The present disclosure relates to extension tubes for balloon catheters. More particularly, the disclosure is directed to extension tubes for catheter shafts configured to be used with dilatation balloons to treat a relatively long stenosis of blood vessels.
Balloon catheter systems for percutaneous angioplasty are well known. The catheter can be introduced to the coronary artery through the femoral artery. A guide wire is initially positioned within the coronary artery and a dilation catheter is advanced into the coronary artery over the guide wire. Near the tip of the distal end of the dilation catheter is a deflated distensible balloon, which can be inflated with fluid. The inflated balloon can compress a stenosis towards the wall of the vessel. In another example, the catheter can be introduced over a guide wire into the femoral artery from a percutaneous access site in the contralateral femoral artery. Subsequent balloon inflation can compress a stenosis towards the wall of the vessel.
In the treatment of longer stenoses, the balloon lengths, and any associated lengths, are necessarily increased. During treatment, inflation of the balloon can cause the catheter to undesirably bow or bend, which can result in possible damage to the vessel wall. The bowing or bending of the catheter can result in permanent deformation of a pre-mounted stent associated with the catheter. Accordingly, there remains a need to develop a catheter useful for the treatment of longer arterial vessels.
In accordance with various aspects of the disclosure, a balloon catheter may include a multi-lumen tube having an inflation lumen and a guide wire lumen. The multi-lumen tube may include a proximal end and a distal end and may terminate at a distal tip. The catheter may include an extension tube extending distally from the distal tip of the multi-lumen tube and a dilatation balloon disposed about the multi-lumen tube and the extension tube. The distal tip of the multi-lumen tube may be under the balloon.
According to some aspects of the disclosure, a method for making a balloon catheter may include narrowing a portion of a multi-lumen tube such that a distal end of the multi-lumen tube has a diameter smaller than that of a remainder of the multi-lumen tube, flaring an opening to a guide wire lumen at a distal tip of the multi-lumen tube, inserting an extension tube into the flared opening of the guide wire lumen, connecting a proximal neck of a dilatation balloon to an unnarrowed portion of the multi-lumen tube, and connecting a distal neck of a dilatation balloon to the extension tube, such that the distal tip of the multi-lumen tube is under the balloon
Various embodiments of the disclosure will be understood from the following description, the appended claims, and the accompanying drawings, in which:
One exemplary aspect of the present disclosure provides a balloon catheter having an extension at its distal end to treat a relatively long stenosis of arterial vessels.
An exemplary balloon catheter is illustrated in
The catheter 2 may include a manifold 6, for example, a Y-manifold, such that the manifold 6 is at the proximal end 10a of the multi-lumen tube 10 during use. The catheter 2 may include a dilatation balloon 8 at the distal end 10b of the multi-lumen tube. The inflation lumen 20 may convey fluids from a fluid source (not shown) to the dilatation balloon 8 in order to inflate the balloon 8.
Dimensions and materials for the guide wire and dilatation catheter are known in the art and are described, for example, in U.S. Pat. No. 4,545,390, the disclosure of which is incorporated herein by reference.
Where a stenosis may be relatively long, longer dilatation balloons may be necessary. However, as the length of the balloon increases, longitudinal lengthening of the balloon upon radial expansion increases proportionally. If the catheter is not lengthened in proportion to the balloon lengthening, the distal portion of the catheter can experience a curvature in the shape of a banana/crescent shape or an S-shape, which can result, for example, from a twist in the balloon during bonding to the catheter. This bowing or bending of the catheter can result in permanent deformation of a pre-mounted stent associated with the catheter.
The balloon 8 may include distal and proximal necks 54a, 54b at opposite ends of the balloon 8 and distal and proximal cone transition regions 52a, 52b between the necks 54a, 54b. The extension tube 28 may include distal and proximal marker bands 25a, 25b that may indicate the position of the two balloon cone transition regions 52a (distal) and 52b (proximal). According to some aspects, the distal and proximal balloon necks 54a, 54b may be coupled with the extension tube 28 and the multi-lumen tube 10, respectively.
Referring to
Referring to
According to some aspects of the disclosure, the multi-lumen tube 10 and the extension tube 28 may comprise the same materials or different materials. For example, according to various aspects, the tubes 10, 28 may comprise various polymers, copolymers, or blends. For example, the materials may be selected from Pebax®, nylons, etc. In some aspects, the extension tube 28 may comprise at least one nylon material that is different from that of the multi-lumen tube 10. A “different” nylon material can refer to nylons comprising at least one different monomer type. Alternatively, a different nylon material can comprise a copolymer or blend of the same monomer type, but with different respective weight ratios of the monomers. Exemplary nylons include, but are not limited to, homopolymers, copolymers, and blends made from nylon 12, nylon 11, nylon 66, etc. In various aspects, the nylon materials can include other non-nylon forming monomers, such as, for example, ether forming monomers. In some aspects, the material may comprise polyether block polyamides, such as those available commercially as Pebax®.
According to various aspects of the disclosure, the extension tube 28 may be less stiff than the multi-lumen tube 10. That is, the extension tube 28 may have a lower hardness value so as to minimize the tendency of the balloon-containing portion of the catheter from forming a banana shape. The hardness of polymeric materials is typically indicated by Shore or Durometer hardness. Hardness is determined with a gauge that measures the resistance of the polymer toward deformation, e.g., indentation or elongation. In one embodiment, the hardness of the multi-lumen and extension tubes 10, 28 are measured with the Shore D scale.
Although the extension tube 28 may have a reduced hardness value than the multi-lumen tube 10, it should not be undesirably flexible. Excessive deformation and/of elongation of the extension tube 28 may inhibit balloon rewrap due to the excessive deformed length of extension tube 28. An increased force may be required to pull the poorly rewrapped balloon back into an introducer sheath or a guide catheter.
According to some aspects of the disclosure, the Shore hardness of extension tube 28, multilumen tube 10, or both can range, for example, from 25D to 95D. In various aspects, the desired hardness of the extension tube 28 and/or multilumen tube 10 can be achieved by blending nylon materials of different hardness and/or by changing the wall thickness of the extension tube 28 and/or multilumen tube 10, respectively. For example, nylons ranging from 25D to 90D hardness may be utilized to achieve an intermediary hardness. For example, the hardness of a 65D material can be decreased by blending with a material of lower hardness. The specific hardness values can be ultimately designed depending on the balloon length.
In accordance with various aspects of the disclosure, the multi-lumen tube 10 may have a Shore hardness of at least 60D and the extension tube 28 may have a hardness less than that of the multi-lumen tube 10 and being no more than 70D, such as a hardness of no more than 69D, 68D, 67D, 66D, 65D, 64D, 63D, 62D, 61D, or no more than 60D. In some aspects, the multi-lumen tube 10 may have a Shore hardness of at least 65D and the extension tube 28 may have a hardness less than that of the multi-lumen tube 10 and being no more than 68D, 67D, 66D, 65D, 64D, 63D, 62D, 61D, or no more than 60D. In some aspects, the multi-lumen tube 10 may have a Shore hardness of at least 72D and the extension tube 28 may have a hardness less than that of the multi-lumen tube 10 and being no more than 68D, 67D, 66D, 65D, 64D, 63D, 62D, 61D, or no more than 60D.
The extension tube 28 may have a length proportioned to a length of a desired balloon. According to various aspects of the disclosure, balloon lengths may range from 15 mm to 200 mm, such as a length ranging from 15 mm to 150 mm, and thus, the corresponding extension tube lengths may range from 15 mm to 200 mm±5 mm, such as a length ranging from 15 mm to 150 mm±5 mm. According to some aspects, the extension tube length may be greater than the balloon length by an amount ranging from 3-5 mm.
In some aspects of the disclosure, the total length of the catheter 2 (including the extension tube 28) can range from 40 cm to 150 cm.
Table 1 provides exemplary lengths for the extension tube 28 based on the length and diameter of the balloon 8.
The multi-lumen tube 10 in the examples of Table 1 may comprise 90% 72D Pebax® and 10% nylon 12, whereas the extension tube 28 may comprise 75% 55D Pebax® and 25% 72D Pebax®. Nylon 12 is known to increase the stiffness of the shaft. A cross-section of multi-lumen tube 10 is shown in
Referring now to
The reduced diameter portion 31 has a length extending from a tip 30 (the most distal tip of the multi-lumen tube 10) to an interface 33, which abuts the remaining portion 32 of the multi-lumen tube 10. The remaining portion 32 remains a dual lumen tube having the inflation lumen 20 and the guide wire lumen 22 and, thus, a diameter greater than that of the reduced diameter portion 31. According to various aspects of the disclosure, the reduced diameter portion 31 may have a length of about 2.5 mm, although other lengths can be used depending on the ultimate length of the catheter 2 and the extension tube 28. In some aspects, the tip 30 of the reduced diameter portion 31 may be flared to expand the opening to the guide wire lumen 22 at the distal tip 30 of the multi-lumen tube 10. The opening to the guide wire lumen 22 may be flared so that the extension tube 28 can be inserted therein without comprising the diameter of the guide wire lumens 22, 29 with regard to slidably receiving the guide wire 12. The flaring can be accomplished by, for example, a flaring tool such as, for example, a mandrel.
The extension tube 28 may comprise a mono lumen and may be cut to a desired length, depending on the diameter and length of the balloon 8. The extension tube 28 may include a marker band 25 over a portion of its outer diameter (but not at the tip of the extension tube 28). The marker band 25 may comprise an annular metal strip, such as, for example, gold, platinum/iridium, or the like, that fits over a catheter. During use of the catheter 2, the position of the marker bands may indicate the ends of the balloon portion when dilated.
Referring now to
As shown in
Referring now to
Upon joining the extension tube 28 to the multi-lumen tube 10, the balloon 8 can be mounted on the distal portion of the catheter 2. In one example, the balloon 8 may be loaded onto the distal end of the tube where the distal end includes the connected extension tube 28. The balloon 8 may include two necks, one at each extremity of the balloon 8, that snugly fit over the distal portion of the catheter 2. For example, the distal neck of the balloon 8 may fit over the extension tube 28 and the proximal neck of the balloon 8 may fit over the multi-lumen tube 10.
It should be appreciated that a heat shrink fitting may be placed, for example, by sliding, over the proximal balloon neck (on the multi-lumen tube 10) and adjacent tube area (i.e., the extension tube 10) and pre-shrunk with a hot air jet to hold the proximal balloon neck in place. Subsequently, the proximal balloon neck may be bonded to the catheter 2 via, for example, a laser, after which the heat shrink fitting can be removed. A second heat shrink fitting may be positioned over the distal balloon neck and the bonding process may be repeated to bond the distal balloon neck to the catheter 2.
In operation, the guide wire 12 may first be directed through a patient's vascular system, for example, by a physician. The catheter 2 may then be advanced over the guide wire 12 via the guide wire lumen 22. Because of the relatively small diameter of the guide wire 12, there may be space within the guide wire lumen 22 to administer fluids to the patient without the need to remove the guide wire 12. The guide wire 12 may further include a smaller diameter main wire that tapers at its distal end. At the distal end, the main wire may be surrounded by a spring to act as a bumper to minimize injury to the vessel wall.
In some aspects, the guide wire 12 may be placed into a coronary artery through the femoral artery and to the site of a stenosis. The distal end 10b of the multi-lumen tube 10 of the catheter 2, including the preloaded balloon 8, may be directed to the site of the stenosis via the guide wire 12. The stenosis may be treated by inflating the balloon 8 with fluid received via the inflation lumen 20 of the multi-lumen tube 10. In some aspects, a stent may be preloaded about the balloon 8 such that inflation of the balloon expands the stent so that the stent may be implanted at the site of the stenosis.
According to various aspects of the disclosure, the aforementioned operation may be used to treat a disease or condition associated with a stenosis or thrombosis of vessels relatively longer than a typical stenosis or thrombosis.
It will be apparent to those skilled in the art that various modifications and variations can be made in the devices and methods of the present disclosure without departing from the scope of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only.
This application claims the benefit of priority of U.S. Provisional Application No. 60/941,288 filed Jun. 1, 2007, the disclosure of which is incorporated herein by reference in its entirety as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4793351 | Landman et al. | Dec 1988 | A |
5047045 | Arney et al. | Sep 1991 | A |
5100381 | Burns | Mar 1992 | A |
5209728 | Kraus et al. | May 1993 | A |
5290241 | Kraus et al. | Mar 1994 | A |
5304134 | Kraus et al. | Apr 1994 | A |
5569196 | Muni et al. | Oct 1996 | A |
5769819 | Schwab et al. | Jun 1998 | A |
6129708 | Enger | Oct 2000 | A |
7273485 | Simpson et al. | Sep 2007 | B2 |
8012300 | Simpson et al. | Sep 2011 | B2 |
20050131445 | Holman et al. | Jun 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080300539 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60941288 | Jun 2007 | US |