A microelectromechanical systems (MEMS) accelerometer closed-loop system measures the position of the sensor's proof-mass and uses a force-feedback system to rebalance the proof-mass to a null position. The amount of force required to drive the proof-mass to the null position is proportional to input acceleration; therefore, the feedback signal is used as the acceleration measurement. Once the input acceleration exceeds the feedback system's maximum response, the closed-loop operating range is exceeded and the proof-mass begins to move away from the null position. For a traditional closed-loop system, the acceleration measurement becomes saturated and there is no additional acceleration information available. Thus, at saturation the closed-loop system becomes inaccurate.
The present invention provides an extended operating range for a MEMS accelerometer operating in a closed-loop mode. The present invention combines the closed-loop feedback signal and the measured proof-mass position into a hybrid acceleration measurement, which effectively provides an operating range equal to the traditional closed-loop operating range plus the sensor's mechanical open-loop range.
The present invention provides an approach that is a straightforward and inexpensive way of providing additional g-range capability without modifying the basic closed-loop sensor or electronics architecture. The amount of force required to drive the proof-mass to the null position is proportional to input acceleration; therefore, the feedback signal is used as the acceleration measurement. Once the input acceleration exceeds the feedback system's maximum response, the closed-loop operating range is exceeded and the proof-mass begins to move away from the null position. The system detects this movement, assigns the movement an acceleration value, and then adds it to the maximum range of the closed-loop sensor.
Preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings:
The present invention combines the closed-loop feedback signal and the measured proof-mass position into a hybrid acceleration measurement, which effectively provides an operating range equal to the traditional closed-loop operating range plus the sensor's mechanical open-loop range.
Once the input acceleration exceeds the feedback system's maximum response, the closed-loop operating range is exceeded and the proof-mass begins to move away from the null position. The sensor itself is not saturated, however, as the open-loop g-range of the sensor is still available until the sensor itself becomes mechanically saturated.
Four sensor pads 26 are located of either side of the proof-mass 24 nearest the pivot mount 25. Four drive pads 28 are also located on each side and each end of the proof-mass 24. The sensor pads 26 are coupled to an analog-to-digital (A/D) converter 30. The digital output (i.e., sensor signal) of the A/D converter 30 is sent to a closed-loop controller 32 and a processor 34. The closed-loop controller 32 generates a feedback signal based on the sensor signal received from the A/D converter 30.
The processor 34 determines if closed-loop operation of the closed-loop components (i.e., the proof-mass 24, the drive pads 28) have reached the predetermined closed-loop saturation limit. If the limit has not been reached, the processor 34 sends only the closed-loop feedback signal (i.e., the closed-loop acceleration value) received from the controller 32 to an output device 36. If the limit has been reached, the processor 34 combines the closed-loop feedback signal with the output of the A/D converter 30, which provides a sense of position of the proof-mass 24 (i.e., an open-loop acceleration value). The sensed proof mass position is proportional to the amount of input acceleration beyond the closed-loop saturation range. This process occurs until mechanical saturation (i.e., the proof-mass hits mechanical stops) occurs.
if no saturation signal is received, then the switch 50 just passes the output (i.e., the feedback signal +/−) of the controller 32-1 to the output device 46. If a saturation signal is received, the switch 50 combines the controller output with the signal (i.e., open-loop acceleration signal) received at the output switch 50 from the A/D converter 30.
In one embodiment, a function is added to a digital Application-Specific Integrated Circuit (ASIC) to provide the sum of the feedback signal and the proof-mass position signal as the acceleration measurement. The feedback signal and the proof-mass position signal may be multiplied by normalizing constants prior to summing to convert each signal to common units of acceleration. The normalizing constants used may be calculated based on the sensor and electronics design characteristics, or may be empirically determined for each individual sensor. In one embodiment, a field-programmable gate array (FPGA) is programmed to provide the above-described function.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
5583290 | Lewis | Dec 1996 | A |
5621157 | Zhao | Apr 1997 | A |
6588117 | Martin | Jul 2003 | B1 |
6934175 | Nishihara | Aug 2005 | B2 |
7146856 | Malametz | Dec 2006 | B2 |
7337668 | Condemine | Mar 2008 | B2 |
7610809 | McNeil | Nov 2009 | B2 |
8096182 | Lin | Jan 2012 | B2 |
8925384 | McNeil | Jan 2015 | B2 |
20020104378 | Stewart | Aug 2002 | A1 |
20030150268 | Takeda et al. | Aug 2003 | A1 |
20030167843 | Hollocher et al. | Sep 2003 | A1 |
20030209073 | Carroll et al. | Nov 2003 | A1 |
20050145030 | Elliott et al. | Jul 2005 | A1 |
20060150735 | Fax et al. | Jul 2006 | A1 |
20080000296 | Johnson | Jan 2008 | A1 |
20080295597 | Stewart et al. | Dec 2008 | A1 |
20090095078 | Rozelle | Apr 2009 | A1 |
20090107238 | Guo | Apr 2009 | A1 |
20090282916 | Modugno | Nov 2009 | A1 |
20100024552 | Foster | Feb 2010 | A1 |
20120056630 | Itou et al. | Mar 2012 | A1 |
20140165691 | Stewart | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
1983320 | Oct 2008 | EP |
2159579 | Mar 2010 | EP |
Entry |
---|
Response to Extended European Search Report dated Sep. 30, 2014, from counterpart European Patent Application No. 14167605.6, dated Dec. 31, 2014, 10 pp. |
Search Report from counterpart European Patent Application No. 141676605.6, dated Sep. 30, 2014, 7 pp. |
Number | Date | Country | |
---|---|---|---|
20140352434 A1 | Dec 2014 | US |