The present application is a non-provisional application of U.S. Provisional Patent Application No. 62/854,782, filed on May 30, 2019, entitled “Eye-Safe Long-Range LIDAR System Using Actuator”. The entire contents of U.S. Provisional Patent Application No. 62/854,782 are herein incorporated by reference.
The section headings used herein are for organizational purposes only and should not to be construed as limiting the subject matter described in the present application in any way.
Autonomous, self-driving, and semi-autonomous automobiles use a combination of different sensors and technologies such as radar, image-recognition cameras, and sonar for detection and location of surrounding objects. These sensors enable a host of improvements in driver safety including collision warning, automatic-emergency braking, lane-departure warning, lane-keeping assistance, adaptive cruise control, and piloted driving. Among these sensor technologies, light detection and ranging (LIDAR) systems take a critical role, enabling real-time, high-resolution 3D mapping of the surrounding environment. In order for LIDAR systems to be deployed broadly and in high-volume, they need to be both low-cost and reliable, as well as compact physically.
As LIDAR systems become broadly available and the market price drops, they will also start to be deployed in many other applications, such as security monitoring, industrial robots, and drones. The application requirements of these other applications, as well as within the autonomous vehicle space itself, are widely varying. The required maximum range, angular resolution, and frame rate for an autonomous car that can navigate at high-speed, might substantially exceed the requirements for an industrial robot that moves inside a building. In such case, the cost and performance of a LIDAR system will be optimized to provide the best match with the application specification.
The present teaching, in accordance with preferred and exemplary embodiments, together with further advantages thereof, is more particularly described in the following detailed description, taken in conjunction with the accompanying drawings. The skilled person in the art will understand that the drawings, described below, are for illustration purposes only. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating principles of the teaching. The drawings are not intended to limit the scope of the Applicant's teaching in any way.
The present teaching will now be described in more detail with reference to exemplary embodiments thereof as shown in the accompanying drawings. While the present teaching is described in conjunction with various embodiments and examples, it is not intended that the present teaching be limited to such embodiments. On the contrary, the present teaching encompasses various alternatives, modifications and equivalents, as will be appreciated by those of skill in the art. Those of ordinary skill in the art having access to the teaching herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the teaching. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
It should be understood that the individual steps of the method of the present teaching can be performed in any order and/or simultaneously as long as the teaching remains operable. Furthermore, it should be understood that the apparatus and method of the present teaching can include any number or all of the described embodiments as long as the teaching remains operable.
The present teaching relates to Light Detection and Ranging (LIDAR), which is a remote sensing method that uses laser light to measure distances (ranges) to objects. Autonomous vehicles make use of LIDAR systems to generate a highly accurate 3D map of the surrounding environment with fine resolution. The systems and methods described herein are directed towards providing a pulsed time-of-flight (TOF) LIDAR system with high levels of reliability, while also maintaining long measurement range as well as low cost. One aspect of the present teaching is focused on the optimization of the overall LIDAR system for cost, while still providing excellent reliability and performance in a compact physical size.
The systems and methods described herein that provide a pulsed TOF LIDAR are also configured to maintain Class 1 eye safety. A Class 1 eye safety rating means the system is safe under all conditions of normal use. To maintain Class 1 eye safety, the laser optical energy or laser optical power cannot exceed a maximum permissible exposure (MPE) level as defined by U.S. and international safety standards. However, the measurement range of a LIDAR system is strongly dependent on the maximum transmitted optical pulse energy or power level. Therefore, it is desirable for automotive LIDAR systems to intentionally operate as close to the Class 1 MPE limit as feasible.
Given that all LIDAR systems operating at the same wavelength will be subject to the same MPE limits, further improvements in range for one LIDAR system relative to another LIDAR system operating at power levels near the MPE power limit, must come by innovating aspects of the optical system. One aspect of the present teaching is a LIDAR system that uses a highly collimated laser beam, where all the energy is transmitted into a small FOV. Such a configuration provides a relatively long measurement range compared with a system where the same amount of laser light is dispersed over a wider FOV. That is, using a highly collimated laser beam, combined with a receiver design that allows measurement over a similarly small field of view (FOV), will result in a desirable ratio of reflected signal power to background light level, which improves range capability.
One type of known LIDAR system is a so-called Flash LIDAR system, which employs an emission source that emits laser light over a wide FOV. Some Flash LIDAR systems are also solid-state with no moving parts, whereas other Flash LIDAR systems use a mirror scanning in one-direction and illuminate a “line” which is swept through the full field-of-view incrementally. A solid-state Flash LIDAR system with no moving parts must illuminate the entire scene with a single illumination event. But, for LIDAR systems operating at the Class 1 eye safety MPE limit, the wide FOV illuminated by a solid-state Flash LIDAR significantly limits measurement range compared to a system where the light from the emission source is highly collimated.
It should be understood that a measurement, or measurement point, in a LIDAR system is produced by processing a particular detected signal that is produced by a particular illumination at the target range. A TOF is calculated based on this particular detected signal. The particular detected signal for a measurement point can be generated by a single detector, or multiple detectors, depending on how the system is controlled as described further herein. Also, the particular detected signal for a measurement point can be generated by a single laser, or multiple lasers, depending in how the system is controlled.
Some pulsed TOF LIDAR systems according to the present teaching use collimated transmitter laser beams with optical power/energy at or slightly below the MPE limit for Class 1 eye safety to provide a significant range increase compared to a conventional Flash LIDAR system. In addition, some pulsed TOF LIDAR systems according to the present teaching use pulse averaging and/or pulse histogramming of multiple laser pulses to improve Signal-to-Noise Ratio (SNR), which further improves range. These LIDAR systems employ a very high single pulse frame rate, well above 60 Hz and even up to a few kHz, to enable averaging of multiple pulses.
One important performance goal of an automotive LIDAR system is angular resolution of the optical system. In order to be able to clearly define separate objects in space and/or perform object identification through image analysis, a fine angular resolution is required for automotive LIDAR systems. Currently, automotive LIDAR systems require angular resolution that is less than about 0.2°. These systems would benefit from even higher resolution if it were achievable.
Furthermore, there should not be any “gaps” in coverage between measurement points, particularly at long distances. To illustrate why there should be no such gaps, consider a practical use situation of a 200 meter range. A 0.2° angle at 200 meters corresponds to a lateral distance of 0.7 meters. Since a typical person is approximately 0.15 meter in width, it would be possible for the LIDAR system to miss the presence of a person completely at a range of 200 meters if the resolution was 0.2°, and the collimated laser beam diameter at 200 meters was smaller than 0.7 meter.
Reliability is also an important aspect of LIDAR systems designed for autonomous vehicles. The operational environment is particularly challenging for automotive LIDAR systems. Failure of a LIDAR sensor could result in a collision and can also prevent operation of the vehicle. LIDAR systems without moving parts are generally more reliable compared to LIDAR systems that use rotating part or large-scale scanning mirrors. Moving parts are susceptible to mechanical wear and have limited lifetimes. The LIDAR system of the present teaching includes motion, but preferentially uses “frictionless” mechanisms that are not susceptible to wear-out to the same degree as a motor or other large-scale scanning mirror.
Portions of the light from the incident optical beams are reflected by the target 106. These portions of reflected optical beams share the receiver optics 112. A detector array 114 receives the reflected light that is projected by the receiver optics 112. In various embodiments, the detector array 114 is solid-state with no moving parts. The detector array 114 typically has a fewer number of individual detector elements than the transmitter array 102 has individual lasers.
The measurement resolution of the LIDAR system 100 is not determined by the size of the detector elements in the detector array 114, but instead is determined by the number of lasers in the transmitter array 102 and the collimation of the individual optical beams. In other words, the resolution is limited by a field-of-view of each optical beam. A processor (not shown) in the LIDAR system 100 performs a time-of-flight (TOF) measurement that determines a distance to the target 106 from optical beams transmitted by the laser array 102 that are detected at the detector array 114.
One feature of LIDAR systems according to the present teaching is that individual lasers and/or groups of lasers in the transmitter array 102 can be individually controlled. Each individual emitter in the transmitter array can be fired independently, with the optical beam emitted by each laser emitter corresponding to a three-dimensional (3D) projection angle subtending only a portion of the total system field-of-view. One example of such a LIDAR system is described in U.S. Patent Publication No. 2017/0307736 A1, which is assigned to the present assignee. The entire contents of U.S. Patent Publication No. 2017/0307736 A1 are incorporated herein by reference.
Another feature of LIDAR systems according to the present teaching is that detectors and/or groups of detectors in the detector array 114 can also be individually controlled. This independent control over the individual lasers and/or groups of lasers in the transmitter array 102 and over the detectors and/or groups of detectors in the detector array 114 provides for various desirable operating features including control of the system field-of-view, optical power levels, and scanning pattern.
Thus, desired fields-of-views can be established by controlling particular individual or groups of lasers in a transmitter array and/or controlling individual or groups of detectors in a receive array. Various system fields-of-view can be established using different relative fields-of-view for individual or groups of emitters and/or individual or groups of detectors. The fields-of-view can be established so as to produce particular and/or combinations of performance metrics. These performance metrics include, for example, improved signal-to-noise ratio, longer range or controlled range, eye safe operation power levels, and lesser or greater controllable resolutions. Importantly, these performance metrics can be modified during operation to optimize the LIDAR system performance.
LIDAR systems according to the present teaching use an array drive control system that is able to provide selective control of particular laser devices in an array of laser devices in order to illuminate a target according to a desired pattern. Also, LIDAR systems according to the present teaching can use an array of detectors that generate detector signals that can be independently processed. Consequently, a feature of the LIDAR systems according to the present teaching is the ability to provide a variety of operating capabilities from a LIDAR system exclusively with electronic, non-mechanical and/or non-moving parts that include a fixed array of emitters and a fixed array of detectors with both the transmit and receive optical beams projected using shared transmit and receive optics. Such a LIDAR system configuration can result in a flexible system that is also compact in size, reliable in operation, and relatively low cost.
One feature of the LIDAR systems of the present teaching is that they rely on laser arrays to generate the optical beams and detector arrays to receive the portion of light from these optical beams that is reflected from the target. As such, they benefit from the many features of solid-state components in that they are relatively compact in size, reliable in operation, and low in cost. Various detector technologies can be used to construct a detector array for the LIDAR systems according to the present teaching. For example, Single Photon Avalanche Diode Detector (SPAD) arrays, Avalanche Photodetector (APD) arrays, and Silicon Photomultiplier Arrays (SPAs) can be used. The detector size not only sets the resolution by setting the FOV of a single detector, but also relates to the speed and detection sensitivity of each device. State-of-the-art two-dimensional arrays of detectors for LIDAR are already approaching the resolution of VGA cameras, and are expected to follow a trend of increasing pixel density similar to that seen with CMOS camera technology. Thus, smaller and smaller sizes of the detector FOV represented by square 204 are expected to be realized over time. For example, an APD array with 264,000 pixels (688(H)×384(V)) was recently reported in “A 250 m Direct Time-of-Flight Ranging System Based on a Synthesis of Sub-Ranging Images and a Vertical Avalanche Photo-Diodes (VAPD) CMOS Image Sensor”, Sensors 2018, 18, 3642.
Various types of laser arrays can also be used in the LIDAR systems according to the present teaching. One example of a laser array is made from Vertical Cavity Surface Emitting Laser (VCSEL) laser devices. This can include top-emitting VCSELs, bottom-emitting VCSELs, and various types of high-power VCSELs. These VCSEL devices can be a stand-alone single emitter, or can be part of a multiple emitter VCSEL that can be fabricated as one- or two-dimensional arrays on the substrate. The VCSEL contacts that are energized to generate an optical beam from a particular laser can be addressed, or energized, individually and/or can be electrically connected together in various configurations to energize groups of VCSELs with a common electrical input signal. One feature of the LIDAR systems of the present teaching is a system and method for controlling the energizing of the one or more VCSEL devices in an array with an appropriate drive signal for a particular LIDAR system application. In some embodiments, the VCSEL array is monolithic and the lasers all share a common substrate. A variety of common substrate types can be used. For example, the common substrate can be a semiconductor material. The common substrate can also include a ceramic material. In some embodiments, the VCSEL array is a 2D VCSEL array and the 2D VCSEL array is assembled from a group of one-dimensional (1D) bars or even from numerous individual die.
One feature of the LIDAR systems according to the present teaching is that they can provide controllable fields-of-view for a variety of laser arrays. Some embodiments use VCSEL arrays. In some embodiments, the VCSELs are top-emitting VCSELs. In other embodiments, the VCSELs are bottom-emitting VCSELs. The individual VCSELs can have either a single large emission aperture, or the individual VCSELs can be formed from two or more sub-apertures within a larger effective emission diameter. A group of sub-apertures forming a larger effective emission region is sometimes referred to as a cluster. The sub-apertures in a cluster can be electrically connected in parallel so that they are electronically activated by a single control signal.
Some embodiments of the present teaching utilize bottom-emitting high-power arrays of VCSELs with a single large aperture per laser, and configured in a regularly spaced rectangular array, such as in the configuration shown in
One feature of the LIDAR systems of present teaching is that the emitters may not all emit light at the same wavelength. Thus, various emitters in the array can produce light with different wavelengths than other emitters. For example, emitters in a column or in a row may emit one wavelength, and emitters in an alternating column or row may emit a different wavelength. A variety of wavelength patterns can be used.
The use of 2D VCSEL arrays as a building block of the LIDAR systems of the present teaching establishes a transmitter platform that allows a small physical size for the transmitter. For example, it is possible to fabricate a typical 2D array with 256 high-power individual laser emitters on a monolithic chip having dimensions that are approximately 4 mm×4 mm. The monolithic 2D laser array is then used together with transmit optics that are chosen to keep the physical dimension as small as possible. For example, some embodiments use micro-lens arrays with sizes similar to the monolithic chip. Other embodiments use shared lenses having a diameter, for example, less than 20 mm. Yet other embodiments use diffractive optics with, for example, maximum dimensions of 20 mm diameter.
One feature of the LIDAR systems of the present teaching is that the spacing and/or the divergence of the optical beams produced by the emitters can be configured to generate emitter FOVs that have a desired pattern, shape or other specified characteristic. For example, the optical beams can be made to overlap or to not overlap. The choice of the FOV pattern provides control over, for example, range, eye safety power level, signal-to-noise ratio and/or resolution, depending on the particular pattern.
Consider the numerical example of a collimated laser beam for a LIDAR system having 10 mrad of divergence. At a 100 meter range there would be a beam width of 1 meter. Since, for example, a person is approximately only 0.15 meter wide, a portion of the 1-meter beam will not fall onto the person, and thus will not contribute to the reflected signal used for measurement. In such configuration, it is preferred to generate a beam with smaller divergence, and smaller beam width. However, as illustrated in
The array 402 has dimension D 408 in an emitting plane. At one relative position between the lens system 404 and the array 402, the emitter 410 in the center of the array 402 generates an optical beam 412 along a center line 414. The lens system 404 collimates and projects this beam 412 to a center position 416 at a target range. An outer emitter 418 at an edge of the array 402 with dimension D 408 generates an optical beam 420. The lens system 404 collimates and projects this beam 420 to an outer position 422 at the target range. In some embodiments, the projected angle 424 of the outer beam 420 from the edge emitter 418 with respect to the central beam 412 from the center emitter 410 is equal to half the field-of-view (FOV/2). A controller 426 has outputs electrically connected to inputs of at least some of the emitters in the laser array 402. The controller is able to select particular individual or groups of lasers in the plurality of lasers to be energized, thus producing a particular laser FOV with a desired pattern of optical beams.
One feature of the present teaching is that the relative motion of the lens system 404 and array 402 provides a particular pattern of optical beam FOVs that is known to the controller 426. This includes, for example, beam positions, beam size and/or beam overlap. As such, in some embodiments the relative motion combined with the controlling of the pattern of firing of lasers by controller 426 can be used to manage the power levels of the optical beams at a target range. Specifically, the firing pattern can be used to ensure that a predetermined optical power level is not exceeded in any individual optical beam FOVs. In some embodiments, the predetermined power level is a Class 1 eye safety limit. The firing pattern can also be controlled such that a predetermined optical power level is not exceeded in any overlapping optical beam FOVs.
The VCSEL devices described in connection with
Referring to both
The relative motion between the laser array 402 and the lens system 404 can be accomplished through use of a flexure-based actuator 428. In various embodiments, actuator 428 comprises various known actuator technology. For example, actuators are commercially available from several vendors, including Physik Instrument in Germany. The force to drive the flexure-based actuator can be produced by various electromechanical devices including piezo motors or voice-coil actuators.
The reflected light from both transmitters 602, 604 is combined at a single receiver 618. The receiver 618 includes a receive optical system 620 that can include one or more lens in various configurations. The receive optical system 620 can also include other optical elements, such as filters, mirrors, and numerous other optical elements. The receive optical system 620 also includes a detector array 622. The FOVs of both transmitters 602, 604 and the receiver 622 are largely overlapping.
A different relative position of the lens system 610 and the array 606 of the first transmitter 602 and different relative position of the lens system 612 and array 608 of the second transmitter 604 of
A controller 628 is connected to the laser arrays 606, 608, the detector array 622 and to the actuators 624, 626. The controller 628 includes outputs electrically connected to inputs individual and/or groups of lasers in the laser arrays 606, 608 such that the controller is able to select particular individual or groups of lasers in arrays 606, 608 to be energized, thus producing a particular laser FOV with a desired pattern of optical beams. The controller 628 includes outputs electrically connected to least some of the detectors in the detector array 622. Thus, the controller can select particular detectors to be monitored. The controller 628 also includes connections to the actuators 624 so as to control the speed and/or throw and/or direction of the actuator to provide a desired speed and/or displacement and/or direction of the relative motion between the arrays 606, 608 and the lens systems 610, 612.
The detector FOVs in the detector array 622 are illustrated as a 16×16 grid of squares 636. Also shown in the figure is the FOV 638 of the target, which is the automobile 614. The optical beams emitted from the two transmitters 602, 604 are interleaved in free space to produce the pattern of FOVs, which is the arrays of circles 632, 634 shown in
The detector FOVs in the detector array 622 are illustrated as a 16×16 grid of squares 676. Also shown is the FOV of the target, which is automobile 678. The optical beams emitted from the two transmitters 602, 604 are interleaved in free space to produce the pattern of FOVs, arrays of circles 672, 674 shown in
The embodiment described in connection with
Most known LIDAR systems use a mirror or motor to scan the FOV with a small number of lasers. The motion is continuous in some fashion. Continuation motion is accomplished by constantly sweeping the FOV in order to achieve a desired frame rate. Referring to
An example of a method of operation according to the present teaching is as follows. Consider that the LIDAR system operates each laser individually, such that the thirty-two lasers in laser arrays 606, 608 of
Note that in a practical LIDAR system, the number of lasers in an array could be much higher, say two hundred fifty-six as shown in
During motion of the laser beam, the laser optical beam FOV has a start position 708, and a non-overlapping end position 710. For example, Pixel 2 712 is located at the rightmost edge of Position 1, which is the start position 708 of the beam that corresponds to a particular offset between the laser array and the optical axis of the lens system. Pixel 2 712 is at the leftmost edge of Position 2, which is the end position 710 of the laser beam. This means that for the majority of the time, Pixel 2 receives some reflected light from the laser beam. Even if the laser beam is in motion, multiple measurements can be made from this pixel. This allows for sufficient time to obtain the required number of measurements. The relative motion in this case, will typically be larger than one half pitch of the laser beam pattern. Pixel 1 716 is located in the start position 708 for laser FOV 702. The configuration allows a particular pixel on the edge, such as Pixel 3 714, to be illuminated with more than one laser beam.
Relative motion between the micro-lens array 802 and the emitter array 808 is illustrated by arrow 816. This relative motion is cause by actuator 817. The relative motion illustrated by arrow 816 is shown in this embodiment as a vertical motion, but it should be understood that there can be relative motion in a variety of directions. The direction of the relative motion used depends on the desired relative positions of the optical beams, for example beams 804, 808, at the target plane 814. This relative motion illustrated by arrow 816 can be used to provide the desired FOV of the laser FOVs with respect to receive FOVs as described herein to meet various performance goals of a LIDAR system that comprises the LIDAR transmitter 800 using a micro-lens array 802.
A micro-lens array 802 has many small lenses 818 with at least one small lens 818 per individual laser beam 804, 806 emitted by the corresponding emitter array 808. The small lens 818 dimension is of the same order as the pitch of the emitter elements in the emitter array 808. This dimension is typically a few hundred microns. In the embodiment illustrated in
For example, a micro-lens array combined with the 2D VCSEL array as described herein might only need to move about ten microns to achieve the desired changes in projection angle. The micro-lens array 802 may be physically small, typically just slightly bigger than the VCSEL array which means its mass can be kept low, particularly if it is formed from plastic materials instead of glass. The small mass and small motion required, which can be on the order of about ten microns, reduces the requirements on the acceleration/force required and allows for short actuation times. In such embodiments, the lens array 802 can be displaced about ten microns in less than about 50 μsec, which can give additional system flexibility impacting scanning patterns and frame rates. A controller 820 connects to the actuator to provide control of the relative motion and to the laser array 808 to control the firing of particular individual or groups of lasers.
While the Applicant's teaching is described in conjunction with various embodiments, it is not intended that the Applicant's teaching be limited to such embodiments. On the contrary, the Applicant's teaching encompasses various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art, which may be made therein without departing from the spirit and scope of the teaching.
Number | Name | Date | Kind |
---|---|---|---|
5157257 | Geiger | Oct 1992 | A |
5552893 | Akasu | Sep 1996 | A |
5909296 | Tsacoyeanes | Jun 1999 | A |
6057909 | Yahav et al. | May 2000 | A |
6061001 | Sugimoto | May 2000 | A |
6246708 | Thornton et al. | Jun 2001 | B1 |
6353502 | Marchant et al. | Mar 2002 | B1 |
6680788 | Roberson et al. | Jan 2004 | B1 |
6717972 | Steinle et al. | Apr 2004 | B2 |
6775480 | Goodwill | Aug 2004 | B1 |
6788715 | Leeuwen et al. | Sep 2004 | B1 |
6829439 | Sidorovich et al. | Dec 2004 | B1 |
6860350 | Beuhler et al. | Mar 2005 | B2 |
6888871 | Zhang et al. | May 2005 | B1 |
7065112 | Ghosh et al. | Jun 2006 | B2 |
7110183 | von Freyhold et al. | Sep 2006 | B2 |
7544945 | Tan et al. | Jun 2009 | B2 |
7652752 | Fetzer et al. | Jan 2010 | B2 |
7702191 | Geron et al. | Apr 2010 | B1 |
7746450 | Willner et al. | Jun 2010 | B2 |
7773204 | Nelson | Aug 2010 | B1 |
7969558 | Hall | Jun 2011 | B2 |
8072581 | Breiholz | Dec 2011 | B1 |
8115909 | Behringer et al. | Feb 2012 | B2 |
8247252 | Gauggel et al. | Aug 2012 | B2 |
8301027 | Shaw et al. | Oct 2012 | B2 |
8576885 | van Leeuwen et al. | Nov 2013 | B2 |
8675181 | Hall | Mar 2014 | B2 |
8675706 | Seurin et al. | Mar 2014 | B2 |
8783893 | Seurin et al. | Jul 2014 | B1 |
8824519 | Seurin et al. | Sep 2014 | B1 |
9038883 | Wang et al. | May 2015 | B2 |
9048633 | Gronenborn et al. | Jun 2015 | B2 |
9268012 | Ghosh et al. | Feb 2016 | B2 |
9285477 | Smith et al. | Mar 2016 | B1 |
9348018 | Eisele et al. | May 2016 | B2 |
9360554 | Retterath et al. | Jun 2016 | B2 |
9378640 | Mimeault et al. | Jun 2016 | B2 |
9392259 | Borowski | Jul 2016 | B2 |
9516244 | Borowski | Dec 2016 | B2 |
9520696 | Wang et al. | Dec 2016 | B2 |
9553423 | Chen et al. | Jan 2017 | B2 |
9560339 | Borowski | Jan 2017 | B2 |
9574541 | Ghosh et al. | Feb 2017 | B2 |
9575184 | Gilliland et al. | Feb 2017 | B2 |
9658322 | Lewis | May 2017 | B2 |
9674415 | Wan et al. | Jun 2017 | B2 |
9791557 | Wyrwas et al. | Oct 2017 | B1 |
9841495 | Campbell et al. | Dec 2017 | B2 |
9857468 | Eichenholz et al. | Jan 2018 | B1 |
9933513 | Dussan et al. | Apr 2018 | B2 |
9946089 | Chen et al. | Apr 2018 | B2 |
9989406 | Pacala et al. | Jun 2018 | B2 |
9989629 | LaChapelle | Jun 2018 | B1 |
9992477 | Pacala et al. | Jun 2018 | B2 |
10007001 | LaChapelle et al. | Jun 2018 | B1 |
10063849 | Pacala et al. | Aug 2018 | B2 |
10191156 | Steinberg et al. | Jan 2019 | B2 |
10295660 | McMichael | May 2019 | B1 |
10488492 | Hamel et al. | Nov 2019 | B2 |
10514444 | Donovan | Dec 2019 | B2 |
10761195 | Donovan | Sep 2020 | B2 |
10928486 | Donovan | Feb 2021 | B2 |
11016178 | Donovan | May 2021 | B2 |
11061234 | Zhu | Jul 2021 | B1 |
11320538 | Donovan et al. | May 2022 | B2 |
20020117340 | Stettner | Aug 2002 | A1 |
20020195496 | Tsikos et al. | Dec 2002 | A1 |
20030043363 | Jamieson et al. | Mar 2003 | A1 |
20030147652 | Green et al. | Aug 2003 | A1 |
20040120717 | Clark et al. | Jun 2004 | A1 |
20040228375 | Ghosh et al. | Nov 2004 | A1 |
20050025211 | Zhang et al. | Feb 2005 | A1 |
20050180473 | Brosnan | Aug 2005 | A1 |
20050232628 | von Freyhold et al. | Oct 2005 | A1 |
20060132752 | Kane | Jun 2006 | A1 |
20060231771 | Lee et al. | Oct 2006 | A1 |
20060244978 | Yamada et al. | Nov 2006 | A1 |
20070024849 | Carrig et al. | Feb 2007 | A1 |
20070071056 | Chen | Mar 2007 | A1 |
20070091960 | Gauggel et al. | Apr 2007 | A1 |
20070131842 | Erst | Jun 2007 | A1 |
20070177841 | Dazinger | Aug 2007 | A1 |
20070181810 | Tan et al. | Aug 2007 | A1 |
20070219720 | Trepagnier et al. | Sep 2007 | A1 |
20080074640 | Walsh et al. | Mar 2008 | A1 |
20080186470 | Hipp | Aug 2008 | A1 |
20090027651 | Pack et al. | Jan 2009 | A1 |
20090140047 | Yu et al. | Jun 2009 | A1 |
20090161710 | Hoashi et al. | Jun 2009 | A1 |
20090273770 | Bauhahn et al. | Nov 2009 | A1 |
20090295986 | Topliss | Dec 2009 | A1 |
20100046953 | Shaw et al. | Feb 2010 | A1 |
20100215066 | Mordaunt et al. | Aug 2010 | A1 |
20100271614 | Alburquerque et al. | Oct 2010 | A1 |
20100302528 | Hall | Dec 2010 | A1 |
20110176567 | Joseph | Jul 2011 | A1 |
20110216304 | Hall | Sep 2011 | A1 |
20120038903 | Weimer et al. | Feb 2012 | A1 |
20130163626 | Seurin et al. | Jun 2013 | A1 |
20130163627 | Seurin et al. | Jun 2013 | A1 |
20130206967 | Shpunt et al. | Aug 2013 | A1 |
20130208256 | Mamidipudi et al. | Aug 2013 | A1 |
20130208753 | van Leeuwen et al. | Aug 2013 | A1 |
20140043309 | Go et al. | Feb 2014 | A1 |
20140049610 | Hudman et al. | Feb 2014 | A1 |
20140071427 | Last | Mar 2014 | A1 |
20140111812 | Baeg et al. | Apr 2014 | A1 |
20140139467 | Ghosh et al. | May 2014 | A1 |
20140160341 | Tickoo et al. | Jun 2014 | A1 |
20140218898 | Seurin et al. | Aug 2014 | A1 |
20140247841 | Seurin et al. | Sep 2014 | A1 |
20140267701 | Aviv et al. | Sep 2014 | A1 |
20140303829 | Lombrozo et al. | Oct 2014 | A1 |
20140312233 | Mark et al. | Oct 2014 | A1 |
20140333995 | Seurin et al. | Nov 2014 | A1 |
20140350836 | Stettner et al. | Nov 2014 | A1 |
20140376092 | Mor | Dec 2014 | A1 |
20150055117 | Pennecot et al. | Feb 2015 | A1 |
20150069113 | Wang et al. | Mar 2015 | A1 |
20150097947 | Tudman et al. | Apr 2015 | A1 |
20150103358 | Flascher | Apr 2015 | A1 |
20150109603 | Kim et al. | Apr 2015 | A1 |
20150123995 | Zavodny et al. | May 2015 | A1 |
20150131080 | Retterath et al. | May 2015 | A1 |
20150160341 | Akatsu et al. | Jun 2015 | A1 |
20150219764 | Lipson | Aug 2015 | A1 |
20150255955 | Wang et al. | Sep 2015 | A1 |
20150260830 | Ghosh et al. | Sep 2015 | A1 |
20150260843 | Lewis | Sep 2015 | A1 |
20150311673 | Wang et al. | Oct 2015 | A1 |
20150316368 | Moench et al. | Nov 2015 | A1 |
20150340841 | Joseph | Nov 2015 | A1 |
20150362585 | Ghosh et al. | Dec 2015 | A1 |
20150377696 | Shpunt et al. | Dec 2015 | A1 |
20150378023 | Royo Royo et al. | Dec 2015 | A1 |
20160003946 | Gilliland et al. | Jan 2016 | A1 |
20160006914 | Neumann | Jan 2016 | A1 |
20160025842 | Anderson et al. | Jan 2016 | A1 |
20160025993 | Mor et al. | Jan 2016 | A1 |
20160033642 | Fluckiger | Feb 2016 | A1 |
20160072258 | Seurin et al. | Mar 2016 | A1 |
20160080077 | Joseph et al. | Mar 2016 | A1 |
20160119611 | Hall et al. | Apr 2016 | A1 |
20160161600 | Eldada et al. | Jun 2016 | A1 |
20160254638 | Chen et al. | Sep 2016 | A1 |
20160259038 | Retterath et al. | Sep 2016 | A1 |
20160266242 | Gilliland et al. | Sep 2016 | A1 |
20160274223 | Imai | Sep 2016 | A1 |
20160282468 | Gruver et al. | Sep 2016 | A1 |
20160291156 | Hjelmstad | Oct 2016 | A1 |
20160306358 | Kang et al. | Oct 2016 | A1 |
20160335778 | Smits | Nov 2016 | A1 |
20160348636 | Ghosh et al. | Dec 2016 | A1 |
20170003392 | Bartlett et al. | Jan 2017 | A1 |
20170026633 | Riza | Jan 2017 | A1 |
20170059838 | Tilleman | Mar 2017 | A1 |
20170115497 | Chen et al. | Apr 2017 | A1 |
20170131387 | Campbell et al. | May 2017 | A1 |
20170131388 | Campbell et al. | May 2017 | A1 |
20170139041 | Drader et al. | May 2017 | A1 |
20170153319 | Villeneuve et al. | Jun 2017 | A1 |
20170168162 | Jungwirth | Jun 2017 | A1 |
20170176579 | Niclass et al. | Jun 2017 | A1 |
20170181810 | Tennican | Jun 2017 | A1 |
20170219426 | Pacala et al. | Aug 2017 | A1 |
20170256915 | Ghosh et al. | Sep 2017 | A1 |
20170269209 | Hall et al. | Sep 2017 | A1 |
20170285169 | Holz | Oct 2017 | A1 |
20170289524 | Pacala et al. | Oct 2017 | A1 |
20170299722 | Ouyang et al. | Oct 2017 | A1 |
20170307736 | Donovan | Oct 2017 | A1 |
20170307758 | Pei et al. | Oct 2017 | A1 |
20170350982 | Lipson | Dec 2017 | A1 |
20170353004 | Chen et al. | Dec 2017 | A1 |
20170356740 | Ansari et al. | Dec 2017 | A1 |
20180045816 | Jarosinski et al. | Feb 2018 | A1 |
20180058923 | Lipson et al. | Mar 2018 | A1 |
20180059222 | Pacala et al. | Mar 2018 | A1 |
20180062345 | Bills | Mar 2018 | A1 |
20180068458 | Wan et al. | Mar 2018 | A1 |
20180074198 | Von Novak et al. | Mar 2018 | A1 |
20180107221 | Droz | Apr 2018 | A1 |
20180113200 | Steinberg et al. | Apr 2018 | A1 |
20180113208 | Bergeron et al. | Apr 2018 | A1 |
20180120441 | Elooz et al. | May 2018 | A1 |
20180128920 | Keilaf et al. | May 2018 | A1 |
20180136335 | Kare et al. | May 2018 | A1 |
20180152691 | Pacala et al. | May 2018 | A1 |
20180167602 | Pacala et al. | Jun 2018 | A1 |
20180180720 | Pei et al. | Jun 2018 | A1 |
20180180721 | Pei et al. | Jun 2018 | A1 |
20180180722 | Pei et al. | Jun 2018 | A1 |
20180203247 | Chen et al. | Jul 2018 | A1 |
20180209841 | Pacala et al. | Jul 2018 | A1 |
20180217236 | Pacala et al. | Aug 2018 | A1 |
20180259623 | Donovan | Sep 2018 | A1 |
20180259624 | Kiehn et al. | Sep 2018 | A1 |
20180259645 | Shu et al. | Sep 2018 | A1 |
20180269646 | Welford et al. | Sep 2018 | A1 |
20180275248 | Bailey et al. | Sep 2018 | A1 |
20180299552 | Shu et al. | Oct 2018 | A1 |
20180301872 | Burroughs et al. | Oct 2018 | A1 |
20180301874 | Burroughs et al. | Oct 2018 | A1 |
20180301875 | Burroughs et al. | Oct 2018 | A1 |
20180364334 | Xiang et al. | Dec 2018 | A1 |
20180364356 | Eichenholz et al. | Dec 2018 | A1 |
20190003429 | Miyashita | Jan 2019 | A1 |
20190004156 | Niclass | Jan 2019 | A1 |
20190011561 | Pacala et al. | Jan 2019 | A1 |
20190011567 | Pacala et al. | Jan 2019 | A1 |
20190018115 | Schmitt et al. | Jan 2019 | A1 |
20190036308 | Carson et al. | Jan 2019 | A1 |
20190049662 | Thomsen et al. | Feb 2019 | A1 |
20190056497 | Pacala et al. | Feb 2019 | A1 |
20190094346 | Dumoulin et al. | Mar 2019 | A1 |
20190098233 | Gassend et al. | Mar 2019 | A1 |
20190137607 | Kostamovaara | May 2019 | A1 |
20190146071 | Donovan | May 2019 | A1 |
20190170855 | Keller et al. | Jun 2019 | A1 |
20190178974 | Droz | Jun 2019 | A1 |
20190179018 | Gunnam et al. | Jun 2019 | A1 |
20190293954 | Lin | Sep 2019 | A1 |
20190302246 | Donovan et al. | Oct 2019 | A1 |
20200018835 | Pei et al. | Jan 2020 | A1 |
20200041614 | Donovan et al. | Feb 2020 | A1 |
20200081101 | Donovan | Mar 2020 | A1 |
20200124732 | Sutherland | Apr 2020 | A1 |
20200200874 | Donovan | Jun 2020 | A1 |
20200209355 | Pacala et al. | Jul 2020 | A1 |
20200278426 | Dummer et al. | Sep 2020 | A1 |
20200326425 | Donovan et al. | Oct 2020 | A1 |
20200386868 | Donovan et al. | Dec 2020 | A1 |
20200408908 | Donovan | Dec 2020 | A1 |
20210033708 | Fabiny | Feb 2021 | A1 |
20210041567 | Milgrome et al. | Feb 2021 | A1 |
20210157000 | Imaki | May 2021 | A1 |
20210181311 | Donovan | Jun 2021 | A1 |
20210231779 | Donovan | Jul 2021 | A1 |
20210231806 | Donovan et al. | Jul 2021 | A1 |
20210234342 | Donovan | Jul 2021 | A1 |
20210278540 | Maayan et al. | Sep 2021 | A1 |
20210321080 | Jeong | Oct 2021 | A1 |
20220146680 | Donovan et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
1512946 | Jul 2004 | CN |
101013030 | Aug 2007 | CN |
101080733 | Nov 2007 | CN |
101545582 | Sep 2009 | CN |
103633557 | Mar 2014 | CN |
104898125 | Sep 2015 | CN |
105705964 | Jun 2016 | CN |
106464366 | Feb 2017 | CN |
109073757 | Dec 2018 | CN |
107728156 | Nov 2019 | CN |
110402398 | Nov 2019 | CN |
110914702 | Mar 2020 | CN |
111356934 | Jun 2020 | CN |
111919137 | Nov 2020 | CN |
112543875 | Mar 2021 | CN |
113692540 | Nov 2021 | CN |
113906316 | Jan 2022 | CN |
113924506 | Jan 2022 | CN |
114096882 | Feb 2022 | CN |
114174869 | Mar 2022 | CN |
197 17 399 | Jun 1999 | DE |
10103861 | Aug 2001 | DE |
102007004609 | Aug 2007 | DE |
102014216390 | Feb 2016 | DE |
102019005059 | Feb 2020 | DE |
1160540 | Dec 2001 | EP |
1444696 | Mar 2005 | EP |
1569007 | Aug 2005 | EP |
2656099 | Dec 2011 | EP |
2656106 | Dec 2011 | EP |
2775316 | Sep 2014 | EP |
3168641 | Apr 2016 | EP |
3497477 | Aug 2016 | EP |
2656100 | Oct 2016 | EP |
3526625 | Nov 2016 | EP |
3 159 711 | Apr 2017 | EP |
3446153 | Feb 2019 | EP |
3596492 | Jan 2020 | EP |
3658949 | Jun 2020 | EP |
3710855 | Sep 2020 | EP |
3775979 | Feb 2021 | EP |
3830602 | Jun 2021 | EP |
3953727 | Feb 2022 | EP |
3977159 | Apr 2022 | EP |
3980808 | Apr 2022 | EP |
3990943 | May 2022 | EP |
4004587 | Jun 2022 | EP |
2816264 | May 2002 | FR |
5-243552 | Sep 1993 | JP |
7-253460 | Oct 1995 | JP |
8-280173 | Oct 1996 | JP |
10-126007 | May 1998 | JP |
2000-147604 | May 2000 | JP |
2002-214361 | Jul 2002 | JP |
2003258359 | Sep 2003 | JP |
2003-536061 | Dec 2003 | JP |
2004-078255 | Mar 2004 | JP |
2004-94115 | Mar 2004 | JP |
2004-361315 | Dec 2004 | JP |
2005-331273 | Dec 2005 | JP |
2006-162386 | Jun 2006 | JP |
2007-214564 | Aug 2007 | JP |
2008-015434 | Jan 2008 | JP |
4108478 | Jun 2008 | JP |
2008-180719 | Aug 2008 | JP |
2009-103529 | May 2009 | JP |
2009-170870 | Jul 2009 | JP |
2009-204691 | Sep 2009 | JP |
2010-91855 | Apr 2010 | JP |
2010-256291 | Nov 2010 | JP |
2011-003748 | Jan 2011 | JP |
2012-504771 | Feb 2012 | JP |
5096008 | Dec 2012 | JP |
2013-050310 | Mar 2013 | JP |
2013-113669 | Jun 2013 | JP |
2014-059302 | Apr 2014 | JP |
2014-077658 | May 2014 | JP |
2016-146417 | Aug 2016 | JP |
2016-176721 | Oct 2016 | JP |
2016-188808 | Nov 2016 | JP |
2016-540189 | Dec 2016 | JP |
2017-053833 | Mar 2017 | JP |
2017-134814 | Aug 2017 | JP |
2018-025632 | Feb 2018 | JP |
2019-060652 | Apr 2019 | JP |
2019-68528 | Apr 2019 | JP |
2019-509474 | Apr 2019 | JP |
2019-516101 | Jun 2019 | JP |
2020-510208 | Apr 2020 | JP |
2021-503085 | Feb 2021 | JP |
2021-507260 | Feb 2021 | JP |
6839861 | Mar 2021 | JP |
6865492 | Apr 2021 | JP |
2021-073462 | May 2021 | JP |
2021-73473 | May 2021 | JP |
2021-105613 | Jul 2021 | JP |
2021-519926 | Aug 2021 | JP |
2021-139918 | Sep 2021 | JP |
2021-532368 | Nov 2021 | JP |
2022-1885 | Jan 2022 | JP |
6995413 | Jan 2022 | JP |
2022-022361 | Feb 2022 | JP |
2022-36224 | Mar 2022 | JP |
7037830 | Mar 2022 | JP |
2022-526998 | May 2022 | JP |
2022-534500 | Aug 2022 | JP |
10-2000-0053620 | Aug 2000 | KR |
10-2009-0016499 | Feb 2009 | KR |
10-2012-0053045 | May 2012 | KR |
10-2012-0061033 | Jun 2012 | KR |
10-2013-0140554 | Dec 2013 | KR |
10-2014-0138724 | Dec 2014 | KR |
10-2015-0045735 | Apr 2015 | KR |
10-2016-0101140 | Aug 2016 | KR |
10-2018-0049937 | May 2018 | KR |
10-2018-0064969 | Jun 2018 | KR |
10-2018-0128447 | Dec 2018 | KR |
10-2019-0076725 | Jul 2019 | KR |
10-2019-0117418 | Oct 2019 | KR |
10-2019-0120403 | Oct 2019 | KR |
10-2020-0011351 | Feb 2020 | KR |
10-2020-0075014 | Jun 2020 | KR |
10-2020-0096632 | Aug 2020 | KR |
10-2020-0128435 | Nov 2020 | KR |
10-2021-0021409 | Feb 2021 | KR |
10-2218679 | Feb 2021 | KR |
10-2021-0029831 | Mar 2021 | KR |
10-2021-0065207 | Jun 2021 | KR |
10-2021-0137584 | Nov 2021 | KR |
10-2021-0137586 | Nov 2021 | KR |
10-2326493 | Nov 2021 | KR |
10-2326508 | Nov 2021 | KR |
10-2022-0003600 | Jan 2022 | KR |
10-2022-0017412 | Feb 2022 | KR |
10-2364531 | Feb 2022 | KR |
10-2022-0024177 | Mar 2022 | KR |
10-2022-0025924 | Mar 2022 | KR |
10-2022-0038691 | Mar 2022 | KR |
10-2398080 | May 2022 | KR |
99-42856 | Aug 1999 | WO |
2002065153 | Aug 2002 | WO |
2006044758 | Apr 2006 | WO |
2006083349 | Aug 2006 | WO |
2013107709 | Jul 2013 | WO |
2014014838 | Jan 2014 | WO |
2015040671 | Mar 2015 | WO |
2015040671 | Mar 2015 | WO |
2015059705 | Apr 2015 | WO |
2017112416 | Jun 2017 | WO |
2017132704 | Aug 2017 | WO |
2017184336 | Oct 2017 | WO |
2018028795 | Feb 2018 | WO |
2018082762 | May 2018 | WO |
2018169758 | Sep 2018 | WO |
2018166609 | Sep 2018 | WO |
2018166610 | Sep 2018 | WO |
2018166611 | Sep 2018 | WO |
2018169758 | Sep 2018 | WO |
2018180391 | Oct 2018 | WO |
2018181250 | Oct 2018 | WO |
2018191495 | Oct 2018 | WO |
2019010320 | Jan 2019 | WO |
2019022941 | Jan 2019 | WO |
2019-064062 | Apr 2019 | WO |
2019115148 | Jun 2019 | WO |
2019195054 | Oct 2019 | WO |
2019221776 | Nov 2019 | WO |
2020028173 | Feb 2020 | WO |
2020210176 | Oct 2020 | WO |
2020242834 | Dec 2020 | WO |
2020251891 | Dec 2020 | WO |
2020263735 | Dec 2020 | WO |
2021021872 | Feb 2021 | WO |
2021150860 | Jul 2021 | WO |
2021236201 | Nov 2021 | WO |
2022103778 | May 2022 | WO |
Entry |
---|
“Written Opinion of the International Searching Authority” for International Patent Application No. PCT/EP2016/077499, dated Feb. 14, 2017, 7 pages, The International Searching Authority. |
“Search Report” for International Patent Application No. PCT/EP2016/077499, 2 pages, International Searching Authority/ EPO, Rijswijk, the Netherlands. |
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration” for Internatonal Patent Application No. PCT/US2020/033630, dated Sep. 9, 2020, 10 pages, International Searching Authority, Korean Intellectual Property Office, Daejeon, Republic of Korea. |
U.S. Appl. No. 16/841,930, filed Apr. 7, 2020, USPTO. |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2020/033630 dated Dec. 9, 2021, 8 pages. |
Plant, et al., 256-Channel Bidirectional Optical Interconnect Using VCSELs and Photodiodes on CMOS, IEEE Journal of Lightwave Technology, Aug. 2001, pp. 1093-1103, vol. 19, No. 8. |
Knodl, et al., Bipolar Cascade VCSEL with 130% Differential Quantum Efficiency, Annual Report 2000, Optoelectronics Department, University of ULM, pp. 11-14. |
R.A. Morgan, et al., Two-Dimensional Matrix Addressed Vertical Cavity Top-Surface Emitting Laser Array Display, IEEE Photonics Technology Letters, Aug. 1994, pp. 913-917, vol. 6, No. 8. |
M. Orenstein, et al., Matrix Addressable Vertical Cavity Surface Emitting Laser Array, Electronics Letters, Feb. 28, 1991, pp. 437-438, vol. 27, No. 5. |
K.M. Geib, et al., Fabrication and Performance of Two-Dimensional Matrix Addressable Arrays of Integrated Vertical-Cavity Lasers and Resonant Cavity Photodetectors, IEEE Journal of Selected Topics In Quantum Electronics, Jul./Aug. 2002, pp. 943-947, vol. 8, No. 4. |
Moench, et al., VCSEL Based Sensors for Distance and Velocity, Vertical Cavity Surface-Emitting Lasers XX, Edited by K. Choquette, J. Guenter, Proc of SPIE, 2016, 11 pages, vol. 9766, 07660A. |
Decision to Grant a Patent received for Japanese Patent Application Serial No. 2021-014376, dated Mar. 22, 2022, 05 pages (2 pages of English Translation and 3 pages of Official Copy). |
Non-Final Office Action received for U.S. Appl. No. 17/164,773, dated Apr. 21, 2022, 8 pages. |
Notice of Allowance received for Chinese Patent Application Serial No. 201880047615.6, dated Mar. 23, 2022, 7 pages (2 pages of English Translation and 5 pages of Official Copy). |
Decision to Grant a Patent received for Korean Patent Application Serial No. 10-2018-7030512, dated Mar. 18, 2022, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Decision to Grant a Patent received for Korean Patent Application Serial No. 10-2021-7036648, dated May 19, 2022, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Decision to Grant a Patent received for Japanese Patent Application Serial No. 2019-549550, dated Feb. 25, 2022, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action for Japanese Patent Application No. 2021-020502, Apr. 13, 2022, 10 pages (7 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/227,300, dated Feb. 8, 2022, 11 pages. |
International Search Report and Written Opinion received for PCT Application Serial No. PCT/US2021/020749, dated Jan. 3, 2022, 11 pages. |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2020/038927, dated Jan. 6, 2022, 9 pages. |
Office Action received for Korean Application Serial No. 10-2020-7029872, dated Jan. 19, 2022, 32 pages (18 pages of English Translation and 14 pages of Official Copy). |
Extended European Search Report received for European Patent Application Serial No. 19843301.3, dated Feb. 18, 2022, 10 pages. |
International Preliminary Report on Patentability received for PCT Application Application No. PCT/US2020/043979, dated Feb. 10, 2022, 6 pages. |
Office Action received for Korean Application Serial No. 10-2020-7029872, dated May 24, 2022, 05 pages (2 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application Serial No. 10-2021-7006391, dated Feb. 9, 2022. 03 pages (1 page of English Translation and 2 pages of Official Copy). |
Restriction Requirement received for U.S. Appl. No. 16/366,729, dated Jun. 3, 2022, 06 pages. |
Office Action received for Japanese Patent Application Serial No. 2021-100687, dated Jul. 1, 2022, 09 pages. (6 pages of English Translation and 3 pages of Official Copy). |
Restriction Requirement received for U.S. Appl. No. 16/523,459, dated Jun. 16, 2022, 05 pages. |
Notice of Allowance received for U.S. Appl. No. 16/805,733, dated Aug. 22, 2022, 13 pages. |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2021/020749, dated Sep. 15, 2022, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/907,732, dated Jul. 13, 2022, 20 pages. |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2021/014564, dated Aug. 4, 2022, 06 pages. |
Notice of Allowance received for U.S. Appl. No. 16/895,588, dated Aug. 3, 2022, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/366,729, dated Aug. 26, 2022, 09 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/057026, dated Dec. 16, 2019, 9 pages. |
Office Action received for Japanese Patent Application Serial No. 2021-0168642, dated Aug. 25, 2022, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application Serial No. 2020-526502, dated Aug. 24, 2022, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Non-Final Office Action received for U.S. Appl. No. 16/523,459, dated Sep. 13, 2022, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/841,930, dated Jun. 29, 2022, 10 pages. |
International Search Report and Written Opinion received for International Patent Application No. PCT/US2020/026964, dated Jul. 28, 2020, 8 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/024343, dated Oct. 15, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/026109, dated Jun. 19, 2017, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/021553, dated Jun. 20, 2018, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/026109, dated Nov. 1, 2018, 13 Pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2019/024343, dated Jul. 12, 2019, 15 Pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2019/043674, dated Nov. 15, 2019, 14 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/041021, dated Feb. 6, 2020, 10 pages. |
Extended European Search Report received for European Patent Application No. 17786325.5, dated Mar. 11, 2020, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/456,789, dated Sep. 25, 2019, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 15/456,789, dated Apr. 29, 2020, 5 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/915,840, dated May 7, 2020, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 15/915,840, dated Jan. 19, 2021, 6 pages. |
Extended European Search Report received for European Patent Application No. 18767885.9, dated Nov. 18, 2020, 10 pages. |
Office Action received for Japanese Patent Application No. 2019-549550, dated Mar. 22, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2019-7029980, dated Mar. 26, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
International Preliminary Report on Patentability received for International Patent Application No. PCT/US2018/021553, dated Sep. 26, 2019, 9 Pages. |
Notice of Allowance received for Japanese Patent Application No. 2018-555665, dated Dec. 2, 2020, 05 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-014376, dated Sep. 27, 2021, 18 pages (12 pages of English Translation and 6 paegs of Official Copy). |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2020/036634, dated Dec. 23, 2021, 6 pages. |
International Search Report and Written Opinion received for PCT Application Serial No. PCT/US2021/058687, dated Mar. 3, 2022 , 11 pages. |
Office Action received for Korean Patent Application No. 10-2018-7030512, dated Dec. 23, 2021, 7 pages. (3 pages of English Translation and 4 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2019-7029980, dated Aug. 6, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2019-549550, dated Aug. 27, 2021, 7 pages (5 pages of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/028,774, dated Aug. 21, 2019, 10 pages. |
Non-Final Rejection received for U.S. Appl. No. 16/686,163, dated Apr. 16, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/686,163, dated Oct. 16, 2020, 9 pages. |
Office Action received for Korean Patent Application No. 10-2020-7005082, dated May 8, 2020, 19 pages (11 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2020-504014, dated Sep. 2, 2020, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Notice of Grant received for Korean Patent Application No. 10-2020-7005082, dated Nov. 24, 2020, 5 pages (3 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201880047615.6, dated Jan. 18, 2021, 16 pages (8 pages of English Translation and 8 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2020-504014, dated Feb. 15, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Extended European Search Report received for European Patent Application No. 18839499.3, dated Mar. 4, 2021, 10 pages. |
Office Action received for Korean Patent Application No. 10-2021-7004589, dated Mar. 10, 2021, 9 pages (5 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-056628, dated Jun. 14, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2021-7004589, dated Aug. 6, 2021, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Office Action received for Chinese Patent Application Serial No. 201880047615.6, dated Aug. 25, 2021, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application Serial No. 2021-056628, dated Nov. 2, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Non-Final Office Action received for U.S. Appl. No. 16/168,054, dated Jun. 1, 2021, 15 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/057026, dated May 28, 2020, 7 pages. |
Extended European Search Report received for European Patent Application No. 18918938.4, dated Jul. 6, 2021, 9 pages. |
Office Action received for Korean Patent Application No. 10-2020-7016928, dated Jul. 16, 2021, 13 pages (7 pages of English Translation and 6 pages of Official Copy). |
Partial Supplementary European Search Report received for European Patent Application No. 17786325.5, dated Nov. 7, 2019, 17 pages. |
Office Action received for Korean Patent Application No. 10-2020-7029872, dated Jul. 19, 2021, 23 pages (13 pages of English Translation and 10 pages of Official Copy). |
Extended European Search Report received for European Patent Application Serial No. 19781037.7, dated Oct. 25, 2021, 9 pages. |
Office Action received for Korean Patent Application No. 10-2021-7006391, dated May 14, 2021, 17 pages (9 pages of English Translation and 8 pages of Official Copy). |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2019/043674, dated Feb. 18, 2021, 10 pages. |
Office Action received for European Patent Application No. 17786325.5, dated Dec. 17, 2021, 5 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/026964, dated Oct. 21, 2021, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/227,300, dated Jun. 30, 2021, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/041021, dated Nov. 5, 2018, 13 Pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2020/036634, dated Sep. 21, 2020, 7 pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2020/038927, dated Oct. 7, 2020, 12 pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2020/043979, dated Nov. 10, 2020, 7 pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2021/014564, dated May 17, 2021, 8 pages. |
Office Action received for Korean Patent Application Serial No. 10-2021-7036648, dated Dec. 17, 2021, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Decision to Grant a Patent received for Korean Patent Application Serial No. 10-2020-7016928, dated Nov. 16, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Final Office Action received for U.S. Appl. No. 16/168,054, dated Jan. 26, 2022, 16 pages. |
Office Action received for Korean Patent Application Serial No. 10-2021-7006391, dated Oct. 22, 2021, 5 pages. (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2023-7007292, dated Apr. 17, 2023, 19 pages (10 pages of English Translation and 9 pages of Official Copy). |
Decision to Grant a Patent received for Korean Patent Application Serial No. 10-2023-7009114, dated May 16, 2023, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action for Japanese Patent Application No. 2021-572877, dated May 12, 2023, 12 pages (8 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-559434, dated May 26, 2023, 17 pages (11 pages of English Translation and 6 pages of Official Copy). |
Extended European Search Report received for European Patent Application No. 20831915.2, dated Jun. 2, 2023, 9 pages. |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2021/058687, dated May 25, 2023 , 7 pages. |
Notice of Allowance received for Chinese Patent Application Serial No. 201780024892.0, dated May 30, 2023, 2 pages (Official Copy Only). |
Extended European Search Report received for European Patent Application No. 20822328.9, dated May 4, 2023, 34 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/227,295, dated Mar. 9, 2023, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/841,930, dated Apr. 17, 2023, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/805,733, dated Nov. 10, 2022, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/841,930, dated Oct. 3, 2022, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/168,054, dated Oct. 20, 2022, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 17/164,773, dated Nov. 2, 2022, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/805,733, dated Jan. 25, 2023, 5 pages. |
Office Action received for Chinese Patent Application Serial No. 201780024892.0, dated Sep. 2, 2022, 28 pages (11 pages of English Translation and 17 pages of Official Copy). |
Extended European Search Report received in European Application No. 20787345.6, dated Dec. 5, 2022, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/155,626, dated Apr. 12, 2023, 24 pages. |
Notice of Allowance received for U.S. Appl. No. 17/164,773, dated Feb. 1, 2023, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/841,930, dated Jan. 30, 2023, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2022/028297, dated Mar. 13, 2023, 11 pages. |
Restriction Requirement received for U.S. Appl. No. 16/941,896, dated Jan. 24, 2023, 06 pages. |
Partial European Search Report received for European Patent Application No. 22178999.3, dated Oct. 10, 2022, 22 pages. |
Decision to Grant received for Korean Patent Application Serial No. 10-2022-7021139, dated Dec. 14, 2022, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-020502, dated Jan. 23, 2023, 6 pages (4 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2021-7016081, dated Oct. 25, 2022, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application Serial No. 2021-199077, dated Dec. 23, 2022, 9 pages (6 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2022-7028820, dated Dec. 15, 2022, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Extended European Search Report received for European Patent Application No. 20815113.4, dated Jan. 31, 2023, 14 pages. |
Partial European Search Report received for European Patent Application No. 20822328.9, dated Feb. 6, 2023, 20 pages. |
Office Action received for Korean Patent Application No. 10-2022-7004969, dated Jan. 9, 2023, 11 pages (6 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Japanese Patent Application Serial No. 2020-552870, dated Nov. 29, 2022, 11 pages (7 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application Serial No. 2022-002790, dated Dec. 26, 2022, 10 pages (7 pages of English Translation and 3 pages of Official Copy). |
Decision to Grant received for Korean Patent Application Serial No. 10-2020-7029872, dated Nov. 28, 2022, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2022-7015754, dated Dec. 12, 2022, 21 pages (11 pages of English Translation and 10 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/366,729, dated Mar. 8, 2023, 7 pages. |
Extended European Search Report received for European Patent Application No. 22178999.3, dated Mar. 6, 2023, 25 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2022/019054, dated Feb. 20, 2023, 13 pages. |
Office Action received for Korean Application Serial No. 10-2021-7036300, dated Feb. 9, 2023, 14 pages (7 pages of English Translation and 7 pages of Official Copy). |
Decision to Grant received for Korean Patent Application Serial No. 10-2021-7040665, dated Feb. 23, 2023, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Chinese Patent Application Serial No. 201880017776.0, dated Feb. 16, 2023, 22 pages (10 pages of English Translation and 12 pages of Official Copy). |
Office Action received for Chinese Patent Application Serial No. 201880074279.4, dated Mar. 1, 2023, 23 pages (9 pages of English Translation and 14 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/164,773, dated Apr. 5, 2023, 8 pages. |
Office Action received for Japanese Patent Application Serial No. 2021-100687, dated Mar. 14, 2023, 05 pages. (3 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2020-526502, dated Mar. 14, 2023, 8 pages (5 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-168642, dated Mar. 15, 2023, 5 pages (3 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2022-80688, dated Mar. 17, 2023, 11 pages (7 pages of English Translation and 4 pages of Official Copy). |
Final Office Action received for U.S. Appl. No. 16/523,459, dated Apr. 14, 2023, 13 pages. |
Office Action received for Korean Patent Application No. 10-2022-7036873, dated Mar. 29, 2023, 22 pages (12 pages of English Translation and 10 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/805,733, dated May 8, 2023, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20200379088 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62854782 | May 2019 | US |