
5415869 | Straubinger et al. | May 1995 | A |
5419760 | Narciso | May 1995 | A |
5439446 | Barry | Aug 1995 | A |
5439686 | Desai et al. | Aug 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5441745 | Presant et al. | Aug 1995 | A |
5443458 | Eury | Aug 1995 | A |
5443496 | Schwartz et al. | Aug 1995 | A |
5443497 | Venbrux | Aug 1995 | A |
5443500 | Sigwart | Aug 1995 | A |
5447724 | Helmus et al. | Sep 1995 | A |
5449373 | Pinchasik et al. | Sep 1995 | A |
5449382 | Dayton | Sep 1995 | A |
5449513 | Yokoyama et al. | Sep 1995 | A |
5457113 | Cullinan et al. | Oct 1995 | A |
5460817 | Langley et al. | Oct 1995 | A |
5462866 | Wang | Oct 1995 | A |
5464450 | Buscemi et al. | Nov 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5472985 | Grainger et al. | Dec 1995 | A |
5473055 | Mongelli et al. | Dec 1995 | A |
5496365 | Sgro | Mar 1996 | A |
5499373 | Richards et al. | Mar 1996 | A |
5500013 | Buscemi et al. | Mar 1996 | A |
5510077 | Dinh et al. | Apr 1996 | A |
5512055 | Domb et al. | Apr 1996 | A |
5516781 | Morris et al. | May 1996 | A |
5519954 | Garrett | May 1996 | A |
5523092 | Hanson et al. | Jun 1996 | A |
5527344 | Arzbaecher et al. | Jun 1996 | A |
5534287 | Lukic | Jul 1996 | A |
5545208 | Wolff et al. | Aug 1996 | A |
5545210 | Hess et al. | Aug 1996 | A |
5545569 | Grainger et al. | Aug 1996 | A |
5551954 | Buscemi et al. | Sep 1996 | A |
5554182 | Dinh et al. | Sep 1996 | A |
5556413 | Lam | Sep 1996 | A |
5562922 | Lambert | Oct 1996 | A |
5563146 | Morris et al. | Oct 1996 | A |
5571089 | Crocker | Nov 1996 | A |
5571166 | Dinh et al. | Nov 1996 | A |
5575571 | Takebayashi et al. | Nov 1996 | A |
5575771 | Walinsky | Nov 1996 | A |
5578075 | Dayton | Nov 1996 | A |
5591197 | Orth et al. | Jan 1997 | A |
5591224 | Schwartz et al. | Jan 1997 | A |
5591227 | Dinh et al. | Jan 1997 | A |
5593434 | Williams | Jan 1997 | A |
5595722 | Grainger et al. | Jan 1997 | A |
5599352 | Dinh et al. | Feb 1997 | A |
5599844 | Grainger et al. | Feb 1997 | A |
5603722 | Phan et al. | Feb 1997 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607442 | Fischell et al. | Mar 1997 | A |
5607463 | Schwartz et al. | Mar 1997 | A |
5607475 | Cahalan et al. | Mar 1997 | A |
5609626 | Quijano | Mar 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5616608 | Kinsella et al. | Apr 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5618299 | Khosravi et al. | Apr 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5628785 | Schwartz et al. | May 1997 | A |
5628787 | Mayer | May 1997 | A |
5629077 | Turnlund et al. | May 1997 | A |
5632840 | Campbell | May 1997 | A |
5637113 | Tartaglia et al. | Jun 1997 | A |
5643314 | Carpenter et al. | Jul 1997 | A |
5646160 | Morris et al. | Jul 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5651174 | Schwartz et al. | Jul 1997 | A |
5660873 | Nikolaychik et al. | Aug 1997 | A |
5665591 | Sonenshein et al. | Sep 1997 | A |
5667764 | Kopia et al. | Sep 1997 | A |
5670161 | Healy et al. | Sep 1997 | A |
5670659 | Alas et al. | Sep 1997 | A |
5672638 | Verhoeven et al. | Sep 1997 | A |
5674241 | Bley et al. | Oct 1997 | A |
5674242 | Phan et al. | Oct 1997 | A |
5674278 | Boneau | Oct 1997 | A |
5679400 | Tuch | Oct 1997 | A |
5679659 | Verhoeven et al. | Oct 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5697967 | Dinh et al. | Dec 1997 | A |
5697971 | Fischell et al. | Dec 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5707385 | Williams | Jan 1998 | A |
5713949 | Jayaraman | Feb 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5722979 | Kusleika | Mar 1998 | A |
5725548 | Jayaraman | Mar 1998 | A |
5725549 | Lam | Mar 1998 | A |
5725567 | Wolff et al. | Mar 1998 | A |
5728150 | McDonald et al. | Mar 1998 | A |
5728420 | Keogh | Mar 1998 | A |
5733327 | Igaki et al. | Mar 1998 | A |
5733330 | Cox | Mar 1998 | A |
5733925 | Kunz et al. | Mar 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5741293 | Wijay | Apr 1998 | A |
5744460 | Muller et al. | Apr 1998 | A |
5755772 | Evans et al. | May 1998 | A |
5759192 | Saunders | Jun 1998 | A |
5766239 | Cox | Jun 1998 | A |
5769883 | Buscemi et al. | Jun 1998 | A |
5770609 | Grainger et al. | Jun 1998 | A |
5773479 | Grainger et al. | Jun 1998 | A |
5776162 | Kleshinski | Jul 1998 | A |
5776181 | Lee et al. | Jul 1998 | A |
5776184 | Tuch | Jul 1998 | A |
5782908 | Cahalan et al. | Jul 1998 | A |
5788979 | Alt et al. | Aug 1998 | A |
5792106 | Mische | Aug 1998 | A |
5797898 | Santini, Jr. et al. | Aug 1998 | A |
5799384 | Schwartz et al. | Sep 1998 | A |
5800507 | Schwartz | Sep 1998 | A |
5807404 | Richter | Sep 1998 | A |
5811447 | Kunz et al. | Sep 1998 | A |
5817152 | Birdsall et al. | Oct 1998 | A |
5820917 | Tuch | Oct 1998 | A |
5820918 | Ronan et al. | Oct 1998 | A |
5824045 | Alt | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5827322 | Williams | Oct 1998 | A |
5833651 | Donovan et al. | Nov 1998 | A |
5837008 | Berg et al. | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5843117 | Alt et al. | Dec 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5843166 | Lentz et al. | Dec 1998 | A |
5843172 | Yan | Dec 1998 | A |
5843175 | Frantzen | Dec 1998 | A |
5843741 | Wong et al. | Dec 1998 | A |
5849034 | Schwartz | Dec 1998 | A |
5851217 | Wolff et al. | Dec 1998 | A |
5851231 | Wolff et al. | Dec 1998 | A |
5853419 | Imran | Dec 1998 | A |
5855600 | Alt | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5868781 | Killion | Feb 1999 | A |
5871535 | Wolff et al. | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5876419 | Carpenter et al. | Mar 1999 | A |
5879697 | Ding et al. | Mar 1999 | A |
5882335 | Leone et al. | Mar 1999 | A |
5886026 | Hunter et al. | Mar 1999 | A |
5891108 | Leone et al. | Apr 1999 | A |
5893840 | Hull et al. | Apr 1999 | A |
5922020 | Klein et al. | Jul 1999 | A |
5922021 | Jang | Jul 1999 | A |
5928916 | Keogh | Jul 1999 | A |
5932243 | Fricker et al. | Aug 1999 | A |
5935506 | Schmitz et al. | Aug 1999 | A |
5945456 | Grainger et al. | Aug 1999 | A |
5957971 | Schwartz | Sep 1999 | A |
5964798 | Imran | Oct 1999 | A |
5968091 | Pinchuk et al. | Oct 1999 | A |
5968092 | Buscemi et al. | Oct 1999 | A |
5972027 | Johnson | Oct 1999 | A |
5976182 | Cox | Nov 1999 | A |
5980551 | Summers et al. | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5981568 | Kunz et al. | Nov 1999 | A |
5984957 | Laptewicz, Jr. et al. | Nov 1999 | A |
5992769 | Wise | Nov 1999 | A |
5994341 | Hunter et al. | Nov 1999 | A |
6007517 | Anderson | Dec 1999 | A |
6015432 | Rakos et al. | Jan 2000 | A |
6017362 | Lau | Jan 2000 | A |
6017363 | Hojeibane | Jan 2000 | A |
6019789 | Dinh et al. | Feb 2000 | A |
6022371 | Killion | Feb 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6027526 | Limon et al. | Feb 2000 | A |
6030414 | Taheri | Feb 2000 | A |
6042606 | Frantzen | Mar 2000 | A |
6056722 | Jayaraman | May 2000 | A |
6063101 | Jacobsen et al. | May 2000 | A |
6071305 | Brown et al. | Jun 2000 | A |
6074659 | Kunz et al. | Jun 2000 | A |
6083258 | Yadav | Jul 2000 | A |
6086582 | Altman et al. | Jul 2000 | A |
6087479 | Stamler et al. | Jul 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6099561 | Alt | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6120535 | McDonald et al. | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120847 | Yang et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6123861 | Santini et al. | Sep 2000 | A |
6140127 | Sprague | Oct 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6156062 | McGuinness | Dec 2000 | A |
6159488 | Nagler et al. | Dec 2000 | A |
6171609 | Kunz | Jan 2001 | B1 |
6174325 | Eckhouse | Jan 2001 | B1 |
6174326 | Kitaoka et al. | Jan 2001 | B1 |
6190404 | Palmaz et al. | Feb 2001 | B1 |
6193746 | Strecker | Feb 2001 | B1 |
6206914 | Soykan et al. | Mar 2001 | B1 |
6206915 | Fagan et al. | Mar 2001 | B1 |
6206916 | Furst | Mar 2001 | B1 |
6231600 | Zhong | May 2001 | B1 |
6239118 | Schatz et al. | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6241762 | Shanley | Jun 2001 | B1 |
6245101 | Drasler et al. | Jun 2001 | B1 |
6249952 | Ding | Jun 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6261318 | Lee et al. | Jul 2001 | B1 |
6268390 | Kunz | Jul 2001 | B1 |
6273908 | Ndondo-Lay | Aug 2001 | B1 |
6273910 | Limon | Aug 2001 | B1 |
6273911 | Cox et al. | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6280411 | Lennox | Aug 2001 | B1 |
6287332 | Bolz et al. | Sep 2001 | B1 |
6290673 | Shanley | Sep 2001 | B1 |
6293967 | Shanley | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6306166 | Barry et al. | Oct 2001 | B1 |
6306421 | Kunz et al. | Oct 2001 | B1 |
6309414 | Rolando et al. | Oct 2001 | B1 |
6312459 | Huang et al. | Nov 2001 | B1 |
6312460 | Drasler et al. | Nov 2001 | B2 |
6338739 | Datta et al. | Jan 2002 | B1 |
6358556 | Ding et al. | Mar 2002 | B1 |
6358989 | Kunz et al. | Mar 2002 | B1 |
6368346 | Jadhav | Apr 2002 | B1 |
6369039 | Palasis et al. | Apr 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6387124 | Buscemi et al. | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6399144 | Dinh et al. | Jun 2002 | B2 |
6403635 | Kinsella et al. | Jun 2002 | B1 |
6423092 | Datta et al. | Jul 2002 | B2 |
6423345 | Bernstein et al. | Jul 2002 | B2 |
6429232 | Kinsella et al. | Aug 2002 | B1 |
6451051 | Drasler et al. | Sep 2002 | B2 |
6461631 | Dunn et al. | Oct 2002 | B1 |
6468302 | Cox et al. | Oct 2002 | B2 |
6475237 | Drasler et al. | Nov 2002 | B2 |
6482810 | Brem et al. | Nov 2002 | B1 |
6491617 | Ogle et al. | Dec 2002 | B1 |
6491666 | Santini et al. | Dec 2002 | B1 |
6491938 | Kunz et al. | Dec 2002 | B2 |
6497916 | Taylor et al. | Dec 2002 | B1 |
6500859 | Kinsella et al. | Dec 2002 | B2 |
6503954 | Bhat et al. | Jan 2003 | B1 |
6506411 | Hunter et al. | Jan 2003 | B2 |
6506437 | Harish et al. | Jan 2003 | B1 |
6511505 | Cox et al. | Jan 2003 | B2 |
6515009 | Kunz et al. | Feb 2003 | B1 |
6528121 | Ona et al. | Mar 2003 | B2 |
6530950 | Alvarado et al. | Mar 2003 | B1 |
6530951 | Bates et al. | Mar 2003 | B1 |
6533807 | Wolinsky et al. | Mar 2003 | B2 |
6537256 | Santini, Jr. et al. | Mar 2003 | B2 |
6540774 | Cox | Apr 2003 | B1 |
6544544 | Hunter et al. | Apr 2003 | B2 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6551838 | Santini et al. | Apr 2003 | B2 |
6558733 | Hossainy et al. | May 2003 | B1 |
6562065 | Shanley | May 2003 | B1 |
6565602 | Rolando et al. | May 2003 | B2 |
6569441 | Kunz et al. | May 2003 | B2 |
6569688 | Sivan et al. | May 2003 | B2 |
6572642 | Rinaldi et al. | Jun 2003 | B2 |
6585764 | Wright et al. | Jul 2003 | B2 |
6585765 | Hossainy et al. | Jul 2003 | B1 |
6585773 | Xie | Jul 2003 | B1 |
6599314 | Mathis | Jul 2003 | B2 |
6599928 | Kunz et al. | Jul 2003 | B2 |
6602284 | Cox et al. | Aug 2003 | B2 |
6613084 | Yang | Sep 2003 | B2 |
6616690 | Rolando et al. | Sep 2003 | B2 |
6627246 | Mehta et al. | Sep 2003 | B2 |
6638302 | Curcio et al. | Oct 2003 | B1 |
6645547 | Shekalim et al. | Nov 2003 | B1 |
6656162 | Santini et al. | Dec 2003 | B2 |
6656217 | Herzog, Jr. et al. | Dec 2003 | B1 |
6663664 | Pacetti | Dec 2003 | B1 |
6663881 | Kunz et al. | Dec 2003 | B2 |
6673385 | Ding et al. | Jan 2004 | B1 |
6682545 | Kester | Jan 2004 | B1 |
6689390 | Bernstein et al. | Feb 2004 | B2 |
6702850 | Byun et al. | Mar 2004 | B1 |
6712845 | Hossainy | Mar 2004 | B2 |
6713119 | Hossainy et al. | Mar 2004 | B2 |
6716242 | Altman | Apr 2004 | B1 |
6716444 | Castro et al. | Apr 2004 | B1 |
6716981 | Saikali et al. | Apr 2004 | B2 |
6720350 | Kunz et al. | Apr 2004 | B2 |
6723373 | Narayanan et al. | Apr 2004 | B1 |
6730064 | Ragheb et al. | May 2004 | B2 |
6730116 | Wolinsky et al. | May 2004 | B1 |
6746773 | Llanos et al. | Jun 2004 | B2 |
6753071 | Pacetti | Jun 2004 | B1 |
6764507 | Shanley | Jul 2004 | B2 |
6780424 | Claude | Aug 2004 | B2 |
6783543 | Jang | Aug 2004 | B2 |
6783793 | Hossainy et al. | Aug 2004 | B1 |
6790228 | Hossainy et al. | Sep 2004 | B2 |
6818063 | Kerrigan | Nov 2004 | B1 |
6846841 | Hunter et al. | Jan 2005 | B2 |
6855770 | Pinchuk et al. | Feb 2005 | B2 |
6860946 | Hossainy et al. | Mar 2005 | B2 |
6861088 | Weber et al. | Mar 2005 | B2 |
6869443 | Buscemi et al. | Mar 2005 | B2 |
6887510 | Villareal | May 2005 | B2 |
6890339 | Sahatjian et al. | May 2005 | B2 |
6896965 | Hossainy | May 2005 | B1 |
6908622 | Barry et al. | Jun 2005 | B2 |
6908624 | Hossainy et al. | Jun 2005 | B2 |
6939376 | Shulze et al. | Sep 2005 | B2 |
6964680 | Shanley | Nov 2005 | B2 |
7192438 | Margolis | Mar 2007 | B2 |
7195628 | Falkenberg | Mar 2007 | B2 |
7429268 | Shanley et al. | Sep 2008 | B2 |
20010000802 | Soykan et al. | May 2001 | A1 |
20010018469 | Chen et al. | Aug 2001 | A1 |
20010027340 | Wright et al. | Oct 2001 | A1 |
20010029351 | Falotico et al. | Oct 2001 | A1 |
20010034363 | Li et al. | Oct 2001 | A1 |
20010044648 | Wolinsky | Nov 2001 | A1 |
20010044652 | Moore | Nov 2001 | A1 |
20020002400 | Drasler et al. | Jan 2002 | A1 |
20020005206 | Falotico et al. | Jan 2002 | A1 |
20020007209 | Scheerder et al. | Jan 2002 | A1 |
20020007213 | Falotico et al. | Jan 2002 | A1 |
20020007214 | Falotico | Jan 2002 | A1 |
20020007215 | Falotico et al. | Jan 2002 | A1 |
20020016625 | Falotico et al. | Feb 2002 | A1 |
20020022876 | Richter et al. | Feb 2002 | A1 |
20020028243 | Masters | Mar 2002 | A1 |
20020032414 | Ragheb et al. | Mar 2002 | A1 |
20020038145 | Jang | Mar 2002 | A1 |
20020041931 | Suntola et al. | Apr 2002 | A1 |
20020068969 | Shanley et al. | Jun 2002 | A1 |
20020071902 | Ding et al. | Jun 2002 | A1 |
20020072511 | New et al. | Jun 2002 | A1 |
20020082679 | Sirhan et al. | Jun 2002 | A1 |
20020082680 | Shanley et al. | Jun 2002 | A1 |
20020082682 | Barclay et al. | Jun 2002 | A1 |
20020094985 | Herrmann et al. | Jul 2002 | A1 |
20020123801 | Pacetti et al. | Sep 2002 | A1 |
20020127263 | Carlyle et al. | Sep 2002 | A1 |
20020128704 | Daum et al. | Sep 2002 | A1 |
20020142039 | Claude | Oct 2002 | A1 |
20020155212 | Hossainy | Oct 2002 | A1 |
20020193475 | Hossainy et al. | Dec 2002 | A1 |
20030004141 | Brown | Jan 2003 | A1 |
20030004564 | Elkins et al. | Jan 2003 | A1 |
20030018083 | Jerussi et al. | Jan 2003 | A1 |
20030028244 | Bates et al. | Feb 2003 | A1 |
20030036794 | Ragheb et al. | Feb 2003 | A1 |
20030050687 | Schwade et al. | Mar 2003 | A1 |
20030060877 | Falotico et al. | Mar 2003 | A1 |
20030068355 | Shanley et al. | Apr 2003 | A1 |
20030069606 | Girouard et al. | Apr 2003 | A1 |
20030077312 | Schmulewicz et al. | Apr 2003 | A1 |
20030083646 | Sirhan et al. | May 2003 | A1 |
20030086957 | Hughes et al. | May 2003 | A1 |
20030088307 | Shulze et al. | May 2003 | A1 |
20030100865 | Santini et al. | May 2003 | A1 |
20030125803 | Vallana et al. | Jul 2003 | A1 |
20030157241 | Hossainy et al. | Aug 2003 | A1 |
20030176915 | Wright et al. | Sep 2003 | A1 |
20030181973 | Sahota | Sep 2003 | A1 |
20030199970 | Shanley | Oct 2003 | A1 |
20030204239 | Carlyle et al. | Oct 2003 | A1 |
20030216699 | Falotico | Nov 2003 | A1 |
20040073296 | Epstein et al. | Apr 2004 | A1 |
20040122505 | Shanley | Jun 2004 | A1 |
20040122506 | Shanley et al. | Jun 2004 | A1 |
20040127976 | Diaz | Jul 2004 | A1 |
20040127977 | Shanley | Jul 2004 | A1 |
20050059991 | Shanley | Mar 2005 | A1 |
20050119720 | Gale et al. | Jun 2005 | A1 |
20050137678 | Varma | Jun 2005 | A1 |
20070067026 | Shanley | Mar 2007 | A1 |
20080097579 | Shanley et al. | Apr 2008 | A1 |
20080097583 | Shanley et al. | Apr 2008 | A1 |
20080109071 | Shanley | May 2008 | A1 |
20080243070 | Shanley | Oct 2008 | A1 |
20080249609 | Shanley | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
2234787 | Apr 1998 | CA |
2323358 | Oct 1999 | CA |
2409787 | Dec 2001 | CA |
20200220 | Apr 2002 | DE |
0 294 905 | Dec 1988 | EP |
0 335 341 | Oct 1989 | EP |
0 374 698 | Jun 1990 | EP |
0 375 520 | Jun 1990 | EP |
0 470 246 | Feb 1992 | EP |
0 470 569 | Feb 1992 | EP |
0 543 653 | May 1993 | EP |
0 551 182 | Jul 1993 | EP |
0 556 245 | Aug 1993 | EP |
0 566 807 | Oct 1993 | EP |
0 567 816 | Nov 1993 | EP |
0 568 310 | Nov 1993 | EP |
0 712 615 | May 1996 | EP |
0 716 836 | Jun 1996 | EP |
0 716 836 | Jun 1996 | EP |
0 734 698 | Oct 1996 | EP |
0 747 069 | Dec 1996 | EP |
0 752 885 | Jan 1997 | EP |
0 761 251 | Mar 1997 | EP |
0 761 251 | Mar 1997 | EP |
0 770 401 | May 1997 | EP |
0 706 376 | Jun 1997 | EP |
0 797 963 | Oct 1997 | EP |
0 809 515 | Dec 1997 | EP |
0 832 655 | Apr 1998 | EP |
0 850 651 | Jul 1998 | EP |
0 897 700 | Feb 1999 | EP |
0 934 036 | Aug 1999 | EP |
0 938 878 | Sep 1999 | EP |
0 938 878 | Sep 1999 | EP |
0 950 386 | Oct 1999 | EP |
0 959 812 | Dec 1999 | EP |
0 980 280 | Feb 2000 | EP |
1 118 325 | Jul 2001 | EP |
1 132 058 | Sep 2001 | EP |
1 172 074 | Jan 2002 | EP |
1 181 943 | Feb 2002 | EP |
1 189 554 | Mar 2002 | EP |
1 222 941 | Jul 2002 | EP |
1 223 305 | Jul 2002 | EP |
1 236 478 | Sep 2002 | EP |
1 348 402 | Oct 2003 | EP |
1 570 807 | Sep 2005 | EP |
1277449 | Jun 2006 | EP |
2 764 794 | Dec 1998 | FR |
9001969 | Mar 1990 | WO |
9013332 | Nov 1990 | WO |
9110424 | Jul 1991 | WO |
9111193 | Aug 1991 | WO |
9112779 | Sep 1991 | WO |
9200747 | Jan 1992 | WO |
9212717 | Aug 1992 | WO |
9215286 | Sep 1992 | WO |
9306792 | Apr 1993 | WO |
9311120 | Jun 1993 | WO |
9407529 | Apr 1994 | WO |
9413268 | Jun 1994 | WO |
9421308 | Sep 1994 | WO |
9424961 | Nov 1994 | WO |
9424962 | Nov 1994 | WO |
9503036 | Feb 1995 | WO |
9503795 | Feb 1995 | WO |
9503796 | Feb 1995 | WO |
9524908 | Sep 1995 | WO |
9525176 | Sep 1995 | WO |
9603092 | Feb 1996 | WO |
9629028 | Sep 1996 | WO |
WO 9632907 | Oct 1996 | WO |
9704721 | Feb 1997 | WO |
9710011 | Mar 1997 | WO |
WO 9733534 | Sep 1997 | WO |
9805270 | Feb 1998 | WO |
9808566 | Mar 1998 | WO |
9818407 | May 1998 | WO |
9819628 | May 1998 | WO |
9823228 | Jun 1998 | WO |
9823244 | Jun 1998 | WO |
WO 9823228 | Jun 1998 | WO |
9836784 | Aug 1998 | WO |
WO 9834669 | Aug 1998 | WO |
WO 9836784 | Aug 1998 | WO |
WO 9847447 | Oct 1998 | WO |
WO 9847447 | Oct 1998 | WO |
9856312 | Dec 1998 | WO |
9858600 | Dec 1998 | WO |
WO 9856312 | Dec 1998 | WO |
9915108 | Apr 1999 | WO |
9916386 | Apr 1999 | WO |
9916477 | Apr 1999 | WO |
WO 9916386 | Apr 1999 | WO |
9944536 | Sep 1999 | WO |
9949928 | Oct 1999 | WO |
WO 9949810 | Oct 1999 | WO |
WO 9949928 | Oct 1999 | WO |
9955395 | Nov 1999 | WO |
0010613 | Mar 2000 | WO |
0010622 | Mar 2000 | WO |
WO 0021584 | Apr 2000 | WO |
WO 0027445 | May 2000 | WO |
WO 0032255 | Jun 2000 | WO |
0045744 | Aug 2000 | WO |
0069368 | Nov 2000 | WO |
0071054 | Nov 2000 | WO |
0117577 | Mar 2001 | WO |
0145763 | Jun 2001 | WO |
0145862 | Jun 2001 | WO |
0149338 | Jul 2001 | WO |
0152915 | Jul 2001 | WO |
0187376 | Nov 2001 | WO |
WO 0187342 | Nov 2001 | WO |
0217880 | Mar 2002 | WO |
0226162 | Apr 2002 | WO |
WO 0226281 | Apr 2002 | WO |
0241931 | May 2002 | WO |
02060506 | Aug 2002 | WO |
02087586 | Nov 2002 | WO |
03007842 | Jan 2003 | WO |
WO 03015664 | Feb 2003 | WO |
03018083 | Mar 2003 | WO |
03047463 | Jun 2003 | WO |
WO 03057218 | Jul 2003 | WO |
2004043511 | May 2004 | WO |
2005053937 | Jun 2005 | WO |
2005118971 | Dec 2005 | WO |
2006036319 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060149357 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10456292 | Jun 2003 | US |
Child | 11368957 | US | |
Parent | 09688092 | Oct 2000 | US |
Child | 10456292 | US |