The present invention relates generally to semiconductors, and more particularly to formation of isolation regions.
In modern semiconductor device applications, numerous devices are packed onto a single small area of a semiconductor substrate to create an integrated circuit. For the circuit to function, many of these individual devices may need to be electrically isolated from one another. Accordingly, electrical isolation is an important and integral part of semiconductor device design for preventing the unwanted electrical coupling between adjacent components and devices.
As the size of integrated circuits is reduced, the devices that make up the circuits must be positioned closer together in order to comply with the limited space available on a typical semiconductor substrate. As the industry strives towards a greater density of active components per unit area of semiconductor substrate, effective isolation between circuits becomes increasingly important.
In a first aspect, embodiments of the present invention provide a method of forming a semiconductor structure, comprising: forming a pad oxide layer on a semiconductor substrate; forming a pad nitride layer on the pad oxide layer; performing a first etch to form a pad nitride layer cavity; depositing a conformal spacer film in the pad nitride layer cavity; and performing a second etch to open the conformal spacer film and forming a trench cavity in the semiconductor substrate.
In a second aspect, embodiments of the present invention provide a method of forming a semiconductor structure, comprising: forming a pad oxide layer on a semiconductor substrate; forming a pad nitride layer on the pad oxide layer; performing a first etch to form a pad nitride layer cavity; depositing a conformal spacer film in the pad nitride layer cavity; performing a second etch to open the conformal spacer film and forming a trench cavity in the semiconductor substrate; depositing an oxide layer to fill the trench cavity; and forming a gate on the trench cavity.
In a third aspect, embodiments of the present invention provide a method of forming a semiconductor structure, comprising: forming a pad oxide layer on a semiconductor substrate; forming a pad nitride layer on the pad oxide layer; performing a first etch to form a pad nitride layer cavity; depositing a conformal nitride liner in the pad nitride layer cavity; performing a second etch to open the conformal nitride liner and form a trench cavity in the semiconductor substrate; depositing an oxide layer to fill the trench cavity; and forming a dummy gate on the trench cavity.
Certain elements in some of the figures may be omitted, or illustrated not-to-scale, for illustrative clarity. The cross-sectional views may be in the form of “slices”, or “near-sighted” cross-sectional views, omitting certain background lines which would otherwise be visible in a “true” cross-sectional view, for illustrative clarity.
Often, similar elements may be referred to by similar numbers in various figures of the drawing, in which case typically the last two significant digits may be the same, the most significant digit being the number of the drawing figure. Furthermore, for clarity, some reference numbers may be omitted in certain drawings.
Features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:
Embodiments of the present invention provide methods for forming a narrow isolation region. The narrow isolation region may serve as an extra narrow diffusion break, suitable for use in 3D FinFET technologies. A pad nitride layer is formed over a semiconductor substrate. A cavity is formed in the pad nitride layer. A conformal spacer liner is deposited in the cavity. An anisotropic etch process then forms a trench in the semiconductor substrate. The trench is narrow enough such that a dummy gate completely covers the trench. Epitaxial stressor regions may then be formed adjacent to the dummy gate. The trench is narrow enough such that there is a gap between the epitaxial stressor regions and the trench.
It will be appreciated that this disclosure may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete and will fully convey the scope of this disclosure to those skilled in the art. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of this disclosure. For example, as used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, the use of the terms “a”, “an”, etc., do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. It will be further understood that the terms “comprises” and/or “comprising”, or “includes” and/or “including”, when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Reference throughout this specification to “one embodiment,” “an embodiment,” “embodiments,” “exemplary embodiments,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” “in embodiments” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
The terms “overlying” or “atop”, “positioned on” or “positioned atop”, “underlying”, “beneath” or “below” mean that a first element, such as a first structure (e.g., a first layer), is present on a second element, such as a second structure (e.g. a second layer), wherein intervening elements, such as an interface structure (e.g. interface layer), may be present between the first element and the second element.
The pad nitride layer cavity 208 is formed via an anisotropic etch. In embodiments, a reactive ion etch (RIE) process is used to form the pad nitride layer cavity. The pad nitride layer cavity 208 has a lower width W1. In embodiments, lower width W1 may range from about 35 nanometers to about 55 nanometers. The minimum value of lower width W1 is limited by the lithographic technology used. However, in order to form an extra narrow substrate trench, it is desirable to reduce the effective lower width of the pad nitride layer cavity 208 to a value even less than W1, as further detailed in the following steps.
W1−2T=55−2(10)=35 nanometers.
While the invention has been particularly shown and described in conjunction with exemplary embodiments, it will be appreciated that variations and modifications will occur to those skilled in the art. For example, although the illustrative embodiments are described herein as a series of acts or events, it will be appreciated that the present invention is not limited by the illustrated ordering of such acts or events unless specifically stated. Some acts may occur in different orders and/or concurrently with other acts or events apart from those illustrated and/or described herein, in accordance with the invention. In addition, not all illustrated steps may be required to implement a methodology in accordance with the present invention. Furthermore, the methods according to the present invention may be implemented in association with the formation and/or processing of structures illustrated and described herein as well as in association with other structures not illustrated. Therefore, it is to be understood that the appended claims are intended to cover all such modifications and changes that fall within the true spirit of the invention.