Extraction cleaners are well-known surface cleaning apparatuses for deep cleaning carpets and other fabric surfaces, such as upholstery. Most extraction cleaners or extractors comprise a fluid delivery system that delivers cleaning fluid to a surface to be cleaned and a fluid recovery system that extracts spent cleaning fluid and debris (which may include dirt, dust, stains, soil, hair, and other debris) from the surface. The fluid recovery system usually comprises a recovery tank, a nozzle adjacent the surface to be cleaned and in fluid communication with the recovery tank through a working air conduit, and a source of suction in fluid communication with the working air conduit to draw the cleaning fluid from the surface to be cleaned and through the nozzle and the working air conduit to the recovery tank. The recovery tank is often removably mounted on the extraction cleaner in order to remove the recovery tank for emptying.
According to one aspect of the present disclosure, an extraction cleaner includes a housing, a suction nozzle provided on the housing, a suction source provided on the housing and in fluid communication with the suction nozzle for generating a working airstream, and a recovery tank assembly adapted for separating and collecting fluid and debris from the working airstream for later disposal, wherein the recovery tank assembly is removably mounted on the housing and comprises a recovery container having an upper portion and a lower portion, the recovery container defining at least a portion of a recovery chamber, a drain opening provided with the lower portion, a valve fluidly connected to the drain opening for movement between a closed position wherein the valve seals the recovery chamber and an opened position wherein the valve allows for draining fluid from the recovery chamber, and an actuator operably coupled to the valve and adapted for moving the valve, wherein at least a portion of the actuator is provided on an upper portion of the recovery container.
According to another aspect of the present disclosure, an extraction cleaner includes a housing, a suction nozzle provided on the housing, a suction source provided within the housing and in fluid communication with the suction nozzle for generating a working airstream, and a recovery tank assembly adapted for separating and collecting fluid and debris from the working airstream for later disposal, the recovery tank assembly comprising a recovery container defining a recovery chamber and comprising a drain opening provided within a lower portion of the recovery container, a drain plug selectively fluidly connected to the drain opening, and an actuator for selectively moving the drain plug between a closed position and an opened position wherein a portion of the actuator is engageable by a user and the portion is remotely located from the drain plug.
The present disclosure will now be described with respect to the drawings in which:
The present disclosure relates to extraction cleaners. In one of its aspects, the present disclosure relates to an extraction cleaner with a removable recovery tank and an improved arrangement for emptying the recovery tank.
The extraction cleaner 10 can include a fluid delivery system 12 for storing cleaning fluid and delivering the cleaning fluid to the surface to be cleaned and a recovery system 14 for removing the spent cleaning fluid and debris from the surface to be cleaned and storing the spent cleaning fluid and debris.
The recovery system 14 can include a suction nozzle 16, a suction source 18 in fluid communication with the suction nozzle 16 for generating a working airstream, and a recovery tank 20 for separating and collecting fluid and debris from the working airstream for later disposal. A separator 21 can be formed in a portion of the recovery tank 20 for separating fluid and entrained debris from the working airstream.
The suction source 18, such as a motor/fan assembly, is provided in fluid communication with the recovery tank 20. The motor/fan assembly 18 can be electrically coupled to a power source 22, such as a battery or by a power cord plugged into a household electrical outlet. A suction power switch 24 between the motor/fan assembly 18 and the power source 22 can be selectively closed by the user, thereby activating the motor/fan assembly 18.
The suction nozzle 16 can be provided on a base or cleaning head adapted to move over the surface to be cleaned. An agitator 26 can be provided adjacent to the suction nozzle 16 for agitating the surface to be cleaned so that the debris is more easily ingested into the suction nozzle 16. Some examples of agitators include, but are not limited to, a horizontally-rotating brushroll, dual horizontally-rotating brushrolls, one or more vertically-rotating brushrolls, or a stationary brush.
The extraction cleaner 10 can also be provided with above-the-floor cleaning features. A vacuum hose 28 can be selectively fluidly coupled to the motor/fan assembly 18 for above-the-floor cleaning using an above-the floor cleaning tool 30 with its own suction inlet. A diverter assembly 32 can be selectively switched between on-the-floor and above-the floor cleaning by diverting fluid communication between either the suction nozzle 16 or the vacuum hose 28 with the motor/fan assembly 18.
The fluid delivery system 12 can include at least one fluid container 34 for storing a supply of fluid. The fluid can include one or more of any suitable cleaning fluids, including, but not limited to, water, compositions, concentrated detergent, diluted detergent, etc., and mixtures thereof. For example, the fluid can include a mixture of water and concentrated detergent.
The fluid delivery system 12 can further include a flow control system 36 for controlling the flow of fluid from the container 34 to at least one fluid distributor 38. In one configuration, the flow control system 36 can include a pump 40 which pressurizes the system 12 and a flow control valve 42 which controls the delivery of fluid to the distributor 38. An actuator 44 can be provided to actuate the flow control system 36 and dispense fluid to the distributor 38. The actuator 44 can be operably coupled to the valve 42 such that pressing the actuator 44 will open the valve 42. The valve 42 can be electrically actuated, such as by providing an electrical switch 46 between the valve 42 and the power source 22 that is selectively closed when the actuator 44 is pressed, thereby powering the valve 42 to move to an open position. In one example, the valve 42 can be a solenoid valve. The pump 40 can also be coupled with the power source 22. In one example, the pump 40 can be a centrifugal pump. In another example, the pump 40 can be a solenoid pump.
The fluid distributor 38 can include at least one distributor outlet 48 for delivering fluid to the surface to be cleaned. The at least one distributor outlet 48 can be positioned to deliver fluid directly to the surface to be cleaned, or indirectly by delivering fluid onto the agitator 26 The at least one distributor outlet 48 can include any structure, such as a nozzle or spray tip; multiple outlets 48 can also be provided. As illustrated in
Optionally, a heater 50 can be provided for heating the cleaning fluid prior to delivering the cleaning fluid to the surface to be cleaned. In the example illustrated in
As another option, can be provided with an additional container 52 for storing a fluid. For example, the first container 34 can sore water and the second container 52 can store a cleaning agent such as detergent. The containers 34, 52 can, for example, be defined by a supply tank and/or a collapsible bladder. In one configuration, the first container 34 can be a bladder that is provided within the recovery tank 20. Alternatively, a single container can define multiple chambers for different fluids.
In the case where multiple containers 34, 52 are provided, the flow control system 36 can further be provided with a mixing system 54 for controlling the composition of the cleaning fluid that is delivered to the surface. The composition of the cleaning fluid can be determined by the ratio of cleaning fluids mixed together by the mixing system. As shown herein, the mixing system 54 includes a mixing manifold 56 that selectively receives fluid from one or both of the containers 34, 52. A mixing valve 58 is fluidly coupled with an outlet of the second container 52, whereby when mixing valve 58 is open, the second cleaning fluid will flow to the mixing manifold 56. By controlling the orifice of the mixing valve 58 or the time that the mixing valve 58 is open, the composition of the cleaning fluid that is delivered to the surface can be selected.
In yet another configuration of the fluid delivery system 12, the pump 40 can be eliminated and the flow control system 36 can include a gravity-feed system having a valve fluidly coupled with an outlet of the container(s) 34, 52, whereby when valve is open, fluid will flow under the force of gravity to the distributor 38. The valve can be mechanically actuated or electrically actuated, as described above.
The extraction cleaner 10 shown in
In operation, the extraction cleaner 10 is prepared for use by coupling the extraction cleaner 10 to the power source 22, and by filling the first container 34, and optionally the second container 52, with cleaning fluid. Cleaning fluid is selectively delivered to the surface to be cleaned via the fluid delivery system 12 by user-activation of the actuator 44, while the extraction cleaner 10 is moved back and forth over the surface. The agitator 26 can simultaneously agitate the cleaning fluid into the surface to be cleaned. During operation of the recovery system 14, the extraction cleaner 10 draws in fluid and debris-laden working air through the suction nozzle 16 or cleaning tool 30, depending on the position of the diverter assembly 32, and into the downstream recovery tank 20 where the fluid debris is substantially separated from the working air. The airstream then passes through the motor/fan assembly 18 prior to being exhausted from the extraction cleaner 10. The recovery tank 20 can be periodically emptied of collected fluid and debris.
For purposes of description related to the figures, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” “inner,” “outer,” and derivatives thereof shall relate to the present disclosure as oriented in
The upright assembly 60 includes a main support section or frame 64 supporting components of the fluid delivery system 12 and the recovery system 14, including, but not limited to, the recovery tank 20 and the fluid container 34. The upright assembly 60 also has an elongated handle 66 extending upwardly from the frame 64 that is provided with a hand grip 68 at one end that can be used for maneuvering the extraction cleaner 10 over a surface to be cleaned. The frame 64 of the upright assembly 60 can include container receivers for respectively receiving the recovery tank 20 and fluid container 34 for support on the upright assembly 60; additional details of suitable container receivers are disclosed in U.S. Pat. No. 10,188,252, filed Sep. 13, 2016 and published Mar. 16, 2017, which is incorporated herein by reference in its entirety. A motor housing 70 is formed at a lower end of the frame 64 and contains the motor/fan assembly 18 (
The recovery container 72 can generally have a bottom end and a top end opposite the bottom end. Particularly as shown herein, the recovery container 72 can include a bottom wall 90 and a top wall 92, with a peripheral side wall 82 extending between the bottom wall 90 and the top wall 92. The air/liquid separator 76 can be located within the recovery container 72, with the space between the separator 76 and the side and bottom walls 82, 90 forming the recovery chamber 74 for holding recovered debris and fluid. The carry handle 80 is provided at the top wall 92 of the container, and can be pivotally mounted to the side walls 82. In an alternate aspect, not shown, the top wall 92 of the container 72 may form or be defined by a removable tank lid for the recovery tank 20, with the tank lid 92 carrying the handle 80.
The container 72 can be provided with a drain opening 88 for emptying the container 72. A valve is fluidly connected to the drain opening 88 for movement between a closed position for sealing the recovery chamber 74 and an open position for draining fluid from the recovery chamber 74 through the drain opening 88. An actuator, at least a portion of which may be manually-engageable by a user, is provided for selectively opening the valve. In one aspect, at least a portion of the actuator may conveniently be provided on an upper portion of the container 72. As such, the valve may be remotely-actuated.
The container 72 can be provided with a drain opening 88 for emptying the container 72. A valve is fluidly connected to the drain opening 88 for movement between a closed position for sealing the recovery chamber 74 and an open position for draining fluid from the recovery chamber 74 through the drain opening 88. An actuator, at least a portion of which may be manually-engageable by a user, is provided for selectively opening the valve. In one aspect, at least a portion of the actuator may conveniently be provided on an upper portion of the container 72. As such, the valve may be remotely-actuated.
The drain plug 86 is aligned with the drain opening 88 to seal the drain opening 88 when the door 84 is closed for a fluid-tight closure, such that the container 72 is leak-free. The drain plug 86 can be at least partially received in the drain opening 88 to stop up or fill the drain opening 88. Other sealing arrangements are possible, including seals which are not received within the drain opening 88 itself, but which provide a fluid-tight and leak proof engagement between the drain opening 88 and the door 84.
The actuator for the valve of the illustrated aspect includes at least a user-engageable button 94 and an elongate push rod 96 configured to selectively open the bottom empty door 84. The button 94 is operably connected to the push rod 96, and can be provided at an upper portion of the container 72, such as on the top wall 92 of the container 72. In one example, the button 94 can be connected to the push rod by a fastener (not shown), such as a mechanical fastener, a screw, a detent, or bayonet style hook, for example. The button 94 and push rod 96 can be biased upwardly by a spring (not shown). The elongate push rod 96 can be configured to selectively release a door latch 98 to open the bottom empty door 84 and separate the drain plug 86 from the drain opening 88. The door latch 98 can be any suitable device for holding the door 84 closed, and which may be released by the push rod 96.
In one example illustrated in
The elongate push rod 96 can be provided on an exterior of the recovery tank 20; for example, the push rod 96 can be provided for sliding movement along the outside surface of the peripheral side wall 82. Pressing the button 94 translates the push rod 96 downwardly along the side wall 82 to push open the door 84.
The air/liquid separator 76 is configured to be easily removable from the recovery container 72 by a user. This permits the air/liquid separator 76 to be disassembled and cleaned more thoroughly as needed. A coupling between the recovery container 72 and the air/liquid separator 76 can be provided for facilitating easy separation of the two components. As shown herein, the coupling includes a threaded collar 106 which screws onto a threaded neck 180 on the bottom wall of the container 72 which defines the opening 102 through which the air/liquid separator 76 is inserted. A flange 110 on the bottom of the air/liquid separator 76 limits insertion of the separator 76 into the container 72. A seal 112 provides a fluid-tight interface between the container 72 and the and the air/liquid separator 76 when the air/liquid separator 76 is mounted within the recovery chamber 74, and also prevents the container 72 from leaking when removed from the upright assembly 60 (
The air/liquid separator 76 includes a stack 114 for guiding air and liquid through the container 72 and a float assembly 116 for selectively closing the suction path through the container 72. The stack 114 includes an inlet column 118 which receives recovered air and liquid form the suction nozzle 16 (
The float assembly 116 includes float shutter 124 and a float body 126 coupled with the float shutter 124 for selectively raising the float shutter 124 to a closed position in which the float shutter 124 closes the air inlet port 122 of the outlet column 120. The float shutter 124 slides within a guide passage provided on the stack 114 defined by opposing guide projections 130 which receive the float body 126, with the float body 126 at least partially wrapping around the columns 118, 120. The float body 126 is buoyant, and as the liquid level container rises, the float body 126 raises the float shutter 124 to close the air inlet port 122 and prevent liquid from exiting the container 72 and entering the motor/fan assembly 18 (
It is noted that while the aspect shown in
The drain plug 86′ is aligned with the drain opening 88′ to seal the drain opening 88′ when the push rod 96′ is translated upwardly for a fluid-tight closure, such that the container 72′ is leak-free. The drain plug 86′ can be at least partially received in the drain opening 88′ to stop up or fill the drain opening 88′. Other sealing arrangements are possible, including seals which are not received within the drain opening 88′ itself, but which provide a fluid-tight and leak proof engagement between the drain opening 88′ and a portion of the push rod 96′.
Also, the push rod 96′ can be routed inside the tank 20′, which facilitates direct connection to the drain plug 86′. The push rod 96′ can be provided within the recovery tank 20; for example, the push rod 96 can be provided for sliding movement within the chamber 74′. The button 94′ can be connected to the push rod 96 via a pivot arm (not shown) such that pressing the button 94′ downwardly translates the push rod 96′ upwardly via the pivot arm (not shown) to pull the drain plug 86′ away from the drain opening 88′.
Also in the second aspect, the tank empty button 94′ can also be positioned on or adjacent to a portion of the carry handle 80′ so that a user can conveniently operate the button 94′ when holding the tank 20′ by the carry handle 80′.
Yet another difference between the first and second aspects is that in the second aspect, the carry handle 80′ is not pivotable or rotatable relative to the container 72′. The carry handle 80′ is fixed on the top wall 92; and oriented so that the user can grip the carry handle 80′ with one hand and operate the button 94′ with the thumb of the same hand. Preferably, the button 94′ is provided on the end of the carry handle 80′ that is rearward when the recovery tank 20′ is mounted on the extraction cleaner 10, such that the user can grip the carry handle 80′ to remove the tank 20′ and open the drain opening 88′ without changing grip position.
When the tank empty button 94′ is depressed, the push rod 96′ pulls the drain plug 86′ away from the drain opening 88′ and recovered liquid flows out of the tank 20′. The drain plug 86′, push rod 96′ and button 94′ assembly can be normally biased to the sealed position, so the drain plug 86′ seals the drain opening 88′. In one example, a coil spring (not shown) beneath the button 94′ can force the button 94′ upwardly, which forces the push rod 96′ downwardly via the pivot arm (not shown) to the sealed position with the drain plug 86′ sealing the drain opening 88′.
There are several advantages of the present disclosure arising from the various features of the apparatuses described herein. For example, the aspects of the present disclosure described above allow for quick and ergonomic emptying of a recovery tank for an extraction cleaner. The prior art includes tanks with removable lids or top-emptying features that require the user to tilt or rotate the tank to empty its contents. These actions typically require the use of two hands. The recovery tank 20 shown in the aspects herein offers a more ergonomic push button solution that does not require the tank to be tilted or rotated to empty it. Instead, the tank remains in the upright position and the user can quickly empty the recovered liquid using a single hand with just the push of a button.
While various aspects illustrated herein show an upright extraction cleaner, for example
While the present disclosure has been specifically described in connection with certain specific aspects thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible with the scope of the foregoing disclosure and drawings without departing from the spirit of the present disclosure which, is defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the aspects disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
This application is a continuation of U.S. patent application Ser. No. 17/089,299, filed Nov. 4, 2020, now allowed, which is a continuation of U.S. patent application Ser. No. 16/225,120, filed Dec. 19, 2018, now U.S. Pat. No. 10,827,902, issued Nov. 10, 2020, which is a continuation of U.S. patent application Ser. No. 15/840,245, filed Dec. 13, 2017, now U.S. Pat. No. 10,188,253, issued Jan. 29, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/436,684, filed Dec. 20, 2016, all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62436684 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17089299 | Nov 2020 | US |
Child | 18228976 | US | |
Parent | 16225120 | Dec 2018 | US |
Child | 17089299 | US | |
Parent | 15840245 | Dec 2017 | US |
Child | 16225120 | US |