This disclosure relates generally to input devices, and more specifically to keyboards having a fabric component.
Many electronic devices utilize input devices to receive commands or other interactions from users. In some cases, such input devices may also provide output to that may or may not be associated with received inputs. One common, widely-used input device is a keyboard.
Keyboards may include one or more keys, each of which may have a legend or legends thereon that indicate the input provided when the key is pressed. Sample legends are one or more letters, numbers, signs, symbols, or other characters.
In various cases, mechanisms that allow the keys to move may produce noise. Such mechanisms may require a particular amount of force to move sufficiently to provide an input, and may provide a particular tactile feel when pressed. These components and/or other components of the keys may be vulnerable to entry of contaminants such as dust, food, other particles, water, and/or other liquids, since each key's keycap typically protrudes upward through a plate or case, thereby permitting entry of foreign matter around the edges of the keycaps.
The present disclosure describes systems, apparatuses, and methods related to fabric input devices such as fabric keyboards. An input device including keys that move within apertures of a frame may be covered by a fabric bonded to the keys and frame. The fabric may dampen sound from within the input device and form a barrier that restricts passage of contaminants. In various implementations, the fabric may include embossed areas or structures bonded to tops of keycaps of the keys and unembossed areas bonded to the frame. Sides of the keycaps may not be bonded to the embossed areas such that unbonded portions of the fabric are able to bend and/or buckle during keycap movement. In some implementations, the fabric and/or flanges of the keycaps and/or the frame around the apertures may restrict movement of the keycaps in various directions.
In various embodiments, an input device may include a frame with an aperture, a keycap at least partially within the aperture and operable to move with respect to the frame, a switch positioned under the keycap that is activated by vertical movement of the keycap with respect to the switch, and a fabric disposed over the frame and keycap with a first region bonded to the keycap and a second region bonded to the frame.
In some embodiments, a keyboard may include a fabric having embossed regions with rounded corners and an unembossed region, a frame with apertures, and keys. Each key may include a top hat configuration keycap operable to move within one of the apertures and a switch positioned under the top hat configuration keycap that is activated by vertical movement of the top hat configuration keycap with respect to the switch. A planar upper or top surface of the top hat configuration keycap of each key may be bonded to one of the embossed regions and the frame may be bonded to the unembossed region.
In one or more embodiments, a method for manufacturing an input device may include: embossing a fabric to create embossed structures and an unembossed area; bonding a frame to one of the unembossed area using a first adhesive, the frame including an aperture; and bonding a top of a keycap of a key to one of the embossed structures using a second adhesive, leaving sides of the keycap unbonded, wherein the key includes the frame, the keycap positioned at least partially within the aperture, and a switch positioned under the keycap that is activated by vertical movement of the keycap with respect to the switch.
It is to be understood that both the foregoing general description and the following detailed description are for purposes of example and explanation and do not necessarily limit the present disclosure. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate subject matter of the disclosure. Together, the descriptions and the drawings serve to explain the principles of the disclosure.
The description that follows includes sample systems, methods, and apparatuses that embody various elements of the present disclosure. However, it should be understood that the described disclosure may be practiced in a variety of forms in addition to those described herein.
The present disclosure describes systems, apparatuses, and methods related to fabric input devices, such as fabric keyboards, that are suitable for use with various electronic devices. An input device may include a frame, multiple keys that generate inputs when pressed, and fabric (or multiple layers of fabric) overlying the keycaps and, optionally, some portion of the frame. Each key may further include a keycap that is operable to move within an aperture of the frame, a switch (such as a dome switch) activated when the keycap depresses sufficiently far, and a support mechanism that biases the key away from the switch in its resting state, but collapses or otherwise contracts when the keycap is pressed so that the keycap may actuate the switch.
Part of the fabric may be bonded to the keycap and a second part of the fabric may be bonded to the frame. Generally, the portion of the fabric bonded to the keycap is raised above, and forms a raised feature with respect to, the portion of the fabric that is bonded to the frame. This may be referred to herein as an “embossed” feature, area, or the like. The use of the term “embossed” does not imply or require any particular method for forming a corresponding feature or area. Rather, an embossed area, feature or the like may be formed by any suitable process or mechanism, including heat forming, molding, stamping, crimping, weaving, or the like. Some embossed areas or structures discussed herein have one or more sidewalls connecting the raised region to the lower region; such sidewalls may be generally perpendicular to one of or both the raised and lower regions, although this is not necessary.
The fabric may be slack, or excess fabric may be contained, between the part bonded to the keycap and the part bonded to the frame. The fabric may be sufficiently slack that it does not pull on the keycap or otherwise exert force on the keycap either while the keycap is in a rest state or during the keycap's travel.
The fabric may dampen sound from within the keyboard, such as noise related to movement of the keycap, activation of the switch, and so on. The fabric may also form a barrier that restricts passage of contaminants (such as dust, food, or other particles and/or water and/or other liquids) into the aperture and/or other portions of the input device. Put another way, a top section of fabric may be bonded to the keycap and side sections of fabric (e.g., that portion of fabric overlapping the sides of the keycap or otherwise extending from the top section) may be unbonded, such that the side sections are operable to bend and/or buckle during movement of the keycap. Thus, the fabric is not in tension during the movement, but instead is slack. In some cases, the height of the side sections and thus the height of the embossed area may be related to the travel distance of the keycap such that higher embossed area heights may be configured for keycaps with longer travel distances.
In some implementations, the keys or keycaps may utilize a “top hat configuration.” A “top hat” key may have a keycap with a typically planar upper (or top) surface and side walls extending downwardly from the upper surface. The keycap may further define one or more flanges that extend outwardly from the side walls; in some embodiments, a continuous annular ring or plate structure may be used instead of one or more flanges. Such a configuration may be referred to as a “top hat” because the keycap shape and/or profile resembles a simplified top hat.
The keycap may be biased upward by the switch, or otherwise supported by the switch, when force is not exerted downward upon the keycap. The frame may include flanges or other features that are operable to interact with flanges of the keycap to restrict upward movement of the keycap so that the keycap does not exit the aperture. The flanges of the keycap may also interact with the aperture or another feature of the frame to restrict lateral movement of the keycap. The keycap may include a top surface that projects above the aperture when force is not exerted downward upon the keycap and is flush with the aperture and/or enters the aperture when force is exerted downward. The region of the fabric bonded to the keycap may be bonded to the top surface of the keycap. In such implementations, the fabric may further restrict lateral movement and/or other movement of the keycap.
The fabric may be embossed to include one or more embossed areas or embossed structures and one or more embossed areas. In such a case, the region of the fabric bonded to the keycap may be an embossed area. In various implementations, the embossed area may include a top section and side sections positioned perpendicular to the top section.
In various implementations, fabric of various characteristics may be selected based on interaction with the switch and/or other such factors. For example, the material composing the fabric (such as nylon, elastane, polyester, and/or other such material) may be selected such that a force curve involved in activating the switch is not significantly altered and/or to deliberately alter the force curve involved in activating the switch. By way of another example, in cases where the fabric includes an embossed area formed into a shape with one or more rounded corners, the radius of the curved corner may be selected to not significantly alter the force curve and/or to deliberately alter the force curve involved in activating the switch. The smaller the radius of curved corners may cause the embossed area to have more self-supporting stiffness and thus increasingly affect the force curve, whereas the larger the radius, the less self-supporting stiffness and less effect to the force curve. Alternately, the keycap may have non-rounded, pointed corners which may have even more self-supporting stiffness and thus affect the force curve more than rounded corners.
In some implementations, the keys may include one or more illuminators. For example, one or more illuminators (such as one or more light emitting diodes or “LEDs”) may be positioned under the keycap, on the keycap, and so on. In such cases, the fabric, keycap, and/or other components may be configured such that the illuminator is operable to illuminate the key, a legend (such as a letter, number, symbol, glyph, and/or other pattern) on a surface of the key, and so on. For example, the fabric may be permeable to light but the keycap may not be such that light from an illuminator positioned under the keycap is operable to shine around the keycap and out of the fabric to illuminate an area around the key. By way of another example, a portion of the fabric corresponding to a legend on a surface of the keycap may be permeable to light whereas other portions of the fabric are not (such as where the fabric includes a light permeable layer covered by a non-light permeable layer such as paint or fabric where the area of the non-light permeable layer corresponding to the legend removed by laser etching or other process, the fabric includes a non-light permeable material with a light permeable and/or light transmissive material woven and/or otherwise positioned in the area of the legend, and so on) such that an illuminator positioned under the fabric is operable to illuminate the legend.
Although the present disclosure is illustrated and described in the context of a fabric keyboard, it is understood that this is an example. In various implementations, the techniques of the present disclosure may be utilized in various other fabric input devices (such as a fabric covered button) without departing from the scope of the present disclosure.
As further illustrated in
In some implementations the keys 102 may include one or more rounded corners, each having a radius 103. The radius 103 may affect the stiffness of the fabric at the respective area of the fabric keyboard 101. Rounded corners with a smaller radius 103 (or non-rounded corners) may result in stiffer fabric portions whereas rounded corners with a larger radius 103 may result in less stiff fabric portions.
The dome 210 may be held in place on the substrate 215 by a switch block 211 that may be bonded to the substrate 215 (such as by adhesive 212). The switch block 211 may hold the dome 210 in place by providing a barrier that prevents movement of the dome 210. As illustrated, the switch block 211 may prevent lateral motion of the dome 210. In some implementations, the switch block 211 may perform other functions, such as implementations where the switch block 211 operates as and/or includes a light guide.
In some implementations, the key 102 may include one or more illuminators 214, such as one or more LEDs. Although
In various implementations, the substrate 215 may be rigid. However, in other implementations the substrate 215 may be flexible such that the fabric keyboard 101 of
In some embodiments, the substrate 215 may be formed into substantially rigid sections or regions, each of which may be associated with a number of keys 102. As one example, each row of the fabric keyboard 101 may be placed atop or otherwise associated with its own substantially rigid section. These substantially rigid sections may be connected by one or more flexible links (such as links made of rubber, elastomer, and/or other flexible material). In such embodiments, though one or more portions of the fabric keyboard 101 may be rigid, the flexible links connecting such rigid portions may enable the fabric keyboard 101 to be folded, bent, rolled up (such as is shown in
Still with respect to
The height of the side sections 207 may be related to the distance that the keycap 205 travels to deform the dome 210. For example, the embossed region 206 may be over embossed such that the side sections 207 are able to buckle and/or bend during travel of the keycap 205 and not require the fabric 201 to stretch in order to allow such movement, and also to prevent the fabric from exerting force on the keycap. Higher side sections 207 may be configured for keycaps 205 with longer travel distances. Likewise, the side sections 207 may extend downward beneath the frame 204 before extending upward along the side of the keycap 205, thereby forming a U-shaped depression 250 around some or all of a key. This depression may permit the keycap to travel without stretching the fabric or exerting force on the keycap 205. See
By utilizing the embossed region 206 to allow for keycap 205 travel, stress upon the dome switch of the key 102 may be avoided because the embossed region 206 may prevent stretching of the fabric 201 from exerting unwanted force on the keycap 205. In particular, the side sections 207 may prevent the fabric 201 from exerting unwanted force on the keycap 205 or exerting force on the dome switch.
The keycap 205 may be biased upward or otherwise supported by the dome 210 portion of the switch when force is not exerted downward upon the keycap 205. The top surface of the keycap 205 may project above the aperture 218 when the keycap 205 is not subjected to any external force (e.g., is in a rest state) but may be flush with the aperture 218 and/or enter the aperture 218 when an external force is exerted downward on the keycap 205. In some embodiments, the fabric 201 may also bias (or assist in biasing) the keycap 205 upward. That is, the relative stiffness of the fabric 201 and/or the amount of fabric used in the side section 207 may essentially pull the keycap to its rest state.
As also illustrated, the keys 102 may take, or have in cross-section, a top hat configuration. Such a top hat configuration may enable the keys 102 to be activated by center presses, side presses, and so on as the top hat configuration may restrict motion of the keycap 205 during a side press such that the keycap 205 deforms the dome 210 (illustrated in
Further, portions of the frame 204 defining a perimeter around the aperture 218 may include flanges 216 that extend into the aperture 218. The flanges 216 may be operable to contact and block movement of the flanges 217 of the keycap 205 to restrict upward movement of the keycap 205 so that the keycap 205 does not exit the aperture 218. The flanges 217 of the keycap 205 may also contact the perimeter of the frame 204 around the aperture 218, blocking further movement of the flanges 217, to restrict lateral movement of the keycap 205. The fabric 201 may also restrict lateral movement and/or other movement of the keycap 205.
As illustrated, the fabric 201 may cover the aperture 218. In some cases, the fabric 201 may function to dampen sound from within the keyboard and/or emanating through the aperture 218 and/or other components of the key 102, such as noise produced during movement of the keycap 205. In various cases, the fabric 201 may also form a barrier that may restrict passage of contaminants into the aperture, such as dust, food, or other particles and/or water and/or other liquids. This may protect components such as the dome 210 or the contact 213 from corrosion and/or other damage and/or prevent such contaminants from otherwise interfering with operation of the key 102.
Returning again to
Further, although the key 102 is illustrated and described as directly engaging the keycap 205 and the dome switch, it is understood that this is an example. In various implementations one or more other mechanisms may positioned between the keycap 205 and the dome switch (which may be a switch other than a dome switch) without departing from the scope of the present disclosure. For example, in such implementations the key 102 may include one or more movement mechanisms such as a butterfly mechanism, a scissor mechanism, and/or any other such key movement mechanism. These movement mechanisms may limit the upward and/or downward motion and position of the keycap or key, as well as biasing the key or keycap away from the dome switch (or otherwise toward a surface of the input device) when the key is not under a load. In other embodiments, one or both of the dome switch and fabric may serve to similarly limit keycap/key motion and bias the keycap/key.
Additionally, although the fabric 201 is illustrated and described above as being embossed and not being in tension during movement of the keycap 205, it is understood that this is an example. In various implementations, the fabric 201 may be formed of an elastic material without embossed areas 206 and that stretches to allow movement of the keycap 205, which may stretch in the absence of force applied to the keycap 205 to allow the keycap 205 to project above the frame 204. In some such implementations a material may be used for the fabric 201 such that stretching of the fabric 201 does not cause the keycap 205 to put excessive stress on the dome 210, such as the stretching of the fabric 201 putting stress in excess of that necessary to deform the dome 210 when force is not exerted on the keycap 205 thus causing unintentional activation and/or improper operation of the key 102.
Still with respect to
For example, the fabric 201 may be permeable to light (such as being formed of clear and/or translucent nylon) but the keycap 205 may not be. As such, light from the illuminator 214 positioned under the keycap 205 may be operable to shine around the keycap 205 and out of the fabric 201 to illuminate an area around the key 102.
By way of another example, a portion of the fabric 201 corresponding to a legend on a surface of the key 102 may be permeable to light whereas other portions of the fabric 201 are not such that the illuminator 214 positioned under the fabric 201 is operable to illuminate the legend. In some example cases, the fabric 201 may include a light permeable layer (such as clear and/or translucent polyester) covered by a non-light permeable layer (such as opaque paint or polyester) where the area of the non-light permeable layer corresponding to the legend removed by laser etching or other process. In other example cases, the fabric 201 may include a non-light permeable material (such as opaque nylon) with a light permeable (such as clear polyester) and/or light transmissive material (such as fiber optic material) woven and/or otherwise positioned in the area of the legend.
In various implementations, use of an illuminator 214 to backlight the key 102 may result in a “hotspot,” or a brighter area of illumination of the surface of the key 102 corresponding to the location of the illuminator 214 surrounded by a dimmer area of illumination corresponding to the area around the illuminator 214. To mitigate the occurrence of such a hotspot by using the illuminator 214 to backlight the key 102, a cover may be positioned over the illuminator 214 between the illuminator 214 and the keycap 205. Such a cover may cause light emitted by the illuminator 214 to diffuse evenly throughout the aperture 218 as opposed to directly toward the keycap 205, resulting in uniform illumination through the surface of the key 102 without a hotspot. In such implementations, the frame 204 may be formed of an opaque material so light emitted by the illuminator 214 of the key 102 is prevented from entering adjacent keys 102.
In some implementations, such a cover or “roof” may extend from a portion of the switch block 211 proximate to the illuminator 214 to fully or partially cover the illuminator 214. In some embodiments of such an implementation, the switch block 211 may include a light guide panel or similar structure that receives light from the illuminator 214 and diffuses the received light more uniformly throughout the aperture 218. For example, the illuminator 214 may be a side-firing LED that emits light toward the light guide panel included in the switch block 211 which is then diffused throughout the aperture 218 by the light guide panel.
Although a particular order of assembly is discussed above with respect to
In various implementations, fabric 201 of various characteristics may be selected based on interaction with the dome 210 and/or other such factors. For example, the material composing the fabric 201 (such as nylon, elastane, polyester, and/or other such material) may be selected such that a force curve involved in deforming the dome 210 is not significantly altered and/or to deliberately alter the force curve involved in deforming the dome 210.
In some implementations, keys 102 may be configured to require a particular force curve in order to have a pleasing “feel” when operated by a user. If the dome 210 itself is configured with the appropriate force curve and if the fabric 201 significantly changes that force curve, the key 102 may no longer have the pleasing feel. As such, where the dome 210 is already configured with the appropriate force curve, the fabric 201 and/or the embossed region 206 may be configured such that the fabric 201 does not significantly change the force curve.
However, it is understood that this is an example and other configurations are possible without departing from the scope of the present disclosure. For example, in various implementations the legend 641 may be omitted and only the legend 642 may block the passage of light (and/or allow less passage of light than the surrounding fabric 601 such that the legend 642 is illuminated more dimly than the surrounding fabric 601).
By way of another example, in some implementations the legend 641 may be formed by covering the window 640 except for the area occupied by the legend 641 with opaque material (and/or by covering the entire window 640 with the opaque material and then removing, such as by etching, laser etching, and/or other process, the opaque material in the area of the legend 641) such that the legend 642 is illuminated and light is prevented from passing through the fabric 601 in the area around the legend 642. In such an example, the legend 641 may have dimensions larger than that of the legend 642, resulting in an illuminated outline of the legend 642 if the legend 642 does not allow the passage of light or an illuminated legend 642 with a more brightly illuminated outline of the legend 642 if the legend 642 allows less passage of light than the fabric.
In various implementations, the color and/or opacity of the first coating 750 may be used to tune the illuminated light. For example, less opaque materials may be used for the first coating 750 to cause in brighter illumination whereas more opaque materials may be used to cause dimmer illumination. By of another example, white colored material may be used for the first coating 750 to cause the illumination to appear white whereas a different colored material (such as blue) may be used to cause the illumination to appear another color (such as blue).
However, it is understood that
Further, such flexibility may enable the cover 105 to partially cover the screen instead of entirely covering or uncovering. Portions of the fabric keyboard 101 may be exposed when the cover 105 partially covers the screen. Such exposed portions of the fabric keyboard 101 may be utilized to provide input to the electronic device 104 while the screen is partially covered. Moreover, such flexibility may enable the cover 105 to be rolled or otherwise manipulated to function as a stand and prop the electronic device 104 at an angle on a surface.
The cover 105 may attach to the electronic device 104 in one or more positions where the screen is covered and/or one or more positions where the screen is uncovered. For example, the cover 105 may attach to the electronic device 104 using one or more magnets. In some cases, coupling the magnets may electrically connect contacts of the cover 105 and the electronic device 104 to enable communication between the fabric keyboard 101 and electronic device 104. The fabric keyboard 101 may be disposed on an internal or external surface of the cover 105 and may be utilized to provide input to the electronic device 104 when the cover 105 is not covering the screen.
The illustrated system 100 is but one example system. In various implementations, the fabric keyboard 101 may be incorporated into the electronic device 104 instead of being removably attachable via the cover 105 without departing from the scope of the present disclosure. Further, in various implementations the electronic device 104 may be any kind of electronic device (such as a desktop computing device, a mobile computing device, a tablet computing device, a smart phone, a cellular telephone, a wearable device, a digital media player, and/or any other electronic device).
Moreover, although the fabric keyboard 101 is illustrated and described as being included in the cover 105, the fabric keyboard 101 may be implemented in a variety of different ways. In various implementations, the fabric keyboard 101 may be incorporated into a variety of different items. For example, a case operable to contain, enclose, and/or otherwise hold the electronic device 104 may include the fabric keyboard 101. By way of another example, an item of apparel (such as a jacket, pants, purse, bag, and so on) or other accessory may include a fabric input device with a number of fabric covered buttons (such as five or other numbers of fabric covered buttons) that is operable to wirelessly communicate with an electronic device such as a smart phone stored in a pocket or compartment of (and/or otherwise proximate to) the item of apparel.
Additionally, though the fabric keyboard 101 is illustrated and described as a keyboard, it is understood that this is an example. In various implementations, the fabric keyboard 101 may be any kind of fabric input device (such as a fabric covered button) without departing from the scope of the present disclosure.
However, in other implementations the dome 210 may not itself be configured completely with the appropriate force curve. In such an implementation, the fabric 201 may be configured to more significantly change that force curve such that the resultant force curve has the appropriate feel.
The force curve 902 of the fabric 201 may be related to the material(s) used to form the fabric 201 (i.e., the force required to move the fabric), the height and/or other configuration of embossed areas 206 (i.e., the force required to move the embossed structures), and/or other such factors. For example, as discussed above, the fabric 201 may include embossed areas 206 with one or more rounded corners defined by a radius 103. In such examples, the radius 103 may be selected to not significantly alter the force curve and/or to deliberately alter the force curve involved in activating the dome 210. The smaller the radius 103 may cause the embossed area to have more self-supporting stiffness and thus increasingly affect the force curve whereas the larger the radius 103 the less self-supporting stiffness and less effect to the force curve. Alternatively, in examples where it is desired to significantly affect the force curve, non-rounded, pointed corners which may have even more self-supporting stiffness and thus affect the force curve more than rounded corners may be utilized.
The flow may begin and proceed to block 1001 where a fabric may be embossed to create one or more embossed regions and one or more unembossed regions. The flow may then proceed to block 1002 where a frame is bonded to one of the unembossed regions. Each frame may include an aperture. Next, the flow may proceed to block 1003 where a keycap of a key is bonded to one of the embossed regions. The key may include the frame, the keycap which is operable to move vertically with respect to the frame while at least partially within the aperture, and a switch positioned under the keycap that is activated by the vertical movement of the keycap. The key may be one of a number of keys.
For example, in various embodiments manufacture of an input device may include placing a fabric in a mold. Closing the mold may emboss the fabric to create embossed regions and unembossed regions. Material, such as plastic, may be injected into the mold to create a frame with a number of apertures where the frame is bonded to the unembossed regions of the fabric by the injection molding. Alternately, the embossed fabric may be moved to a second injection mold and material injected therein. Individual keycaps may be placed in the apertures and bonded to the embossed regions of the fabric (which may have been removed from the injection mold), such as using adhesive. It should be understood that this is but one way of making an embossed fabric and related key structure; other methods may be used to emboss fabric and/or bond the fabric to a keycap and/or frame.
However, it is understood that this is an example. In various other implementations, a number of keys each with a respective frame (or respective frame portion of a unified frame that includes multiple apertures), a respective keycap operable to move within an aperture of the respective frame, and a switch positioned under the respective keycap that is activated by vertical movement of the keycap, may be assembled. The fabric may be embossed to create embossed and unembossed regions. The frame of each key may be bonded to an unembossed region and the keycap of each key may be bonded to an embossed region.
Although the method 1000 is illustrated and described above as including particular operations performed in a particular order, it is understood that this is an example. In various implementations, various orders of the same, similar, and/or different operations may be performed without departing from the scope of the present disclosure.
For example, block 1001 illustrates and describes assembly of the keys as a single step. However, in various implementations assembly of the keys may involve a series of operations. For instance, in a first example operation the keycap may be positioned in the aperture and in a second example operation the switch may be positioned under the keycap.
As described above and illustrated in the accompanying figures, the present disclosure describes systems, apparatuses, and methods related to fabric input devices such as fabric keyboards. An input device may include one or more keys that each includes a keycap that is operable to move within an aperture of a frame to activate a switch and fabric disposed over the frame and keycap. A first region of the fabric may be bonded to the keycap and a second region of the fabric may be bonded to the frame. The fabric may dampen sound from within the keyboard and/or emanating through the aperture, such as noise related to movement of the keycap, activation of the switch, and so on. The fabric may also form a barrier that restricts passage of contaminants into the aperture and/or other portions of the input device.
It should be appreciated that a variety of modifications and variations may be made to any structure, portion of a structure, or method described herein. For example, although the key 102 is illustrated and described above as having a top surface formed of the fabric 201, it is understood that this is an example. In some implementations, an element such as a key pad may be placed over the fabric 201. This may provide the appearance of a typical keyboard key while still enabling the use of the fabric 201 for purposes of key 102 operations, sound dampening, contaminant barrier, and so on.
Further, although the key 102 is illustrated and described as directly engaging the keycap 205 and the dome switch, it is understood that this is an example. In various implementations one or more other mechanisms may positioned between the keycap 205 and the dome switch (which may be a switch other than a dome switch) without departing from the scope of the present disclosure. For example, in such implementations the key 102 may include one or more movement mechanisms such as a butterfly mechanism, a scissor mechanism, and/or any other such key movement mechanism. These movement mechanisms may limit the upward and/or downward motion and position of the keycap or key, as well as biasing the key or keycap away from the dome switch (or otherwise toward a surface of the input device) when the key is not under a load. In other embodiments, one or both of the dome switch and fabric may serve to similarly limit keycap/key motion and bias the keycap/key.
Additionally, although the fabric 201 is illustrated and described above as being embossed and not being in tension during movement of the keycap 205, it is understood that this is an example. In various implementations, the fabric 201 may be formed of an elastic material without embossed areas 206 and that stretches to allow movement of the keycap 205, which may stretch in the absence of force applied to the keycap 205 to allow the keycap 205 to project above the frame 204. In some such implementations a material may be used for the fabric 201 such that stretching of the fabric 201 does not cause the keycap 205 to put excessive stress on the dome 210, such as the stretching of the fabric 201 putting stress in excess of that necessary to deform the dome 210 when force is not exerted on the keycap 205 thus causing unintentional activation and/or improper operation of the key 102.
With respect to the present disclosure, the specific order or hierarchy of steps in the methods disclosed are examples of sample approaches. In other embodiments, the specific order or hierarchy of steps in the method can be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.
Manufacture of fabric input devices and/or operation of such fabric input devices described in the present disclosure may utilize a computer program product, or software, that may include a non-transitory machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure. A non-transitory machine-readable medium includes any mechanism for storing information in a form (e.g., software, processing application) readable by a machine (e.g., a computer). The non-transitory machine-readable medium may take the form of, but is not limited to, a magnetic storage medium (e.g., floppy diskette, video cassette, and so on); optical storage medium (e.g., CD-ROM); magneto-optical storage medium; read only memory (ROM); random access memory (RAM); erasable programmable memory (e.g., EPROM and EEPROM); flash memory; and so on.
It is believed that the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory, and it is the intention of the following claims to encompass and include such changes.
While the present disclosure has been described with reference to various embodiments, it will be understood that these embodiments are illustrative and that the scope of the disclosure is not limited to them. Many variations, modifications, additions, and improvements are possible. More generally, embodiments in accordance with the present disclosure have been described in the context or particular embodiments. Functionality may be separated or combined in blocks differently in various embodiments of the disclosure or described with different terminology. These and other variations, modifications, additions, and improvements may fall within the scope of the disclosure as defined in the claims that follow.
This application is a nonprovisional patent application of and claims the benefit of U.S. Provisional Patent Application No. 62/037,947, filed Aug. 15, 2014 and titled “Fabric Keyboard,” the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3657492 | Arndt et al. | Apr 1972 | A |
3917917 | Murata | Nov 1975 | A |
3978297 | Lynn | Aug 1976 | A |
4095066 | Harris | Jun 1978 | A |
4319099 | Asher | Mar 1982 | A |
4349712 | Michalski | Sep 1982 | A |
4484042 | Matsui | Nov 1984 | A |
4596905 | Fowler | Jun 1986 | A |
4598181 | Selby | Jul 1986 | A |
4670084 | Durand et al. | Jun 1987 | A |
4755645 | Naoki et al. | Jul 1988 | A |
4937408 | Hattori et al. | Jun 1990 | A |
4987275 | Miller et al. | Jan 1991 | A |
5021638 | Nopper | Jun 1991 | A |
5092459 | Uljanic | Mar 1992 | A |
5136131 | Komaki | Aug 1992 | A |
5278372 | Takagi et al. | Jan 1994 | A |
5280146 | Inagaki | Jan 1994 | A |
5340955 | Calvillo et al. | Aug 1994 | A |
5382762 | Mochizuki | Jan 1995 | A |
5397867 | Demeo | Mar 1995 | A |
5408060 | Muurinen | Apr 1995 | A |
5421659 | Liang | Jun 1995 | A |
5422447 | Spence | Jun 1995 | A |
5457297 | Chen | Oct 1995 | A |
5477430 | LaRose et al. | Dec 1995 | A |
5481074 | English | Jan 1996 | A |
5504283 | Kako et al. | Apr 1996 | A |
5512719 | Okada et al. | Apr 1996 | A |
5625532 | Sellers | Apr 1997 | A |
5804780 | Bartha | Sep 1998 | A |
5828015 | Coulon | Oct 1998 | A |
5847337 | Chen | Dec 1998 | A |
5874700 | Hochgesang | Feb 1999 | A |
5875013 | Takahara | Feb 1999 | A |
5876106 | Kordecki et al. | Mar 1999 | A |
5878872 | Tsai | Mar 1999 | A |
5881866 | Miyajima et al. | Mar 1999 | A |
5898147 | Domzaiski et al. | Apr 1999 | A |
5924555 | Sadamori et al. | Jul 1999 | A |
5935691 | Tsai | Aug 1999 | A |
5960942 | Thornton | Oct 1999 | A |
5986227 | Hon | Nov 1999 | A |
6020565 | Pan | Feb 2000 | A |
6068416 | Kumamoto et al. | May 2000 | A |
6215420 | Harrison et al. | Apr 2001 | B1 |
6257782 | Maruyama et al. | Jul 2001 | B1 |
6259046 | Iwama et al. | Jul 2001 | B1 |
6377685 | Krishnan | Apr 2002 | B1 |
6388219 | Hsu et al. | May 2002 | B2 |
6423918 | King et al. | Jul 2002 | B1 |
6482032 | Szu et al. | Nov 2002 | B1 |
6530283 | Okada et al. | Mar 2003 | B2 |
6538801 | Jacobson et al. | Mar 2003 | B2 |
6542355 | Huang | Apr 2003 | B1 |
6552287 | Janniere | Apr 2003 | B2 |
6556112 | Van Zeeland et al. | Apr 2003 | B1 |
6559399 | Hsu et al. | May 2003 | B2 |
6560612 | Yamada et al. | May 2003 | B1 |
6572289 | Lo et al. | Jun 2003 | B2 |
6573463 | Ono | Jun 2003 | B2 |
6585435 | Fang | Jul 2003 | B2 |
6624369 | Ito et al. | Sep 2003 | B2 |
6706986 | Hsu | Mar 2004 | B2 |
6738050 | Comiskey | May 2004 | B2 |
6750414 | Sullivan | Jun 2004 | B2 |
6759614 | Yoneyama | Jul 2004 | B2 |
6762381 | Kunthady et al. | Jul 2004 | B2 |
6765503 | Chan et al. | Jul 2004 | B1 |
6788450 | Kawai et al. | Sep 2004 | B2 |
6797906 | Ohashi | Sep 2004 | B2 |
6850227 | Takahashi et al. | Feb 2005 | B2 |
6860660 | Hochgesang et al. | Mar 2005 | B2 |
6911608 | Levy | Jun 2005 | B2 |
6926418 | Ostergård et al. | Aug 2005 | B2 |
6940030 | Takeda et al. | Sep 2005 | B2 |
6977352 | Oosawa | Dec 2005 | B2 |
6979792 | Lai | Dec 2005 | B1 |
6987466 | Welch et al. | Jan 2006 | B1 |
6987503 | Inoue | Jan 2006 | B2 |
7012206 | Oikawa | Mar 2006 | B2 |
7030330 | Suda | Apr 2006 | B2 |
7038832 | Kanbe | May 2006 | B2 |
7129930 | Cathey et al. | Oct 2006 | B1 |
7134205 | Bruennel | Nov 2006 | B2 |
7146701 | Mahoney et al. | Dec 2006 | B2 |
7151236 | Ducruet et al. | Dec 2006 | B2 |
7151237 | Mahoney et al. | Dec 2006 | B2 |
7154059 | Chou | Dec 2006 | B2 |
7166813 | Soma | Jan 2007 | B2 |
7172303 | Shipman et al. | Feb 2007 | B2 |
7189932 | Kim | Mar 2007 | B2 |
7256766 | Albert et al. | Aug 2007 | B2 |
7283119 | Kishi | Oct 2007 | B2 |
7301113 | Nishimura et al. | Nov 2007 | B2 |
7312790 | Sato et al. | Dec 2007 | B2 |
7378607 | Koyano et al. | May 2008 | B2 |
7385806 | Liao | Jun 2008 | B2 |
7391555 | Albert et al. | Jun 2008 | B2 |
7414213 | Hwang | Aug 2008 | B2 |
7429707 | Yanai et al. | Sep 2008 | B2 |
7432460 | Clegg | Oct 2008 | B2 |
7510342 | Lane et al. | Mar 2009 | B2 |
7531764 | Lev et al. | May 2009 | B1 |
7541554 | Hou | Jun 2009 | B2 |
7589292 | Jung et al. | Sep 2009 | B2 |
7639187 | Caballero et al. | Dec 2009 | B2 |
7639571 | Ishii et al. | Dec 2009 | B2 |
7651231 | Chou et al. | Jan 2010 | B2 |
7679010 | Wingett | Mar 2010 | B2 |
7724415 | Yamaguchi | May 2010 | B2 |
7781690 | Ishii | Aug 2010 | B2 |
7813774 | Perez-Noguera | Oct 2010 | B2 |
7842895 | Lee | Nov 2010 | B2 |
7847204 | Tsai | Dec 2010 | B2 |
7851819 | Shi | Dec 2010 | B2 |
7866866 | Wahlstrom | Jan 2011 | B2 |
7893376 | Chen | Feb 2011 | B2 |
7923653 | Ohsumi | Apr 2011 | B2 |
7947915 | Lee et al. | May 2011 | B2 |
7999748 | Ligtenberg et al. | Aug 2011 | B2 |
8063325 | Sung et al. | Nov 2011 | B2 |
8077096 | Chiang et al. | Dec 2011 | B2 |
8080744 | Yeh et al. | Dec 2011 | B2 |
8098228 | Shimodaira et al. | Jan 2012 | B2 |
8109650 | Chang et al. | Feb 2012 | B2 |
8119945 | Lin | Feb 2012 | B2 |
8124903 | Tatehata et al. | Feb 2012 | B2 |
8134094 | Tsao et al. | Mar 2012 | B2 |
8143982 | Lauder et al. | Mar 2012 | B1 |
8156172 | Muehl et al. | Apr 2012 | B2 |
8178808 | Strittmatter et al. | May 2012 | B2 |
8184021 | Chou | May 2012 | B2 |
8212160 | Tsao | Jul 2012 | B2 |
8212162 | Zhou | Jul 2012 | B2 |
8218301 | Lee | Jul 2012 | B2 |
8232958 | Tolbert | Jul 2012 | B2 |
8246228 | Ko et al. | Aug 2012 | B2 |
8253048 | Ozias et al. | Aug 2012 | B2 |
8253052 | Chen | Sep 2012 | B2 |
8263887 | Chen et al. | Sep 2012 | B2 |
8289280 | Travis | Oct 2012 | B2 |
8299382 | Takemae et al. | Oct 2012 | B2 |
8317384 | Chung et al. | Nov 2012 | B2 |
8319298 | Hsu | Nov 2012 | B2 |
8325141 | Marsden | Dec 2012 | B2 |
8330725 | Mahowald et al. | Dec 2012 | B2 |
8354629 | Lin | Jan 2013 | B2 |
8378857 | Pance | Feb 2013 | B2 |
8383972 | Liu | Feb 2013 | B2 |
8384566 | Bocirnea | Feb 2013 | B2 |
8404990 | Lutgring et al. | Mar 2013 | B2 |
8451146 | Mahowald et al. | Mar 2013 | B2 |
8431849 | Chen | Apr 2013 | B2 |
8436265 | Koike et al. | May 2013 | B2 |
8462514 | Myers et al. | Jun 2013 | B2 |
8500348 | Dumont et al. | Aug 2013 | B2 |
8502094 | Chen | Aug 2013 | B2 |
8542194 | Akens et al. | Sep 2013 | B2 |
8548528 | Kim et al. | Oct 2013 | B2 |
8564544 | Jobs et al. | Oct 2013 | B2 |
8569639 | Strittmatter | Oct 2013 | B2 |
8575632 | Kuramoto et al. | Nov 2013 | B2 |
8581127 | Jhuang et al. | Nov 2013 | B2 |
8592699 | Kessler et al. | Nov 2013 | B2 |
8592702 | Tsai | Nov 2013 | B2 |
8592703 | Johnson et al. | Nov 2013 | B2 |
8604370 | Chao | Dec 2013 | B2 |
8629362 | Knighton et al. | Jan 2014 | B1 |
8642904 | Chiba et al. | Feb 2014 | B2 |
8651720 | Sherman et al. | Feb 2014 | B2 |
8659882 | Liang et al. | Feb 2014 | B2 |
8731618 | Jarvis et al. | May 2014 | B2 |
8748767 | Ozias et al. | Jun 2014 | B2 |
8759705 | Funakoshi et al. | Jun 2014 | B2 |
8760405 | Nam | Jun 2014 | B2 |
8786548 | Oh et al. | Jul 2014 | B2 |
8791378 | Lan | Jul 2014 | B2 |
8835784 | Hirota | Sep 2014 | B2 |
8847090 | Ozaki | Sep 2014 | B2 |
8847711 | Yang et al. | Sep 2014 | B2 |
8853580 | Chen | Oct 2014 | B2 |
8854312 | Meierling | Oct 2014 | B2 |
8870477 | Merminod et al. | Oct 2014 | B2 |
8884174 | Chou et al. | Nov 2014 | B2 |
8921473 | Hyman | Dec 2014 | B1 |
8922476 | Stewart et al. | Dec 2014 | B2 |
8943427 | Heo et al. | Jan 2015 | B2 |
8976117 | Krahenbuhl et al. | Mar 2015 | B2 |
8994641 | Stewart et al. | Mar 2015 | B2 |
9007297 | Stewart et al. | Apr 2015 | B2 |
9012795 | Niu et al. | Apr 2015 | B2 |
9029723 | Pegg | May 2015 | B2 |
9063627 | Yairi et al. | Jun 2015 | B2 |
9064642 | Welch et al. | Jun 2015 | B2 |
9086733 | Pance | Jul 2015 | B2 |
9087663 | Los | Jul 2015 | B2 |
9093229 | Leong et al. | Jul 2015 | B2 |
9111700 | Liu | Aug 2015 | B2 |
9213416 | Chen | Dec 2015 | B2 |
9223352 | Smith et al. | Dec 2015 | B2 |
9234486 | Das et al. | Jan 2016 | B2 |
9235236 | Nam | Jan 2016 | B2 |
9274654 | Slobodin et al. | Mar 2016 | B2 |
9275810 | Pance et al. | Mar 2016 | B2 |
9300033 | Han et al. | Mar 2016 | B2 |
9305496 | Kimura | Apr 2016 | B2 |
9443672 | Martisauskas | Sep 2016 | B2 |
9448628 | Tan et al. | Sep 2016 | B2 |
9471185 | Guard | Oct 2016 | B2 |
9477382 | Hicks et al. | Oct 2016 | B2 |
9612674 | Degner et al. | Apr 2017 | B2 |
9734965 | Martinez et al. | Aug 2017 | B2 |
9793066 | Brock et al. | Oct 2017 | B1 |
20020079211 | Katayama et al. | Jun 2002 | A1 |
20020093436 | Lien | Jul 2002 | A1 |
20020113770 | Jacobson et al. | Aug 2002 | A1 |
20020149835 | Kanbe | Oct 2002 | A1 |
20030169232 | Ito | Sep 2003 | A1 |
20040004559 | Rast | Jan 2004 | A1 |
20040225965 | Garside et al. | Nov 2004 | A1 |
20040257247 | Lin et al. | Dec 2004 | A1 |
20050035950 | Daniels | Feb 2005 | A1 |
20050253801 | Kobayashi | Nov 2005 | A1 |
20060011458 | Purcocks | Jan 2006 | A1 |
20060020469 | Rast | Jan 2006 | A1 |
20060120790 | Chang | Jun 2006 | A1 |
20060181511 | Woolley | Aug 2006 | A1 |
20060243987 | Lai | Nov 2006 | A1 |
20070200823 | Bytheway et al. | Aug 2007 | A1 |
20070285393 | Ishakov | Dec 2007 | A1 |
20080131184 | Brown et al. | Jun 2008 | A1 |
20080136782 | Mundt et al. | Jun 2008 | A1 |
20080251370 | Aoki | Oct 2008 | A1 |
20090046053 | Shigehiro et al. | Feb 2009 | A1 |
20090103964 | Takagi et al. | Apr 2009 | A1 |
20090128496 | Huang | May 2009 | A1 |
20090262085 | Wassingbo et al. | Oct 2009 | A1 |
20090267892 | Faubert | Oct 2009 | A1 |
20100045705 | Vertegaal et al. | Feb 2010 | A1 |
20100066568 | Lee | Mar 2010 | A1 |
20100109921 | Annerfors | May 2010 | A1 |
20100156796 | Kim et al. | Jun 2010 | A1 |
20100253630 | Homma et al. | Oct 2010 | A1 |
20110032127 | Roush | Feb 2011 | A1 |
20110056817 | Wu | Mar 2011 | A1 |
20110056836 | Tatebe et al. | Mar 2011 | A1 |
20110205179 | Braun | Aug 2011 | A1 |
20110261031 | Muto | Oct 2011 | A1 |
20110267272 | Meyer et al. | Nov 2011 | A1 |
20110284355 | Yang | Nov 2011 | A1 |
20110303521 | Niu et al. | Dec 2011 | A1 |
20120012446 | Hwa | Jan 2012 | A1 |
20120032972 | Hwang | Feb 2012 | A1 |
20120090973 | Liu | Apr 2012 | A1 |
20120098751 | Liu | Apr 2012 | A1 |
20120286701 | Yang et al. | Nov 2012 | A1 |
20120298496 | Zhang | Nov 2012 | A1 |
20120313856 | Hsieh | Dec 2012 | A1 |
20130043115 | Yang et al. | Feb 2013 | A1 |
20130093500 | Bruwer | Apr 2013 | A1 |
20130093733 | Yoshida | Apr 2013 | A1 |
20130100030 | Los et al. | Apr 2013 | A1 |
20130120265 | Horii et al. | May 2013 | A1 |
20130161170 | Fan et al. | Jun 2013 | A1 |
20130215079 | Johnson et al. | Aug 2013 | A1 |
20130242601 | Kloeppel et al. | Sep 2013 | A1 |
20130270090 | Lee | Oct 2013 | A1 |
20140015777 | Park et al. | Jan 2014 | A1 |
20140027259 | Kawana et al. | Jan 2014 | A1 |
20140071654 | Chien | Mar 2014 | A1 |
20140082490 | Jung et al. | Mar 2014 | A1 |
20140090967 | Inagaki | Apr 2014 | A1 |
20140098042 | Kuo et al. | Apr 2014 | A1 |
20140116865 | Leong et al. | May 2014 | A1 |
20140118264 | Leong et al. | May 2014 | A1 |
20140151211 | Zhang | Jun 2014 | A1 |
20140184496 | Gribetz et al. | Jul 2014 | A1 |
20140191973 | Zellers et al. | Jul 2014 | A1 |
20140218851 | Klein et al. | Aug 2014 | A1 |
20140252881 | Dinh et al. | Sep 2014 | A1 |
20140291133 | Fu et al. | Oct 2014 | A1 |
20140320436 | Modarres et al. | Oct 2014 | A1 |
20140346025 | Hendren et al. | Nov 2014 | A1 |
20140375141 | Nakajima | Dec 2014 | A1 |
20150016038 | Niu et al. | Jan 2015 | A1 |
20150083561 | Han et al. | Mar 2015 | A1 |
20150090570 | Kwan et al. | Apr 2015 | A1 |
20150090571 | Leong et al. | Apr 2015 | A1 |
20150227207 | Winter et al. | Aug 2015 | A1 |
20150243457 | Niu et al. | Aug 2015 | A1 |
20150270073 | Yarak, III et al. | Sep 2015 | A1 |
20150277559 | Vescovi et al. | Oct 2015 | A1 |
20150287553 | Welch et al. | Oct 2015 | A1 |
20150309538 | Zhang | Oct 2015 | A1 |
20150332874 | Brock et al. | Nov 2015 | A1 |
20150348726 | Hendren | Dec 2015 | A1 |
20150378391 | Huitema et al. | Dec 2015 | A1 |
20160049266 | Stringer et al. | Feb 2016 | A1 |
20160093452 | Zercoe et al. | Mar 2016 | A1 |
20160172129 | Zercoe et al. | Jun 2016 | A1 |
20160189890 | Leong et al. | Jun 2016 | A1 |
20160189891 | Zercoe et al. | Jun 2016 | A1 |
20160259375 | Andre et al. | Sep 2016 | A1 |
20160329166 | Hou et al. | Nov 2016 | A1 |
20160336124 | Leong et al. | Nov 2016 | A1 |
20160336127 | Leong et al. | Nov 2016 | A1 |
20160336128 | Leong et al. | Nov 2016 | A1 |
20160343523 | Hendren et al. | Nov 2016 | A1 |
20160351360 | Knopf et al. | Dec 2016 | A1 |
20160365204 | Cao et al. | Dec 2016 | A1 |
20160378234 | Ligtenberg et al. | Dec 2016 | A1 |
20160379775 | Leong et al. | Dec 2016 | A1 |
20170004937 | Leong et al. | Jan 2017 | A1 |
20170004939 | Kwan et al. | Jan 2017 | A1 |
20170011869 | Knopf et al. | Jan 2017 | A1 |
20170090106 | Cao et al. | Mar 2017 | A1 |
20170301487 | Leong et al. | Oct 2017 | A1 |
20170315624 | Leong et al. | Nov 2017 | A1 |
20180029339 | Liu et al. | Feb 2018 | A1 |
20180040441 | Wu et al. | Feb 2018 | A1 |
20180074694 | Lehmann et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2155620 | Feb 1994 | CN |
2394309 | Aug 2000 | CN |
1533128 | Sep 2004 | CN |
1542497 | Nov 2004 | CN |
2672832 | Jan 2005 | CN |
1624842 | Jun 2005 | CN |
1812030 | Aug 2006 | CN |
1838036 | Sep 2006 | CN |
1855332 | Nov 2006 | CN |
101051569 | Oct 2007 | CN |
200961844 | Oct 2007 | CN |
200986871 | Dec 2007 | CN |
101146137 | Mar 2008 | CN |
201054315 | Apr 2008 | CN |
201084602 | Jul 2008 | CN |
201123174 | Sep 2008 | CN |
201149829 | Nov 2008 | CN |
101315841 | Dec 2008 | CN |
201210457 | Mar 2009 | CN |
101438228 | May 2009 | CN |
101465226 | Jun 2009 | CN |
101494130 | Jul 2009 | CN |
101502082 | Aug 2009 | CN |
201298481 | Aug 2009 | CN |
101546667 | Sep 2009 | CN |
101572195 | Nov 2009 | CN |
101800281 | Aug 2010 | CN |
101807482 | Aug 2010 | CN |
101868773 | Oct 2010 | CN |
201655616 | Nov 2010 | CN |
102110542 | Jun 2011 | CN |
102119430 | Jul 2011 | CN |
201904256 | Jul 2011 | CN |
102163084 | Aug 2011 | CN |
201927524 | Aug 2011 | CN |
201945951 | Aug 2011 | CN |
201945952 | Aug 2011 | CN |
201956238 | Aug 2011 | CN |
102197452 | Sep 2011 | CN |
202008941 | Oct 2011 | CN |
202040690 | Nov 2011 | CN |
102280292 | Dec 2011 | CN |
102338348 | Feb 2012 | CN |
102375550 | Mar 2012 | CN |
202205161 | Apr 2012 | CN |
102496509 | Jun 2012 | CN |
10269527 | Aug 2012 | CN |
102622089 | Aug 2012 | CN |
102629526 | Aug 2012 | CN |
202372927 | Aug 2012 | CN |
102679239 | Sep 2012 | CN |
102683072 | Sep 2012 | CN |
202434387 | Sep 2012 | CN |
202523007 | Nov 2012 | CN |
102832068 | Dec 2012 | CN |
102955573 | Mar 2013 | CN |
102956386 | Mar 2013 | CN |
102969183 | Mar 2013 | CN |
103000417 | Mar 2013 | CN |
103165327 | Jun 2013 | CN |
103180979 | Jun 2013 | CN |
203012648 | Jun 2013 | CN |
203135988 | Aug 2013 | CN |
103377841 | Oct 2013 | CN |
103489986 | Jan 2014 | CN |
203414880 | Jan 2014 | CN |
103681056 | Mar 2014 | CN |
103699181 | Apr 2014 | CN |
203520312 | Apr 2014 | CN |
203588895 | May 2014 | CN |
103839715 | Jun 2014 | CN |
103839720 | Jun 2014 | CN |
103839722 | Jun 2014 | CN |
103903891 | Jul 2014 | CN |
103956290 | Jul 2014 | CN |
203733685 | Jul 2014 | CN |
104021968 | Sep 2014 | CN |
204102769 | Jan 2015 | CN |
204117915 | Jan 2015 | CN |
104517769 | Apr 2015 | CN |
204632641 | Sep 2015 | CN |
105097341 | Nov 2015 | CN |
2530176 | Jan 1977 | DE |
3002772 | Jul 1981 | DE |
29704100 | Apr 1997 | DE |
202008001970 | Aug 2008 | DE |
0441993 | Aug 1991 | EP |
1835272 | Sep 2007 | EP |
1928008 | Jun 2008 | EP |
2022606 | Jun 2010 | EP |
2426688 | Mar 2012 | EP |
2439760 | Apr 2012 | EP |
2463798 | Jun 2012 | EP |
2664979 | Nov 2013 | EP |
2147420 | Mar 1973 | FR |
2911000 | Jul 2008 | FR |
2950193 | Mar 2011 | FR |
1361459 | Jul 1974 | GB |
S50115562 | Sep 1975 | JP |
S60055477 | Mar 1985 | JP |
S61172422 | Oct 1986 | JP |
S62072429 | Apr 1987 | JP |
S63182024 | Nov 1988 | JP |
H0422024 | Apr 1992 | JP |
H0520963 | Jan 1993 | JP |
H0524512 | Aug 1993 | JP |
H05342944 | Dec 1993 | JP |
H09204148 | Aug 1997 | JP |
H10312726 | Nov 1998 | JP |
H11194882 | Jul 1999 | JP |
2000010709 | Jan 2000 | JP |
2000057871 | Feb 2000 | JP |
2000339097 | Dec 2000 | JP |
2001100889 | Apr 2001 | JP |
2003114751 | Sep 2001 | JP |
2002260478 | Sep 2002 | JP |
2002298689 | Oct 2002 | JP |
2003522998 | Jul 2003 | JP |
2005108041 | Apr 2005 | JP |
2006164929 | Jun 2006 | JP |
2006185906 | Jul 2006 | JP |
2006521664 | Sep 2006 | JP |
2006269439 | Oct 2006 | JP |
2006277013 | Oct 2006 | JP |
2006344609 | Dec 2006 | JP |
2007115633 | May 2007 | JP |
2007514247 | May 2007 | JP |
2007156983 | Jun 2007 | JP |
2008021428 | Jan 2008 | JP |
2008041431 | Feb 2008 | JP |
2008100129 | May 2008 | JP |
2008191850 | Aug 2008 | JP |
2008533559 | Aug 2008 | JP |
2008293922 | Dec 2008 | JP |
2009099503 | May 2009 | JP |
2009181894 | Aug 2009 | JP |
2010061956 | Mar 2010 | JP |
2010244088 | Oct 2010 | JP |
2010244302 | Oct 2010 | JP |
2011018484 | Jan 2011 | JP |
2011065126 | Mar 2011 | JP |
2011150804 | Aug 2011 | JP |
2011165630 | Aug 2011 | JP |
2011524066 | Aug 2011 | JP |
2011187297 | Sep 2011 | JP |
2012022473 | Feb 2012 | JP |
2012043705 | Mar 2012 | JP |
2012063630 | Mar 2012 | JP |
2012098873 | May 2012 | JP |
2012134064 | Jul 2012 | JP |
2012186067 | Sep 2012 | JP |
2012230256 | Nov 2012 | JP |
2014017179 | Jan 2014 | JP |
2014026807 | Feb 2014 | JP |
2014216190 | Nov 2014 | JP |
2014220039 | Nov 2014 | JP |
2016053778 | Apr 2016 | JP |
1019990007394 | Jan 1999 | KR |
1020020001668 | Jan 2002 | KR |
100454203 | Oct 2004 | KR |
1020060083032 | Jul 2006 | KR |
1020080064116 | Jul 2008 | KR |
1020080066164 | Jul 2008 | KR |
2020110006385 | Jun 2011 | KR |
1020120062797 | Jun 2012 | KR |
1020130040131 | Apr 2013 | KR |
20150024201 | Mar 2015 | KR |
200703396 | Jan 2007 | TW |
M334397 | Jun 2008 | TW |
201108284 | Mar 2011 | TW |
201108286 | Mar 2011 | TW |
M407429 | Jul 2011 | TW |
201246251 | Nov 2012 | TW |
201403646 | Jan 2014 | TW |
WO9744946 | Nov 1997 | WO |
WO2005057320 | Jun 2005 | WO |
WO2006022313 | Mar 2006 | WO |
WO2007049253 | May 2007 | WO |
WO2008045833 | Apr 2008 | WO |
WO2009005026 | Jan 2009 | WO |
WO2012011282 | Jan 2012 | WO |
WO2012027978 | Mar 2012 | WO |
WO2013096478 | Jun 2013 | WO |
WO2014175446 | Oct 2014 | WO |
Entry |
---|
International Search Report and Written Opinion, PCT/US2015/045367, 13 pages, dated Nov. 25, 2015. |
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions,” http://www.wearable.technology/our-technologies, 3 pages, at least as early as Jan. 6, 2016. |
U.S. Appl. No. 14/472,260, filed Aug. 28, 2014, pending. |
U.S. Appl. No. 14/501,680, filed Sep. 30, 2014, pending. |
U.S. Appl. No. 14/736,151, filed Jun. 10, 2015, pending. |
U.S. Appl. No. 14/765,145, filed Jul. 31, 2015, pending. |
U.S. Appl. No. 14/867,598, filed Sep. 28, 2015, pending. |
U.S. Appl. No. 14/867,672, filed Sep. 28, 2015, pending. |
U.S. Appl. No. 14/867,712, filed Sep. 28, 2015, pending. |
U.S. Appl. No. 14/867,746, filed Sep. 28, 2015, pending. |
U.S. Appl. No. 15/014,596, filed Feb. 3, 2016, pending. |
U.S. Appl. No. 15/154,682, filed May 13, 2016, pending. |
U.S. Appl. No. 15/154,706, filed May 13, 2016, pending. |
U.S. Appl. No. 15/154,723, filed May 13, 2016, pending. |
U.S. Appl. No. 15/154,768, filed May 13, 2016, pending. |
U.S. Appl. No. 15/230,740, filed Aug. 8, 2016, pending. |
U.S. Appl. No. 15/230,724, filed Aug. 8, 2016, pending. |
U.S. Appl. No. 15/261,954, filed Sep. 11, 2016, pending. |
U.S. Appl. No. 15/261,972, filed Sep. 11, 2016, pending. |
U.S. Appl. No. 152/62,249, filed Sep. 12, 2016, pending. |
U.S. Appl. No. 15/264,827, filed Sep. 14, 2016, pending. |
U.S. Appl. No. 15/268,518, filed Sep. 16, 2016, pending. |
U.S. Appl. No. 15/269,790, filed Sep. 19, 2016, pending. |
Number | Date | Country | |
---|---|---|---|
20160049266 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
62037947 | Aug 2014 | US |