The present application concerns embodiments of a sheath for use with catheter-based technologies for repairing and/or replacing heart valves, as well as for delivering an implant, such as a prosthetic valve to a heart via the patient's vasculature.
Endovascular delivery catheter assemblies are used to implant prosthetic devices, such as a prosthetic valve, at locations inside the body that are not readily accessible by surgery or where access without invasive surgery is desirable. For example, aortic, mitral, tricuspid, and/or pulmonary prosthetic valves can be delivered to a treatment site using minimally invasive surgical techniques.
An introducer sheath can be used to safely introduce a delivery apparatus into a patient's vasculature (e.g., the femoral artery). An introducer sheath generally has an elongated sleeve that is inserted into the vasculature and a housing that contains one or more sealing valves that allow a delivery apparatus to be placed in fluid communication with the vasculature with minimal blood loss. A conventional introducer sheath typically requires a tubular loader to be inserted through the seals in the housing to provide an unobstructed path through the housing for a valve mounted on a balloon catheter. A conventional loader extends from the proximal end of the introducer sheath, and therefore decreases the available working length of the delivery apparatus that can be inserted through the sheath and into the body.
Conventional methods of accessing a vessel, such as a femoral artery, prior to introducing the delivery system include dilating the vessel using multiple dilators or sheaths that progressively increase in diameter. This repeated insertion and vessel dilation can increase the amount of time the procedure takes, as well as the risk of damage to the vessel.
Radially expanding intravascular sheaths have been disclosed. Such sheaths tend to have complex mechanisms, such as ratcheting mechanisms that maintain the shaft or sheath in an expanded configuration once a device with a larger diameter than the sheath's original diameter is introduced.
However, delivery and/or removal of prosthetic devices and other material to or from a patient still poses a risk to the patient. Furthermore, accessing the vessel remains a challenge due to the relatively large profile of the delivery system that can cause longitudinal and radial tearing of the vessel during insertion. The delivery system can additionally dislodge calcified plaque within the vessels, posing an additional risk of clots caused by the dislodged plaque.
U.S. Pat. No. 8,790,387, which is entitled EXPANDABLE SHEATH FOR INTRODUCING AN ENDOVASCULAR DELIVERY DEVICE INTO A BODY and is incorporated herein by reference, discloses a sheath with a split outer polymeric tubular layer and an inner polymeric layer, for example in FIGS. 27A and 28. A portion of the inner polymeric layer extends through a gap created by the cut and can be compressed between the portions of the outer polymeric tubular layer. Upon expansion of the sheath, portions of the outer polymeric tubular layer have separated from one another, and the inner polymeric layer is expanded to a substantially cylindrical tube. Advantageously, the sheath disclosed in the '387 patent can temporarily expand for passage of implantable devices and then return to its starting diameter.
Despite the disclosure of the '387 patent, there remains a need for further improvements in introducer sheaths for endovascular systems used for implanting valves and other prosthetic devices.
The needs above and other advantages are provided by an expandable introducer sheath for a delivery of an implant mounted on a catheter. The sheath includes an elastic outer tubular layer and an inner tubular layer having a thick wall portion integrally connected to a thin wall portion. The inner tubular layer can have a compressed condition/folded configuration wherein the thin wall portion folds onto an outer surface of the thick wall portion under urging of the elastic outer tubular layer. When the implant passes therethrough, the outer tubular layer stretches and the inner tubular layer at least partially unfolds into an expanded lumen diameter to accommodate the diameter of the implant. Once the implant passes, the outer tubular layer again urges the inner tubular layer into the folded configuration with the sheath reassuming its smaller profile. In addition to a reduced initial profile size, the integral construction of the inner tubular layer guards against the leaks and snags of prior art split-tube and uniform thickness liner combinations. The sheath may also include selectively placed longitudinal rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion and collapse, thereby reducing the push force needed to advance the oversized implant through the sheath's lumen.
Embodiments include a sheath for delivery of an implant mounted on a catheter. The sheath may include an elastic outer tubular layer and an inner tubular layer. The outer tubular layer defines an initial elastic lumen extending axially therethrough and having an initial diameter. The inner tubular layer has a thick wall portion integrally connected to a thin wall portion—such as by co-extrusion during manufacture. The thick wall portion has a C-shaped cross section with a first longitudinally extending end and a second longitudinally extending end. The thin wall portion extends between the first and second longitudinally extending ends to define an expanded lumen extending axially through the inner tubular layer. The expanded lumen has an expanded diameter larger than the initial diameter of the initial elastic lumen. The inner tubular layer, in a compressed condition, extends through the initial elastic lumen of the elastic outer tubular layer with the elastic outer tubular layer urging the first longitudinally extending end under the second longitudinally extending end of the inner tubular layer. The inner tubular layer in a locally expanded condition has the first and second longitudinally extending ends radially expanded apart, against the urging of the elastic outer tubular layer by passage of the implant, into a non-overlapping condition with the thin wall portion extending therebetween to form the expanded lumen. The inner tubular layer is configured to be urged by the outer elastic tubular layer into the compressed condition after passage of the implant through the expanded lumen.
In another aspect, the outer surface of the inner tubular layer and/or the inner surface of the outer tubular layer can have a lubricious coating configured to allow free relative sliding of the outer elastic layer and inner tubular layer. A longitudinally extending portion or strip of the outer surface of the inner tubular layer can be adhered to a corresponding longitudinally extending portion of the inner surface of the outer tubular layer to provide some restriction on rotation between the inner and outer layer.
In another embodiment, the tubular layers may include a plurality of longitudinal rods coupled to their surfaces. For example, the inner surface of the outer tubular layer may include rods extending into the initial elastic lumen. The rods are configured to provide a bearing surface to facilitate relative movement of the layers when moving from the locally expanded condition to the compressed condition (and back). Longitudinal rods embedded within the elastic outer tubular layer can also protrude from both an inner and outer surface of the elastic outer tubular layer.
The longitudinal rods may be circumferentially spaced about the inner surface of the outer tubular layer. The inner tubular layer may also include contact-area reducing rods coupled to its inner surface.
In another aspect, the sheath can include a radiopaque tubular layer extending around a longitudinal portion of the elastic outer tubular layer. In some embodiments, the outer tubular layer is comprised of a transparent material
In some embodiments, a heat-shrink tube can be applied around the elastic outer tubular layer at a distal end of the elastic outer tubular layer.
In some embodiments, a distal portion of the elastic outer tubular layer and inner tubular layer are adhered to each other. For example, a distal portion of the elastic outer tubular layer can be adhered to an expanded outer surface of the inner tubular layer. The distal portion of the elastic outer tubular layer and inner tubular layer can be reflowed onto each other into a sealed configuration. In some implementations, a distal portion of the sheath has a flared shape. The flared shape can be folded into an overlapping arrangement.
A method of using the expandable introducer sheath can include inserting the sheath, at least partially, into the blood vessel of the patient. An implant is advanced through the inner tubular layer of the sheath. The inner tubular layer transitions from a compressed condition to a locally expanded condition using the outwardly directed radial force of the implant. After passage of the implant, the locally expanded inner tubular layer is contracted at least partially back to the compressed condition by the inwardly directed radial force of the outer elastic tubular layer. During the local expansion of the inner tubular layer, the first and second longitudinally extending ends move towards and then away from each other. During contraction of the locally expanded inner tubular layer, the first and second longitudinally extending ends move toward and then away from each other to return, at least partially, to the compressed condition.
The following description of certain examples of the inventive concepts should not be used to limit the scope of the claims. Other examples, features, aspects, embodiments, and advantages will become apparent to those skilled in the art from the following description. As will be realized, the device and/or methods are capable of other different and obvious aspects, all without departing from the spirit of the inventive concepts. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The described methods, systems, and apparatus should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The disclosed methods, systems, and apparatus are not limited to any specific aspect, feature, or combination thereof, nor do the disclosed methods, systems, and apparatus require that any one or more specific advantages be present or problems be solved.
Features, integers, characteristics, compounds, chemical moieties, or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract, and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract, and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
Throughout the description and claims of this specification, the word “comprise” and variations of the word, such as “comprising” and “comprises,” means “including but not limited to,” and is not intended to exclude, for example, other additives, components, integers or steps. “Exemplary” means “an example of” and is not intended to convey an indication of a preferred or ideal aspect. “Such as” is not used in a restrictive sense, but for explanatory purposes.
Disclosed embodiments of an expandable sheath can minimize trauma to the vessel by allowing for temporary expansion of a portion of the introducer sheath to accommodate the delivery system, followed by a return to the original diameter once the device passes through. The expandable sheath can include, for example, an integrally formed inner tubular layer with thick and thin wall portions, wherein the thin wall portion can expand to an expanded lumen for passage of an implant and then fold back onto itself under biasing of an outer elastic tubular layer after departure of the implant. In another aspect, the expandable sheath can include one or more longitudinally oriented stiffening elements (such as rods) that are coupled to the elastic outer layer to provide stiffness for the expandable sheath. Some embodiments can comprise a sheath with a smaller profile than the profiles of prior art introducer sheaths. Furthermore, present embodiments can reduce the length of time a procedure takes, as well as reduce the risk of a longitudinal or radial vessel tear, or plaque dislodgement because only one sheath is required, rather than several different sizes of sheaths. Embodiments of the present expandable sheath can avoid the need for multiple insertions for the dilation of the vessel.
Disclosed herein are elongate delivery sheaths that are particularly suitable for delivery of implants in the form of implantable heart valves, such as balloon-expandable implantable heart valves. Balloon-expandable implantable heart valves are well-known and will not be described in detail here. An example of such an implantable heart valve is described in U.S. Pat. No. 5,411,552, and also in U.S. Patent Application Publication No. 2012/0123529, both of which are hereby incorporated by reference. The elongate delivery sheaths disclosed herein may also be used to deliver other types of implantable devices, such as self-expanding implantable heart valves, stents or filters. The term “implantable” as used herein is broadly defined to mean anything—prosthetic or not—that is delivered to a site within a body. A diagnostic device, for example, may be an implantable.
Generally, during use a distal end of the sheath 8 is passed through the skin of the patient and inserted into a vessel, such as the trans-femoral vessel. The delivery apparatus 10 can be inserted into the sheath 8 through the hemostasis valve, and the implant 12 can then be delivered and implanted within the patient.
As shown in
The hub 20 is attached to the flared proximal end 22 by twisting the threaded distal male end 30 into correspondingly threaded female connector 32. This places the hub lumen 21 in communication with the central lumen 38 of the tubular wall structure 34. The hemostasis valve 26 mediates access by the delivery apparatus 10 to the hub lumen 21 and central lumen 38 and ultimate deployment of the implant 12 in a pressurized (blood filled) environment. Side port 28 provides an additional access for application of saline or other fluids.
The distal tip 24, meanwhile, provides some restraint to the otherwise radially expandable tubular wall structure 34. The distal tip 24 also helps with advancement over an introducer by providing a tapered advancement surface. Further the distal tip 24 improves the stiffness of the sheath 8 at its distal tip to guard against buckling or collapse of the tubular wall structure 34 during torque and advancement forces.
As shown in
The inner wall 46 has a shorter axial length than the outer wall but also has a cylindrical shape that tapers—although more gradually—toward its distal free end. An outer surface of the inner wall 46 and inner surface of the outer wall 44 define an annular space 54 which is configured to receive a distal free end of the elastic outer tubular layer 40, as shown in
The retainer 48 is an additional arc-shaped wall that extends along a portion of the inner surface of the inner wall 46 and defines its own crescent-shaped space 56, as shown in the cross section of
As shown in
The elastic lumen 58 is referred to as “initial” to designate its passive or as-formed diameter or cross-sectional dimension when not under the influence of outside forces, such as the implant 12 passing therethrough. It should be noted, however, that because the outer tubular layer 40 is comprised in the illustrated embodiment by an elastic material it may not retain its shape under even light forces such as gravity. Also, the outer tubular layer 40 need not have a cylindrical cross-section and instead could have oval, square or other cross-sections which generally can be configured to meet the requirements of the inner tubular layer 42 and/or expected shape of the implant 12. Thus, the term “tube” or “tubular” as used herein is not meant to limit shapes to circular cross-sections. Instead, tube or tubular can refer to any elongate structure with a closed-cross section and lumen extending axially therethrough. A tube may also have some selectively located slits or openings therein—although it still will provide enough of a closed structure to contain other components within its lumen(s).
The outer tubular layer 40, in one implementation, is constructed of a relatively elastic material that has enough flexibility to mediate the expansion induced by passage of the implant 12 and expansion of the inner tubular layer 42 while at the same time having enough material stiffness to urge the inner tubular layer back into an approximation of the initial diameter once the implant has passed. An exemplary material includes NEUSOFT. NEUSOFT is a translucent polyether urethane based material with good elasticity, vibration dampening, abrasion and tear resistance. The polyurethanes are chemically resistant to hydrolysis and suitable for overmolding on polyolefins, ABS, PC, Pebax and nylon. The polyurethane provides a good moisture and oxygen bather as well as UV stability. One advantage of the outer tubular layer 40 is that it provides a fluid barrier for the pressurized blood. Other materials having similar properties of elasticity may also be used for the elastic outer tubular layer 40.
The longitudinal rods 60 may be circumferentially spaced about the inside surface of the outer tubular layer 60. Although fifteen longitudinal rods 60 are shown in the cross-section of
As shown in
As shown in
The thick wall portion 62, in the illustrated embodiment of
From those ends 66, 68 of the thick wall portion 62 extends the thin wall portion 64 and together they define a tubular shape. Extending longitudinally in that tubular shape is the central lumen 38.
As another option, the inner tubular layer 42 may be adhered along one or more longitudinally extending portions of the outer tubular layer 40. Adhesion may be by heat fusion between the two layers or adhesive bonding, for example. As shown in
In another embodiment, as shown in
The reflowed outer tubular layer 40 may have added thereto a radiopaque ring 72. The radiopaque ring 72 can be adhered outside (such as by heat shrinking) and around the reflowed, folded distal portion of the outer tubular layer 40. The ring 72 may be applied (such as by reflowing) outside the outer tubular layer 40 (
Advantageously, the outer tubular layer 40 and inner tubular layer 42 are both seamless, which stops blood leakage into the sheath 8. The seamless construction of the inner tubular layer 42 eliminates the ends of a conventional C-sheath. Elimination of the cut in the C-sheath by addition of thin portion 64 improves torque performance. Also, both layers are easily manufactured by an extrusion process. The elastic outer tubular layer 40 has an elastic material that is similar to or the same as most soft tips, making their attachment much easier.
As shown in
The outer tubular layer 40 in the configurations of
As can be seen the tubular wall structure 34 has different layers depending up on the axial position. The wall structure 34 includes a strain relief tubular layer 82 that terminates about ⅔ of the way from the proximal end, as shown in
Extending past the strain relief tubular layer 82 the tubular wall structure 34 drops down to two layers, the inner tubular layer 42 and elastic outer tubular layer 40. On the proximal-most end of the portion of the sheath 8 shown in
At the distal end, as shown in
The inner tubular layer 42 is similar to that described above. It includes the thin wall portion 64 that is configured to fold over into the folded configuration back onto the thick wall portion 62. Also, the elastic outer tubular layer 40 restrains the inner tubular layer 42 against expansion. But, the elasticity of the outer tubular layer 40 can also be overcome to allow the inner tubular layer to at least partially unfold into a wider central lumen 38 for passage of the implant 12 or other device.
As shown in
The outer tip layer 84 extends over and is adhered to the inner tip layer 81 and a distal portion of the inner tubular layer 42. The outer tip layer 84 covers the proximal edge of the inner tip layer 81, sealing it against the inner tubular layer 42. The outer tip layer 84 is of a relatively bendable material and, where it is directly adhered to the thin wall portion 64, can be folded over onto itself as shown in
The elastic outer tubular layer 40 extends all the way to the distal end of the sheath 8, including over the distal end of the outer tip layer 84. In addition, the inside of the elastic outer tubular layer includes rods 60 extending axially and reducing unfolding resistance by lowering surface area and increasing lubricity.
The sheath 8 may also include a radiopaque marker band or layer portion 86 that provides an orientation and depth indication under radioscopy during implantation or other medical procedures.
In view of the many possible embodiments to which the principles of the disclosed invention can be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/145,968 filed on Apr. 10, 2015 and entitled EXPANDABLE DELIVERY SHEATH which is hereby incorporated, in its entirety, by reference herein. This application is also related to U.S. patent application entitled EXPANDABLE SHEATH WITH ELASTOMERIC CROSS SECTIONAL PORTIONS, filed on the same day as the present application and is hereby incorporated, in its entirety, by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3409013 | Berry | Nov 1968 | A |
3548417 | Kisher | Dec 1970 | A |
3587115 | Shiley | Jun 1971 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3755823 | Hancock | Sep 1973 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4373216 | Klawitter | Feb 1983 | A |
4406022 | Roy | Sep 1983 | A |
4441216 | Ionescu et al. | Apr 1984 | A |
4470157 | Love | Sep 1984 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4574803 | Storz | Mar 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4643732 | Pietsch et al. | Feb 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4710181 | Fuqua | Dec 1987 | A |
4716901 | Jackson et al. | Jan 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4738666 | Fuqua et al. | Apr 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4787901 | Baykut | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4820299 | Philippe et al. | Apr 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4851001 | Taheri | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4921479 | Grayzel | May 1990 | A |
4922905 | Strecker | May 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5080668 | Bolz et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5104388 | Quackenbush | Apr 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5158545 | Trudell et al. | Oct 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5176659 | Mancini | Jan 1993 | A |
5192297 | Hull | Mar 1993 | A |
5201756 | Horzewski et al. | Apr 1993 | A |
5217468 | Clement | Jun 1993 | A |
5234425 | Fogarty et al. | Aug 1993 | A |
5256150 | Quiachon et al. | Oct 1993 | A |
5266073 | Wall | Nov 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5318588 | Horzewski | Jun 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5380304 | Parker | Jan 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411055 | Kane | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5480424 | Cox | Jan 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5514091 | Yoon | May 1996 | A |
5514236 | Avellanet et al. | May 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5558644 | Boyd et al. | Sep 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5599305 | Hermann et al. | Feb 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5628792 | Lentell | May 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5674240 | Bonutti | Oct 1997 | A |
5716417 | Girard et al. | Feb 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5810776 | Bacich et al. | Sep 1998 | A |
5817100 | Igaki | Oct 1998 | A |
5827227 | DeLago | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5855602 | Angell | Jan 1999 | A |
5895410 | Forber et al. | Apr 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5964730 | Williams et al. | Oct 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5997508 | Lunn et al. | Dec 1999 | A |
6027525 | Suh et al. | Feb 2000 | A |
6090072 | Kratoska et al. | Jul 2000 | A |
6090136 | McDonald et al. | Jul 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6190357 | Ferrari | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6302906 | Goicoechea et al. | Oct 2001 | B1 |
6312443 | Stone | Nov 2001 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6352547 | Brown et al. | Mar 2002 | B1 |
6358238 | Sherry | Mar 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440764 | Focht et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6494860 | Rocamora et al. | Dec 2002 | B2 |
6527979 | Constantz et al. | Mar 2003 | B2 |
6569196 | Vesely | May 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6605112 | Moll et al. | Aug 2003 | B1 |
6632236 | Hogendijk | Oct 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6689123 | Pinchasik | Feb 2004 | B2 |
6702830 | Demarais et al. | Mar 2004 | B1 |
6716244 | Klaco | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6769161 | Brown et al. | Aug 2004 | B2 |
6783542 | Eidenschink | Aug 2004 | B2 |
6814715 | Bonutti et al. | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6878162 | Bales et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6899727 | Armstrong et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7096554 | Austin et al. | Aug 2006 | B2 |
7144386 | Korkor et al. | Dec 2006 | B2 |
7225518 | Eidenschink et al. | Jun 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7329268 | Van Nguyen et al. | Feb 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7534250 | Schaeffer et al. | May 2009 | B2 |
7563280 | Anderson et al. | Jul 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7591832 | Eversull et al. | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7618447 | Case et al. | Nov 2009 | B2 |
7655016 | Demarais | Feb 2010 | B2 |
7655034 | Mitchell et al. | Feb 2010 | B2 |
7678128 | Boyle et al. | Mar 2010 | B2 |
7699864 | Kick et al. | Apr 2010 | B2 |
7713193 | Nance et al. | May 2010 | B2 |
7722568 | Lenker et al. | May 2010 | B2 |
7766820 | Core | Aug 2010 | B2 |
7785360 | Freitag | Aug 2010 | B2 |
7785366 | Maurer et al. | Aug 2010 | B2 |
7951110 | Bishop et al. | May 2011 | B2 |
7959661 | Hijlkema et al. | Jun 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7963952 | Wright, Jr. et al. | Jun 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8291570 | Eidenschink et al. | Oct 2012 | B2 |
8337518 | Nance et al. | Dec 2012 | B2 |
8414645 | Dwork et al. | Apr 2013 | B2 |
8449606 | Eliasen et al. | May 2013 | B2 |
8454685 | Hariton et al. | Jun 2013 | B2 |
8562559 | Bishop et al. | Oct 2013 | B2 |
8562673 | Yeung et al. | Oct 2013 | B2 |
8597277 | Lenker et al. | Dec 2013 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8728153 | Bishop et al. | May 2014 | B2 |
8747463 | Fogarty et al. | Jun 2014 | B2 |
8790387 | Nguyen et al. | Jul 2014 | B2 |
8852257 | Liu et al. | Oct 2014 | B2 |
8900191 | Lenker et al. | Dec 2014 | B2 |
8900214 | Nance et al. | Dec 2014 | B2 |
9078781 | Ryan et al. | Jul 2015 | B2 |
9192751 | Macaulay et al. | Nov 2015 | B2 |
9241735 | Kick et al. | Jan 2016 | B2 |
9387314 | Bishop et al. | Jul 2016 | B2 |
9440054 | Bishop et al. | Sep 2016 | B2 |
9642704 | Tuval et al. | May 2017 | B2 |
9907931 | Birmingham et al. | Mar 2018 | B2 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20020026094 | Roth | Feb 2002 | A1 |
20020032459 | Horzewski et al. | Mar 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020123793 | Schaldach et al. | Sep 2002 | A1 |
20020138135 | Duerig et al. | Sep 2002 | A1 |
20020173842 | Buchanan | Nov 2002 | A1 |
20030004537 | Boyle et al. | Jan 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030100939 | Yodfat et al. | May 2003 | A1 |
20030158597 | Quiachon et al. | Aug 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040087968 | Core et al. | May 2004 | A1 |
20040122415 | Johnson | Jun 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050075728 | Nguyen et al. | Apr 2005 | A1 |
20050080430 | Wright, Jr. | Apr 2005 | A1 |
20050080474 | Andreas et al. | Apr 2005 | A1 |
20050085842 | Eversull et al. | Apr 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050124937 | Kick et al. | Jun 2005 | A1 |
20050188525 | Weber et al. | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050222576 | Kick et al. | Oct 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20060004469 | Sokel | Jan 2006 | A1 |
20060020321 | Parker | Jan 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060135981 | Lenker | Jun 2006 | A1 |
20060149350 | Patel et al. | Jul 2006 | A1 |
20060183383 | Asmus et al. | Aug 2006 | A1 |
20060217755 | Eversull et al. | Sep 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070021768 | Nance et al. | Jan 2007 | A1 |
20070074805 | Leeflang et al. | Apr 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070162102 | Ryan et al. | Jul 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070203576 | Lee et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070233228 | Eberhardt et al. | Oct 2007 | A1 |
20070260305 | Drews et al. | Nov 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20080004571 | Voss | Jan 2008 | A1 |
20080114331 | Holman et al. | May 2008 | A1 |
20080114442 | Mitchell et al. | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080183271 | Frawley et al. | Jul 2008 | A1 |
20080200943 | Barker et al. | Aug 2008 | A1 |
20080243081 | Nance et al. | Oct 2008 | A1 |
20080275537 | Limon | Nov 2008 | A1 |
20080294230 | Parker | Nov 2008 | A1 |
20090125118 | Gong | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090299452 | Eidenschink et al. | Dec 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100094392 | Nguyen | Apr 2010 | A1 |
20100168844 | Toomes et al. | Jul 2010 | A1 |
20100198160 | Voss | Aug 2010 | A1 |
20100198347 | Zakay et al. | Aug 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110112567 | Lenker | May 2011 | A1 |
20110251681 | Shipley et al. | Oct 2011 | A1 |
20110319991 | Hariton et al. | Dec 2011 | A1 |
20120083877 | Nguyen et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120158033 | Deal et al. | Jun 2012 | A1 |
20120259409 | Nguyen et al. | Oct 2012 | A1 |
20130023985 | Khairkhahan et al. | Jan 2013 | A1 |
20130090624 | Munsinger | Apr 2013 | A1 |
20130131718 | Jenson et al. | May 2013 | A1 |
20130190857 | Mitra et al. | Jul 2013 | A1 |
20130274873 | Delaloye et al. | Oct 2013 | A1 |
20130281787 | Avneri et al. | Oct 2013 | A1 |
20130310926 | Hariton | Nov 2013 | A1 |
20130317598 | Rowe et al. | Nov 2013 | A1 |
20130331929 | Mitra et al. | Dec 2013 | A1 |
20140121329 | Araki et al. | May 2014 | A1 |
20140121629 | Macaulay | May 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140200661 | Pintor et al. | Jul 2014 | A1 |
20140209238 | Bonyuet et al. | Jul 2014 | A1 |
20140236123 | Birmingham et al. | Aug 2014 | A1 |
20140277417 | Schraut et al. | Sep 2014 | A1 |
20140277419 | Garde et al. | Sep 2014 | A1 |
20140277424 | Oslund | Sep 2014 | A1 |
20140330372 | Weston et al. | Nov 2014 | A1 |
20140343671 | Yohanan et al. | Nov 2014 | A1 |
20140350667 | Braido et al. | Nov 2014 | A1 |
20140379067 | Nguyen et al. | Dec 2014 | A1 |
20150073545 | Braido | Mar 2015 | A1 |
20150073546 | Braido | Mar 2015 | A1 |
20150265798 | Nihonmatsu | Sep 2015 | A1 |
20160074067 | Furnish | Mar 2016 | A1 |
20170072163 | Lim | Mar 2017 | A1 |
20180199960 | Anderson et al. | Jul 2018 | A1 |
20180229000 | Anderson et al. | Aug 2018 | A1 |
20190030298 | Zhou et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
2246526 | Mar 1973 | DE |
0144167 | Jun 1985 | DE |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
10049812 | Apr 2002 | DE |
10049813 | Apr 2002 | DE |
10049814 | Apr 2002 | DE |
10049815 | Apr 2002 | DE |
0103546 | Mar 1984 | EP |
0117177 | Apr 1986 | EP |
0177177 | Apr 1986 | EP |
0249456 | Dec 1987 | EP |
0385920 | Sep 1990 | EP |
0592410 | Apr 1994 | EP |
0597967 | May 1994 | EP |
0696447 | Feb 1996 | EP |
0850607 | Jul 1998 | EP |
1057460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
1570809 | Sep 2005 | EP |
1796597 | Jun 2007 | EP |
2788217 | Jul 2000 | FR |
2815844 | May 2002 | FR |
2056023 | Mar 1981 | GB |
2004500171 | Jan 2004 | JP |
2006116249 | May 2006 | JP |
1271508 | Nov 1986 | SU |
9117720 | Nov 1991 | WO |
9217118 | Oct 1992 | WO |
9219312 | Nov 1992 | WO |
9301768 | Feb 1993 | WO |
9307812 | Apr 1993 | WO |
9724080 | Jul 1997 | WO |
9829057 | Jul 1998 | WO |
9930646 | Jun 1999 | WO |
9933414 | Jul 1999 | WO |
9940964 | Aug 1999 | WO |
9947075 | Sep 1999 | WO |
0018333 | Apr 2000 | WO |
0041652 | Jul 2000 | WO |
0047139 | Aug 2000 | WO |
0135878 | May 2001 | WO |
0149213 | Jul 2001 | WO |
0154624 | Aug 2001 | WO |
0154625 | Aug 2001 | WO |
0162189 | Aug 2001 | WO |
0164137 | Sep 2001 | WO |
0176510 | Oct 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
0241789 | May 2002 | WO |
0243620 | Jun 2002 | WO |
0247575 | Jun 2002 | WO |
0249540 | Jun 2002 | WO |
03002181 | Jan 2003 | WO |
03047468 | Jun 2003 | WO |
2004002562 | Jan 2004 | WO |
2004003733 | Jan 2004 | WO |
2004037333 | May 2004 | WO |
2005018728 | Mar 2005 | WO |
2005034812 | Apr 2005 | WO |
2005084595 | Sep 2005 | WO |
2005102015 | Nov 2005 | WO |
2006014233 | Feb 2006 | WO |
2006032051 | Mar 2006 | WO |
2006034008 | Mar 2006 | WO |
2006111391 | Oct 2006 | WO |
2006127089 | Nov 2006 | WO |
2006138173 | Dec 2006 | WO |
2007035471 | Mar 2007 | WO |
2007047488 | Apr 2007 | WO |
2007067942 | Jun 2007 | WO |
2007097983 | Aug 2007 | WO |
2008002915 | Jan 2008 | WO |
2008005405 | Jan 2008 | WO |
2008015257 | Feb 2008 | WO |
2008035337 | Mar 2008 | WO |
2008042311 | Apr 2008 | WO |
2008091515 | Jul 2008 | WO |
2008147964 | Dec 2008 | WO |
2008150529 | Dec 2008 | WO |
2009033469 | Mar 2009 | WO |
2010121076 | Oct 2010 | WO |
2014140093 | Sep 2014 | WO |
2014182959 | Nov 2014 | WO |
Entry |
---|
International Search Report from corresponding PCT case No. PCT/US2015/065578 dated Apr. 1, 2016. |
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Catheter Technique in Closed Chest Pig,” European Heart Journal, No. 13. pp. 704-708. 1992. |
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009. |
Pavcnik, et al. “Development and initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology, vol. 183, No. 1. pp. 151-154. 1992. |
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994. |
Al-Khaja, et al. “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, vol. 3. pp. 305-311. 1989. |
Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197. |
Sabbah, et al. “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4. pp. 302-309. 1989. |
Wheatley, “Valve Prostheses,” Operative Surgery, 4th ed. pp. 415-424. 1986. |
Uchida, “Modifications of Gianturco Expandable Wire Stents,” American Journal of Roentgenology, vol. 150. pp. 1185-1187. 1986. |
Number | Date | Country | |
---|---|---|---|
20160296730 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62145968 | Apr 2015 | US |