The invention relates generally to the fields of expandable endoluminal vascular prostheses and their use in treating atherosclerotic lesions.
Vulnerable plaques, which are sometimes known as high-risk atherosclerotic plaques, include arterial atherosclerotic lesions characterized by a subluminal thrombotic lipid-rich pool of materials contained by and/or overlaid by a thin fibrous cap. Although vulnerable plaques are non-stenotic or marginally stenotic, it is believed that their rupture, resulting in the release of thrombotic contents, accounts for a significant portion of adverse cardiac events.
U.S. Publication No. 2002/0125799 discloses intravascular stents for the treatment of vulnerable plaque that consist of opposing end ring portions and a central strut portion having a zig-zag configuration that connects with the end portion at apices of the zig-zag structure, and is incorporated herein by reference in its entirety.
U.S. Publication No. 2005/0137678 discloses a low-profile resorbable polymer stent and compositions therefore, and is incorporated herein by reference in its entirety.
U.S. Publication No. 2005/0287184 discloses drug-delivery stent formulations for treating restenosis and vulnerable plaque, and is hereby incorporated by reference herein in its entirety.
The present invention provides tubular endoluminal prostheses and methods for treating atherosclerotic lesions therewith. The prostheses of the invention have been designed to be particularly well suited to the treatment of vulnerable plaque lesions and for indications where the promotion of endothelialization is desired.
One embodiment of the invention provides an expandable tubular prosthesis in its unexpanded state that includes: at least one expandable at least substantially tubular portion disposed between two ends of the prosthesis, for example, a single central portion, that includes: a plurality of radially neighboring, longitudinally disposed sinusoidal members comprising peaks and troughs, the peaks and troughs of radially neighboring sinusoidal members being at least substantially in-phase with each other; and a plurality of radial connecting members that connect radially neighboring sinusoidal members, each radial connecting member having a first end and a second end and each including a plurality of segments joined by turns, wherein the first end and the second end of each radial connecting member connect to radially neighboring sinusoidal members at points of connection that are laterally offset, and wherein each radial connecting member comprises segments that at least substantially conform to the shape of the sinusoidal members to which the radial connecting member is connected.
Another embodiment of the invention provides an expandable tubular prosthesis in its unexpanded state that includes: at least one expandable at least substantially tubular portion disposed between two ends of the prosthesis, for example, a single central portion, that includes: a plurality of radially neighboring, longitudinally disposed sinusoidal members including peaks and troughs, the peaks and troughs of radially neighboring sinusoidal members being at least substantially in-phase with each other, and a plurality of radial connecting members that connect radially neighboring sinusoidal members, each radial connecting member having a first end and a second end and each including a plurality of segments joined by turns, wherein the first end and the second end of each radial connecting member connect to radially neighboring sinusoidal members at points of connection that are laterally offset, wherein each radial connecting member includes segments that at least substantially conform to the shape of the sinusoidal members to which the radial connecting member is connected, and wherein the sinusoidal members are connected at a plurality of lateral positions by a band of radial connecting members connecting radially neighboring sinusoidal members; and an end segment at each end of the prosthesis, each end segment including a laterally undulating member forming a radial band including apices, wherein the sinusoidal members connect to the end segments at or near the apices of each end segment.
A further embodiment of the invention provides a radially expandable tubular prosthesis in its unexpanded state that includes: at least one radially expandable at least substantially tubular portion disposed between two ends of the prosthesis, including: a plurality of radially neighboring, longitudinally disposed sinusoidal members comprising peaks and troughs, the peaks and troughs of radially neighboring sinusoidal members being at least substantially in-phase with each other, so that laterally adjacent, oppositely facing peaks of radially neighboring sinusoidal members are offset by 0.5 wavelength or about 0.5 wavelength with respect to the phase of the sinusoidal members, and wherein the width of the sinusoidal members narrows between at least substantially all of the peaks and troughs of the sinusoidal members; and a plurality of radial connecting members that connect radially neighboring sinusoidal members, each radial connecting member having a first end and a second end and each comprising a plurality of segments and turns, wherein the first end and the second end of each radial connecting member respectively connect to radially neighboring sinusoidal members at points of connection at or near the laterally adjacent peaks of the radially neighboring sinusoidal members, wherein each radial connecting member comprises segments that conform to the troughs of the sinusoidal members adjacent to the points of connection of the ends of the radial connecting member, said troughs being opposite the peaks of the radially neighboring sinusoidal members at or near which the ends of the radial connecting member are connected, and wherein each radial connecting member laterally extends beyond the points of connection of each end thereof at or near laterally adjacent peaks of radially neighboring sinusoidal members. In one variation, there is a single of said radially expandable at least substantially tubular portion disposed between two ends of the prosthesis. In another variation, there are at least two of said radially expandable at least substantially tubular portions disposed between two ends of the prosthesis.
Another embodiment of the invention provides a radially expandable tubular prosthesis in its unexpanded state that includes: at least one expandable at least substantially tubular portion disposed between two ends of the prosthesis, said portion composed of a super elastic metal alloy, having a wall thickness in the range of 40-100 microns, such as in the range of 40 to 70 microns, and comprising: a plurality of radially neighboring, longitudinally disposed sinusoidal members comprising peaks and troughs, the peaks and troughs of radially neighboring sinusoidal members being at least substantially in-phase with each other, so that laterally adjacent, oppositely facing peaks of radially neighboring sinusoidal members are offset with respect to the phase of the sinusoidal members; and a plurality of radial connecting members that connect radially neighboring sinusoidal members, each radial connecting member having a first end and a second end and each comprising a plurality of segments and turns, wherein the first end and the second end of each radial connecting member respectively connect to radially neighboring sinusoidal members at points of connection at or near the laterally adjacent peaks of the radially neighboring sinusoidal members, wherein each radial connecting member comprises segments that conform to the troughs of the sinusoidal members adjacent to the points of connection of the ends of the radial connecting member, said troughs being opposite the peaks of the radially neighboring sinusoidal members at or near which the ends of the radial connecting member are connected, and wherein each radial connecting member laterally extends beyond the points of connection of each end thereof at or near laterally adjacent peaks of radially neighboring sinusoidal members. In one variation, there is a single of said radially expandable at least substantially tubular portion disposed between two ends of the prosthesis. In another variation, there are at least two of said radially expandable at least substantially tubular portions disposed between two ends of the prosthesis.
A further embodiment of the invention provides a method for treating an atherosclerotic lesion, such as a vulnerable plaque, in a patient in need thereof, comprising the step of: deploying a prosthesis according to the invention at a site of an atherosclerotic lesion, such as a vulnerable plaque, in a blood vessel of a patient.
Additional features, advantages, and embodiments of the invention may be set forth or apparent from consideration of the following detailed description, drawings, and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.
The invention provides expandable tubular endovascular prostheses for the treatment of atherosclerotic lesions, including vulnerable plaques, and methods of treatment using the prostheses.
Various aspects of the invention are described below with reference to the appended figures.
In
As shown in
It can also be seen in the embodiment of
The central portion 701 of the prosthesis shown in
The wall thickness, longitudinal backbone element, and radial connecting members of prostheses of the invention such as those shown in
The prostheses of the invention may be provided in different total (overall) lengths such as 10 mm, 15 mm, 20 mm, 25 mm and 30 mm. Thus, in one embodiment, the total length of a prosthesis according to the invention may be in the range of 10-30 mm, for example, in the range of 15-25 mm. The longitudinal length of each end section of a prosthesis according to the invention may be in the range of 1.4 mm-2.0 mm, such as equal to or about 1.6 mm. The unconstrained expanded radial diameter of a prosthesis of the invention may, for example, be 3.5 mm, 4.0 mm, or 4.5 mm. In one embodiment, the radial diameter of a prosthesis according to the invention in an expanded, unconstrained state is in the range of 3.0 mm to 5.0 mm, such as in the range of 3.5 mm-4.5 mm. A prosthesis according to the invention in its expanded working state may, for example, have a working range of radial compression of 0.5 mm-1.0 mm.
Advantageously, the expandable prostheses of the invention are characterized by minimal/no foreshortening, optimized radial forces and accuracy of deployment. It is believed that no currently available self-expanding stent or self-expanding endovascular prosthesis provides this combination of features.
In view of the above and without limitation, the following embodiments are also provided by the invention.
One embodiment of the invention provides an expandable tubular prosthesis that includes: an expandable at least substantially tubular central portion disposed between two ends of the prosthesis, comprising; a plurality of radially neighboring, longitudinally disposed sinusoidal members comprising peaks and troughs, the peaks and troughs of radially neighboring sinusoidal members being at least substantially in-phase with each other; and a plurality of radial connecting members that connect radially neighboring sinusoidal members, each radial connecting member having a first end and a second end and each comprising a plurality of segments joined by turns, wherein the first end and the second end of each radial connecting member connect to radially neighboring sinusoidal members at points of connection that are laterally offset, and wherein each radial connecting member comprises segments that at least substantially conform to the shape of the sinusoidal members to which the radial connecting member is connected in the unexpanded state.
In one variation of the embodiment, the first and second ends of the radial connecting members are connected at or near the laterally adjacent peaks of radially neighboring sinusoidal members. In another variation, the first and second ends of the radial connecting members are connected to neighboring sinusoidal members between the peaks and troughs of the sinusoidal members. For example, the first and second ends of the radial connecting members may be connected to the neighboring sinusoidal members midway or approximately between the peaks and troughs of the sinusoidal members.
In one variation, the lateral offset between the points of connection of the first end and second end of each radial connecting member may be 0.5 wavelength or about 0.5 wavelength, with respect to the phase of the sinusoidal members. In another variation, the lateral offset between the points of connection of the first end and second end of each radial connecting member is 1.0 wavelength or about 1.0 wavelength, with respect to the phase of the sinusoidal members.
The sinusoidal members may be connected at a plurality of lateral positions by a “band” of radial connecting members that connect radially neighboring sinusoidal members. As shown in the drawings, the radial connecting members of a band are not directly connected to each other.
The width of the radial connecting members may be narrower than the width of the sinusoidal members, for example 25-60%, such as 25-40%, of the width of the sinusoidal members. In another variation, the sinusoidal members may have a width that narrows between the peaks and troughs of at least some of the sinusoidal members. In one embodiment of the invention, the width of the radial connecting members is in the range of about 30 to about 70 microns. For an individual radial connecting member, its width may be uniform or may vary, i.e., be non-uniform.
As used herein the term “sinusoidal” means having a succession of waves characterized by peaks and troughs, which form a periodic waveform. Sinusoidal curves include, but are not limited to, those resembling, approximating or being sine waves. As pointed out above, the longitudinal backbone members of the embodiments of the invention shown in the figures are sinusoidal. In the embodiments shown in the above referenced figures, the wave pattern of the sinusoidal backbone elements is uniform in that it does not change within sections of the prosthesis which have the backbone elements and is simple in that there are no inflection points between the peaks and troughs of the waves and no intermediate peaks or toughs between the uppermost and lowermost peaks and troughs respectively. However, the invention also provides embodiments in which there are inflection points between the peaks and troughs of the waves and/or intermediate peaks or toughs between the uppermost and lowermost peaks, but where the limitations of the various embodiments are met, such as conformation of the radial connecting members from the point of attachment to the backbone member along the member toward the lowermost trough, conforming to any intermediate inflection point and/or intermediate peaks or troughs that may be present along the path. In addition, in the embodiments shown in the above referenced figures, the amplitude of the wave pattern of each sinusoidal backbone element is the same within a section of the prosthesis having such elements. Thus, within a section of a prosthesis according to the invention that includes multiple sinusoidal backbone elements, the wave patterns of the multiple sinusoidal backbone elements may be the same.
The invention also includes embodiments wherein the central portion of the prosthesis includes at least one or more than one section having the structure and properties described for the “singular” central portion above, in which case if there is more than one of said sections, they are connected to together form a unitary central portion of the prosthesis. Such subsections of the central portion of the prosthesis may be connected to each other in any manner or by any type of structure, such as by one or more longitudinally oriented struts. The prosthesis may include an end segment at each of its ends, where each end segment includes a laterally undulating member forming a radial band comprising apices. The width of the sinusoidal members and the segments of the ends section may be the same, about the same or different. The sinusoidal members may connect to the end segments at or near the apices of the end segments.
The width of the sinusoidal members may, for example, be in the range of about 40 to about 125 microns, for example at or about 50 microns, or at or about 100 microns, or at or about 125 microns. In one embodiment, the width of the sinusoidal members is in the range of about 40 microns to about 120 microns. The width of sinusoidal members may be uniform or non-uniform. In one variation, a narrowing of width is present between at least some of the peaks and troughs of at least some of the sinusoidal members of a prosthesis according to the invention. The widths of the sinusoidal members and radial connecting elements may, respectively, both be uniform, both be non-uniform (both vary), or be such that the width of the sinusoidal members is non-uniform (varies) while the width of the radial connecting elements is uniform, or such that the width of the sinusoidal members is uniform while the width of the radial connecting elements is non-uniform (varies).
Without limitation, the following embodiments are also provided by the invention.
One embodiment of the invention provides an expandable tubular prosthesis in its unexpanded state that includes: at least one expandable at least substantially tubular portion disposed between two ends of the prosthesis, for example, a single central portion, that includes: a plurality of radially neighboring, longitudinally disposed sinusoidal members comprising peaks and troughs, the peaks and troughs of radially neighboring sinusoidal members being at least substantially in-phase with each other; and a plurality of radial connecting members that connect radially neighboring sinusoidal members, each radial connecting member having a first end and a second end and each including a plurality of segments joined by turns, wherein the first end and the second end of each radial connecting member connect to radially neighboring sinusoidal members at points of connection that are laterally offset, and wherein each radial connecting member comprises segments that at least substantially conform to the shape of the sinusoidal members to which the radial connecting member is connected.
In one variation, the first end and the second end of each radial connecting member connect to radially neighboring sinusoidal members at points of connection that are laterally offset in the range of 0.5 to 1.0 wavelength, or about 0.5 to about 1.0 wavelength, with respect to the phase of the sinusoidal members. In another variation, the degree of the offset is uniform throughout the substantially tubular portion of the prosthesis. In another variation, the width of the sinusoidal members narrows between at least substantially all of the peaks and troughs of the sinusoidal members. In another variation, the first end and the second end of each radial connecting member in the substantially tubular portion of the prosthesis respectively connect to radially neighboring sinusoidal members at points of connection at or near the laterally adjacent peaks of the radially neighboring sinusoidal members. In another variation, the first end and the second end of each radial connecting member in the substantially tubular portion of the prosthesis respectively connect to radially neighboring sinusoidal members at points of connection between the peaks and neighboring troughs for laterally adjacent peaks of the radially neighboring sinusoidal members. In another variation, each of or at least substantially all of the radial connecting members are symmetrical. It is readily seen that the radial connecting members of the embodiments shown in the figures are symmetrical. In another variation, the prosthesis comprises or consists essentially of a super-elastic metal/metal alloy. In another variation, prosthesis is self-expanding, for example, made of a shape memory metallic alloy, such as Nitinol. In another variation, all or at least at least substantially all of the radial connecting members in the substantially tubular portion laterally extends beyond the points of connection of each end thereof to the radially neighboring sinusoidal members.
A further embodiment of the invention provides a method for treating an atherosclerotic lesions, such as a vulnerable plaque, in a patient in need thereof that includes the step of deploying any of the prostheses described herein at the site of an atherosclerotic lesion, such as a vulnerable plaque lesion, in the patient. A prosthesis according to the invention may be positioned so that the central section of the prosthesis is at least partially co-extensive with the section of blood vessel that has the atherosclerotic lesion, which may be a vulnerable plaque lesion. The deployment involves an expansion of the radius of the device so that the end sections and the central section come into contact with the vessel wall. In the case of treating a vulnerable plaque, at least part of the outer surface of the prosthesis may contact the fibrous cap of the vulnerable plaque and/or at least part of the outer surface of the prosthesis may contact the vessel wall in the vicinity of the vulnerable plaque lesion. In either case, contact with the vessel wall promotes endothelialization and remodeling of at least the luminal face of a vulnerable plaque lesion. The invention also provides a general method of promoting endothelialization in a region of a blood vessel by deploying a prosthesis according to the invention in the region, irrespective of the underlying pathology of the blood vessel in the region.
The prosthesis may be delivered in a decreased radius configuration on a delivery catheter. The prosthesis may be crimped on or otherwise positioned around an inflatable deployment balloon, so that expansion of the balloon at least partially expands the prosthesis to its final working radius. For self-expanding versions of the prosthesis, use of a delivery balloon is optional. A self-expanding prosthesis may, for example, be restrained in a cylindrical cavity covered by a restraining sheath and deployed by retracting the sheath, as known in the art.
Any of the treatment methods of the invention may include a step of locating an atherosclerotic lesion, such as a vulnerable plaque lesion, to be treated by the prosthesis in a patient.
According to the invention, determining the location of a vulnerable plaque or other type of atherosclerotic lesion in a blood vessel of a patient can be performed by any method or combination of methods. For example, catheter-based systems and methods for diagnosing and locating vulnerable plaques can be used, such as those employing optical coherent tomography (“OCT”) imaging, temperature sensing for temperature differentials characteristic of vulnerable plaque versus healthy vasculature, labeling/marking vulnerable plaques with a marker substance that preferentially labels such plaques, infrared elastic scattering spectroscopy, and infrared Raman spectroscopy (IR inelastic scattering spectroscopy). U.S. Publication No. 2004/0267110 discloses a suitable OCT system and is hereby incorporated by reference herein in its entirety. Raman spectroscopy-based methods and systems are disclosed, for example, in: U.S. Pat. Nos. 5,293,872; 6,208,887; and 6,690,966; and in U.S. Publication No. 2004/0073120, each of which is hereby incorporated by reference herein in its entirety. Infrared elastic scattering based methods and systems for detecting vulnerable plaques are disclosed, for example, in U.S. Pat. No. 6,816,743 and U.S. Publication No. 2004/0111016, each of which is hereby incorporated by reference herein in its entirety. Temperature sensing based methods and systems for detecting vulnerable plaques are disclosed, for example, in: U.S. Pat. Nos. 6,450,971; 6,514,214; 6,575,623; 6,673,066; and 6,694,181; and in U.S. Publication No. 2002/0071474, each of which is hereby incorporated herein in its entirety. A method and system for detecting and localizing vulnerable plaques based on the detection of biomarkers is disclosed in U.S. Pat. No. 6,860,851, which is hereby incorporated by reference herein in its entirety. Angiography using a radiopaque and/or fluorescent dye, for example, as known in the art, may be performed before, during and/or after the step of determining the location of the vulnerable plaque, for example, to assist in positioning the prosthesis in a subject artery.
In view of the above, one embodiment of the invention provides a method of treating an atherosclerotic lesion, such as a vulnerable plaque lesion, in a blood vessel of a patient that includes the steps of: locating an atherosclerotic lesion, such as a vulnerable plaque lesion, in a blood vessel of a patient; delivering a prosthesis according to the invention in an unexpanded state to the location of the vulnerable plaque lesion in the blood vessel; and radially expanding the prosthesis to contact the wall of the blood vessel at the location of the atherosclerotic lesion. In a variation of the method, the prosthesis is deployed so that its end sections each expand to contact healthy blood vessel while the central, “working” portion of the prosthesis is expanded to cover the atherosclerotic lesion.
The prostheses of the invention may be metallic and/or polymeric in composition.
Metals used to manufacture a prosthesis according to the invention include, but are not limited to, stainless steel, titanium, titanium alloys, platinum and gold. Shape-memory metal alloys may be used to produce self-expanding versions of prostheses according to the invention. For example, suitable shape-memory alloys include, but are not limited, to Nitinol and Elgiloy.
The prostheses of the invention may, in one embodiment, be manufactured from a super elastic material, such as from a super elastic metal selected from the group of alloys consisting of copper-tin, copper-zinc, copper-zinc-aluminum, copper-zinc-tin, copper-zinc-xenon, copper-aluminum-nickel, copper-gold-zinc, gold-cadmium, gold-copper-zinc, iron beryllium (Fe3Be), iron platinum (Fe3Pt), indium-thallium, iron-manganese, iron-nickel-titanium-cobalt, nickel-titanium, nickel-titanium-vanadium, and silver-cadmium. Super elastic materials, such as Nitinol (a nickel-titanium alloy), permit the creation of highly flexible and conformable tubular prostheses/stents wherein a relatively wide-in-cross-section backbone provides the flexibility. To attain this degree of flexibility and conformability with conventional balloon expandable stent materials, such as stainless steel (SS) or Cobalt-Chromium (CoCr), would be impractical due to the very thin cross sections that would be required. Additionally, relatively wide sections that deform due to dynamic loading of an implanted prosthesis during each heart cycle would endure relatively large cyclic strains. From a durability perspective, these large cyclic strains are of less concern with super elastic materials, such as Nitinol, relative to traditional balloon expandable stent materials such as SS or CoCr.
Super elastic materials, such as Nitinol, also enable a practical mechanism for providing adequate vessel support to ensure an open lumen while minimizing and controlling the amount of stress or trauma exerted on the vessel over a relatively wide range of lumen diameters. Controlled minimization of stress over a range of diameters is possible with super elastic materials, such as Nitinol, due to their unique characteristic of having a plateau stress level whereby the stress in the material stays relatively constant over a relatively wide range of elastic strain. In contrast, conventional balloon expandable stents need to be permanently or plastically deformed in order to provide support at a given lumen diameter. This permanent deformation of the stent is induced by a balloon which is pressurized with fluid to expand to a diameter larger than the post deployment final diameter of the balloon expandable stent. Therefore, the balloon must be expanded to a larger diameter due to the elastic recoil inherent in conventional balloon expandable stents. This introduces more stress and trauma to the vessel than would be attributed to deployment of the self-expanding prostheses of the invention.
Polymers used for the manufacture of prostheses according to the invention may be biodegradable or non-biodegradable. Any suitable sorts of biodegradable polymers and/or biodegradable polymer blends may be used according to the invention. As used herein, the term “biodegradable” should be construed broadly as meaning that the polymer(s) will degrade once placed within a patient's body. Accordingly, biodegradable polymers as referred also include bioerodable and bioresorbable polymers. Suitable types of polymer material include, but are not limited to, polyester, polyanhydride, polyamide, polyurethane, polyurea, polyether, polysaccharide, polyamine, polyphosphate, polyphosphonate, polysulfonate, polysulfonamide, polyphosphazene, hydrogel, polylactide, polyglycolide, protein cell matrix, or copolymer or polymer blend thereof.
Homopolymers of polylactic acid (PLA), for example PLLA, PDLA and poly(D,L,)lactic acid, stereopolymers thereof, and copolymer of PLA with other polymeric units such as glycolide provide a number of characteristics that are useful in a polymeric prosthesis for treating a lesion of a blood vessel such as a high risk atherosclerotic plaque (vulnerable plaque). First, polymers made of these components biodegrade in vivo into harmless compounds. PLA is hydrolyzed into lactic acid in vivo. Second, these polymers are well suited to balloon-mediated expansion using a delivery catheter. Third, polymers made of these materials can be imparted with a shape-memory so that polymeric, at least partially self-expanding, tubular prostheses can be provided. Self-expanding polymeric prostheses according to the invention may also, for example, be at least partially balloon-expanded. Methods for producing biodegradable, polymeric shape-memory prostheses are described, for example, in U.S. Pat. Nos. 4,950,258, 5,163,952, and 6,281,262 each of which is incorporated by reference herein in its entirety.
Prostheses according to the invention may be manufactured by any suitable method. For example, a metallic prosthesis can be produced by laser cutting the device from a tubular blank. Methods for forming metallic tubular blanks are well known. For example, sputtering metallic material onto a mandrel may be used. In another example, the shape of the prosthesis can be laser cut or stamped out of a flat sheet of metallic material and then formed and welded into a tubular configuration. Once formed into shape, metallic prostheses according to the invention may optionally be electrochemically polished and/or etched.
The wall thickness of a prosthesis according to the invention may, for example, be in the range of about 20 microns to about 200 microns. In one embodiment, the wall thickness is equal to or less than 200 microns, for example, equal to or less than 125 microns. In one embodiment, the wall thickness is in the range of 20 microns to 125 microns. In another embodiment of the invention, the wall thickness is in the range of 20 to 60 microns. In still another embodiment, the wall thickness is in the range of 50 to 125 microns, for example in the range of 50 to 100 microns. In a further embodiment, the wall thickness is at or about 50 microns. In a further embodiment, the wall thickness is at or about 57 microns. In another embodiment, the wall thickness is at or about 100 microns. In another embodiment, the wall thickness is at or about 125 microns.
The longitudinal length of prostheses according to the invention may, for example, be in the range of 0.3 to 2.0 inch (approximately 0.8 to 5.0 cm), such as 0.5 to 1.0 inch (approximately 1.27 to 2.54 cm), such as 0.716 inch (approximately 1.819 cm).
A polymeric prosthesis according to the invention, such as one composed of polylactide, may also be laser cut from a tubular blank, such as a blank formed by extrusion molding.
Metallic or non-metallic prostheses according to the invention may optionally be coated with one or more coatings. The coating(s) may optionally include or be loaded with beneficial agents such as drugs or other compounds useful for treating vulnerable and/or for facilitating the desired functioning of the implanted prosthesis, for example, anti-thrombotic agents such as heparin to inhibit prosthesis-induced thrombosis at the treatment site. U.S. Pat. No. 5,624,411 teaches methods of coating intravascular stents with drugs, and is hereby incorporated by reference in its entirety.
Metallic or non-metallic prostheses according to the invention may optionally be provided with surface texture such as micron-scale or nanometer-scale porosity or roughness to promote desired biological results such as endothelialization. Either or both of the inner lumen surface and outer surface of a prosthesis according to the invention may be provided with texture. In one variation, at least the inner lumen surface of the prosthesis is provided with texture, to promote endothelialization. In one sub-variation only the inner lumen surface is provided with texture, to promote endothelialization. In another sub-variation, both the inner lumen surface and the outer surface of prosthesis are provided with texture, wherein the texture provided on the inner lumen surface promotes endothelialization. Texturizing techniques such as magnetron sputtering, chemical etching, electro-chemical etching, abrasive tumbling, de-alloying, abrasive media blasting, sanding, scratching, laser etching, atomic layer deposition (ALD), chemical vapor deposition (CVD) and physical vapor deposition (PVD) technologies may, for example, be used, alone or in combination. Each of U.S. Pub. Nos. 2006/0121080 and 2006/0004466 disclose surface modifications and techniques for obtaining the same that may be employed with the prostheses of the invention, and is incorporated by reference herein in its entirety.
Each of the patents and other documents cited herein is hereby incorporated by reference in its entirety.
Although the foregoing description is directed to the preferred embodiments of the invention, it is noted that other variations and modifications will be apparent to those skilled in the art, and may be made without departing from the spirit or scope of the invention. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above.
This application claims the benefit of each of U.S. Provisional Patent Application Ser. No. 61/050,229 filed May 4, 2008, 60/977,199 filed Oct. 3, 2007, 60/970,947 filed Sep. 8, 2007, and 60/953,440 filed Aug. 1, 2007, each of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60953440 | Aug 2007 | US | |
60970947 | Sep 2007 | US | |
60977199 | Oct 2007 | US | |
61050229 | May 2008 | US |